
GOLDSMITHS Research Online
Article (refereed)

Danicic, Sebastian, Laurence, Michael and Hierons, Robert

Decidability of Strong Equivalence for Subschemas of a
Class of Linear, Free, near-Liberal Program Schemas

Originally published in Goldsmiths Department of Computing Technical
Report

You may cite this version as: Danicic, Sebastian, Laurence, Michael and
Hierons, Robert, 2009. Decidability of Strong Equivalence for Subschemas of
a Class of Linear, Free, near-Liberal Program Schemas. Goldsmiths
Department of Computing Technical Report . [Article]: Goldsmiths Research
Online.

Available at: http://eprints.gold.ac.uk/2448/

This document is the author’s final manuscript version of the journal article,
incorporating any revisions agreed during peer review. Some differences
between this version and the publisher’s version remain. You are advised to
consult the publisher’s version if you wish to cite from it.

Copyright © and Moral Rights for the papers on this site are retained by the
individual authors and/or other copyright owners.

http://eprints-gro.goldsmiths.ac.uk
Contact Goldsmiths Research Online at: lib-eprints@gold.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Goldsmiths Research Online

https://core.ac.uk/display/88868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.goldsmiths.ac.uk/
mailto:lib-eprints@gold.ac.uk

Goldsmiths Department of Computing

Internal Report #1 Dec 2009

Decidability of Strong Equivalence for

Subschemas of a Class of Linear, Free,

near-Liberal Program Schemas

Sebastian Danicic b Robert M Hierons c Michael R Laurence a

aCorresponding author: Mike Laurence, email m.laurence@gold.ac.uk, tel +44 (0)
20 7919 7091, fax +44 (0) 20 7919 7853, address Department of Computing,

Goldsmiths College, University of London, London SE14 6NW, UK.
b Department of Computing, Goldsmiths College, University of London, London

SE14 6NW, UK.
cDepartment of Information Systems and Computing, Brunel University,

Uxbridge, Middlesex, UB8 3PH.

Abstract

A program schema defines a class of programs, all of which have identical statement
structure, but whose functions and predicates may differ. A schema thus defines an
entire class of programs according to how its symbols are interpreted. Two schemas
are strongly equivalent if they always define the same function from initial states
to final states for every interpretation. A subschema of a schema is obtained from
a schema by deleting some of its statements. A schema S is liberal if there exists
an initial state in the Herbrand domain such that the same term is not generated
more than once along any executable path through S. In this paper we introduce
near-liberal schemas, in which this non-repeating condition applies only to terms
not having the form g() for a constant function symbol g. Given a schema S that is
linear (no function or predicate symbol occurs more than once in S) and a variable v,
we compute a set of function and predicate symbols in S which is a subset of those
defined by Weiser’s slicing algorithm and prove that if for every while predicate
q in S and every constant assignment w := g(); lying in the body of q, no other
assignment to w also lies in the body of q, our smaller symbol set defines a correct
subschema of S with respect to the final value of v after execution. We also prove
that if S is also free (every path through S is executable) and near-liberal, it is
decidable which of its subschemas are strongly equivalent to S. For the class of
pairs of schemas in which one schema is a subschema of the other, this generalises
a recent result in which S was required to be linear, free and liberal.

Preprint submitted to Elsevier Science

u :=h();

if p(u) then v := f(u);

else v := g();

Fig. 1. Schema S

Key words: free and liberal program schemas, Herbrand domain, program slicing,
linear schemas, Weiser’s algorithm

1 Introduction

A schema represents the statement structure of a program by replacing real functions
and predicates by symbols representing them. A schema, S, thus defines a whole class
of programs which all have the same structure. Each program can be obtained from
S via a domain D and an interpretation i which defines a function f i : Dn → D for
each function symbol f of arity n, and a predicate function pi : Dm → {T,F} for
each predicate symbol p of arity m. As an example, Figure 1 gives a schema S, and
the program P of Figure 2 is defined from S by interpreting the function symbols
f, g, h and the predicate symbol p as given by P , with D being the set of integers.
The subject of schema theory is connected with that of program transformation and
was originally motivated by the wish to compile programs effectively[1]. In this paper
we are concerned with the relevance of schema theory to program slicing; that is, the
study of the effect on a program’s rum-time behaviour caused by the deletion of code
from the program. Since program slicing algorithms do not normally take into account
the meanings of the functions and predicates of a program, a schema encodes all the
information about any program which it defines that is available to slicing algorithms.

In this paper we are concerned with three binary relations on schemas, for a variable
v.

• Two schemas S, T are strongly v-equivalent if for every interpretation, the programs
defined by S and T define the same function from initial states to the final value of
v. Here non-termination is treated as being a possible final final value of v.
• Two schemas S, T are weakly v-equivalent if for every interpretation, the programs

defined by S and T define the same function from initial states to the final value of
v, when the initial state set is restricted to those states for which the two programs
both terminate.
• (v-slices of a schema for variable v.) A subschema of a schema S is defined to be any

schema obtained by deleting statements from S. For any subschema T of a schema
S, and any variable v, we say that T is a v-slice of S if for every interpretation i
and any initial state, the program defined by T always terminates if that defined
by S does (but not necessarily conversely), in which case the final value of v is the

2

u := 1;

if u > 1 then v :=u+ 1;

else v := 2;

Fig. 2. Program P

same for both programs.

We are interested in obtaining decidable syntactic conditions on schema pairs which
imply one of these relations. Given a variable v and a schema S that is assumed to be
linear (that is, no function or predicate symbol occurs more than once in it), Weiser’s
slicing algorithm[2,3] defines a set NS(v) of symbols 1 occurring in S. This set is
defined using the data dependence

S
, final

S and control dependence ↘S relations.

These are defined as follows; f
S
g holds if there is a path from the function symbol f

to g which does not pass through any assignment to the variable assigned by f , and
the function symbol g references this variable, and f final

S v is defined analogously
with respect to a variable v evaluated at the end of a path; for example, in the schema
of Fig. 1, h

S
f , h

S
p, h final

S u, g final
S v and f final

S v hold. We write p ↘S x if

the predicate p contains the symbol x in its body or in its if or else parts.

For a variable v and a linear schema S, NS(v) is the minimal set of symbols that
is left-closed under the ↘S and

S
relations and contains every function symbol

f for which f
final
S

v holds. The authors have proved that a subschema T of S that

contains all symbols in NS(v) is weakly v-equivalent to S, and if T contains only these
symbols, then T is a v-slice of S [4,7]. An analogous set NS(ω) can be defined using
the while predicates of S instead of the variable v as a starting point in the recursive
definition [5, Definition 19]. A subschema of S that contains all the symbols in this set
terminates for precisely the same set of pairs of interpretations and initial states as
S[5]. In this paper we define subsetsWf uncsS(v) ⊆ NS(v) andWpredsS(v) ⊆ NS(v)
of the function and predicate symbols respectively in S, which we call the reduced
Weiser sets.

We prove three main results involving the equivalence and slicing relations listed
above. In each case, we consider a schema S which is linear, and we also require that
for every while predicate q in S and every constant assignment w := g(); lying in the
body of q, no other assignment to w also lies in the body of q. Under these conditions,
for any variable v, we prove the following.

(1) (weak equivalence.) We show that if T is a subschema of S containing the symbols
in Wf uncsS(v) ∪WpredsS(v), then S and T are weakly v-equivalent.

1 A symbol in this paper means a function or predicate symbol in a schema.

3

(2) (weak equivalence plus termination preservation.) We analogously define sets
Wf uncsS(p) and WpredsS(p) for a predicate symbol p guarding a while state-
ment, and prove that if a subschema T of S contains symbols in Wf uncsS(p) ∪
WpredsS(p) for every such predicate p, and also contains the symbols inWf uncsS(v)∪
WpredsS(v), then besides satisfying weak equivalence, T is a v-slice of S.

(3) (strong equivalence.) Suppose that in addition to the linearity condition and
the condition on constant assignments given above, S satisfies the following;
given any path through a schema S, there is an interpretation and an initial
state such that the program thus defined follows this path when executed (the
freeness condition) and no term apart from terms having the form g() for a
constant function symbol g is generated more than once as it does so (the near-
liberality condition). The freeness condition was first defined by Paterson [6]. The
near-liberality condition, which we introduce in this paper, is a generalisation of
liberality[6], in which the non-repeating condition applies to all terms without
restriction. Under these hypotheses, we prove that if T is a subschema of S,
then S and T are strongly v-equivalent if and only if T contains every symbol in
Wf uncsS(u) ∪ WpredsS(u) for each u ∈ {v} ∪ {p| p is a while predicate in S}.
In particular, it is decidable whether S and T are strongly v-equivalent under
these extra conditions on S.

Since no free liberal schema can contain a constant assignment lying in the body of a
while predicate, all linear, free and liberal schemas lie in the larger class of schemas
to which Result (3) applies. Figure 3 gives an example of a schema lying in this larger
class, but which is not liberal, since any path passing more than once through the
assignment v := g1() clearly assigns the same value to v on each occasion. Hence, for
schema pairs in which one schema is a subschema of the other, Result (3) is in effect
a strengthening of a result in [7,4], in which strong equivalence was shown to be
decidable for pairs of schemas which were required to be linear, free and liberal.

As we will show, if S is the schema in Fig. 3, then f /∈ Wf uncsS(v) and thus Result (1)
is a strengthening of the weak equivalence result in [4,7]. Fig. 5, discussed in Section
9, gives an example of a linear schema that is neither free nor liberal, but satisfies our
conditions on assignments of arity zero.

1.1 Relevance of Schema Theory to Program Slicing

The field of (static) program slicing is largely concerned with the design of algorithms
which when given a program, eliminate as much code as possible from the program,
such that the subprogram consisting of the remaining code, when executed from the
same initial state, will preserve some of the behaviour of the original program. One
algorithm is thus better than another if it constructs a smaller subprogram for a given
program. (For a fuller discussion of program slicing algorithms see [8,9].)

4

while q(w) do {

w :=h1(w);

u :=h2(u);

if p(u) then {

v := g1();

u := f(u);

}

}

Fig. 3. Deleting the assignment u := f(u); does not change the final value of v or prevent
termination of any program representable by this free near-liberal linear schema, although
f lies in Weiser’s set NS(v)

The simplest form of behaviour-preservation is defined by the final value of a vari-
able, which must be the same for the subprogram as for the program. In addition, a
subprogram is normally required to terminate under all inputs for which the original
program terminates, thus motivating our v-slice definition in the Introduction.

Most program slicing algorithms, when applied to programs without procedures of
the kind considered in this paper, use Weiser’s algorithm[2], which, given a program,
computes the subprogram containing those symbols defined by the transitive closure
of the control and backward data dependence relations.

Thus Weiser’s algorithm does not take account of the meanings of the functions and
predicates occurring in a program, nor does it exploit the knowledge that the same
function or predicate occurs in two different places in a program. In effect, therefore, it
takes a linear schema S defined by a program P as input, and computes a subprogram
of S which satisfies the required semantic behaviour for all interpretations; not solely
the interpretation which defines P from S. This reflects the fact that it is undecidable
whether the deletion of a particular line of code from a program can affect the final
value of a given variable after execution (otherwise the halting problem for Turing
machines would be decidable) and hence no slicing algorithm can guarantee to give a
minimal correct subprogram for every program.

However, slicing algorithms taking linear schemas as input may yield more information
about a program than algorithms that merely use Weiser’s algorithm. As an example,
in the schema S of Figure 3, which will be discussed in further sections, it can be

v := g();

if p(u) then v := g();

Fig. 4. Deleting the if statement gives a v-slice of this schema

5

seen that the subschema of S obtained by deleting the assignment with symbol f is a
v-slice of S, since the removal of this assignment cannot prevent termination (which
is determined solely by the value of w when referenced by q), nor can it prevent the
path of execution from passing through g1 at least once, though it may affect the
number of times this happens. However, if the assignment with symbol g1 is replaced
by an assignment v := g2(v); to give a schema T , then the assignment u := f(u); may
not similarly be deleted from T , since this deletion may change the value of v after
execution. As an example of an interpretation under which this occurs, suppose that
h1, h2, f and g2 are all interpreted as the function v 7→ v+ 1 in the domain of integers
and q(0), q(1), p(0), p(1) and p(2) map to true, whereas q(v) and p(v) map to false
if v ≥ 2 or v ≥ 3 respectively. Execution of S from the initial state in which all
variables are set to zero results in a final value of 1 for v, whereas if the assignment
u := f(u); is deleted, then the execution path will pass through g2 on both occassions
that it enters the body of q giving a final value of 3 for v. However Weiser’s algorithm
will treat these two cases identically, and will require f to be in a v-slice in both
cases. This is because f

S
p and f

T
p and p ↘S g1 and p ↘T g2 hold, and thus

f ∈ NS(v) = NT (v) follows.

Danicic [10] gives other examples of cases of linear schemas for which program slicing
algorithms will not give minimal correct subschemas. If the linearity assumption is
discarded, then non-minimality can be demonstrated even for loop-free schemas, such
as the one in Figure 4, in which p and both occurrences of g lie in the Weiser symbol
set defined by v, but the p-statement can clearly be deleted without changing the
final value of v. These examples motivate the mathematical study of schemas, which
may lead to the computation of smaller subschemas than conventional program slicing
techniques can achieve.

1.2 Organisation of the paper

In the remainder of this section, we explain how the field of program slicing provides
motivation for our results, and we also discuss the history of the study of schemas.
In Section 2, we give formally our basic schema definitions. In Section 3, we give the
formal definition of a subschema of a schema and the semantic definitions of schema
equivalence and a v-slice for variable v. In Section 4 we formally define the data

dependence relations
S

and
final
S

for a schema S. In Section 5, we define the notion

of a p-couple for a predicate p; that is, a pair of interpretations which differ only on
one p-predicate term. In Section 6, we define formally the classes of free, liberal and
near-liberal schemas, and prove that it is decidable whether a linear schema is both
free and near-liberal given that it satisfies the additional condition involving while
predicates and constant assignments required for the main results of this paper. In
Section 7, we give the formal definition of the reduced Weiser set of symbols, and
prove that it is decidable whether a given symbol in a linear schema lies in this set. In
Section 8 we obtain preliminary results in order to prove our main theorems, which

6

are proved in Section 9. In Section 10, we discuss our conclusions.

1.3 Different classes of schemas

Many subclasses of schemas have been defined:

Structured schemas, in which goto statements are forbidden, and thus loops must
be constructed using while statements. All schemas considered in this paper are
structured.

Linear schemas, in which each function and predicate symbol occurs at most once.
Free schemas, where all paths are executable under some interpretation.
Conservative schemas, in which every assignment is of the form
v := f(v1, . . . , vr); where v ∈ {v1, . . . , vr}.

Liberal schemas, in which two assignments along any executable path can always
be made to assign distinct values to their respective variables by a suitable choice
of interpretation and initial state.

We now give examples of schemas satisfying these definitions, and first show that the
freeness and liberality conditions on schemas are incomparable. To see this, consider
the following two examples of linear schemas. The schema

while p(v) do skip

contains no assignments and is therefore liberal, but it is not free, since there is no
choice of interpretation and initial state under which the executed path thus defined
passes exactly once through the body of p, since the value of v, and hence the boolean
value defined at p cannot change during execution. On the other hand the schema

while q(w) do {

w := f(w);

x := g();

}

is free, since if f defines the function w 7→ w + 1 over the domain of integers, then w
never defines a repeated value when referenced by q, and so q can be interpreted so as
to define an executed path that passes any desired number of times through q, but it
is not liberal, since the variable x is always assigned the same value at occurrences of g
along any executed path. The subschema obtained from it by deleting the assignment
x := g(); (that is, while q(w) do w := f(w);) is both free and liberal, on the other hand.
More generally, it can be shown that all conservative schemas are liberal.

The schema in Figure 3 can also be seen to be free, owing to the conservative (self-
referencing) assignments with symbols f, h1, h2, which can be interpreted as the func-

7

tion w 7→ w + 1 over the domain of integers, thus ensuring that the variables u,w
referenced by p and q respectively never repeat in value. It is not liberal however, since
it has a path passing more than once through g1, along which this assignment defines
the same value to v on each occasion. More generally, it is easy to see that no schema
having a constant assignment in the body of a while predicate can be both free and
liberal, since if it is free, then there is an executable path passing twice through this
assignment, which clearly assigns the same value to its variable on each occasion.

Paterson [6] gave a proof that it is decidable whether a schema is both liberal and
free and since he also gave an algorithm transforming a schema S into a schema T
such that T is both liberal and free if and only if S is liberal, it is clearly decidable
whether a schema is liberal. It is an open problem whether freeness is decidable for
the class of linear schemas. However he also proved, using a reduction from the Post
Correspondence Problem, that it is not decidable whether an arbitrary schema is free.

1.4 Previous results on the decidability of strong equivalence between schemas

Most previous research on schemas has focused on strong equivalence, as defined in
the introduction. Many authors call strong equivalence simply ‘equivalence’, as we do
in this subsection. All results on the decidability of equivalence of schemas are either
negative or confined to very restrictive classes of schemas. In particular Paterson [6]
proved that equivalence is undecidable for the class of all (unstructured) schemas.
He proved this by showing that the halting problem for Turing machines (which is,
of course, undecidable) is reducible to the equivalence problem for the class of all
schemas. Ashcroft and Manna showed [11] that an arbitrary schema can be effectively
transformed into an equivalent structured schema, provided that statements such
as while ¬p(u) do T are permitted; hence Paterson’s result shows that any class of
schemas for which equivalence can be decided must not contain this class of schemas.
Thus in order to achieve positive results on this problem, it is plainly necessary to
define the relevant classes of schema with great care.
Positive results on the decidability of equivalence of schemas include the following; in
an early result in schema theory, Ianov [12] introduced a restrictive class of schemas,
the Ianov schemas, for which equivalence is decidable. This problem was later shown
to be co-NP-complete [13,14]. Ianov schemas are monadic (that is, they contain only
a single variable) and all function symbols are unary; hence Ianov schemas are con-
servative.

Paterson [6] proved that equivalence is decidable for a class of schemas called pro-
gressive schemas, in which every assignment references the variable assigned by the
previous assignment along every legal path.

Sabelfeld [15] proved that equivalence is decidable for another class of schemas called
through schemas. A through schema satisfies two conditions: firstly, that on every

8

path from an accessible predicate p to a predicate q which does not pass through
another predicate, and every variable x referenced by p, there is a variable referenced
by q which defines a term containing the term defined by x, and secondly, distinct
variables referenced by a predicate can be made to define distinct terms under some
interpretation.

The authors have shown [4,7] that it is decidable whether linear, free, liberal schemas
are equivalent.

In view of the evident difficulty of obtaining positive results on this problem, and the
importance of program slicing, it seems sensible to concentrate on trying to decide
equivalence for classes of schema pairs in which one schema is a subschema of the
other, as in this paper.

2 Basic definitions for schemas

Throughout this paper, F , P , and V denote fixed infinite sets of function symbols,
predicate symbols, and variables respectively. We assume a function

arity : F ∪ P → N.

The arity of a symbol x is the number of arguments referenced by x. Note that in the
case when the arity of a function symbol g is zero, g may be thought of as a constant.

The set Term(F ,V) of terms is defined as follows:

• each variable is a term,
• if f ∈ F is of arity n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term.

We refer to a tuple t = (t1, . . . , tn), where each ti is a term, as a vector term. We call
p(t) a predicate term if p ∈ P and the number of components of the vector term t is
arity(p).

We also define F -terms and vF -terms recursively for F ∈ F∗ and v ∈ V . Any term
f(t1, . . . , tn) is an f -term, and the term v is a v-term. If g ∈ F and at least one of the
terms t1, . . . , tn is an F -term or vF -term, then the term g(t1, . . . , tn) is an Fg-term,
or vFg-term, respectively. Thus any FF ′-term is also an F ′-term.

An an example, f(g(v)) for v ∈ V is an f -term, a gf -term, and a vgf -term. Note that
function symbols in this terminology occur in the order in which they are encountered
along a path generating a given term.

Definition 1 (schemas) We define the set of all schemas recursively as follows.
skip is a schema. An assignment y := f(x); where y ∈ V , f ∈ F , and x is a vector

9

of arity(f) variables, is a schema. From these all schemas may be ‘built up’ from the
following constructs on schemas.

sequences; S ′ = U1U2 . . . Ur is a schema provided that each Ui for i ∈ {1, . . . , r} is
a schema.

if schemas; S ′′ = if p(x) then {T1} else {T2} is a schema whenever p ∈ P , x is a
vector of arity(p) variables, and T1, T2 are schemas. We call the schemas T1 and T2

the true and false parts of p.
while schemas; S ′′′ = while q(y) do {T} is a schema whenever q ∈ P , y is a vector

of arity(q) variables, and T is a schema. We call T the body of the while predicate
q in S ′′′.

Thus a schema is a word in a language over an infinite alphabet. We normally omit
the braces { and } if this causes no ambiguity. Also, we may write if p(x) then {T1}
instead of
if p(x) then {T1} else {T2} if T2 = skip.

We refer to elements of F ∪ P as symbols. If no symbol appears more than once in a
schema S, then S is said to be linear.

We define Funcs(S), Preds(S) and Symbols (S) = Funcs(S)∪Preds(S) to be the sets
of function symbols, predicate symbols and all symbols occurring in a schema S. If S
is linear, we define ifPreds(S) and whilePreds(S) to be the sets of if predicate symbols
and while predicate symbols in S.

A schema without predicates (that is, a schema which consists of a sequence of as-
signments and skips) is called predicate-free.

If a linear schema S contains an assignment y := f(x); then we define y = assignS(f)
and x = refvecS(f). If p ∈ Preds(S) then refvecS(p) is defined similarly. We also de-
fine refVarsS(x) for a symbol x in S to be the set of variables occurring in refvecS(x).

Definition 2 (the ↘S relation)
Let S be a schema. If p is a predicate in S and x is any symbol, we say that p ↘S x
holds if x occurs in the body of an occurrence of p (if p is a while predicate in S) or
x lies in the true or false part of p (if p is an if predicate). We may strengthen this by
writing p ↘S x (Z) for Z ∈ {T,F} to indicate the additional condition that x lies in
the Z-part of p if p ∈ ifPreds(S), or p ∈ whilePreds(S) (if Z = T).

The relation ↘S is the transitive closure of the relation ‘controls’ in program analysis
terminology, when applied to structured schemas as in this paper.

10

2.1 Paths through a Schema

The execution of a program defines a possibly infinite sequence of assignments and
predicates. Each such sequence will correspond to a path through the associated
schema. The set Πω(S) of paths through S is now given.

Definition 3 (the set Πω(S) of paths through S, path-segments of S) If L is
any set, then we write L∗ for the set of finite words over L and Lω for the set containing
both finite and infinite words over L. If σ is a word, or a set of words over an alphabet,
then pre(σ) is the set of all finite prefixes of (elements of) σ.

For each schema S the alphabet of S, written alphabet(S) is the set containing all
letters y := f(x) such that y := f(x); is an assignment in S and p(y), Z such that p(y)
occurs in S and Z ∈ {T,F}. We define symbol(y := f(x)) = f and symbol(p(y), Z) =
p. We sometimes abbreviate p(y), Z to p, Z, where the vector y of variables need not
be referred to.

The words in Π(S) ⊆ (alphabet(S))∗ are formed by concatenation from the words of
subschemas of S as follows:

Π(skip) is the set containing only the empty word.

For assignments, Π(y := f(x);) = {y := f(x)}.

For sequences, Π(S1S2 . . . Sr) = Π(S1) . . .Π(Sr).

For if schemas, Π(if p(x) then {T1} else {T2}) is the set of all concatenations of
p(x),T with a word in Π(T1) and all concatenations of p(x),F with a word in Π(T2).

For while schemas, Π(while q(y) do {T}) = (q(y),T Π(T))∗q(y),F.

We define Πω(S) = {σ ∈ (alphabet(S))ω|pre(σ) ⊆ pre(Π(S))}. Prefixes of Π(S) are
called path-prefixes through S. Any µ ∈ alphabet(S)∗ is a path-segment (in S) if
there are words µ′, µ′′ such that µ′µµ′′ ∈ Π(S). A terminal path-segment of S is a
path-segment ν such that µν ∈ Π(S) for some µ.

2.2 Semantics of schemas

The symbols upon which schemas are built are given meaning by defining the notions
of a state and of an interpretation. It will be assumed that ‘values’ are given in a single
set D, which will be called the domain. We are mainly interested in the case in which
D = Term(F ,V) (the Herbrand domain) and the function symbols represent the
‘natural’ functions with respect to Term(F ,V), since our equivalence and semantic
slicing definitions can be stated solely with respect to this domain.

11

Definition 4 (states, (Herbrand) interpretations and the natural state e)
Given a domain D, a state is either ⊥ (denoting non-termination) or a function
V → D. If d is a state and x = (v1, . . . , vm) is a vector of variables, then we define
d(x) = (d(v1), . . . , d(vm)). The set of all states with domain D will be denoted by
State(V , D). An interpretation i defines, for each function symbol f ∈ F of arity n,
a function f i : Dn → D, and for each predicate symbol p ∈ P of arity m, a function
pi : Dm → {T, F}. The set of all interpretations with domain D will be denoted
Int(F ,P , D).
We call the set Term(F ,V) of terms the Herbrand domain, and we say that a function
from V to Term(F ,V) is a Herbrand state. An interpretation i for the Herbrand
domain is said to be Herbrand if the functions f i : Term(F ,V)n → Term(F ,V) for
each f ∈ F are defined as

f i(t1, . . . , tn) = f(t1, . . . , tn)

for all n-tuples of terms (t1, . . . , tn).
We define the natural state e : V → Term(F ,V) by e(v) = v for all v ∈ V .

Note that an interpretation i being Herbrand places no restriction on the mappings
pi : (Term(F ,V))m → {T, F} defined by i for each p ∈ P .

Given a schema S and a domain D, an initial state d ∈ State(V , D) with d 6= ⊥ and
an interpretation i ∈ Int(F ,P , D) we now define the final stateM[[S]]id ∈ State(V , D)
and the associated path πS(i, d) ∈ Πω(S). In order to do this, we need to define the
predicate-free schema associated with a path-prefix by considering the sequence of
assignments through which it passes.

Definition 5 (the schema schema(σ))
Given a word σ ∈ (alphabet(S))∗ for a schema S, we recursively define the predicate-

free schema schema(σ) by the following rules; schema(λ) = skip if λ is the empty
word, schema(σv := f(x)) = schema(σ) v := f(x); and
schema(σp(y), X) = schema(σ).

Lemma 6 Let S be a schema. If σ ∈ pre(Π(S)), the set {m ∈ alphabet(S)|σm ∈
pre(Π(S))} is one of the following; a singleton containing an underlined assignment,
a pair {p(y),T, p(y),F} where p ∈ Preds(S), or the empty set, and if σ ∈ Π(S) then
the last case holds.

Lemma 6, which can be proved in a similar way to [5, Lemma 6], reflects the fact that
at any point in the execution of a program, there is never more than one ‘next step’
which may be taken, and an element of Π(S) cannot be a strict prefix of another.
Thus we can define the partial function σ 7→ nextsymbolS(σ) for any σ ∈ pre(Π(S)).

Definition 7 (nextsymbolS(σ) for a path-prefix σ) Let S be a schema. If
σ ∈ pre(Π(S)) − Πω(S), then nextsymbolS(σ) is the unique element of Funcs(S) ∪
Preds(S) satisfying σl ∈ pre(Π(S)) for l ∈ alphabet(S) and symbol(l) = nextsymbolS(σ).

12

Definition 8 (semantics of predicate-free schemas) Given a state d 6= ⊥, the
final state M[[S]]id and associated path πS(i, d) ∈ Πω(S) of a schema S are defined as
follows:

For skip,
M[[skip]]id = d

and
πskip(i, d) is the empty word.

For assignments,

M[[y := f(x);]]id(v) =

d(v) if v 6= y,

f i(d(x)) if v = y

and
πy := f(x);(i, d) = y := f(x),

and for sequences S1S2 of predicate-free schemas,

M[[S1S2]]id = M[[S2]]iM[[S1]]i
d

and
πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]id).

This uniquely defines M[[S]]id and πS(i, d) if S is predicate-free.

In order to give the semantics of a general schema S, first the path, πS(i, d), of S with
respect to interpretation, i, and initial state d is defined.

Definition 9 (the path πS(i, d)) Given a schema S, an interpretation i, and a state,
d 6= ⊥, the path πS(i, d) ∈ Πω(S) is defined by the following condition; for all
σ p(y), X ∈ pre(πS(i, d)), the equality pi(M[[schema(σ)]]id(y)) = X holds.

In other words, the path πS(i, d) has the following property; if a predicate expression
p(y) along πS(i, d) is evaluated with respect to the predicate-free schema consisting
of the sequence of assignments preceding that predicate in πS(i, d), then the value
in {T,F} of the resulting predicate term given by i ‘agrees’ with the value given in
πS(i, d).

By Lemma 6, this defines the path πS(i, d) ∈ Πω(S) uniquely.

Definition 10 (the semantics of arbitrary schemas) If πS(i, d) is finite, we de-
fine

M[[S]]id =M[[schema(πS(i, d))]]id

(which is already defined, since schema(πS(i, d)) is predicate-free) otherwise πS(i, d)
is infinite and we define M[[S]]id = ⊥. In this last case we may say that M[[S]]id is not

13

terminating. Also, for schemas S, T and interpretations i and j we writeM[[S]]id(ω) =
M[[T]]jd(ω) to meanM[[S]]id = ⊥ ⇐⇒ M[[T]]jd = ⊥. For convenience, if S is predicate-
free and d : V → Term(F ,V) is a state then we define unambiguously M[[S]]d =
M[[S]]id; that is, we assume that the interpretation i is Herbrand if d is a Herbrand
state; and we will write M[[µ]]d to mean M[[schema(µ)]]d for any µ ∈ alphabet(S)∗.

Observe that M[[S1S2]]id =M[[S2]]iM[[S1]]i
d

and

πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]id)

hold for all schemas (not just predicate-free ones).

Given a schema S, let µ ∈ pre(Π(S)). We say that µ passes through a predicate term
p(t) if µ has a prefix µ′ ending in p(y), Y for Y ∈ {T,F} such that M[[µ′]]e(y) = t
holds. We say that p(t) = Y is a consequence of µ in this case. As an example of this
usage, if µ is the terminating path through the schema of Fig. 3 which passes exactly
twice through the body of q, then q(w) = T, q(h1(w)) = T and q(h1(h1(w))) = F are
all consequences of µ.

3 Subschemas of schemas, the semantic slicing criterion and the equiva-
lence condition

We now formalise the notion of a subschema.

Definition 11 (subschemas of a schema) The set of subschemas of a schema S
is the minimal set of schemas which satisfies the following rules;

• Every schema is a subschema of itself.
• skip is a subschema of any schema.
• S1 . . . Sm−1Sm+1 . . . Sn is a subschema of S1 . . . Sn.
• If S ′m is a subschema of Sm, then S1 . . . S

′
m . . . Sn is a subschema of S1 . . . Sm . . . Sn.

• if T ′ is a subschema of T then while p(u) do T ′ is a subschema of while p(u) do T ;
• if T ′ is a subschema of T then the if schema if q(u) then S else T ′ is a subschema of

if q(u) then S else T (the true and false parts may be interchanged in this example);
• a subschema of a subschema of S is itself a subschema of S.

In order to present our main results, it is useful to define two types of equivalence
between schemas; strong equivalence, which some authors refer to as simply equiva-
lence, and weak equivalence, in which non-termination is excluded from consideration
as a final state. In addition, we restrict consideration to the final value of a single
variable.

Definition 12 (strong and weak u-equivalence for u ∈ V) Let u ∈ V and let
S, T be schemas. If M[[S]]id(u) = M[[T]]id(u) always holds for any state d over any

14

domain and any interpretation i with respect to that domain, then we say that S
and T are strongly u-equivalent. IfM[[S]]id(u) =M[[T]]id(u) always holds when neither
side is ⊥, we say that S and T are weakly u-equivalent. If M[[S]]id(u) = ⊥ ⇐⇒
M[[T]]id(u) = ⊥ always holds, then we say that S and T are ω-equivalent.

Clearly any schemas S and T are strongly u-equivalent if and only if they are both
weakly u-equivalent and ω-equivalent.

Definition 13 is of more relevance to program slicing than that of either form of
equivalence, since the behaviour of a subprogram is not usually of interest in cases in
which the original program fails to terminate.

Definition 13 (the semantic u-slice condition for u ∈ V) Let T be a subschema
of a schema S. Then given u ∈ V , we say that T is a u-slice of S if given any domain
D, any state d : V → D and any i ∈ Int(F ,P , D), M[[S]]id 6= ⊥ ⇒ M[[S]]id(u) =
M[[T]]id(u) holds.

Clearly every u-slice of a schema is weakly u-equivalent to it. As an example of these
relations, let S be the schema

u := g();

while p(v) do v := f(v);

The schema u := g(); is a u-slice of S and the two schemas are therefore weakly u-
equivalent, but they are not strongly u-equivalent, since there exists an interpretation
and an initial state for which S fails to terminate but its subschema u := g(); clearly
does; for example, this holds for any interpretation under which p(v) always maps to
T.

These equivalence and slicing conditions are stated in terms of every conceivable
domain and initial state; however it is well known that the Herbrand domain is the only
one that needs to be considered when considering many schema problems. Theorem
14, which is virtually a restatement of [16, Theorem 4-1], ensures that for slicing
and equivalence purposes, we only need to consider Herbrand interpretations and the
natural state e.

Theorem 14 Let χ be a set of schemas, let D be a domain, let d be a function from
the set of variables into D and let i be an interpretation using this domain. Then there
is a Herbrand interpretation j such that the following hold.

(1) For all S ∈ χ, the path πS(j, e) = πS(i, d).
(2) If S1, S2 ∈ χ and v1, v2 are variables and ρk ∈ pre(πSk

(j, e)) for k = 1, 2 and
M[[ρ1]]e(v1) =M[[ρ2]]e(v2), then also M[[ρ1]]id(v1) =M[[ρ2]]id(v2) holds.

As a consequence of Theorem 14, D = Term(F ,V) and d = e may be assumed in
Definitions 12 and 13. Therefore, throughout the remainder of the paper, all interpre-

15

tations will be assumed to be Herbrand.

4 The data dependence relations
S

and
final
S

Definition 15 formalises the data dependence relations between symbols and variables
in a linear schema.

Definition 15 (the
S

and
final
S

relations and parameterised path-segments)

Let S be a linear schema and let σ be a path-segment in S.

• We call σ an F -path-segment, or vF -path-segment for F ∈ F∗ and v ∈ V if
M[[σ]]e(u) for some u ∈ V is an F -term, or vF -term, respectively. We also call
these path-segments an Fu-path-segment or vFu-path-segment respectively.
• We call σp, Z an Fp-path-segment or Fp-path-segment in S if M[[σ]]e(u) is an F -

term for some u ∈ V referenced by p in S. We define vFp-path-segments analogously.
• We write f

S
g if S contains an fg-path-segment for f ∈ F and g ∈ F ∪ P , and

write f
final
S
u if S contains a terminal path-segment which is an fu-path-segment

for u ∈ V .

5 Couples of interpretations

In order to establish which predicate symbols of a schema must be included in a
subschema in order to preserve our desired behaviour, we define the notion of a p-
couple for a predicate p. This is simply a pair of (Herbrand) interpretations which
differ at exactly one predicate term. The motivation for Definition 16 is as follows; if
the final value of a variable v with respect to a schema S differs for each element of a
p-couple then this means that the predicate p must influence the final value of v and
so must be kept in any subschema of S that preserves it. Thus, p-couples are used to
reason about the set of predicates required to lie in a subschema.

Definition 16 (couples) Let i, j be interpretations and let p ∈ P . We say that the
set {i, j} is a p-couple if there is a vector term t such that pi(t) 6= pj(t), and i and j
agree at all other predicate terms. In this case we may also say that {i, j} is a p(t)-
couple. If a component of t is an F -term for F ∈ F∗, then {i, j} is an Fp-couple. Given
any u ∈ V and schema S, we also say that {i, j} is an Fpu-couple or p(t)u-couple for
S if also M[[S]]ie(u) 6=M[[S]]je(u) and both sides terminate.

We also make analogous definitions if instead u = ω; we say {i, j} is a pω-couple for
S if exactly one path in {πS(i, e), πS(j, e)} terminates.

16

Note that a pu-couple is simply an Fpu-couple with F as the empty word. The
existence of a pu-couple for a schema S ‘witnesses’ the fact that p affects the semantics
of S, as defined by u.

Proposition 17 follows immediately from Definition 16.

Proposition 17 If u ∈ V ∪ {ω} and schemas S, T are strongly u-equivalent (or u-
equivalent if u = ω) then a pu-couple for S is also a pu-couple for T . �

Definition 18 (head and tails of a couple) Let S be a schema. Let u ∈ V ∪{ω},
and let q ∈ Preds(S). Let I = {i, j} be a qu-couple for S and write

πS(k, e) = µq, Zk ρk

for each k ∈ I and {Zi, Zj} = {T,F}; that is, µ is the maximal common prefix of the
paths πS(k, e). Then we define tailS(k, I) = ρk for each k ∈ I, and µ = headS(I).

Observe that Definition 18 is given in terms of the natural state e. The motivation
for Definition 18 is given by Lemma 23, which shows that given a pu-couple for a free
near-liberal schema, under certain conditions a new pu-couple may be obtained from
it by replacing its head by any path-prefix leading to p, while keeping the same tails.

For the remainder of this paper, we use the following terminology with interpretations.
If i is an interpretation, p(t) is a predicate term and X ∈ {T,F}, then i(p(t) = X)
is the interpretation which maps every predicate term to the same value as i except
p(t), which it maps to X.

6 Free, liberal and near-liberal schemas

We now state formally the definitions of freeness and liberality mentioned in Section
1.3, and define the new near-liberality condition.

Definition 19 (free and liberal schemas) Let S be a schema.

• If for every σ ∈ pre(Π(S)) there is a Herbrand interpretation i such that σ ∈
pre(πS(i, e)), then S is said to be free.
• If for every Herbrand interpretation i and any path-prefix µ v := f(a) ν w := g(b) ∈

pre(πS(i, e)), we have

M[[µ v := f(a)]]e(v) 6=M[[µ v := f(a) ν w := g(b)]]e(w),

then S is said to be liberal. (If f 6= g then of course this condition is trivially
satisfied.)

17

Thus a schema S is free if for every path through S, there is a Herbrand interpretation
which follows it with the natural state e as the initial state, or, equivalently, if on every
path through S, the same predicate term is not generated more than once given e as
the initial state; and a schema S is liberal if given any path through S passing through
two assignments and a Herbrand interpretation which follows it with e as the initial
state, the assignments give distinct values to the variables to which they assign. The
definitions of freeness and liberality were first given in [6].

In this paper we weaken the definition of liberality by only requiring it to apply to
assignments that are not of the form v := g(); for any constant g ∈ F .

Definition 20 (near-liberal schemas) Let S be a schema. We say that S is near-
liberal if for every Herbrand interpretation i, every f ∈ Funcs(S) such that arity(f) >
0 and any path-prefix µ v := f(a) ν w := f(b) ∈ pre(πS(i, e)), we have

M[[schema(µ v := f(a))]]e(v) 6=M[[schema(µ v := f(a) ν w := f(b))]]e(w).

Theorem 21 shows that it is decidable whether a schema lies in the class of schemas
considered in this paper, and as a consequence of this theorem, the linear schema of
Figure 3 is both free and near-liberal.

Theorem 21 Let Ω be the set of all linear schemas S such that for all assignments
w := g(); lying in the body of a while predicate r in S, no other assignment to w also
lies in the body of r. Let S ∈ Ω and let F be the set of non-constant function symbols
in S. Consider the following assertions about S.

(1) S is both free and near-liberal.
(2) For every path-segment lνl through S such that l ∈ alphabet(S) and symbol(l) ∈
P ∪ F holds, and ν does not pass more than once through any letter p,T for
p ∈ whilePreds(S), there is a variable v referenced by symbol(l) such that the last
assignment to v on lν exists and is non-constant.

Then (1) ⇐⇒ (2) holds. In particular, it is decidable whether a schema in Ω is free
and near-liberal.

Proof. If (1) holds, then (2) must hold, since if there exists a path-segment lνl for which
(2) is false, then the same term or predicate term is defined at the two occurrences of l
after any path-prefix µνlνl through S, contradicting (1). Conversely, assume (2) holds.
Before proving (1), we first prove that the conclusion stated for lν in (2) holds for all
path-segments lν, without assuming the restriction given on the number of times ν
passes through any while predicate. Assume this is false for some path-segment lνl,
with |ν| minimal; then since (2) as written is assumed to hold, ν must pass more
than once through a letter p,T for some p ∈ whilePreds(S). Write ν = ν1p,Tν2p,Tν3.
By considering the path-segment ν1p,Tν3 and using our minimality hypothesis, we
infer that either lν1 or ν3 passes through a non-constant assignment to a variable v

18

referenced by l, and hence so does ν. From the definition of Π(S), the linearity of S, and
the existence of the path-segment lνl, ν lies entirely in the body of a while predicate,
and so from by our assumption on while predicates in S, no non-constant assignment
to v on ν is later ‘killed’ along ν by a constant assignment to v, contradicting the
assumption on lνl.

Now assume that (1) is false. Thus there exists a path-prefix µlνl through S such
that either symbol(l) ∈ F (if S is not near-liberal) or symbol(l) ∈ P (if S is not
free), and the same term or predicate term is defined at the two occurrences of l. Let
µ be of minimal length with this property. We now know that lν passes through a
non-constant assignment to a variable referenced by l, and this assignment defines a
term occurring in the (predicate) term defined at each occurrence of l, and thus µ also
passes through this assignment, and the two occurrences of the assignment define the
same term, contradicting the minimality condition on µ.

The decidability conclusion follows from the fact that for any linear schema S, only
finitely many path-segments pass not more than once through any letter p,T for
p ∈ whilePreds(S), and the set of such path-segments can be computed. �

Theorem 21 can almost certainly be strengthened by allowing Ω to contain all linear,
free, near-liberal schemas, but the proof in this more general case would be longer.

The significance of the near-liberality condition is given by Lemma 22, which will be
used to prove Lemma 23.

Lemma 22 Let S, S̄, T1, T2 be predicate-free schemas and assume that the following
hold.

• For each i ∈ {1, 2}, both schemas STi and S̄Ti are near-liberal.
• For all w ∈ V and g ∈ F of arity zero, if M[[S]]e(w) = g() then either also
M[[S̄]]e(w) = g() or g does not occur in either schema Ti.

Let v1, v2 ∈ V. If M[[ST1]]e(v1) = M[[ST2]]e(v2), then M[[S̄T1]]e(v1) = M[[S̄T2]]e(v2)
holds.

Proof. Assume M[[ST1]]e(v1) = M[[ST2]]e(v2) holds. We will prove M[[S̄T1]]e(v1) =
M[[S̄T2]]e(v2) by induction on the number of assignments in T1. The proof proceeds
in stages.

• Suppose that neither schema STi contains an assignment to the respective vari-
able vi. Then clearly v1 = v2 and so M[[S̄T1]]e(v1) = M[[S̄]]e(v1) = M[[S̄]]e(v2) =
M[[S̄T2]]e(v2) holds.
• Suppose that for exactly one value of i, the schema STi contains an assignment to
vi. This contradicts M[[ST1]]e(v1) =M[[ST2]]e(v2).

19

Thus we may assume that both schemas STi contain assignments to the respective
variables vi.

• Suppose that the last assignment to v1 in ST1 occurs in S. If T2 does not contain an
assignment to v2, then the conclusion follows immediately. On the other hand, if T2

does contain an assignment to v2, then since M[[ST1]]e(v1) = M[[ST2]]e(v2) holds,
the last such assignment defines the same term in ST2 as the last assignment to v1

in ST1 and hence S. Since ST2 is near-liberal, these must be constant assignments,
and so M[[ST1]]e(v1) = M[[S]]e(v1) = M[[T2]]e(v2) is a constant term g(). Thus
also M[[S̄T2]]e(v2) = g() holds. By the hypotheses in the original statement of the
Lemma, M[[S̄]]e(v1) = g() holds and the conclusion follows.
• Thus we may assume that T1 and (similarly) T2 contain assignments to v1 and v2

respectively. Let vi := fi(ui); be the last assignment to vi in Ti for each i. Clearly
f1 = f2. Let u1 and u2 be the first components of u1 and u2 respectively, and
for each i, write Ti as T ′i vi := fi(ui);T

′′
i . By the inductive hypothesis applied to

S, S̄ and each T ′i , M[[S̄T ′1]]e(u1) =M[[S̄T ′2]]e(u2); the Lemma then follows from the
analogous result for the other components of each ui. �

The conclusion of Lemma 22 need not hold without the condition on constant terms
g(); for example, if v1 = v2 = v, the schema T1 = S = v := g();, T2 is skip and S̄
is v :=h(); for a constant h ∈ F , then all possible concatenations of these schemas
are near-liberal, and M[[ST1]]e(v) = M[[ST2]]e(v) = g(), holds, but M[[S̄T1]]e(v) 6=
M[[S̄T2]]e(v) holds.

Lemma 22 is a generalisation of [7, Proposition 59], whose hypotheses required the
schemas STi and S̄Ti for each i ∈ {1, 2} to be liberal. Under this stronger assump-
tion, the condition on constant terms g() is automatically satisfied, since a liberal
predicate-free schema cannot contain two assignments having the same constant func-
tion symbol.

Lemma 23 will be used to prove Lemmas 29 and 30.

Lemma 23 (Changing the head of a couple) Let S be a free linear near-liberal
schema and let p ∈ Preds(S) and u ∈ V ∪ {ω}. Suppose there is a pu-couple I for
S. Let µ p,T ∈ pre(Π(S)), and assume that for all v ∈ V and constant g ∈ F , if
M[[µ]]e(v) = g() then either also M[[headS(I)]]e(v) = g() or g does not occur along
either tailS(i, I) for i ∈ I. Then there is a pu-couple I ′ for S such that µ = headS(I ′)
and {tailS(k, I)| k ∈ I} = {tailS(k, I ′)| k ∈ I ′}.
In particular, this conclusion holds if for all assignments v := g(); lying in the body
of a while predicate q in S, no other assignment to v also lies in the body of q, and
headS(I) has the form ρ′ρ′′ρ′′′ with µ = ρ′ρ′′′.

Proof. Write I = {i1, i2} and assume each πS(ik, e) has prefix headS(I)p, Zk. Since
S is free, there exist interpretations j1, j2 such that πS(jk, e) = µp, Zk tailS(ik, I) for
each k; and if u ∈ V , then by Lemma 22 applied to the predicate-free schemas defined

20

by headS(I), µ and each path-segment tailS(ik, I) and the fact that I is a pu-couple
for S, M[[S]]j1e (u) 6= M[[S]]j2e (u) holds for any such pair {j1, j2} of interpretations.
Clearly this also holds if u = ω. Thus we need only to show that j1 and j2 can be
chosen such that they differ only on the predicate term p(M[[µ]]e(refvecS(p))).
Suppose this is impossible. Since S is free, this implies that each path-segment tailS(ik, I)
has a prefix σkq,Tk with T1 6= T2 and M[[µσ1]]erefvecS(q) = M[[µσ2]]erefvecS(q).
However, again by Lemma 22, the same equality with headS(I) in place of µ also
holds, contradicting the existence of the original pu-couple I. Thus the pair j1, j2 ex-
ists.
If the hypotheses of the last paragraph of the Lemma hold and M[[µ]]e(v) = g() 6=
M[[headS(I)]]e(v) hold for some assignment v := g(); in S, then the path-segment ρ′

passes through g and ρ′′ must pass through an assignment to v with function symbol
6= g, and thus neither path-segment ρ′′′tailS(i, I) for i ∈ I passes through g, by the
condition on while predicates, and so the original hypotheses are satisfied. �

7 The Reduced Weiser symbol set

For a variable v and a linear schema S, Weiser’s original slicing algorithm computed
the minimal set of function and predicate symbols that is left-closed under the ↘S

and
S

relations and contains every f ∈ F for which f
final
S
v. The authors have proved

that a subschema T of S that contains all these symbols is weakly v-equivalent to S,
and if T contains only the symbols in this minimal set, then T is a v-slice of S
[4,7]. For ω, indicating termination behaviour, an analogous set can be defined using
while predicates instead of a variable as a starting point in the recursive definition [5,
Definition 19]. A subschema of S that contains all the symbols in this set is in this case
ω-equivalent to S. The symbol sets given in Definition 25, which take account of the
path-prefix leading to a symbol, are subsets of those defined by Weiser’s algorithm, as
can be proved by induction using their recursive definitions. We call these the Reduced
Weiser sets.

It is convenient to make the following definitions.

Definition 24 ((p,X)-links and v-feeding path-segments)
Let S be a linear schema.

• If q is a while predicate in S, then bodyS(q) is the body of q in S.
• Let p ∈ ifPreds(S) and X ∈ {T,F}. A (p,X)-link in S is a path-segment p,Xν in
S, for some terminating path ν in the X-part of p in S.
• If p ∈ whilePreds(S), then the path-segment p,F is called a (p,F)-link in S; and

a path-segment in (p,TΠ(bodyS(p)))∗p,F in which p,T occurs at least once, is a
(p,T)-link.

21

• Let p, q ∈ Preds(S) and let v ∈ V . We say that a path-segment µ in S v-feeds p
to q if there exists X ∈ {T,F} such that νµq,T is a path-segment in S for some
(p,X)-link ν and M[[µ]]e(w) is a vF -term for some F ∈ F∗ and q references the
variable w.

We may refer to a (p, Z)-link, for either Z ∈ {T,F}, as a p-link.

Definition 25 (The Reduced Weiser sets of path-prefixes and symbols) Let
S be a linear schema and let x ∈ pre(Π(S)) satisfy nextsymbolS(x) ∈ Preds(S).
Then we recursively defineWpathsS(x) ⊆ pre(Π(S)) to be the minimal set satisfying
x ∈ WpathsS(x) which is closed under the following transformations, where u ∈ V
and p ∈ Preds(S).

(1) If µρα ∈ WpathsS(x) for a p-link ρ such that α u-feeds p to nextsymbolS(µρα) ∈
Preds(S) in S and the last assignment to u on ρ exists and has function symbol f ,
such that either f has arity ≥ 1 or f does not occur on µ, then µ ∈ WpathsS(x)
holds.

(2) If µp, Zσ ∈ WpathsS(x) such that p ↘S nextsymbolS(µp, Zσ), then
µ ∈ WpathsS(x) holds.

We also defineWf uncsS(x) to be the set of all function symbols occurring in all terms
M[[µ]]e(v) for µ ∈ WpathsS(x) such that nextsymbolS(µ) references v.

If x ∈ Preds(S) then we define WpathsS(x) =
⋃

nextsymbolS(µ)=xWpathsS(µ) and
Wf uncsS(x) =

⋃
nextsymbolS(µ)=xWf uncsS(µ), and we define

WpathsS(ω) =
⋃
p∈whilePreds(S)WpathsS(p) and Wf uncsS(ω) =

⋃
p∈P Wf uncsS(p),

where P = {p ∈ Preds(S)| p ∈ whilePreds(S) ∨ p ↘S q ∈ whilePreds(S)}.

We also define WpathsS(x) ⊆ pre(Π(S)) for x ∈ V to be the union of all sets
WpathsS(µ) for µ satisfying the following, for some p ∈ Preds(S) and u ∈ V ;

(1′) µρα ∈ Π(S) for a p-link ρ and uGx-path-segment α for G ∈ F∗ such that the
last assignment to u on ρ exists and has function symbol f , such that either f
has arity ≥ 1 or f does not occur on µ.

We also define the set Wf uncsS(x) ⊆ Funcs(S) for x ∈ V to be the set containing
every function symbol occurring in any term M[[µ]]e(x) for µ ∈ Π(S) or in any set
Wf uncsS(µ) for µ satisfying (1′) and define WpredsS(x) = {nextsymbolS(µ)|µ ∈
WpathsS(x)} for any x for whichWpathsS(x) is defined. We defineWsymbolsS(x) =
WpredsS(x) ∪Wf uncsS(x).

Thus if S is the schema in Figure 3, then f lies in Weiser’s original symbol set defined
by v, as mentioned in Section 1.1, but f /∈ Wf uncsS(v) holds, since every path-prefix
through S ending at f passes through the constant assignment to v. On the other
hand, if the assignment v := g1(); is replaced by v := g2(v), (in which case the resulting
schema is both free and liberal[6]) then f lies even in the smaller set Wf uncsS(v).

22

7.1 Decidability of membership in Reduced Weiser set

Theorem 28, which states that it is decidable whether a given symbol of a linear
schema lies in its Reduced Weiser set with respect to a variable, a predicate or ω, is
the main result of this section.

Proposition 26 Let S be a linear schema and let µ, µ′ ∈ pre(Π(S)) satisfy
nextsymbolS(µ) = nextsymbolS(µ′) and suppose µ = ρ′ρ′′ρ′′′ and µ′ = ρ′ρ′′′ hold.
Let x ∈ pre(Π(S)). If µ can be obtained from x by a transformation of Type (1)
or (2) from Definition 25, then for some Z ∈ {T,F}, x can be written as x =
µ nextsymbolS(µ), Z ν and µ′ can be obtained from µ′ nextsymbolS(µ), Z ν by a trans-
formation of the same type.

Proof. This follows immediately from the transformation definitions. �

Lemma 27 There exists a polynomial P such that the following hold for every lin-
ear schema S and every x, y ∈ pre(Π(S)) such that x ∈ WpathsS(y), where n =
|Funcs(S) ∪ Preds(S)|.

(1) There exists y′ ∈ pre(Π(S)) such that nextsymbolS(y) = nextsymbolS(y′), x ∈
WpathsS(y′) and |y′| − |x| ≤ P (n).

(2) There exist x′, y′ ∈ pre(Π(S)) such that nextsymbolS(x) = nextsymbolS(x′) and
nextsymbolS(y) = nextsymbolS(y′), x′ ∈ WpathsS(y′) and |y′| ≤ P (n).

Proof.

(1) Given any y′ ∈ pre(Π(S)) such that x ∈ WpathsS(y′) there is a sequence µ0 =
x, µ1, . . . , µm = y′ ∈ pre(Π(S)) such that each µi is obtained from µi+1 by one
of the applications of transformations of Type (1) or (2) in Definition 25. Define
µi+1 = µipi, Ziρi. Assume that |y′| − |x| is minimal subject to the condition
that nextsymbolS(y) = nextsymbolS(y′) holds. We prove |y′| − |x| ≤ P (n) by
using Proposition 26 to delete path-segments from within the path-prefixes µi
for i > 0 in order to reduce their length without changing nextsymbolS(µm), thus
contradicting the minimality condition. The proof proceeds in stages.
• We first show that i < j ⇒ pi 6= pj holds. For if this is false for some i < j,

then we may reduce the value of |y′| − |x| as follows. Write µj = µipi, Ziσ. The
path-segment pi, Ziσ may be deleted from each µk for k > j to give µ′k, and by
Proposition 26, the sequence µ0, µ1, . . . , µi, µ

′
j+1 . . . , µ

′
m satisfies the conditions

of the original sequence, contradicting the minimality condition. Thus m ≤ n
holds.
• We now show that we may assume that the number of occurrences of a letter
r,T for r ∈ whilePreds(S) in any ρi is bounded by a polynomial in n. Suppose
that some µi is obtained from µi+1 by a transformation of Type (2). Then ρi
cannot pass more than once through any letter r,T for r ∈ whilePreds(S),

23

otherwise we may again use Proposition 26 to delete a path-segment within
ρi from every µk with k > i, contradicting the minimality condition. On the
other hand, suppose that some µi is obtained from µi+1 by a transformation of
Type (1). We may write ρi = αiβi, where βi is a vig1 . . . gkvi+1-path-segment for
g1, . . . , gk ∈ F , pi+1 references vi+1 ∈ V , and pi, Ziαi is a (pi, Zi)-link passing
through an assignment to vi ∈ V . There are no repeated function symbols
in g1, . . . , gk; otherwise a path-segment within βi can be deleted from each of
µi+1, . . . , µm as before, using Proposition 26. Hence k ≤ n holds. Similarly, each
path-segment within βi connecting any gj to gj+1 does not pass more than once
through any letter r,T for r ∈ whilePreds(S). The same assumption on while
predicate letters may be made for αi, which needs only to pass through the
assignment to vi, thus proving the bound.
• Thus we have proved the existence of a polynomial bound on the number of

occurrences of letters r,T for r ∈ whilePreds(S) in µm. The existence of the
polynomial P now follows by observing that if z ∈ F ∪ ifPreds(S), and µm
passes j > 1 times through z, then necessarily µm also passes at least j times
through r,T for some r ∈ whilePreds(S).

(2) This is similar to (1), except that here we also use Proposition 26 to show that
µ0 does not pass more than once through any letter r,T for r ∈ whilePreds(S).
�

Theorem 28 Let S be a linear schema and let q ∈ Preds(S) ∪ V ∪ {ω}.

(1) Let p ∈ Preds(S). Then it is decidable whether p ∈ WpredsS(q).
(2) Let f ∈ Funcs(S). Then it is decidable whether f ∈ Wf uncsS(q).

Proof.

(1) Assume first that q ∈ Preds(S). Then by Part (2) of Lemma 27 and the def-
inition of WpredsS(q), there is a polynomial P such that p ∈ WpredsS(q) if
and only if there exists x, y ∈ pre(Π(S)) such that p = nextsymbolS(x) and
q = nextsymbolS(y) and x ∈ WpathsS(y) and |y| ≤ P (n). Since there are finitely
many elements y ∈ pre(Π(S)) such that |y| ≤ P (n), and they can all be enumer-
ated, the conclusion follows.
If instead q = ω, then p ∈ WpredsS(q) if and only if p ∈ WpredsS(q′) for some
q′ ∈ whilePreds(S), and the decidability result follows immediately. If q ∈ V , then
define the schema T = S if r(q) then skip such that the symbol r does not occur
in S and so T is linear. Then p ∈ WpredsS(q) if and only if p ∈ WpredsT (r),
which we have shown to be decidable.

(2) Assume first that q ∈ Preds(S). By Part (1) of Lemma 27, there is a polynomial
P such that f ∈ Wf uncsS(q) if and only if there exist x, y ∈ pre(Π(S)) such
that |y| − |x| ≤ P (n), p = nextsymbolS(x) and q = nextsymbolS(y) and x is
an fg1 . . . gkv-path-segment for some G ∈ F∗ and v ∈ refset(p). We may use
Proposition 26 to ensure that if this condition holds, then no function symbol

24

occurs more than once in G, which hence has length ≤ n, no letter r,T for
r ∈ whilePreds(S) occurs more than once in each path-segment connecting gj to
gj+1. As in the proof of Part (1) of Lemma 27, this gives a computable upper
bound on the length of y, thus allowing f ∈ Wf uncsS(q) to be decided.
If instead q ∈ V ∪ {ω}, then the proof is similar to that of Part (1) under this
assumption. �

8 A symbol’s membership in a variable’s Reduced Weiser set implies it
may affect the variable’s final value

The main result of this section is Theorem 32, in which we prove that membership of
a symbol in the Reduced Weiser set of a schema S with respect to some v ∈ V ∪ {ω}
means that it can affect the semantics of S as given by v. We do this by using the
recursive definition of Wf uncsS(v) and WpredsS(v), and this motivates the three
preceding Lemmas which now follow.

Lemma 29 Let S be a free linear near-liberal schema such that for all assignments
w := g(); lying in the body of a while predicate r in S, no other assignment to w also
lies in the body of r. Let p, q ∈ Preds(S) and let v ∈ V ∪ {ω} and suppose there exists
a q(t)v-couple I for S such that headS(I) has a prefix µp, Y . Suppose that one of the
following holds.

(1) There is a subterm f(a) of one of the components of t which is not created by
any assignment on µ, and p ↘S f holds.

(2) p ↘S q.

Then there exists a pv-couple H for S such that headS(H) = µ.

Proof. We will prove the Lemma for Case (1). Case (2) is analogous, but with f
replaced by q. The proof proceeds in stages.

(a) We may assume that p ↘S f (Y) holds, since otherwise headS(I) must have a
prefix µp, Y µ′ p,¬Y such that p,¬Y and hence f do not occur on µ′, and so the
conclusion of the Lemma follows from considering this longer prefix and ¬Y in
place of µp, Y and Y and using Lemma 23 to delete the path-segment p, Y µ′.

(b,V) We now observe that if v ∈ V , it may be assumed that the interpretations in I
only map finitely many while predicate terms to T, and only map finitely many
p-predicate terms to Y ; this is clear from the termination of both paths defined
by I and the fact that p ∈ whilePreds(S)⇒ Y = T clearly follows from (a).

(b,ω) We now show that if v = ω then it may be assumed that the interpretations in
I only map finitely many p-predicate terms to Y . Suppose that this finiteness
condition does not already hold, and that v = ω. Write I = {i, j} where i

25

defines the non-terminating path through S. We define recursively the (possibly
finite) set {p(x1), p(x2), . . .} of predicate terms, and the set {i0 = i, i1, i2, . . .} of
interpretations, as follows. Each path πS(in, e) passes through the predicate terms
{p(x1), p(x2), . . . , p(xn+1)} in order, and p(xr) = ¬Y is a consequence of πS(in, e)
for all r ≤ n, and p(xn+1) is the first p-predicate term occurring on πS(in, e) that
in maps to Y and does not occur on πS(j, e). We define in+1 = in(p(xn+1) = ¬Y).
By induction on n, µp, Y is a prefix of each path πS(in, e). If πS(in+1, e) is the first
terminating path in the sequence, then the conclusion of the Lemma follows from
Lemma 23 using the pω-couple {in, in+1} for S, so we may assume that every
interpretation in defines a nonterminating path. We now replace I by {i′, j′},
where i′ maps each predicate term p(xr) to ¬Y and is otherwise the same as
i, and similarly for j′ and j. Clearly πS(j′, e) = πS(j, e), which terminates and
has µp, Y as a prefix. If there are finitely many predicate terms p(xr), then
i′ = in for the last in defined; we have shown that πS(in, e) may be assumed
to be nonterminating. If there are infinitely many predicate terms p(xr), then
again πS(i′, e) is nonterminating since it passes through all such predicate terms.
Hence {i′, j′} is a pω-couple for S such that µp, Y is a prefix of both its paths,
and hence of headS({i′, j′}). These paths pass only finitely often through p, Y , by
the construction of i′, so we may assume i′ and j′ map finitely many p-predicate
terms to Y .

(c) We now prove the Lemma by induction on the number of p-predicate terms that
either interpretation in I maps to Y ; we have shown in (b,V) or (b,ω) that this
number may be assumed to be finite. Let p(s) be the predicate term defined
at the occurrence of p after µ, and define I ′ = {i(p(s) = ¬Y)| i ∈ I}. From
(b,V), and since S is free, the interpretations in I ′ both define terminating paths
if v ∈ V . Thus we may assume that M[[S]]ie(v) = M[[S]]i(p(s)=¬Y)

e (v) for each
i ∈ I ′ and whether or not v = ω, otherwise the Lemma follows immediately.
Thus I ′ is also a q(t)v-couple I for S, and the term f(a) must be created later
on headS(I ′). Hence headS(I ′) has a prefix µp,¬Y τp, Y such that p, Y does not
occur on τ . Thus the Lemma follows from considering this longer prefix in place
of µp, Y , using the inductive hypothesis applied to I ′ and using Lemma 23 to
delete p,¬Y τ . �

Lemma 30 is a strengthening of Part (1) of Lemma 29.

Lemma 30 Let S be a free linear near-liberal schema such that for all assignments
v := g(); lying in the body of a while predicate r in S, no other assignment to v also
lies in the body of r. Let p, q ∈ Preds(S), u ∈ V and v ∈ V ∪ {ω}. Suppose that
there exists a qv-couple I for S such that headS(I) = µ ρα, where ρ is a p-link and
the path-segment α u-feeds p to q. Suppose also that there exists a p-link along which
the last assignment to u exists and has function symbol f , such that either f has
arity ≥ 1 or f does not occur on µ. Then there exists a pv-couple H for S such that
headS(H) = µ.

26

Proof. Let ρ′ be the p-link whose existence is asserted in the penultimate sentence of
the Lemma. We consider two cases separately.

(1) Suppose first that ρ = ρ′. Then the conclusion follows from Part (1) of Lemma 29
applied to the term defined by the symbol f , using the near-liberality condition
on S if f has arity ≥ 1.

(2) For the general case we prove the Lemma using induction on the length of α. We
will show that we can replace ρ by ρ′ in headS(I) and then use Case (1). If v ∈ V ,
then we may assume that both interpretations in I map finitely many predicate
terms to T, and hence altering either interpretation at finitely many predicate
terms preserves path termination, since S is free. For each i ∈ I, we define an
interpretation φ(i) satisfying µρ′α ∈ pre(πS(φ(i), e)) by successively altering i at
predicate terms encountered along ρ′α. We now show that we may assume that
these alterations of the interpretations in I never change the final value of v (or
termination if v = ω) and hence that M[[S]]ie(v) = M[[S]]φ(i)

e (v) for each i ∈ I
holds.
• If altering an interpretation in I along ρ′ changes the final value of v, then ρ′

has a prefix σp′, X for p′ = p ∨ p ↘S p′ such that there exists a p′v-couple
J satisfying headS(J) = µσ, and hence the Lemma follows from Part (2) of
Lemma 29 if p ↘S p′ or 23 if p = p′.
• If altering either i ∈ I along ρ′α first changes the final value of v at a predicate

within α, then α has a prefix γp′, X such that the predicate term defined at
p′ after µρ′γ differs from the one occurring after µργ, otherwise the alteration
would not be needed. Thus replacing ρ by ρ′ in µργ changes the value of some
variable referenced by p′, and so there is a variable u′ such that γ u′-feeds p
to p′ and M[[µρ]]e(u

′) 6= M[[µρ′]]e(u
′). Hence at least one element of the set

{M[[µρ]]e(u
′),M[[µρ′]]e(u

′)} differs from M[[µ]]e(u
′). Thus the Lemma follows

from the inductive hypothesis applied to p′, u′, the appropriate element of
{ρ, ρ′} and γ in place of α.

Thus we may assume that {φ(i)| i ∈ I} is also a qv-couple for S, and that µρ′α
is a prefix of both paths πS(φ(i), e), and hence of headS(I). By Lemma 23, we
may assume that µρ′α = headS(I) holds, and so the Lemma follows from Case
(1). �

Lemma 31 Let S be a free linear schema and assume that q ∈ Preds(S) and either
q ∈ whilePreds(S) or q ↘S q′ for some q′ ∈ whilePreds(S). Let µq,T ∈ pre(Π(S)).
Then there exists a qω-couple I for S such that headS(I) = µ.

Proof. We will assume that q ∈ whilePreds(S); the other case is similar. Let ν be a
non-terminating path of which µq,T is a prefix, which does not subsequently pass
through q,F. Thus ν does not pass through any predicate p satisfying p ↘S q. Let
ρ be a terminating path having µq,F as a prefix, which does not subsequently pass
through p,T for any p ∈ whilePreds(S) such that p ↘S q holds. Clearly the only
predicates through which both µ and ρ pass occur on µ and at q just after µ, and S

27

is free, hence there exist interpretations i, j such that πS(i, e) = ν, πS(j, e) = ρ and i
and j differ only at the q-predicate term occurring after µ. Thus defining I = {i, j}
proves the Lemma. �

Theorem 32 Let S be a free linear near-liberal schema such that for all assignments
w := g(); lying in the body of a while predicate r in S, no other assignment to w also
lies in the body of r. Let v ∈ V ∪ {ω}.

(1) If γ ∈ WpathsS(v) holds and nextsymbolS(γ) = p, then there exists a pv-couple
I for S such that headS(I) = γ.

(2) If f ∈ Wf uncsS(v), then either v ∈ V and f occurs in a termM[[ν]]e(v) for some
ν ∈ Π(S), or there exists a pv-couple I for S for some predicate p referencing a
variable u such that f occurs in the term M[[headS(I)]]e(u).

Proof. We first prove Part (1) of the Theorem. Let γ ∈ WpathsS(v) hold with
nextsymbolS(γ) = p. From the recursive definition ofWpathsS(v), there exists µq,T ∈
pre(Π(S)) such that γ ∈ WpathsS(µ) and the following hold, with µ as the first in
the sequence of path-prefixes ‘witnessing’ that γ ∈ WpathsS(µ) holds.

• If v = ω, then either q ∈ whilePreds(S) or q contains a while predicate in its body.
• If v ∈ V then Condition (1′) in Definition 25 holds with q and v in place of p and x

respectively; thus, µρα ∈ Π(S) for a q-link ρ and uGv-path-segment α for G ∈ F∗
such that the last assignment to the variable u on ρ exists and has function symbol
f , such that either f has arity ≥ 1 or f does not occur on µ.

We now prove that for either value of v, Part (1) of the Theorem holds if γ = µ.

• If v = ω then this follows from Lemma 31.
• If v ∈ V then we prove this by defining a new schema T to be S if q′(v) then v :=h();

for symbols q′, h not occurring in S. Clearly T satisfies the hypotheses given for S,
and it can be easily seen that there exists a q′v-couple J for T such that headT (I) =
µρα. Thus by Lemma 30, there exists a qv-couple I for T such that headT (I) = µ,
and clearly I is also a qv-couple for S, proving the result.

The proof of Part (1) in the general case follows by induction on the length of the
sequence of iterations of Conditions (1,2) in Definition 25 that demonstrates that
γ ∈ WpathsS(µ) holds.

• If the last Condition in the sequence was (1), then the conclusion follows from the
inductive hypothesis applied to the penultimate element ofWpathsS(µ) defined by
the sequence and Lemma 30.
• If the last Condition in the sequence was (2), then the proof of Part (1) follows

from the inductive hypothesis applied to the penultimate element of WpathsS(µ)
defined by the sequence and Part (2) of Lemma 29.

28

We now prove Part (2) of the Theorem. Let f ∈ Wf uncsS(v). Assume that f does
not occur in any termM[[ν]]e(v) for some ν ∈ Π(S) and v ∈ V . Then by the definition
ofWf uncsS(v), f occurs in a termM[[γ]]e(u) for γ ∈ WpathsS(v) with the predicate
nextsymbolS(γ) referencing the variable u. Thus the conclusion follows straightfor-
wardly from Part (1) of this Theorem. �

9 Slicing Theorems

In this Section we prove our main theorem, Theorem 39. In order to do this, we first
prove, in Theorem 38, that if a subschema of a schema S contains all elements of the
reduced Weiser symbol set with respect to a variable or ω, then it preserves some of
the behaviour of S. This motivates the definition and results which now follow.

Definition 33 Let S be a linear schema and let T be a subschema of S. For any
path-segment µ in S, we define proj T (µ) to be the word obtained from µ by deleting
every letter in µ whose symbol does not occur in T .

It follows easily from the definition of Π(S) that if µ ∈ Π(S) then proj T (µ) ∈ Π(T)
holds.

Proposition 34 Let S1 be a linear schema and let S2 be a subschema of S. For each
k ∈ {1, 2}, let νk be a terminating path in Sk. Then we can write

νk = α1kρ2kα2kρ3kα3k . . . αnk,

such that for each r ≤ n, proj S2
(αr1) = αr2 and there exists {Yr1, Yr2} = {T,F} and

pr ∈ Preds(S2) and each ρrk is a (pr, Yrk)-link in Sk.

Proof. This follows by induction on the total number of symbols and skips in S1.
If S1 has the form T1T2 or if q(x) then T1 else T2, then the result follows easily from
the inductive hypothesis and the definition of a subschema. If S1 is an assignment
or skip, or S2 is skip, then again the result follows easily. Lastly, assume that S1 =
while q(y)T1 and that S2 = while q(y)T2, where T2 is a subschema of T1. Let mk ∈
N be such that q,T occurs mk times in each path νk. Thus we may write νk =
q,Tµ1kq,Tµ2k . . . µmkσk, where m is the minimum of m1,m2 and for each k, µjk ∈
Π(Tk), mk = m ⇒ σk = q,F and mk > m ⇒ σk ∈ Π(Sk) − {q,F}. The result now
follows by applying the inductive hypothesis to T1, showing that each µik has the
correct form; note that if m1 = m2 then each αnk will end in q,F; otherwise, each αnk
is the empty word. �

Proposition 35 Let S be a linear schema and let T be a subschema of S. Let ν
be a terminal or non-terminating path through S and assume that proj T (ν) is non-

29

terminating if ν is. If proj T (ν) has a prefix α1ρ2α2ρ3 . . . αn−1ρn, with each ρr a pr-
link in T for pr ∈ Preds(T), then ν has a prefix α̃1ρ̃2α̃2ρ̃3 . . . α̃n−1ρ̃n, where each
proj T (α̃r) = αr, proj T (ρ̃r) = ρr, and each ρ̃r is a pr-link in S.

Proof. The conclusion follows by induction on the total number of symbols and skips
in S. If S is an assignment, or T is skip, then the conclusion is immediate. If S has the
form S1S2, if p(x) then S1 else S2 or while p(x)S1, then T 6= skip has the same form
but with Si replaced by a subschema Ti. In these cases, the conclusion follows from
the definitions of Π(S) and Π(T), the inductive hypothesis applied to T and the fact
that any q-link in T for q 6= p must lie within a subschema Ti. �

The conclusion of Proposition 35 need not hold if proj T (ν) terminates but ν does not;
for example, let S = if p(x) then while q(y)skip and T = if p(x) then skip, and let ν
be the non-terminating path through S. Clearly proj T (ν) = p,T, which is a p-link in
T . Let α1 be the empty word and let ρ2 = p,T and n = 2. In this case no p-link ρ̃2 in
S exists, since it would have to end in q,F, which does not occur in ν.

Lemma 36 Let S1 be a linear schema and let S2 be a subschema of S. Let ν1, ν2

be paths through S1 and S2 respectively. Suppose that one of the following conditions
holds.

(1) ν1 is a terminal path in S1 and ν2 is a non-terminating path in S2.
(2) ν2 is a terminal path in S2 and ν1 is a non-terminating path in S1 and S2 contains

every while predicate in S1.

Then for each k ∈ {1, 2}, νk has a prefix

α1kρ2kα2kρ3kα3k . . . αnkq, Zk,

such that for each r ≤ n, proj S2
(αr1) = αr2 and there exists {Yr1, Tr2} = {T,F} and

pr ∈ Preds(S), each ρrk is a (pr, Yrk)-link in Sk, Z1 6= Z2 and q is either a while
predicate in S1 or contains a while predicate in one of its parts.

Proof. We first assume that that S1 = S2. In this special case the conclusion follows
by induction on the length of the shorter, terminating path in {ν1, ν2} minus that of
pre(ν1, ν2). By Lemma 6 and the fact that exactly one path terminates, each νk has a
prefix pre(ν1, ν2)q, Zk with Z1 6= Z2. If q is either a while predicate in S1 or contains
a while predicate in one of its parts, then the conclusion follows immediately, with
pre(ν1, ν2) = α1k. Otherwise, each νk has a prefix pre(ν1, ν2)q, Zkσk for a (q, Zk)-link
q, Zkσk in Sk. Define the path ν ′1 by replacing q, Z1σ1 by q, Z2σ2 in ν1 after pre(ν1, ν2).
The conclusion now follows from the inductive hypothesis applied to ν ′1 and ν2.

For the general case, observe that if (2) holds, then ν1 and hence proj S2
(ν1) pass

infinitely many times through a while predicate and so proj S2
(ν1) is non-terminating.

Thus if either (1) or (2) holds, we may apply the conclusion for the case S1 = S2 to
the paths proj S2

(ν1) and ρ2 and then use Proposition 35 to prove the Theorem. �

30

Lemma 37 Let S1 be a linear schema such that for all assignments v := g(); lying in
the body of a while predicate q in S1, no other assignment to v also lies in the body of
q, and let S2 be a subschema of S1. For each k ∈ {1, 2}, let

νk = α1kρ2kα2kρ3kα3k . . . ρnkαnk ∈ pre(Π(Sk)),

such that for each r ≤ n, proj S2
(αr1) = αr2 and there exists {Yr1, Tr2} = {T,F}

and pr ∈ Preds(S), and each ρrk is a (pr, Yrk)-link in Sk. Let v ∈ V and assume
that M[[ν1]]e(v) 6= M[[ν2]]e(v) holds. Suppose that S2 contains every function symbol
occurring in the term M[[ν1]]e(v). Then for some r ≤ n, there exists f ∈ F satisfying
pr ↘S1 f such that αr1 . . . ρn1αn1 is an assignS1

(f)Gv-path-segment for some G ∈ F∗
and either f has arity ≥ 1 or f does not occur on α11ρ21 . . . αr−1 1.

Proof. This follows by induction, firstly on n and secondly on the length of αn1. We
consider three cases separately.

• Suppose that the last letter of αn1 is not an assignment to v. Write αn1 = βl, where
l ∈ alphabet(S1). Then the conclusion follows by replacing αn1 and αn2 by β and
proj S2

(β) respectively and using the inductive hypothesis.
• Suppose that the last letter of αn1 (and hence of αn2, since h occurs inM[[ν1]]e(v)) is
v :=h(u). Then the conclusion follows by replacing each αnk by its prefix of length
|αn1|−1 and replacing v by each component of u in turn and applying the inductive
hypothesis.
• Lastly, suppose that αn1 (and hence αn2) is the empty word. Assume the conclusion

is false. We now show that

M[[α1kρ2kα2kρ3kα3k . . . αn−1 kρnk]]e(v) =M[[α1kρ2kα2kρ3kα3k . . . αn−1 k]]e(v)

holds for each k. For k = 1 this is immediate from the falsity of the conclusion for
r = n. For k = 2, the falsity of the conclusion for r = n implies that the equality
can only fail if ρn2 passes through a constant f ∈ F assigning to v. However, by the
falsity of the conclusion for r = n, this implies that f occurs on α11ρ21 . . . αr−1 1,
and hence M[[ν1]]e(v) = M[[ν2]]e(v) = f() follows, contradicting the hypotheses.
Thus we can delete the path-segments ρnk from the end of νk, reducing the value
of n, and use the inductive hypothesis. �

Theorem 38 Let S1 be a linear schema such that for all assignments w := g(); lying
in the body of a while predicate r in S, no other assignment to w also lies in the body
of r and let S2 be a subschema of S1. Let i be an interpretation. Then the following
hold.

(1) Let v ∈ V. If S2 contains every element of WsymbolsS1
(v) and the paths πS1(i, e)

and πS2(i, e) both terminate, then M[[S1]]ie(v) =M[[S2]]ie(v) holds.
(2) If S2 contains every element of WsymbolsS1

(ω), then πS1(i, e) terminates ⇐⇒
πS2(i, e) terminates.

31

(3) If for every p ∈ whilePreds(S2), S2 contains every element of WsymbolsS1
(p),

then πS1(i, e) terminates ⇒ πS2(i, e) terminates.

Proof. Assume that one of the assertions is false. In all cases, for each k ∈ {1, 2},
there exist νk ∈ pre(πSk

(i, e)) such that

νk = α1kρ2kα2kρ3kα3k . . . αnk,

such that for each r ≤ n, proj S2
(αr1) = αr2 and there exists {Yr1, Yr2} = {T,F}

and pr ∈ Preds(S2) and each ρrk is a (pr, Yrk)-link in Sk, and there exists w ∈ V
such that M[[ν1]]e(w) 6= M[[ν2]]e(w), and either nextsymbolS1

(ν1) = nextsymbolS2
(ν2)

lies in Preds(S2) and references w, or ν1 and ν2 are terminal. In all cases, S2 con-
tains every element of Wf uncsS1

(ν1) and every predicate nextsymbolS1
(µ) for µ ∈

WpathsS1
(ν1). In Case (1), this follows from Proposition 34 and the fact that w = v

and Wf uncsS1
(ν1) ⊆ Wf uncsS1

(v) and WpathsS1
(ν1) ⊆ WpathsS1

(v); and in Cases
(2,3) it follows from Lemma 36 and the fact that Wf uncsS1

(ν1) ⊆ Wf uncsS1
(ω)

and WpathsS1
(ν1) ⊆ WpathsS1

(ω). Assume that n is minimal with these conditions.
Lemma 37 now gives a contradiction. �

Our main result, Theorem 39, is a summary of preceding results.

Theorem 39 Let S be a linear schema such that for all constant assignments w := g();
lying in the body of a while predicate r in S, no other assignment to w also lies in the
body of r, and let T be a subschema of S. Let v ∈ V. Then the following hold.

(1) If T contains every symbol inWsymbolsS(v), then S and T are weakly v-equivalent.
(2) If T contains every symbol in WsymbolsS(v), and contains every symbol in
WsymbolsS(p) for each p ∈ whilePreds(T), then T is a v-slice of S.

(3) If S is free and near-liberal, then S and T are strongly v-equivalent if and only if
T contains every symbol inWsymbolsS(u) for each u ∈ {v, ω}. In particular, it is
decidable whether S and T are strongly v-equivalent under these extra conditions
on S.

Proof. Part (3) follows from Parts (1) and (2) of Theorem 38 and both Parts of
Theorem 32, with the decidability result following from Theorem 28. Part (2) is simply
a restatement of Part (3) of Theorem 38. Part (1) is a restatement of Part (1) of
Theorem 38. �

As an additional example of the application of Parts (1) and (2) of Theorem 39, con-
sider the linear schema S of Figure 5, which is neither free nor liberal. The subschema
of S obtained by deleting the assignment to u is a v-slice of S. This follows from Part
(2) of Theorem 39, since k /∈ WsymbolsS(v) ∪ WsymbolsS(q) holds. On the other
hand, if the assignments w :=h(w); and u := k() are both deleted from S, then the
resulting subschema T is weakly v-equivalent to S, by Part (1) of Theorem 39, since

32

while q(w) do {

w :=h(w);

if p(u) then {

v := g1();

u := k();

}

}

Fig. 5. Deleting the assignment to u from this schema defines a v-slice of it.

k /∈ WsymbolsS(v), but T is not a v-slice of S, since if h is interpreted as the function
w 7→ w + 1 on the integers, and q(1) is defined to be true, whereas q(2) is defined
to be false, then any program thus defined by S will terminate from any initial state
for which w = 1, whereas for T this assertion is false. Since k lies in Weiser’s set
NS(v), this example demonstrates the non-optimality of Weiser’s algorithm even for
very simple schemas.

We isolate the following consequence of Theorem 39.

Theorem 40 Let S be a linear, free and near-liberal schema such that for all assign-
ments v := g(); lying in the body of a while predicate r in S, no other assignment to
v also lies in the body of r, and let T be a subschema of S. Then S and T are ω-
equivalent if and only if T contains every symbol in WpredsS(ω) and Wf uncsS(ω).
In particular, it is decidable whether S and T are ω-equivalent.

Proof. This is a special case of Part (3) of Theorem 39, where v is taken to be a
variable not occurring in S. �

Part (2) of Theorem 39 is a strengthening of [5, Theorem 20] for linear schemas,
which states that the subschema of a schema S containing precisely those symbols in
Weiser’s original set with respect to a variable v, is a v-slice of S.

We mention that there is a strict ordering between the conditions given on the schema
T in Theorem 39. To see this, let S be the schema in Figure 6. By Theorem 39, deleting
the line while p(u) do u := f(u); gives a v-slice of S which is not strongly v-equivalent
to S, (for example, if an interpretation always maps p to T and q to F, then the
subschema will terminate, but S will not), and deleting the h-assignment (whether or
not the p-statement is also deleted) gives a schema that is weakly v-equivalent to S,
but is not a v-slice, since termination is not preserved for all interpretations.

33

while p(u) do u := f(u);

while q(w) do {

v := g1();

w :=h(w);

}

Fig. 6. The predicate p in this schema lies in WpredsS(ω) but not in WpredsS(v), and
q ∈ WpredsS(v) and h ∈ Wf uncsS(q), but h is not in Wf uncsS(v)

10 Conclusions and Suggestions for Further Work

Given a schema S that is linear, free, and near-liberal, such that for every while
predicate q in S and every constant assignment w := g(); lying in the body of q in S,
no other assignment to w also lies in the body of q, we have proved that it is decidable
whether S is equivalent to a given subschema of S. We have shown, by Theorem 21,
that the schema of Figure 3 lies in this class of schemas, but is not liberal, owing
to its assignment v := g1();, and therefore, when applied to the subclass of schema
pairs in which one schema is a subschema of the other, our main theorem is a true
generalisation of the corresponding result for linear, free, liberal schemas[7,4].

Additionally, we have shown in Part (2) of Theorem 39 that for any linear schema
S just having the ‘non-sharing’ condition on assignments, we can compute smaller
weakly equivalent subschemas than those given by Weiser’s slicing algorithm. Parts
(1) and (2) of Theorem 39 can undoubtedly be generalised to arbitrary linear schemas
by altering the definitions of the sets WpredsS(u) and Wf uncsS(u) for u ∈ V ∪ {ω};
we have not done this because the condition on constant assignments is needed for
Part (3) of the Theorem.

It would be of interest to study the time complexity of computing the setsWpredsS(u)
and Wf uncsS(u), since a tractability result would increase the significance of our
Theorem. Imposing syntactic conditions on the class of schemas considered, such as
putting a constant upper bound on the depth of any while predicate, may make this
possible.

Further work could focus on discarding the uniqueness requirement on constant as-
signments lying in the body of a while predicate. Lemmas 22 and 23, on which the
later results rely, do not assume this hypothesis, so an attempt to generalise our main
theorem without assuming it seems reasonably likely to succeed. In addition, the near-
liberal condition that we have introduced in this paper can probably be relaxed by
allowing a larger set of terms to be exempt from the liberality condition. For example,
arbitrary constant terms, such as those like f(g(), h()), which contain no variables,
could be treated the same way as terms of the form g() in this paper.

34

Acknowledgements

This work was supported by a grant from the Engineering and Physical Sciences
Research Council, Grant EP/E002919/1.

References

[1] S. Greibach, Theory of program structures: schemes, semantics, verification, Vol. 36 of
Lecture Notes in Computer Science, Springer-Verlag Inc., New York, NY, USA, 1975.

[2] M. Weiser, Program slices: Formal, psychological, and practical investigations of an
automatic program abstraction method, PhD thesis, University of Michigan, Ann Arbor,
MI (1979).

[3] M. Weiser, Program slicing, in: 5th International Conference on Software Engineering,
San Diego, CA, 1981, pp. 439–449.

[4] S. Danicic, M. Harman, R. Hierons, J. Howroyd, M. R. Laurence, Equivalence of linear,
free, liberal, structured program schemas is decidable in polynomial time, Theoretical
Computer Science 373 (1-2) (2007) 1–18.

[5] M. R. Laurence, Characterising minimal semantics-preserving slices of function-linear,
free, liberal program schemas, Journal of Logic and Algebraic Programming 72 (2)
(2005) 157–172.

[6] M. S. Paterson, Equivalence problems in a model of computation, Ph.D. thesis,
University of Cambridge, UK (1967).

[7] M. R. Laurence, S. Danicic, M. Harman, R. Hierons, J. Howroyd, Equivalence
of linear, free, liberal, structured program schemas is decidable in polynomial
time, Tech. Rep. ULCS-04-014, University of Liverpool, electronically available at
http://www.csc.liv.ac.uk/research/techreports/ (2004).

[8] F. Tip, A survey of program slicing techniques, Tech. Rep. CS-R9438, Centrum voor
Wiskunde en Informatica, Amsterdam (1994).

[9] D. W. Binkley, K. B. Gallagher, Program slicing, in: M. Zelkowitz (Ed.), Advances in
Computing, Volume 43, Academic Press, 1996, pp. 1–50.

[10] S. Danicic, Dataflow minimal slicing, PhD thesis, University of North London, UK,
School of Informatics (Apr. 1999).

[11] E. A. Ashcroft, Z. Manna, Translating program schemas to while-schemas, SIAM
Journal on Computing 4 (2) (1975) 125–146.

[12] Y. I. Ianov, The logical schemes of algorithms, in: Problems of Cybernetics, Vol. 1,
Pergamon Press, New York, 1960, pp. 82–140.

[13] J. D. Rutledge, On Ianov’s program schemata, J. ACM 11 (1) (1964) 1–9.

35

[14] H. B. Hunt, R. L. Constable, S. Sahni, On the computational complexity of program
scheme equivalence, SIAM J. Comput 9 (2) (1980) 396–416.

[15] V. K. Sabelfeld, An algorithm for deciding functional equivalence in a new class of
program schemes, Journal of Theoretical Computer Science 71 (1990) 265–279.

[16] Z. Manna, Mathematical Theory of Computation, McGraw–Hill, 1974.

36

