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Hausdorff volume in non equiregular sub-Riemannian manifolds

R. Ghezzit F. Jean'*
June 25, 2015

Abstract

In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we
compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume.
Then we study the regular part, show that it is not commensurable with the smooth volume, and
give conditions under which it is a Radon measure. We finally give a complete characterization of the
singular part. We illustrate our results and techniques on numerous examples and cases (e.g. to generic
sub-Riemannian structures).
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1 Introduction

The present work is motivated by the analysis of intrinsic volumes in sub-Riemannian geometry. Here a
sub-Riemannian manifold is a triplet (M, D, g), where M is a smooth manifold, D a Lie-bracket generating
distribution on M and g a Riemannian metric on D (note that our framework will permit us to consider rank-
varying distributions as well). As in Riemannian geometry, one defines the length of absolutely continuous
paths which are almost everywhere tangent to D by integrating the g-norm of their tangent vectors. Then,
the sub-Riemannian distance d is defined as the infimum of length of paths between two given points. Since
D is Lie-bracket generating, for every point p € M there exists r(p) € N such that

{0} =D c D) C--- D =T,M, (1)

where D}, = {X(p) | X € D'} and D' C Vec(M) is the submodule defined recursively by D! = D, D! =
D' + [D, D']. The sub-Riemannian manifold is equiregular if the dimensions dim D;, do not depend on p.

Intrinsic measures on sub-Riemannian manifolds are those which are associated with the sub-Riemannian
structure. There are essentially two ways to build such measures: either using the metric structure defined
by the sub-Riemannian distance which provides Hausdorff and spherical Hausdorff measures, or by means
of the algebraic structure associated with the distribution which allows to construct the so called Popp’s
measure (see [E3]) on equiregular manifolds.

Intrinsic measures have been widely studied in the equiregular case, where the algebraic structure is
well understood (in Carnot groups [@, @, ] and on equiregular manifolds [[]). The relevance of the study
of intrinsic volumes, e.g., top-dimensional Hausdorff measures, is due to their use in PDE’s analysis. For
instance, to generalize the Laplace-Beltrami operator in sub-Riemannian geometry, one needs a (sufficiently
smooth) intrinsic volume: this motivates the analysis of regularity of the Hausdorff volume in [@]. We also
mention the recent work [B] where smoothness of intrinsic volumes is needed to apply some nice PDE’s proof
ideas. In the non equiregular case, no study of intrinsic volumes exists so far. We refer the reader to [[3]
for a survey of many facts and interesting questions. Hausdorff measures are also studied in [[3, 9] along
curves.

The main aim of this paper is the analysis of the Hausdorff volume in non equiregular sub-Riemannian
manifolds.

For convenience, let us first recall the equiregular case. Let (M, D, g) be an equiregular sub-Riemannian
manifold. The Hausdorff dimension of M can be algebraically computed in terms of the flag (W) of the
distribution by dimy M = @Q, where

Q= i(dimDj — dimD; ),

=1

see [E2]. The Hausdorff volume, denoted by voly, is by definition the top-dimensional spherical Hausdorff
measure STm# M Assume M to be oriented. A natural way to understand the behavior of voly is to
compare it with a smooth volume p on M, i.e., a measure defined on open sets by u(A) = wa, where
w € A™M is a positively oriented non degenerate n-form. The equiregular assumption implies that voly and
any smooth volume g are mutually absolutely continuous. Moreover the Radon-Nikodym derivative of voly
with respect to u at a point p, denoted by d‘;ﬁ” (p), can be computed explicitly by the formula (see [0])

o volg (B(p,7)) 29
M Be.) (B, @




where B(p,r) is the sub-Riemannian ball centered at p of radius r, Ep is the unit ball in the nilpotent
approximation at p and P is a measure obtained through a blow-up procedure of u at p. As a consequence,
% is continuous on M and hence locally bounded and locally bounded away from zero on M. With the
language of [23, B3], this implies that voly and p are commensurable and, in particular, that voly is a Radon
measure, i.e., volg (K) < oo for every compact set K. Therefore, when the manifold is equiregular, voly is
well understood in the sense that it behaves essentially as a smooth volume. Nevertheless, further regularity
of % is not granted see [M].

In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold. A point p is
called regular if the growth vector g — (dim D;, ...,dim Dg(q)) is constant in a neighborhood of p, otherwise
p is called singular. The natural assumption under which we perform our work is that the manifold is
stratified by equisingular submanifolds, where both the growth vector of the distribution and the growth
vector of the distribution restricted to the submanifold are constant. These submanifolds were introduced in
[[@] and, thanks to their simple Lie algebraic structure, they constitute the fundamental block that allows
us to carry through our investigation.

When the set S of singular points is not empty, the Hausdorff dimension of M is obviously the maximum
between the Hausdorff dimension of S and the Hausdorff dimension of the set R = M \ S of regular points.

The first question is whether voly is absolutely continuous with respect to a smooth volume p. It turns
out that this may not be the case and voly may have a singular part. More precisely, under the assumption
that S is p-negligible, then voly admits the following Lebesgue decomposition

volyg = volgLr+volyLs,

that is, volgLr< p and volgisl p (see Corollary BH). As a consequence, voly is absolutely continuous
with respect to a smooth volume g if and only if the Hausdorff dimension of the singular set is smaller than
the Hausdorff dimension of the set of regular points.

The next problem is to analyze the behavior of the absolutely continuous part volgig (which is nontrivial
if and only if dimg R > dimg S). Thanks to (B), this amounts to study the function ¢ — [ﬂ(ﬁq) near
singular points. To this aim, we show that the asymptotics of this function is characterized by the one of the
determinants of adapted bases at regular points (see Proposition BI2). As a direct consequence, we deduce
that ‘”‘ﬁiﬁm(q) blows up when ¢ approaches the singular set (see Proposition BId). In particular, d"odlil’j”{
is not essentially bounded near the singular set, that is, unlike the equiregular case, ;1 and volgyLgr are no
longer commensurable. Going further in the regularity analysis, we find out that volyLg may even fail to be
locally integrable with respect to p and therefore volyLgr may fail to be a Radon measure. More precisely,
we exhibit a sufficient condition involving the nonholonomic order of d"cjiliﬁm and the algebraic structure of
the distribution at a singular point for non-integrability of volgiLg (see Proposition E4), and another one
involving the usual order of functions and the codimension of the singular set (see Proposition E10). For
instance, these conditions are satisfied when the Hausdorff dimension of R is not greater than the Hausdorff
dimension of S or when S topologically splits M (see Corollaries I8 and ET). We also exhibit a sufficient
condition for the integrability of volgyLr (see Proposition B), but there is a gap between integrability and
non-integrability conditions. In Figure M we summarize the relations between the Hausdorff volume and p
in all cases.

For generic sub-Riemannian manifolds, we apply our technique and we characterize the integrability of
the absolutely continuous part by comparing the dimension of the manifold to dimensions of free Lie algebras
(see Proposition B).

As for the singular part volgLs, the stratification assumption permits to focus on each equisingular
submanifold N C S. For an equisingular submanifold N C S, we give an algebraic characterization of the
Hausdorff dimension of N and we compare the Hausdorff volume with a smooth volume on the submanifold
(see Theorem B33). We show actually that on the restricted metric space (N,d|n) the situation is very
similar to the one in equiregular manifolds: the Hausdorff volume is absolutely continuous with respect
to any smooth volume on N and we have an expression of the Radon-Nikodym derivative in terms of the
nilpotent approximation. Results of this part of the paper have been announced in [[d].
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Figure 1: Summary of relations between voly and a smooth volume p on an oriented stratified sub-
Riemannian manifold (Qs, Qr denote the Hausdorff dimensions of S and R, respectively)

The structure of the paper is the following. In Section B we briefly recall Hausdorff measures on metric
spaces and the basic concepts in sub-Riemannian geometry. Section B is devoted to the analysis of the
Hausdorff volume in the equiregular case and of the Lebesgue decomposition of the Hausdorff volume in
the non equiregular case. In Section B we perform the study of regularity of the Radon-Nikodym derivative
and we provide sufficient conditions for integrability and non-integrability. Then, Section B deals with
equisingular submanifolds by providing first a complete study of the algebraic and metric structure of such
submanifolds, and then an analysis of the properties of the Hausdorff volume. Finally, in Section B we apply
the methods of Section B to the study of the generic smooth case and we list some examples. We end with an
appendix containing the proof of a technical result, Proposition B which is a uniform Ball-Box Theorem on
equisingular submanifolds and which is a key ingredient to study the behavior of %}’j“ at singular points.

2 Definitions

2.1 Hausdorff and smooth volumes

Let us first recall some basic facts on Hausdorfl measures. Let (M,d) be a metric space. We denote by
diam S the diameter of a set S C M. Let a > 0 be a real number. For every set E C M, the a-dimensional
Hausdorff measure H* of E is defined as H*(F) = lim,_,g+ HE(E), where

HE(E) = inf {Z (diam S;)” : E C U Si, S; nonempty set, diam.S; < e} ,

i=1 i=1
and the a-dimensional spherical Hausdor(f measure is defined as S*(E) = lim,_,o+ S&(E), where

SS(E) = inf {Z(dlam&)a B C U Sz’, Sz is a ball, dlamSl < 6} .

i=1 i=1
For every set E C M, the non-negative number
D =sup{a> 0| HYE) =00} =inf{a>0|H*(E) =0}

is called the Hausdorff dimension of E. Notice that P (E) may be 0, > 0, or co. By construction, for every
subset S C M,
H*(5) < 8%(5) < 2°H™(5), (3)

hence the Hausdorff dimension can be defined equivalently using spherical measures. In the sequel we will
call Hausdorff volume the spherical Hausdorff measure S4™# M and we will denote this measure by voly.



Given a subset N C M, we consider the metric space (N, d|x). Denoting by H% and S§ the Hausdorff
and spherical Hausdorff measures in this space, by definition we have

HON(B) = HYENN)=HS(ENN),
S n(E) = S*(ENN)<SL(ENN). (4)

Notice that the inequality (H) is strict in general, as coverings in the definition of S are made with sets
B which satisty B = B(p,p) N N with p € N, whereas coverings in the definition of S*Ly include sets of
the type B(p,p) N N with p ¢ N (S*Ly is very similar to centered Hausdorff measures, see [H]). Moreover,
thanks to (B), for every S C N, there holds H%(S) < SE(S) < 2*HS(S). Hence

H(S) < SN (S) < 29H*(S),

and S§ is absolutely continuous with respect to H%_y. We will denote by volg the Hausdorff volume
Sy,

When M is an oriented manifold we can introduce another kind of volume. We say that a measure p is
a smooth volume on M if there exists a positively-oriented non degenerate n-form w € A" M on M (i.e. w is
a volume form) such that, for every Borel set £ C M, u(E) = [, w.

Finally we will say that two measures u,v on M are commensurable if pu,v are mutually absolutely
continuous, i.e., p < v and v < pu, and if both Radon-Nikodym derivatives 3—5 and ;liTVL exist and are locally
essentially bounded. When it is the case, for every compact set K there exists C' > 0 such that

1
aﬂLKS vig< CuLgk.

In particular, thanks to (B), H* and S* are mutually absolutely continuous and commensurable.

2.2 Sub-Riemannian manifolds

Usually, a sub-Riemannian manifold is a triplet (M, A, g%), where M is a smooth (i.e., C*°) manifold, A
is a subbundle of TM of rank m < dim M and ¢ is a Riemannian metric on A. Using ¢, the length
of horizontal curves, i.e., absolutely continuous curves which are almost everywhere tangent to A, is well-
defined. When A is Lie bracket generating, the map d : M x M — R defined as the infimum of length of
horizontal curves between two given points is a continuous distance (Rashevsky-Chow Theorem), and it is
called sub-Riemannian distance.

In this paper we study sub-Riemannian manifolds with singularities. Thus it is natural to work in a
larger setting, where the map ¢ — A, itself may have singularities. This leads us to the following generalized
definition [B, B].

Definition 2.1. A sub-Riemannian structure on a manifold M is a triplet (U, (-,-), f) where (U, (-,-)) is a
Euclidean vector bundle over M (i.e., a vector bundle 7y : U — M equipped with a smoothly-varying scalar
product ¢ — (-, )4 on the fibre Uy) and f is a morphism of vector bundles f : U — T'M, i.e. a smooth
map linear on fibers and such that, for every v € U, n(f(u)) = my(u), where w7 : TM — M is the usual
projection.

Let (U, (-,-), f) be a sub-Riemannian structure on M. We define the submodule D C Vec(M) as
D ={f oo | o smooth section of U}, (5)

and for ¢ € M we set Dy = {X(q) | X € D} C T,M. Clearly D, = f(U,). The length of a tangent vector
v € Dy is defined as

9q(v) == inf{{u, u)q | f(u) = v,u € Ug}. (6)
An absolutely continuous curve v : [a,b] — M is horizontal if §(t) € Dy for almost every ¢. If D is Lie

bracket generating, that is
Vqe M Lie,D=1T,M, (7)



then the map d : M x M — R defined as the infimum of length of horizontal curves between two given points
is a continuous distance as in the classic case. In this paper, all sub-Riemannian manifolds are assumed to
satisfy the Lie bracket generating condition (@).

Remark 2.2. Definition B includes the following cases.

e (lassic sub-Riemannian structures: in this case U is a subbundle of TM and f is the inclusion. With
the notations used at the beginning of this section, this amounts to take U = A, and (-,-) = g®. Then
the module D coincides with the module of smooth sections of the subbundle A and D, has constant
dimension. Moreover, for every ¢ € M and v € Dy, gq(v) = gl (v,v).

e Sub-Riemannian structures associated with a family of vector fields Xi,...,X,,: in this case U =
M x R™ is the trivial bundle of rank m over M, (-,-) is the Euclidean scalar product on R™, and
[ M xR™ — M is defined as f(q,u) =Y .-, u;X;(q). Here D is the module generated by X1,... X,

and g is given by
9q(v) :inf{Zu? v:ZuiXi(q)}.
i=1 i=1

Let (U, (-, -), f) be a sub-Riemannian structure on a manifold M, and D, g the corresponding module and
quadratic form as defined in (B) and (B). In analogy with the classic sub-Riemannian case and to simplify
notations, in the sequel we will refer to the sub-Riemannian manifold as the triplet (M, D, g). This is justified
since all the constructions and definitions below rely only on D and g.

Given i > 1, define recursively the submodule D! C Vec(M) by

D' =D, D =D 4D D

Fix p € M and set ’D; = {X(p) | X € D'}. The Lie-bracket generating assumption implies that there exists
an integer r(p) such that
{0}y =D cD)C---CD)P =T,M. (8)

The sequence of subspaces (B) is called the flag of D at p. Set n;(p) = dim D}, and

r(p)

Qp) = _i(ni(p) — ni—1(p))- (9)

i=1

This integer will play a crucial role for determining the Hausdorff dimension of (M, d). To write Q(p) in a
different way, we define the weights of the flag (B) at p as the integers wy (p),. .., w,(p) such that w;(p) = s
if dim Dy~ < i < dimD;. Then Q(p) = Y7, wi(p).

We say that a point p is regular if, for every i, n;(q) is constant as ¢ varies in a neighborhood of p.
Otherwise, the point is said to be singular. The sub-Riemannian manifold is called equiregular if every point
is regular.

When the dimensions n;(g) are constant on M, the module D? coincides with the module of vector fields
{X € Vece(M) | X(q) € D}, Vq € M},

i.e., vector fields that are tangent to the distribution ¢ D;. Yet the identification between the module
D? and the map q — Dé is no more meaningful when the dimension of Dé varies as a function of ¢ (see the
discussion in [B, page 48]). Indeed, in the rank-varying case, a vector field tangent to Dé at every ¢ € M
may fail? to be in the module D¢. Definition Z allows to take account of structures where the dimensions
n;(¢) (and in particular n;(q)) may vary.

1For instance, on M = R, take the module D C VecR generated by X(z) = x28,. Then the vector field Y (z) = z0; is
clearly tangent to the distribution « — D; but does not belong to D.



Ezample 2.3 (Grushin plane). Let M = R?, U = R? x R? endowed with the canonical Euclidean structure,
and f be the morphism defined as follows. If o1, 03 is a global orthonormal basis on U, we set f(o1(x,y)) = O,
and f(oz(z,y)) = 20,. Then D(, , is two dimensional for every = # 0, whereas dimD(q ,y = 1.

Remark 2.4. At a regular point p, the equality n;(p) = n;y1(p) implies that the local distribution ¢ Dé
is involutive, and so that n;(p) = n;(p) for any j > 4. From the Lie bracket generating assumption ([) we
deduce n;(p) < n;y1(p) for i < r(p), which in turn implies Q(p) < n?.

Given any sub-Riemannian manifold (M, D, g) there always exist a (possibly very big) integer m and
vector fields X1, ..., X,, such that D is globally generated by Xi,...,X,, and

gq(v) = inf {Zuf
i=1

We call such a family X1,...,X,, a (global) generating family for the sub-Riemannian structure (D, g). The
existence of a generating family is a consequence of [B, Corollary 3.16]. For an alternative proof see also [24].
Consider a generating family Xi,...,X,, for (D,g). A multi-index I of length |I| = 7 > 1 is an

m
v:ZuiXi(q)} for every ¢ € M, v € T, M.
i=1

element of {1,...,m}?. With any multi-index I = (i1,...,4;) is associated an iterated Lie bracket X; =
(Xi, [Xigy ooy [Xo, o, Xy ] ] (we set X = X, if j = 1). The set of vector fields {X; | [I| < j} generates
the module D7. As a consequence, if the values of X I,,---, X1, at p € M are linearly independent, then
2 [1il = Q(p)-

Let Y be a vector field. We define the length of Y by
((Y) =min{i e N| Y € D}.

In particular, £(X;) < |I|. By an adapted basis to the flag (B) at p, we mean n vector fields Yi,...,Y, such
that their values at p satisfy

D}, = span{Y;(p) | ((Y;) < i}, Vi=1,...,r(p).

In particular, > 1" (Y;) = Q(p). As a consequence, a family of Lie brackets Xy,,..., Xy, such that

X1, (p),...,Xr,(p) are linearly independent is an adapted basis to the flag (8) at p if and only if )", |;| =
Q(p)-

Let h : U — R be a continuous function on a neighborhood of p. The nonholonomic order of h at p is
ord, (h) := inf{s € (0,+0) | h(q) = O(d(p. 9)")}-
If h is a smooth function, then ord,(h) admits an algebraic characterization, namely,
ord,(h) = min{s € N | 3iq,...,i5 € {1...,m} such that (X;, X, --- X;,h)(p) # 0}.
A smooth function h is called privileged at p if
ordy(h) = max{s € N | dh(D;/D; ") # 0},

where D5 /D5~" is a vector subspace such that Dj = Di~!' @ (D5/Ds~'). We say that coordinates ¢ =
(x1,...,2pn) : U — R™ are privileged at p if they are centered at p and linearly adapted (that is the coordinate
vector fields are an adapted basis to the flag at p), and if every coordinate function x; is privileged at p.

Note that in this definition of privileged coordinates, the coordinate functions are not ordered by in-
creasing nonholonomic order. However the set {ord,(z;),i = 1,...,n} coincides with {w1(p), ..., w,(p)}, so
we can relabel the weights in such a way that ord,(x;) = w;(p). We then say that the weights are labeled
according to the coordinates . R

For every point p € M the metric tangent cone? to (M, d) at p exists and is isometric to (7, M, d,) where

Ep is the sub-Riemannian distance associated with the nilpotent approximation of the structure at p (see

2in Gromov’s sense, see [I3)]



[B, Definition 5.15] for the definition of nilpotent approximation). This was shown in [EF] for equiregular
sub-Riemannian manifolds and in [B] for the general case. Isometries between the metric tangent cone and
(T, M, c/i\p) are given by privileged coordinates at p.

By construction, the metric tangent cone is endowed with a family of dilations J, with respect to which
the distance d, is homogeneous. If ¢ : U — R" is a system of privileged coordinates at p then dilations are
given by

oa(z1, .. ymy) = (/\wl(]”)xl7 . )\“’"(”)zn),
where w;(p) = ord,(z;).

We refer the reader to [B, B, 23] for a primer in sub-Riemannian geometry.

3 Lebesgue decomposition of the Hausdorff volume

In this section we investigate the relation between the Hausdorff volume and a smooth volume on a sub-
Riemannian manifold. We first recall the equiregular case, where the situation is well understood, then we
consider the case where singular points are present. We write the Lebesgue decomposition of the Hausdorff
volume with respect to the smooth volume and we start the analysis of both the absolutely continuous part
and the singular part.

3.1 Equiregular case

Assume (M, D, g) is an equiregular connected sub-Riemannian manifold. Then ¢ — Q(q) is constant on M
(see (@) and we denote by @ its constant value. Moreover at every point p € M the metric tangent cone to
(M, d), which is isometric to (T, M, @)7 has a structure of a Carnot group. Assume M is also oriented and
let © be a smooth volume on M. The associated volume form w induces canonically a left-invariant volume
form @, on T, M. We denote by ¥ the smooth volume on T, M defined by @,. To clarify this construction,
we refer the reader to Proposition BEJl in Section B.

Theorem 3.1. Let (M, D, g) be an equireqular connected oriented sub-Riemannian manifold and let p be a
smooth volume on M. Then

(i) dimg M = Q and voly = S9;
(i) voly is a Radon measure on M;
(i4i) volg < pu and p < voly;

(iv) the Radon-Nikodym derivative %(p) coincides with the density lim._,o %, whose value is

volg (B(p,e)) 29
M TuBe.) @, M (10)

where Ep denotes the ball centered at 0 and of radius 1 in T, M with respect to Jp.

Remark 3.2. As we will see in Theorem B33 below, one can interpret the constant 2 in () as the diameter

of the ball B, with respect to the distance d,. Since the nilpotent approximation is a Carnot group here,

we then have 29 = diam; (B,)? = S{g (Bp) (here S(? denotes the spherical Hausdorff measure in T, M with
D P P

respect to the distance cjp), which gives a clear interpretation to (I).

Theorem B is a special case of Theorem B2 proved in Section B. Note that all the statements in
Theorem B are well-known, but they have been proved only fragmentarily in several references: properties
(i) and (iii) are stated in [Z2] (for a rigorous proof see [E3]), property (iv) in [M. Up to the authors’
knowledge, property (ii) has never been stated as is and it is a consequence of basic covering arguments in
geometric measure theory. In particular, this property is needed to apply the differentiation theorem for

Radon measures [E8, Theorem 4.7 p.24] and ensures that %(p) coincides with lim._,q %



Remark 3.3. Properties (i), (ii), (iii) hold true if we replace voly by HYm# M In particular, applying the
HP(B(p.c))
u(B(p,e))
exists p-almost everywhere and it coincides with the Radon-Nikodym derivative of H? with respect to pu.
Nevertheless, we do not have an explicit representation of such limit as we have for the spherical Hausdorff

case in (I).

A first consequence of Theorem Bl is that the Radon-Nikodym derivative of voly with respect to p
is continuous on M, see [0, Corollary 2 and Section 4.1]. This is due to the fact that both the nilpotent

approximation at ¢ and the tangent measure i? depend smoothly on ¢. Studying higher regularity of %

differentiation theorem for Radon measures [E8, Theorem 4.7 p.24] we get that (i) the limit lim._,o

is the main subject in [0, to which we refer the interested reader.
A further consequence is that p and voly are commensurable (see the last remark in [E3]). This follows
directly by the fact that ¢ — [(9(B,) is positive and continuous on M, so that %(q) and its inverse

di_(q) are locally bounded.

dVOlH
In conclusion, when the manifold is equiregular, the Hausdorff volume essentially behaves as a smooth

measure. This fails when singular points are present, as we see in the next section.

3.2 Non equiregular case

Assume (M, D, g) is an oriented sub-Riemannian manifold and p is a smooth volume on M. The manifold
is split into the disjoint union of two sets
M =RUS,

where R,S denote respectively the set of regular and singular points. Since the functions ¢ — dim Dé are
lower semi-continuous, R is an open and dense subset of M and conversely S is a closed subset of empty
interior.

We will assume in this paper that p(S) = 0. This assumption is satisfied for a very wide class of sub-
Riemannian manifolds: for instance for analytic sub-Riemannian manifolds, for generic sub-Riemannian
structures on a given manifold (see Section Bl), or when ¢ — D, is a distribution of corank 1 [Z3, Proposi-
tion 3.3]. Nevertheless one can build up sub-Riemannian manifolds where 1(S) # 0 as in the next example.

Ezample 3.4. Let S C R* be any closed set having empty interior and positive Lebesgue measure. By
Whitney’s Extension Theorem (see for instance [EI, Proposition A.8]), there exists a function f € C>°(R*)
such that S = f~1(0). Consider the sub-Riemannian structure on R* for which the following vector fields

are a generating family,
2

X; =01, Xo—= s+ 2105 + %04, X3 = f(2)0s.

One easily checks that the singular set coincides with .S and thus it is of positive measure.

We are interested in properties of voly = S4™# M hence we first compute dimg M. Clearly, the
Hausdorff dimension of M is max{dimy R, dimy S}. Then, using property (i) in Theorem B the Hausdorff
dimension of the regular set can be computed algebraically as

dimpg R = sup{dimpg O, O connected component of R} = max Q(q).
qe

This follows from the fact that R is a countable union of open connected components, and by the inequality
Q(q) < n? at every q € R (see Remark E4). To remind its algebraic characterization, we denote by Qr the
number maxger Q(¢) (which equals dimpy R). We present in Section B an analogous method to compute the
Hausdorff dimension of S under some stratification assumptions.

Applying Theorem B to every connected component of R we obtain the following result.

Proposition 3.5. Let (M, D, g) be an oriented sub-Riemannian manifold and let p be a smooth volume on

M. Assume pu(S) = 0. Then SPRg< u, the Radon-Nikodym derivative of SYRLg with respect to p exists

Q
u-almost everywhere, and it coincides with the density lim._q % for every q € R.



Moreover, if O is a connected component of R such that dimyg O = QR, then

dSQRLR 2Qr
q) = — for every q € O. 11
iV () ()

Remark 3.6. The measure S®*_ g may not be a Radon measure on M (see Section @ below). Thus the
existence of a Radon-Nikodym derivative and the fact that it coincides with the density are not consequences
of § QRI_R<< .

Remark 3.7. In the statement above we can replace S?% by volgyLg. Indeed, if dimy S > Qr, then voly =
SdimuS  Aga consequence, volgLr= 0 and volgLr(B(q,¢€)) = 0, for every ¢ € R, so that the density becomes
trivial. On the other hand, if dimg S < Qg then volyLr= S@RLg, that is, the two measures coincides.

Remark 3.8. When there is a connected component O C R with dimg O < @, the density lim, o %

. . Q
vanishes at every point ¢ € O and so dsdi:“? =on O.

Proof of Proposition @A. Apply Theorem B to each connected component of R. Then, by property (ii),
SYR . as a measure on the metric space (R, d|r), is Radon, that is, S¥® is finite on compact subsets contained
in R. Moreover, by property (iii), S¥%, as a measure on R, is absolutely continuous with respect to p.
Obviously, p is also a Radon measure on M (and thus on R) which is also locally doubling (see [E4]). Thus
we can apply the differentiation theorem for Radon measures (see for instance [E8, Theorem 4.7 p.24] with

X =R, pz = voly and p; = p) and deduce that, on R, the Radon-Nikodym derivative of S?% with respect

Q
to u coincides with the density lim._.¢ %. In other words, for every Borel set £ C R,

o [ 1 SB@e)
S (E)*/El_m w(B(g€))

Since R is open and p(M \ R) = 0, we deduce that for every Borel set £ C M,

S R(E) = /E

which gives the conclusion. O

du(q).-

S9(B(g; €))

re0 u(B(g,€)) 4ia).

Since R is open and Hausdorff measures are Borel regular, R and S are u- and volg-measurable. Hence
for every set £ C M
VOlH(E) = VOIH(E N R) + VOIH(E n S),

or equivalently, voly = volgLg+volgLs. Moreover, since u(S) = 0, volgyLs is concentrated on S whereas p is
concentrated on R. Therefore 1 and volyLs are mutually singular. We thus get directly the following fact.

Corollary 3.9. Let (M, D, g) be an oriented sub-Riemannian manifold and let p be a smooth volume on M.
Assume u(S) = 0. Then p and volgLs are mutually singular and the Lebesgue decomposition of voly with
respect to p s

voly = volgLr+volgLs.

As a consequence, (i) if dimg R < dimpg S then voly and p are mutually singular; (it) if dimg R > dimg S
then voly < .

Corollary B9 provides the Lebesgue decomposition of voly with respect to a smooth measure p. In the
sequel we are interested in studying the absolutely continuous part and the singular part of voly. Note that
the only case where volgLr# 0 is when dimy R > dimgy S. In this case volgLr= S®*Lg. Thus the latter is
the measure we study in Section @.
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3.3 Stratification assumption

To go further in the characterization of voly, the first question is how to compute the Hausdorff dimension
dimg M and how to relate dimy M to algebraic properties of the sub-Riemannian structure.

Recall that to compute dimg R one simply considers R as the disjoint union of open sets where the growth
vector (n1(q), ..., nr(g)(q)) is constant and then compute the Hausdorff dimension of each component O C R

by the algebraic formula
r(q)

dimy O = "i(ni(q) — ni-1(q)).
i=1
This idea can be carried out on the whole manifold, provided that M can be stratified by suitable submani-
folds. This motivates the following definition.
Let N C M be a smooth connected submanifold and ¢ € N. The flag at q of D restricted to N is the

sequence of subspaces
{0} c (DyNT,N)C - C (D) NT,N)=T,N. (12)

Set,
nN(g) = dim(D;NT,N)  and  Qn(q) = X719 i(n) () — 1 (q))- (13)
We say that N is equisingular® if

(i) for every ¢, the dimension n;(q) is constant as ¢ varies in N;

N

(ii) for every i, the dimension n;' (¢) is constant as ¢ varies in N.

In this case, we denote by @y the constant value of Qn(q), ¢ € N. We will see in Theorem B3 that Qy is
actually the Hausdorff dimension of N.

Remark 3.10. If N is an open connected submanifold of M then N is equisingular if and only if it is
equiregular, that is, condition (i) is equivalent to condition (ii). For submanifolds N of dimension smaller
than dim M being equisingular implies that N is contained in the singular set (see Example BT below for
a sub-Riemannian structure where the singular set is itself an equisingular submanifold).

Definition 3.11. We say that the sub-Riemannian manifold (M, D, g) is stratified by equisingular subman-
ifolds if there exists a locally finite stratification S = U;S; where every S; is an equisingular submanifold.

In the rest of the paper we will make the assumption that (M, D, g) is stratified by equisingular subman-
ifolds. The interest of such an assumption has already been raised by Gromov [[@, 1.3.A]. It holds true in
particular for generic smooth sub-Riemannian manifolds and for analytic ones. It obviously implies x(S) = 0
for any smooth measure p, hence Corollary B9 and all the analysis of the previous section are valid. To
shorten the notations we gather all the hypotheses we need on the sub-Riemannian manifold in the following
assumption:

(A) The sub-Riemannian manifold (M, D, g) is stratified by equisingular submanifolds, M is oriented, and
Q(gq) = Qr at every point g € R.

As a first consequence of this assumption, we obtain dimg S = sup; dimy S; and volgLs= ), volyLs,.
Thus, to characterize volgyLg, it suffices to understand what happens on each stratum. This will be done
Section B where we develop the analysis of Hausdorff volumes on equisingular submanifolds started in [I].

As concerns the regular part of the Hausdorff volume, note that all connected components O of R have
the same Hausdorff dimension Qg, which implies that () holds for every ¢ € R. Also, it makes sense to
study S@rLg rather than volgLg. Indeed, if dimy S < Qg then voly = S®®. Conversely, if dimy S > Qr
then the absolutely continuous part volyLg vanishes identically, but S@®_g still satisfies Proposition B3.

3Note that in our previous paper [, Definition 1], these submanifolds are called strongly equiregular.
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ds®

We will focus our analysis on the regularity properties of the derivative o 45 ik y5 they translate directly

into properties of the measure S¥r_g. In particular, SPR_g is commensurable to y if and only if dsd% is

locally essentially bounded and bounded away for zero and S??_g is a Radon measure if and only if %:LR
is locally integrable with respect to p. To carry out the analysis of this Radon-Nikodym derivative the main
tool is the proposition below.

For simplicity, we introduce the following notations. For two real numbers ¢ and ¢’ we write t x<¢ t’ if
t'/C <t < Ct, where C > 0 is a constant. Moreover, given a family of vector fields X3,...,X,, and a
n-tuple Z = (I1,..., I,) of multi-indices we denote by Xz the n-tuple of vector fields (Xy,,...,Xs, ) (where
X7, is the Lie bracket corresponding to the multi-index I;).

Proposition 3.12. Assume (A) and consider a generating family X1,..., X, for the sub-Riemannian
structure. For every compact subset K C M, there exists a constant C' > 0 such that
dS@rR_g 1
——(¢) ¢ — Vg¢ge KNR,
dp ( v(q)

where

vig) = [Y w(X)(@)?  and J-"{I (It 1. |ZI|QR}

IeF

The proof is postponed to Section B3 . Actually, since dsj%(q) = for ¢ € R, Proposition B2

;ﬂ(B )
follows from a particular instance of Proposition B4, see also Remark B3.

Remark 3.13. Since the family F is finite, one easily computes the nonholonomic order of the function
g—v(q) at p €S as
= mi X7)).
ord,v %gordp(w( 7))

Moreover, in the statement of Proposition B2, v can be replaced by

v(q) = max |lw(X7)(q)]-

Ezample 3.14 (the Martinet space). Let us compute v on a specific example. Consider the sub-Riemannian
structure on R? given by the generating family

x2
X, =01, X2:82+?163.

We choose w = dx; A dza A dxs, that is, the canonical volume form on R3. The growth vector is equal to
(2,2,3) on the plane {z; = 0}, and it is (2,3) elsewhere. As a consequence, S coincides with {z; = 0} and
is equisingular, since n3(0, xa,23) = n3(0, 22, 23) = 1,n3(0, 22, 23) = 2. At regular points we have Qg = 4
and the only adapted basis at regular points is (X1, Xs, [X1, X3]). Then

v(zi, x9,x3) Xc U(T1, T2, 23) = |21].

By Proposition BT, on R the Radon-Nikodym derivative dSOR g
it is sufficient to study essential boundedness and integrability of 1/v. It turns out that this function is not
locally essentially bounded around the singular set.

is locally equivalent to 1/v. Henceforth

Proposition 3.15. Under assumption (A), for every p € S and every neighborhood U C M of p,

dSQR\_R

T|U:+OO.

essup

As a consequence, SCRLg and pu are not commensurable when S # 0.
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Proof. Let T = (I1,...,1,) € F. Recall that if the values of X,,..., X, at a point ¢ € M are linearly
independent, then ), |[;| = Qr > Q(q) (see Section ). Let p € S. Since Qr < Q(p), the vectors
X5, (p),..., X1, (p) are linearly dependent. Thus v(q) — 0 as ¢ — p and the conclusion follows from
Proposition BT2. O

Thus S¥RLg and p are never commensurable in non equiregular sub-Riemannian manifolds. It makes

sense now to ask whether dsjﬁ is locally integrable with respect to u. The answer to this question is more
involved and is the object of Section M.

Remark 3.16. Let us mention that, on R, there is a smooth volume which is intrinsically associated with the
sub-Riemannian structure (i.e., to the pair (D, g)), namely the Popp measure P. An explicit formula for this
measure is given in [H]. More precisely, thanks to [B, Theorem 1], the Radon-Nikodym derivative ‘2—7; satisfies

dpP

—(q) x¢ —, for every ¢ € K NR,
du() ]

1
v(q
where K is any compact set in M. As a consequence, P and S@®_g are commensurable on M (P is extended

to a measure on M by setting PLs= 0). In particular, P and p are not commensurable when S # (§; and P
is Radon if and only if SR is.

Remark 3.17. In Proposition BT and Proposition B3, the only conditions of assumption (A) needed are
Q(q) = QR for every ¢ € R and M oriented. The stratification assumption is redundant.

4 Local integrability of the Radon-Nikodym derivative

Thanks to Theorem B, %SLR is continuous on R and thus locally p-integrable on R. Nevertheless, by
Proposition 13 %}j”‘ explodes when approaching S. Therefore, the question remains whether %:LR is
locally p-integrable around singular points, or equivalently whether S®%_g is a Radon measure. The aim of
this section is to provide sufficient conditions for dsjﬁ to be locally p-integrable or not around S.

In Section I we express in some suitable coordinates an integral whose finiteness is equivalent to the

local integrability of dsj%. We then use this expression in Section B2 to deduce explicit algebraic conditions

for both integrability and non-integrability of %:LR.

4.1 Computation in local coordinates

Consider an equisingular submanifold NV and a point p € N. Thanks to Proposition BT2, under assumption

(A) the local p-integrability of deQ:LR near p is equivalent to the one of % The latter can be conveniently

characterized in well-chosen systems of coordinates.

Lemma 4.1. Assume (A). Let N be an equisingular k-dimensional submanifold, p € N, and ¢ = (y,z) €
RF x R"~* be local coordinates centered at p such that, near p,

p(N) C {z =0}

Then dsj# is locally p-integrable near p if and only if, for R > 0 small enough,

/O ’ </ly<R </{z—1} V(‘I’(y7>\2))> dy) dA < Foo, (14)

where & = 410_17 |y| = maX;e{1,....k} |yi|7 |Z‘ = MaX;e{k+1,...,n} |Zt|7 Az = (A2k+17 B A25")7 and dO'(Z) denotes
the (n — k — 1)-Lebesgue measure on {|z| = 1}.
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If moreover ¢ is a system of privileged coordinates at p, then %ELR is locally p-integrable near p if and

only if, for R > 0 small enough,

* -Qn-— do(z)
Q(p)—Qn—1 _do(z) N
/0 ’ </|y|§R </{|z|_1} V(@(y,&z)))dy) dA < oo, (15)

where

wilP) gy = (A @y A P

— |wi(p) — )

[yl emax |y | e |2

w;(p) are the weights at p labeled according to the coordinates ¢, and do(z) denotes the (n —k — 1)-Lebesgue
measure on {||z|| = 1}.

Remark 4.2. Since N is equisingular, the functions ¢ — w;(q) are constants on N and the integers Q(g) and
Qn = Qn(q) (see (M) may be computed as

n k
Q@)=Y wi(g) and  Qn = wi(q).
i=1 i=1

Proof. According to the notation in the statement above, we set ¢ = (y1,..., Yk, Zk+1s-- -, 2n). Lhis allows
to distinguish which coordinates parameterize N, namely the first group y, and which ones are transversal
to N, namely the second group z.

Let U be a small neighborhood of p. Thanks to the expression of dsj;LR provided by Proposition B3,

the finiteness of SYR_g(U) reduces to the finiteness of the integral fU ﬁdu(q). Applying the change of
variables ¢ in the integral and taking upper and lower bounds for |det J®(y, z)| near (0,0), we obtain

S%R() =c LU)WW/M </z692 Wdz) .

where we have written ¢(U) as Q1 x Qs, with ©; € R¥ and Qy € R"™¥ open subsets.

Since ¢(U) contains and is contained in sets of the form {|y| < R} x {|z| < R}, it is sufficient to consider
the case where Q; = {|y| < R} and Q3 = {|z| < R} for some small R > 0. Criterion (Id) follows directly by
a change of coordinates z = AZ, |Z] = 1, in the integral on Q.

Assume now that the coordinates ¢ are privileged at p. As above, it is sufficient to consider the case
where Q1 = {|ly|| < R} and Q3 = {||z|| < R} for some small R > 0. Recall that in privileged coordinates,
dilations take the form

5/\(y’ Z) = ()\wl (p)y17 BN} Awk(p)ykn )‘warl(p)Zk-Q-h B )\wn(p)zn).

By construction, the pseudo-norm || - || is homogeneous with respect to dy, and we have Qo = {02 | ||z]| =
1,A € [0, R)}. Thus, changing variables in the integral, we obtain

/yegl (/en Mm«) = /IlylgR </oR A </{|z|—1} m) dA) w

By Remark B3, 377, ., w; = Q(p) — Qv and we obtain criterion (I3). O

As pointed out in Remark BT4, in Lemma BT we do not need the stratification assumption, but only the
other two conditions in assumption (A). Nevertheless, whenever M is stratified by equisingular submanifolds
and p € M, there exists a unique equisingular submanifold N containing p.

We end this section with the construction of a system of coordinate around p satisfying the assumptions
of the previous lemma. This construction will also prove to be useful in Section B.
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Lemma 4.3. Let N be an equisingular submanifold. Then there exist a neighborhood U of p and a smooth
map

p:UNN — C*(U,R")
g — @:U—=R"
such that, for every g € UNN,
(I) g is a system of privileged coordinates centered at q;
(II) pq(UNN) C {(z1,...,2n) € R" | 241 = --- = x,, = 0}, where k =dim N.
Moreover, for every q € UNN and for every q' € U,
(0q(d)i = (ep(d))i, i=k+1,....n (16)
Proof. For every q € N, let us consider the flag of D restricted to N
(DyNT,N) C---C (DjNT,N)=T,N.

Recall that the integers nl¥ = dim(DfI NTyN) do not depend on ¢ in N. Thus, in a neighborhood U of p,
there exist a family of vector fields Z1,..., Zx on U such that, for every ¢ € N and for every i = 1,...,7r,

D, NT,N = span{Z;(q) | /(Z;) <'i}.

In particular, we have T, N = span{Z1(q), ..., Zx(¢)}, and

Possibly reducing U, since g — dim Dfl is constant on IV, there exist vector fields Zx11, ..., Z, such that the
family Z1, ..., Z, is adapted to the flag of D at every ¢ € NNU (see (B)).
Using these bases, we define for ¢ € N N U, a local diffeomorphism &, : R — M by

O4(x) = exp (xnZp) o ---oexp (z1Z1) (g). (17)
The inverse p, = @' of &, provides a system of privileged coordinates at ¢ (see [[1]) and in these coordinates
N coincides locally with the set {zy41 =--- =z, = 0}. Moreover, the map (¢,z) — ®,(z) is smooth on

N N U, which completes the proof of points (I) and (II).

Finally, let us prove (IB). Let ¢ € UNN and ¢’ € U. We denote respectively by 2 and y the coordinates of
¢’ centered at ¢ and p, that is, ¢’ = ®,(z) = ®,(y). By construction, the point exp (x;Zx)o- - -ocexp (x121) (q)
belongs to U N N, and hence may be written as ®,(z) with zx11 = --- = 2, = 0. Therefore,

qd = O,(x) =exp (xnZp) 0 -~ 0exp (Tht1Zk+1) 0 exp (262k) 0 - - - 0 exp (2121) (p),
which implies y; = x; fori =k +1,...,n, i.e (I3). O

4.2 Sufficient conditions

In the sequel, we provide sufficient conditions to obtain either local integrability or non integrability of
%}TLR around a fixed singular point. These conditions will be of different nature (either differential or
metric), depending on whether they are obtained with () or (I3).

Note that by assumption (A), S admits a stratification by equisingular submanifolds, hence every sin-
gular point belongs to an equisingular submanifold which is determined in a unique way. Recall also from

Proposition B2 that

v(g)= | Y w(Xr)(g)?  and f{I(Il,...,In)|Z|Ii|QR}.

IeF
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4.2.1 Conditions on nonholonomic orders

Consider a singular point p € S and an equisingular submanifold N C S containing p. Define

Omin(p, N) = liH(l) min{ord,v | ¢ € NN B(p,e€)},
e—

where ord,(h) is the nonholonomic order of the function h at g. Note that by Remark B3, ord,r =
minzer ord, (w(Xz)), so that

Omin(p, N) = lig(lJ min{ord,(w(Xz)) | ¢ € NN B(p,e), T € F}.

Next result gives an algebraic sufficient condition for a neighborhood of p to have infinite S?* measure.
This condition involves the order of v at singular points around p (@min(p, N)), the flag of the distribution
at p (Q(p)) and the flag of the distribution restricted to the singular set at p (Qn).

Proposition 4.4. Assume (A). Let p € S and let N be an equisingular submanifold containing p. If
Omin (D, N) > Q(p) — Qn, then dsj% is not p-locally integrable around p.

Proof. We will apply condition ([H) with the coordinate system ¢, = (y, z) built in Lemma I3. Fix R small
enough. By definition,

v(@p(y,032))* = Y w(Xr)(Ry(y, 6x2))°,
TeF

where F is the family of n-tuples of multi-indices 7 = (I1,..., 1) such that 3, [I;| = Qr. Since p belongs
to the singular set, for any family Z € F, the vectors Xy, (p),..., X1, (p) are linearly dependent. Similarly,
for every y near 0, the vectors Xr, (®,(y,0)),..., X, (®,(y,0)) are linearly dependent. As a consequence,
V(B (,0)) = 0.
Given y € {|ly|| < R}, denote by p(y) the greatest number such that there exists a constant C,, > 0
satisfying
V(®, (5, 032)) < Cy AW,

for every A <1 and ||z|| = 1. Thanks to (I3),
(I)P(yv Z) = éq(o,z)a

where ¢ = ®,(y,0). Hence ®,(y, drz) = 4(0,0xr2) = P,((0, 2)), and o(y) is simply the nonholonomic order
of v at ®,(y,0) and, in particular, o(y) > gmin (We omit the dependance w.r.t. (p, N)). Assume gpin < 00.
Since q — 1%(q) is smooth, there exists C' > 0 such that

(@, (y,052)) < CA&min,

max v
lyll<R,|lzll,=1

R ~ 1
/ A\QP)-Qn—1 / / do(z) dy | dx > C/ ARP)—QN —1—0min )
0 lyl<r \J{lz1=13 ¥(2(y;022)) 0

Therefore, applying () in Lemma BT, condition gmin > Q(p) — @n gives the non integrability. If o, =
+00, then we directly infer the conclusion, as the inequality

R o] 1
/ AC@P)-@n—1 / / L(Z) dy | dx > C/ AQ(P)—QN—1-a gy
0 lyll<r \J{l=l=1) Y(®(Y,022)) o

holds for every positive integer «. O

Thus
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Remark 4.5. For every ¢ = ®,(y,0) € N and every Z € F, ord,(w(Xz)) > Q(p) — Qr and thus

Qmin(p> N) 2 Q(p) - QR-

To see this, let )?1, ceey )Agm be a nilpotent approximation at ¢ € N of the generating family Xi,..., X,.
Denote by X7 the family X;,,..., Xy, , whereZ = (I3,...,I,) and X7, is the Lie bracket between X7, ..., Xp,.

Then
W(XE) (@y(y,032)) = w(X2)((0,612)) = AZD =9 (w(Bp)(@(0,612)) + Abzg(A,2) )
where bz 4 is a smooth function. Finally, the equisingularity of N ensures that Q(q) = Q(p).

Proposition B3, jointly with Remark B3 allows to deduce the following criterion for S@RLg not to be
Radon.

Corollary 4.6. Assume (A). If dimy S > dimpy R, then S9RLg is not a Radon measure.

Remark 4.7. Denoting by S = US; the stratification of S by equisingular submanifolds, condition dimg S >
dimy R is equivalent to the existence of a stratum S; such that Qs; > Qr. Indeed, thanks to Theorem B3,

dimy S = maxdimy S; = max Qs .
J J

Therefore, such condition encodes a metric information, in the sense that the Hausdorff dimension is defined
only through the metric structure of the manifold, and it bears an algebraic interpretation (and hence a
direct way to be tested) in terms of Qg and the Qs,.

Proof. Under the assumptions, there exists an equisingular submanifold N C S such that dimg N = dimg S.
On the other hand, Qn = dimg N by Theorem BE3. Using Remark B33, for every p € N we have

Omin(p; V) > Q(p) — Qr > Q(p) — On,

hence the assumption of Proposition B2 is satisfied and S@r_g is not locally integrable around p. O

As concerns sufficient conditions for local integrability, we use the same approach as in Proposition £
and we look for uniform lower bounds on v.
For a point p € S and an equisingular submanifold N containing p, we define

Omax(P;s N) :inf{SZO : inf {liminfy(@mw} >0}7

yEQ,||2[lp=1

where ®, and € are constructed in Lemma BZ3. By construction, gmin(p, N) < gmax(p; N).

Remark 4.8. The number gpax = Omax(p, V) is defined precisely to get a uniform lower bound on v. More
precisely, if gmax < 00, there exists C' > 0 such that, for every (y,z) € Q1 x {||z]|, = 1} and X € [0, 1], there
holds

v(®,(y,0x2)) > CAOmax, (18)

Unlike omin, in general pn.x does not bear an algebraic interpretation as a nonholonomic order. Nevertheless,
it can be characterized in a more intrinsic way as

gmaxzinf{s>0: inf {liminfy(q))s}>0}.

GgeB(p,e)NN | q—q,q¢S d(q, N
As a direct consequence of (I8) and Lemma B, we deduce the following fact.

Proposition 4.9. Assume (A). Let p € S and let N be an equisingular submanifold containing p. If
Omax (D, N) < Q(p) — Qn then SRR is locally p-integrable around p.
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Notice that the hypothesis gmax(p, N) < Q(p) — Qn implies in particular that gmax < 00, and thus that
in a neighborhood of p the set S coincides with V.

In general, condition gmax < Q(p) — @n is not sharp, in the sense that there may be cases in which
the condition fails and S@®_g is locally integrable (see Example EB). Actually, the study of the generic
case (see the proof of Proposition BEI) shows that the integrability does not necessarily require a bound on
Omax- Nevertheless, when v is homogeneous, we have 9pax = Omin and thus Proposition B4 together with
Proposition B9 provides a characterization of integrability. Namely, if v is homogeneous, then Sg R is locally
integrable at p € N if and only if omin < Q(p) — Qn-

4.2.2 Conditions on usual orders

Consider a singular point p € S and an equisingular submanifold N C S containing p. Define

emin(p, N) = lin(l) min{ordgiﬂ(w()(z)) | g € NN B(p,e), T € F},
e—

where ordgiﬂ is the usual notion of order of the differential calculus. In coordinates z, the order ordgiﬂh of
a smooth function h is the biggest integer k such that all partial derivatives of h of order smaller than k are
zero. Equivalently, it is the biggest integer such that locally h(z) = O(|x|¥). Obviously,

emin(p; N) < Qmin(p7 N)

Proposition 4.10. Assume (A). Let p € S and let N be an equisingular submanifold of codimension n—k >

1. If emin(p, N) > n —k, then %:LR is not locally p-integrable around p.

Proof. The proof is similar to the one of Proposition B4, replacing ord, by ordgiﬂr and (I3) by (). O

Corollary 4.11. Assume (A). If S contains a submanifold of codimension 1, then SR g is not a Radon
measure.

Proof. By assumption (A), S is stratified by equisingular submanifolds. Therefore there exists an equisingular
submanifold N C S of codimension one. Let p € N. Take a coordinate system (y1, ..., yn—1,2) that allows to
identify N with {z = 0}. For every Z € F, since w(Xz)(®,(y, 2)) = 0, it results from Malgrange Preparation
Theorem that there exists C' > 0 such that

|w(X2)(@p(y, 2))| < Clzl,
for every y in a neighborhood of 0, and thus emin(p, N) > 1 =n — (n — 1). Proposition ECI0 applies. O

A sufficient condition of integrability similar to Proposition B9 can also be derived.

5 Hausdorff measures on submanifolds

Thanks to the analysis in Section B33, under assumption (A) the study of the singular part volyis reduces
to the study of the restriction of this measure to every equisingular stratum S; C S. Since volgis,= 0 or
+o0 if dimpy S; # dimy M, we are actually led to study SUm# Ny for an equisingular submanifold N. This
is the object of this section.

We first describe the algebraic structure of an equisingular manifold N, and then give in Theorem B=3
a complete description of S4™# Ny Finally we give an estimate of the Radon-Nikodym derivative of
Sdimm N\ with respect to a smooth volume on N.
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5.1 Algebraic structure associated with equisingular submanifolds

Recall that the metric tangent cone to (M, d) at any point p exists and it is isometric to (7, M, c?p), where
Ep denotes the sub-Riemannian distance associated with a nilpotent approximation at p (see [B]).

The following proposition shows the relevance of equisingular submanifolds as particular subsets of (M, d)
for which a metric tangent cone exists. Such metric space is isometrically embedded in a metric tangent
cone to the whole M at the point.

Proposition 5.1. Let N C M be an equisingular submanifold of M of dimension k and K C N be a compact
set. The following properties hold.

(i) There exists a metric tangent cone to (N, d|n) at every p € N and it is isometric to (T, N, C/l\p|TpN)~
(ii) For every p € N, the graded vector space

r(p)
vy (D) := @(D, N T,N)/(D} ' NT,N)
i=1

is a nilpotent Lie algebra whose associated Lie group Grg(D) is diffeomorphic to T,N.

(iii) Denote by Ep the unit ball for c/l\p. The function p — diam 5 (TL,N N §p) is continuous on N and

——0; (19)

sup
e—0t

1 ~
—diam(N N B(p,€)) — diam ;5 (T, N N By,)
peEK P

€

(iv) Assume N is oriented and let p be a smooth volume on N associated with a k-form w € /\k N. Then
w induces canonically a left-invariant k-form w? on Grg(D) and a corresponding smooth volume [iP.

Moreover, the function p — pP(T,N N Ep) s continuous on N, and

(NN B(p,e) — @(T,N N B,)| — 0. (20)

sup
e—0t

peEK

1
QN K

Remark 5.2. When N is an open submanifold of M, assuming N equisingular is equivalent to saying that
N contains only regular points. In that case, most of Proposition B is well-known: point (i) follows by the
fact that the nilpotent approximation is a metric tangent cone; point (ii) says that the tangent cone shares
a group structure; point (iii) is trivial since diam Jp(gp) = 2 and diam(B(p,€)) = 2¢ for small ¢; and the

~

continuity of p — ”(B,) in (iv) has been remarked in [@]. Only the uniform convergence (E0) is new in this
case.

Proof. Note first that since the result is of local nature, it is sufficient that we prove it on a small neighborhood
UNN of a point py € N. It results from Lemma B33 that, for every p in a such a neighborhood, there exists
a coordinate system ¢, : U, = R" on a neighborhood U, C M of p, such that ¢, are privileged coordinates
at p, p — p is smooth on U NN, and N is rectified in coordinates ¢,, that is ¢,(N NUp,) C {z € R" |
Tht1 =+ = &y, = 0}

Proof of (i) and (ii). Coordinates ¢, allow to identify (T,,M,c/l\p) with (R”,gp). From [B, Theorem 7.32]
we have the following estimate, which is instrumental in the proof below. There exists two positive constants

~ o~

€p, Cp and an integer r such that, if z,y € R™ satisfy M, (z,y) := max(d,(0,z),d,(0,y)) < €, then

— CpMy(z, y)d(py (@), 05 ()" < dley, M (@), 051 () — dpl@,y) < CpMy(@,y)dy(z,y) " (21)

Moreover, as noticed in [B0, Sect. 2.2.2], since N is equisingular the functions p — ¢, and p — C, are
continuous on N and r does not depend on p € N (r is the maximum of the weights w1 (p), ..., w,(p)).
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Now, using ¢, we identify locally M with T, M ~ R" and N with T, N ~ R* x {0}. Therefore, whenever

q1,q2 € U, N N we have
dy( 0y (@), 0 H(a2) = dylr,n (9, (1), 0, (02)),

and obviously d(q1,92) = d|n(q1,¢2). Hence (E0) holds when we restrict d to N and dtoT, »IN. This allows
to conclude [E3, Proposition 8.12] that a metric tangent cone to (N,d|y) at p exists and it is isometric
to (I,N,dp|r,n). The algebraic structure of ge) (D) and the fact that Gri,v (D) is diffeomorphic to R are
obtained in exactly the same way as at regular point, see [E3, Sect. 4.4]. Thus (i) and (ii) are proved.

Proof of (iii). Let w;(p) be the weights at p labeled according to the coordinates ¢,. Note that the
dilations &, : z — (s“1®gy, ..., 5Pz} s > 0, do not depend on p € N as N is equisingular. Thus
the homogeneity of d, with respect to ds and estimate () imply that the function (p,z,y) — dp(z,y) is
continuous on NV x R™ x R". As a consequence,

diam 7 (T,N 1 B,) = sup {dy(z,) | 2,y € R¥, d,(0,2) and ,(0,9) <1}

is an upper semi-continuous function of p. Let us prove that is also lower semi-continuous. Fix p € N and
let (z,y) € R¥ x R* such that diam ; (T,N N B,) = dy(z,y). For ¢ € N we set
P

P(Oa y)) .
Q(Ovy)

By construction we have c?q((), Sa(g)) and c?q((), da(q)y) < 1, hence

a(g) = min <c/l\p(0,x)

(0, )

NS

IS

diam g (T,N 1 By) = dy(ba(q)2, 6a(q)y) = a)dy(,y)-
When g — p, the continuity of g — gq(z, y) implies that a(q) — 1 and c?q(:s, y) — Ep(sc, y). As a result,

lim inf diam i
q—p a

(T,N 0 By) > dy(w,y) = diam ; (T,N N By),

that is, the function p — diam EP(TPN N B,) is lower semi-continuous and then continuous.

To prove ([9), we write
diam(N N B(p, €)) = sup {d(g;, " (2),0, (1) | 2,y € p (B(p,e)) NR*}.

From the continuity of the constants in (EX) we deduce the existence of a constant C' > 0 and a function
p:R—=R, p(e) = 0 as e — 0, which satisfy the following property: for every p € K,

By (0,¢(1— p())) € @y (B(p,€)) € By (0,e(1+ p(e))), (22)
and, if z,y belong to By (0,e(1+ p(e))), then
(e, (@), 05 (1) = dp(,y)| < Cle(1+ pe)) 7.
As a consequence, the diameter of N N B(p, €) satisfies
diam 7 (TpN N BdAp(O7 e(1— ,0(6)))) — C(e(1+ p(e)) " < diam(N N B(p, e))
< diam 5 (T,N 0 Bg (0,e(1+ p(€))) + C(e(1+ p(€))) /",
for every p € K. From the homogeneity of c?p,

diam i (TpN N BJP (0,e(1 + p(e)))) = ¢(1 + p(e)) diam i (TpN N Ep) ,
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and we obtain () from the inequalities above. Thus point (iii) is proved.

Proof of (iv). By (ii) there exists a canonical isomorphism ¢ between /\k(T;N) and /\k(gtéV(D)*) (see
the construction in |23, Section 10.5]). Let o(w,) be the image under such isomorphism of the value w, of
w at p. Then @w? is defined as the left-invariant k-form on Grév (D) which coincides with o(w,) at the origin.

The next step is to show that the function p — (T, N N Ep) is continuous on N. In coordinates ¢, we
identify T, N and Grév (D) with R* x {0} € R™. Through this identification, o(w,) coincides with w, and
may be written as @, (0y,, ..., 0z, )(dz1 A--- Adzy),. As a consequence

&P = @p(Onys -y Op)dxy A~ Adry  and i = @, (0y,, ..., 00, )-LF,

where 2% is the Lebesgue measure on RE, N
Continuity of p — P(T,N N B,) on N reduces to continuity of p — £*(T,N N B,) on N. As for the

proof of the continuity of p + diam 5 (T, N N Ep), the crucial point is the homogeneity of d,. Fix p € N
and define the functions a, 5 : N — R as follows. For ¢ € N,

alg) = max{dy(0,z) | = € R*, d,(0,2) =1},  Bg) = min{dy(0,2) | = € R*, d,(0,z) =1}.

The continuity of ¢ — Jq implies that o and 8 are continuous. Moreover, by homogeneity of the distances
dg, we have 0g(q) B, N R Cc B, NR* C Sa(q)Bg N R*. Recall that, for z € R* §,z = (5“1 Py, ..., s P)gy)
and that Qn = Zle w;(q) for every g € N (see remark E2). Hence

1
a(q)@w

1

Z*(B, NRF) < £¥(B, NR¥) <
(P )— (q >_ﬁ(q)QN

Z*(B, NR").

Since o and B are continuous and converge to 1 as ¢ — p, ﬁk(éq NRF) converges to fk(gp NRF) as ¢ — p.
This proves the continuity of p — £*(T,N N B,) and so the one of p — P(T,N N By).

It remains to prove (B0). Let us write the measure p in coordinates oy,
w(N N B(p,e)) = / 0p, @ (0py sy Oy ) (@) dy A -+ Ndaxy.
#p(NNB(pye))

Using (22) and the smoothness of the function (p,z) — ¢,,@(0s,,...,04,)(x), we obtain the following
inequalities,

/ (wp(ﬁwl, coeyOg) — p(e)) dxi AN+ ANdxp, < p(N N B(p,e))
T,NNBy (0.e(1-p(6)))

< / (wp(am,...,amk)er(e)) dri N+ ANdxg.
Tp NNBg (0,€(1+p(e)))
The conclusion follows from
R ~ 1 1
AP(T,NNB,) = ECTNNP(TPN N ng(o,e)) = an Wp(Opyy .-y O )dzy Ao - Adxg.  (23)

T,NNB; (0.€)

O

5.2 Hausdorff volume of equisingular submanifolds

Recall that vol}y = S&m# N (see Section E7T).

Theorem 5.3. Let N C M be an oriented equisingular submanifold and let p be a smooth volume on N.
Then
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1. dimg N = QN and volg = S]%N;
2. volg is a Radon measure on N, i.e, VOIZ(K) < 0o for every compact set K C N;

3. volg < poand p <K VOI%;

vol¥ (NNB(p,e))

(NAB(pe))  Whose

4. the Radon-Nikodym derivative of Volg with respect to p is the density lime_,
value s

N diam~ (T,N N B,)@~
voly (N N B(p,€)) _ PP YpeN. (24)
e—0 (NN B(p,e)) aP(T,N N By)

Remark 5.4. When M is equiregular and connected, applying Theorem B3 to N = M we deduce Theorem K.
Remark 5.5. Point 4 together with points (iii) and (iv) of Proposition B shows that the Radon-Nikodym

dvolg
dp

Before starting the proof of the theorem, we need to establish the following simple lemma.

derivative (¢) is continuous on N.

Lemma 5.6. Let N and p be as in Theorem B23. Let p € N. Assume there exists positive constants €y and
Wy > p— such that, for every e < ey and every point ¢ € N N B(p, €y), there holds

p— diam(N N B(q, €))?Y < u(N N B(g,€)) < puy diam(N N B(g, €))9~. (25)

Then, for every e < €,
NNB NNB
M( (pa 6)) < S]%N (B(p, 6)) < :U’( (p7 6)) ) (26)
M+ H—
Proof. Let |J, B(q;,7;) be a covering of N N B(p, ) with balls centered at points in N of radius smaller than
d < €. If § is small enough, every ¢; belongs to N N B(p, ¢p) and, using (E3), there holds

(N N B(p,e)) < ZM(N N B(qi,ri)) < pr Zdiam(Nﬂ B(qi, i)™,

Hence, we have S](\Q,N (B(p,€)) > #(Nfliﬁ(?’f)).

For the other inequality, let > 0, 0 < § < € and let | J; B(g;, ;) be a covering of N N B(p, €) such that
¢ € NN B(p,e), r; <0 and Y, u(N N B(gi, i) < (N N B(p,€)) +n. Such a covering exists due to the
Vitali covering lemma. Using as above (E3), we obtain

PN O B(p.€)) + 7> 37 p(N 1 B(gior)) > a3 diam(N 0 Bgi. ).

We then have ng,ff;(B(p, €)) < w + ﬁ Letting  and d tend to 0, we get the conclusion. O

Proof of Theorem B3. Let p € N and fix § > 0. Set

+46

07 (T,N N B
i (5) = LN O By)
diamg (T,N N Byp)

Let K be the intersection of IV with the closed ball of center p and radius §. By Proposition BT, the functions
q — diamyz (T,N N B,) and q — (9(T,N N B,) are uniformly continuous on K and convergences (I9) and

(20) are uniform on K. Therefore there exists g > 0 (depending only on §) such that ey < § and, for every
€ < €g, for every ¢ € N N B(p, €), there holds

p— () diam(B(g,€) N N)?¥ < pu(B(g,€) N N) < g (6) diam(B(g, €) N N)I™.
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Applying Lemma B8 we deduce that for every € < ¢g there holds

SR (B(p,e))
po(8) < SN 20T < (6). 27
Therefore we infer that S?IN is a Radon measure and, using a covering argument, that S~ and p are
mutually absolutely continuous, i.e., property 3. As § goes to 0 we obtain that

S (B(p,e))  diamg (T,N N B,) (8)
el0 u(B(p,e) N N) ar(T,N N Ep) .

Since the right-hand side of (ER) is positive and continuous on N, for € > 0 small enough,
0 <SP (NN B(p,e) < oo,

whence dimy N = Qy and volfy = S]%N . As a consequence, (E8) gives (). Finally, we apply the differen-

tiation theorem for Radon measures |28, Theorem 4.7] (with X = N, p1 = g and pg = vol}}) to obtain that
vol¥ (NNB(p,e))

LNAB () coincides with the Radon-Nikodym derivative of VOI% with respect to p. O

Hme—)O

5.3 Weak equivalent of ¢ — (T, N N Eq)

We end this section by stating a result which gives a weak equivalent of the function ¢ — %(T,N N Eq)
appearing in Theorem BZ3. This is instrumental to determine whether the Radon-Nikodym derivative of
volg with respect to p is integrable or not. This result stems from the uniform Ball-Box Theorem, [[8] and
[E0, Theorem 4.7]. A related formula computing explicitly Popp’s measure in equiregular manifolds has been
given in [B].

Proposition 5.7. Let M be an oriented manifold with a volume form w, and N C M be an oriented
submanifold with a volume form w. We denote by u the associated smooth volume on N and we set k =
dim N. Finally, let X4,..., X, be a generating family for a sub-Riemannian structure on M.
If N is equisingular, then for any compact subset K C M there exists a constant C' > 0 such that, for
everyqg € NN K, R
f(TyN N By) =c v(q),

where 7(q) = max{| (w A dXp,,, A+ A dXIn)q (X1, (q),-..,X1,(q)|}, the mazimum being taken among all
n-tuples (Xp,,..., Xr,) in argmax{w,(Xr; (), ..., X1, (¢)) | 21| = Qg)}-

Remark 5.8. As a particular case of the proposition, if NV is an open equisingular submanifold of M and
w=w,

ﬂq(ﬁq) =c max{|wq(XI{,...,X[;L)| | Z |Il| = Q(q)}, for every g e NN K.

Remark 5.9. Proposition B2, together with Theorem B33, allows to give an estimate of the Radon-Nikodym
derivative of Volg with respect to . Indeed, there exists a constant C' > 0 such that, for every ¢ € K N N,

dvolly 1
dp (@) =c v(q)

Proof. Let ¢ be a point in NNK, and (X7r,, ..., X1, ) be an-tuple of brackets in arg max{wq(XI{ (@), X1 (q)) |
> 1l = Q(q)} such that

7(q) = (@ AdXp,, Ao ANdX7,) (X1,(q),- ., X1, (9))-

(29)
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Let x be the local coordinates defined by the diffeomorphism
x> exp(z, Xy, ) o - oexp(r1Xy,)(q),

and denote by Box% (g, €) the set of points whose coordinates satisfy |z;| < el’il, i = 1,...,n. From Propo-
sition B (see Appendix), for € small enough,

Box%((q7 e/C) C B(q,¢€) C Bong(q,C'e),

where the positive constant C' depends only on w, K, and X, ..., X,,.
Let us write 7(q) as a limit,

_ . 1
v(q) = llf:lj(l)lp 2@ /Boxgc(q’e)(w NdXp N NdX7,)(Opys -, O, )day .. diy,.

The inclusions above imply

/ wAdXp,, A NdXT,. (30)
B(q,€)

On the other hand, since N is equisingular, we can construct an adapted basis as in Lemma E=3: choose
vector fields Y1,...,Y} defined in a neighborhood of ¢ such that Y; is tangent to N, Y; € span{Xj, |
|I;| < £(Y;)} and Y3,...,Y} is a basis adapted to the flag () restricted to N at ¢. Note that the vectors
X1 (@), .-, X1,(q) in T,M are transverse to T,N since 7(g) > 0. Then, up to a rescaling of Y1,...,Y%,
we can assume that the n-tuple Y = (Y1,..., Yy, Xp,,,,..., Xy, ) satisfies condition (B3) of Proposition BEl.
Denote by y the coordinates defined by

y — exp(ynXy,) o oexp(yr+1X1,,,) o exp(yrYr) o oexp(y1Y1)(q),

and by B0><§,(q7 €) the set of points whose coordinates satisfy |y;| < ellil i =1,...,n. From Proposition B,
for € small enough,
Box3,)(q,€/C) C B(g,€) C Box3(g, Ce). (31)

Coordinates y are a particular kind of coordinates ¢, constructed in Lemma EZ3. In particular, the subman-
ifold N lies in the set {yx+1 = -+ = y» = 0} and, with a little abuse of notations,

Box3(q, €/C) N {yp1 ="+ =y =0} C B(q,€) NN C Box3,(q,C€) N {yrs1 =+ = yn = 0}. (32)

As in the proof of Proposition B, we use coordinates y to identify locally M with T,M and N with
T,N. In particular, inclusions (B2) imply

Box3,(¢,¢/C) NR* € TyN N By (0,¢) € Box3,(g, Ce) NRE.
Using this inclusion in (E3), we get, up to increasing C,

N 5 1
pi(T,NNB,;) =c prore w@q(Oyy s, 0y )dyr . .. dyi
€ Box3,(g,€)NRF

=c wq(ayl,...,ayk).
Since 9y, (q) = Yi(q), i = 1,...,k, and since Xy, (q),..., Xy, (q) are transverse to T,N, we have

w‘l(ayl""7ayk) = wq(Yl(Q)v"'vyk(Q>)
= (’(D A dXIk-H ARERNAN dXIn)q(Yl(q)v ce '1Yk(q)7XIk+1(q)7 s vXIn(q))‘
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The latter term can be written as a limit,

(w A dXIk+1 ARERNA dXIn)q(Yl(q)’ v aYk(q)7XIk+1 (q)’ cee ’XIn (q))

= lim sup

—— ©AdXp . A NAX7 ) (Byys . By )dys - . dyn
e—0 (2€)Q(q) ~/Box§}(q,e)( Tt Irl)( v Y ) u Y

. 1
=C hril:(l)lp(Q@Q(q)/;(q’e)w/\dXI}H'l /\/\dX]n,

where we have used (B0). The conclusion then follows from (BI). O

6 Applications

In this section we use the ideas of Section B to characterize local integrability of % in the generic smooth
case. As it turns out, this property depends on the placement of the dimension of the manifold with respect
to dimensions of free Lie algebras and on the Hausdorff dimension of certain equisingular submanifolds. We
end by listing a number of examples illustrating several possible cases.

6.1 Generic smooth case

Let M be a n-dimensional smooth oriented manifold and let m € N. We consider the set U,, of sub-
Riemannian structures (U, (-,-), f) of rank m on M, i.e. such that rank U = m. Using local generating
families we endow this set with the C*°*-Whitney topology and we say that a sub-Riemannian structure of
rank m is generic if it belongs to some residual subset of U,,. Thus the analysis of the singular set of
generic m-tuples of vector fields given in [EZ8] provides the following description of the singular set of generic
sub-Riemannian structures.

Introduce first some notations. Let £ be the free Lie algebra with m generators. We use L£° to denote
the subspace generated by elements of £ of length not greater than s, and ns to denote the dimension of £°.
Let r be the integer such that

Np_1 <N < N

Then the singular set S of a generic sub-Riemannian structure admits a locally finite stratification S = U;enS;
by equisingular submanifolds and

mincodimS; = n,. —n + 1,

ieN
in particular, S is a p-negligible set (for every smooth volume p on M). Moreover, at regular points the
growth vector is the maximal one, i.e., (fi1,...,Mp—_1,N).

Proposition 6.1. Let M be a n-dimensional smooth oriented manifold, i a smooth volume on M, and let
(U, (-,4), ) be a generic sub-Riemannian structure of rank m on M.
(i) If n = n, then dsj# is not locally integrable on M.
(ii) If n < 7, then dsj% is locally integrable near every point of strata S; of minimal codimension, i.e.,
such that codimS; = n, —n + 1.

Proof. The case n = n, is a direct consequence of Corollary . Then, we consider the case n < n,.. Let N
be a stratum of minimal codimension, i.e., codim N =7, —n+1>2. Weset k =dim N =n— (i, —n+1).
Let w be a non degenerate n-form such that g = [w. The construction in [[2] allows to cha