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An Integrated Model of Speech to Arm
Gestures Mapping in Human-Robot

Interaction
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∗ Cognitive Robotics Lab/UEI, ENSTA-ParisTech, Paris, France
(e-mail:amir.aly@ensta-paristech.fr and

adriana.tapus@ensta-paristech.fr).

Abstract: In multimodal human-robot interaction (HRI), the process of communication can
be established through verbal, non-verbal, and/or para-verbal cues. The linguistic literature
shows that para-verbal and non-verbal communications are naturally synchronized, however
the natural mechnisam of this synchronisation is still largely unexplored. This research focuses
on the relation between non-verbal and para-verbal communication by mapping prosody cues
to the corresponding metaphoric arm gestures. Our approach for synthesizing arm gestures
uses the coupled hidden Markov models (CHMM), which could be seen as a collection of
HMM characterizing the segmented prosodic characteristics’ stream and the segmented rotation
characteristics’ streams of the two arms articulations. Experimental results with Nao robot are
reported.

Keywords: Pitch contour, Voice intensity, Euler rotations, Coupled Hidden Markov Models
(CHMM), Arm getures synthesis

1. INTRODUCTION

Developing social intelligent robots capable of behaving
naturally and of producing appropriate social behaviors
and responses to humans in different contexts is a difficult
task. The work described in this research presents a new
methodology that allows the robot to automatically adapt
its arm gestural behavior to the user’s profile (e.g. the user
prosodic patterns) and therefore to produce a personaliz-
able interaction. This work is based on some findings in
the linguistic literature that show that arm movements
support the verbal stream. Moreover, in human-human
communication, prosody expresses the rhythm and intona-
tion of speech and reflects various features of the speakers.
Thus, these two communication modalities are strongly
linked together and synchronized.

Humans use gestures and postures as a communicative
act. McNeil (1992), defined a gesture as a movement of the
body synchronized with the flow of speech. During human-
human interaction, gestures and speech are simultaneously
used to express not only verbal information, but also im-
portant communicative non-verbal cues that enrich, com-
plement, and clarify the conversation, such as emotional
internal states, facial expressions, head and/or hands mo-
tion. The mechanism of the human natural alignment of
the verbal and non-verbal characteristic patterns based
on the work described in Eyereisen and Lannoy (1991),
shows a direct relationship between prosody features and
gestures/postures, and constitutes an inspiration for our
work.
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Recently, there has been a growth of interest in socially
intelligent robotic technologies featuring flexible and cus-
tomizable behaviors. Based on the literature in linguistics
and psychology that suggests that prosody and gestural
kinematics are synchronous and therefore strongly linked
together, we posit that is important to have a robot
behavior that integrates this element. Therefore, in this
research, we discuss mapping between speech prosody and
arm gestures for human-robot social interaction. The ges-
ture/prosody modeled patterns are aligned separately as
a parallel multi-stream HMM model and the mapping be-
tween speech and arm gestures is based on Coupled Hidden
Markov Models (CHMM). A specific gestural behavior is
estimated according to the incoming voice signal’s prosody
of the human interacting with the robot. This permits the
robot to adapt its behavior to the user’s profile (e.g. here
the user prosodic patterns) and therefore to produce a
personalizable interaction. The current work is a natural
continuation of our previous research that synchronizes
head gestures and prosody(Aly and Tapus (2011)).

Many researches in the literature that try to investigate
the relationship between sound signal and arm gestures
are designed for 3D artifical agents. Modler (1998), tried to
map hand gestures to musical parameters in an interactive
music performance and virtual reality environment, while
Kipp et al. (2007), focused on synthesizing arm gestures
with a 3D virtual agent. An interesting coupling between
virtual agents and humanoid robots is achieved by Salem
et al. (2010), in which an articulated communicator engine
is developed to allow virtual agents to flexibly realize a
multi-modal behavior which is presented on the robot
ASIMO as an interaction mediator between the human
and the robot.



Our work presents a framework for arm gestures and
prosody correlation for an automatic robot gesture pro-
duction from interacting human user speech. The system
is validated with the Nao robot in order to find out how
naturalistic will be the driven arm gestures from a voice
test signal with respect to an interacting human speaker.

The rest of the paper is organized as following: section
2 illustrates the calculation of the prosody characterizing
pitch curve; section 3 describes speech and gesture tem-
poral segmentation; section 4 presents the speech to arm
gestures coupling by using CHMM; section 5 resumes the
results obtained; and finally, section 6 concludes the paper.

2. PROSODIC CURVES CALCULATION

Human’s voice signal can convey many messages and
meanings, which should be understood appropriately by
the robot in order to generate gestures properly. In this
research we characterize the voice signal in terms of its
pitch and intensity curves. The intensity curve of the
voice signal could be calculated directly by calculating the
square value of each signal data element normalized by the
sampling frequency. Meanwhile, the calculation of pitch
contour has some complexity. Talkin (1995), defined the
pitch as the auditory percept of tone, which is not directly
measurable from a signal. Moreover, it is a nonlinear
function of the signal’s spectral and temporal energy
distribution. Instead, another vocal characteristic (the
fundamental frequency F0) is measured as it correlates
well with the perceived pitch.

Voice processing systems that estimate the fundamental
frequency F0 often have three common processes: (1)
Signal conditioning, (2) Candidate periods estimation, and
(3) Post processing. Signal conditioning process tries to
remove interfering signal components such as any extra-
neous noise by using low pass filtering which removes the
apparent loss of periodicity in the voiced signal spectrum
at higher frequencies, and by using high pass filtering when
there are DC or very low frequency components in the
signal. Another important conditioning step is using the
auto-regressive inverse filtering to flatten the vocal signal
spectrum which is helpful in detecting the glottal epochs
(moments of significant glottal excitation), which amelio-
rates in turn the detection of the voiced and unvoiced
spectrums of the signal, so that helps in a better calcula-
tion for the fundamental frequency F0. Candidate periods
estimation step tries to estimate the candidate voiced
periods from which the fundamental frequency F0 could be
calculated. A major problem is that the glottal excitation
periods are varying through the signal. Many algorithms
in the literature tried to deal with this problem, e.g., Auto-
correlation, Cepstrum, Cross Correlation, and Normalized
Cross Correlation (NCC) (Sondhi (1968)). However, the
NCC proved its superiority in terms of measuring the
fast variations of the dynamic voice signal. Talkin (1995),
developed the traditional (NCC) method in order to es-
timate reliably the voicing periods and the fundamental
frequency F0 by considering all candidates simultaneously
in a large temporal context. This methodology uses two
pass normalized cross correlation (NCC) calculation for
searching the fundamental frequency F0 which reduces the
overall computation load with respect to the traditional

Fig. 1. Pitch Tracking

(NCC) method. Post processing step uses median filtering
in order to refine the calculated fundamental frequency F0
and ignore isolated outliers (see Figure 1).

3. SPEECH AND ARM GESTURES SEGMENTATION

The mapping between speech and arm gestures is done
by using the Coupled Hidden Markov Models (CHMM),
which could be seen as a collection of HMM for the
audio and video streams. The advantage of this model
over a lot of other topologies is its ability to capture the
dual influences of each stream on the other one across
time (see Figure 3). In the beginning, speech and arm
gestures streams are aligned separately as parallel multi-
stream HMM models. The mapping between speech and
arm gestures is performed in 2 main steps: (1) the first is
modeling the gesture sequences and the associated voice
prosody sequence (in terms of their characteristic vectors)
into separate HMM; (2) then after training both models,
a correlation between the HMM models is necessary so as
to estimate a final arm gesture states sequences given a
speech test signal. The HMM structure used in analyzing
gestures (and similarly voice prosody) is indicated in
Figure 2. It is composed of N parallel states, where each
one represents a gesture composed of M observations. The
goal of the transition between states SEND to SSTART is
to continue the transition between states from 1 to N (e.g.,
after performing gesture state 1, the model transfers from
the transient end state to the start state to perform any
gesture state from 2 to N in a sequential way and so on).

In order to be able to model gestures/prosody, it is
necessary to make a temporal segmentation of the video
content to detect the M number of observations in each
state and the total number of states N .



Fig. 2. HMM structure for gesture and prosody analysis

Table 1. Voice Signal Segmentation Labels

Trajectory Class Trajectory State

1 pitch ↑ & intensity ↑
2 pitch ↑ & intensity ↓
3 pitch ↓ & intensity ↑
4 pitch ↓ & intensity ↓
5 Unvoiced segment

3.1 Speech Temporal Segmentation

Speech is segmented as syllables presented by the states
from 1 to N as indicated in Figure 2. The segmentation
is performed by intersecting the inflection points (zeros
crossing points of the rate of change of the curve) for
both the pitch and intensity curves, beside the points that
separate between the voiced and unvoiced segments of the
signal When comparing the two curves together, 5 different
trajectory states can result (see Table 1).

The goal is to code each segment of the signal with
its corresponding pitch-intensity trajectory class (e.g., a
voice signal segment coding could be: 5, 3, 4, 2, etc.). This
segmental coding is used as label for CHMM training.
The next step corresponds to segmenting the voice signal
with its corresponding trajectory labeling into syllables.
Arai and Greenberg (1997), defined the average duration
of a syllable as 200 ms and this duration can increase or
decrease according to the nature of the syllable as being
short or long. Practical tests proved that within a syllable
of duration varying from 180 ms to 220 ms, the average
number of trajectory classes in its corresponding pitch
and intensity curves is around 5. Therefore, given the
voice signal with its segments coded by the corresponding
pitch-intensity trajectory labels, each 5 segments of the
signal will create a syllable state (from 1 to N) and the

Table 2. Shoulder and Elbow Movements Seg-
mentation Labels

Trajectory State

Trajectory Class Shoulder Elbow

1 Pitch ↑ & Roll ↑ Yaw ↑ & Roll ↑
2 Pitch ↑ & Roll ↓ Yaw ↓ & Roll ↑
3 Pitch ↓ & Roll ↑ Yaw ↑ & Roll ↓
4 Pitch ↓ & Roll ↓ Yaw ↓ & Roll ↓
5 No Change No Change

corresponding 5 labels will be the observations M within
the syllable state.

3.2 Arms’ Gestures Temporal Segmentation

Arms’ gestures are characterized in terms of Euler angles of
the six articulations (Elbow, Shoulder, and Wrist) of the
two arms. Due to the mechanical limitations of the test
platform (Nao robot), Euler rotations of the articulations
are limited to be:

• Shoulder: Pitch and Roll
• Elbow: Yaw and Roll
• Wrist: Yaw

Roll, Pitch, and Yaw rotations’ data indicated in the
database (see the experimental section) are segmented
similarly to the voice signal by comparing the trajectories
of the relevant Euler curves of each articulation and giving
a label according to the behavior of these trajectories
together (see Table 2). However, for the wrist articulation,
we used the following rule: if the rate of change of the
specific trajectory of the yaw curve is increasing, it takes
label 1; if it is decreasing, it takes labels 2; or it takes label
3 for no change.

The articulations of the arms are modeled in terms of six
independent HMM presenting the mechanical rotations of
the two arms. Each state in the HMM presents a complete
performed gesture, which is presented by 4 labels of the
obtained trajectory classes of each articulation (Aly and
Tapus (2011)).

4. SPEECH TO ARM GESTURES COUPLING

A typical CHMM structure is shown in Figure 3, where the
circles present the discrete hidden nodes/states while the
rectangles present the observable continuous nodes/states,
which contain the observation sequences of voice and arm
gestures characteristics.

According to the sequential nature of gestures and speech,
the CHMM structure is of type lag-1 in which couple
(backbone) nodes at time t are conditioned on those at
time t−1 (Rabiner (1989); Rezek et al. (2000); Rezek and
Roberts (2000)). A CHMM model λC is defined by the
following parameters:

πC
0 (i) = P (qC1 = Si) (1)

aCi|j,k = P (qCt = Si|qaudiot−1 = Sj , q
video
t−1 = Sk) (2)

bCt (i) = P (OC
t |qCt = Si) (3)

where C ∈ {audio, video} denotes the audio and visual
channels respectively, and qCt is the state of the coupling



Fig. 3. Coupled Hidden Markov Model CHMM lag-1
Structure

node in the cth stream at time t (Nean et al. (2002); Liang
et al. (2002)).

The training of this model is based on the maximum
likelihood form of the expectation maximization (EM)
algorithm. Supposing there are 2 observable sequences
of the audio and video states O = {A1..N , B1..N} where
A1..N = {a1, · · · , aN} is the set of observable states in the
first audio sequence, and similarly B1..N = {b1, · · · , bN} is
the set of observable states in the second visual sequence,
and S = {X1..N , Y1..N} is the set of states of the couple
nodes at the first audio chain and the second visual
chain, respectively (Rezek et al. (2000); Rezek and Roberts
(2000)). The expectation maximization algorithm finds the
maximum likelihood estimates of the model parameters by
maximizing the following function:

f(λC) = P (X1)P (Y1)
T∏

t=1

P (At|Xt)P (Bt|Yt) (4)

P (Xt+1|Xt, Yt)P (Yt+1|Xt, Yt), 1 ≤ T ≤ N

where:

• P (X1) and P (Y1) are the prior probabilities of the
audio and video chains respectively

• P (At|Xt) and P (Bt|Yt) are the observation densities
of the audio and video chains respectively

• P (Xt+1|Xt, Yt) and P (Yt+1|Xt, Yt) are the couple
nodes transition probabilities in the audio and video
chains.

The training of the CHMM differs from the standard HMM
in the expectation step (E) while they are both identical
in the maximization step (M) which tries to maximize
equation 4 in terms of the expected parameters (Penny
and Roberts (1998)). The expectation step of the CHMM
is defined in terms of the forward and backward recursion.
For the forward recursion we define a variable for the audio
and video chains at t = 1:

αaudio
t=1 = P (A1|X1)P (X1) (5)

αvideo
t=1 = P (B1|Y1)P (Y1) (6)

Then the variable α is calculated incrementally at any
arbitrary moment t as follows:

αaudio
t+1 = P (At+1|Xt+1)

∫ ∫
αaudio
t αvideo

t

P (Xt+1|Xt, Yt)dXtdYt (7)

αvideo
t+1 = P (Bt+1|Yt+1)

∫ ∫
αaudio
t αvideo

t

P (Yt+1|Xt, Yt)dXtdYt (8)

Meanwhile, for the backwards direction there is no split
in the calculated recursions, which can be expressed as
follows:

βaudio,video
t+1 = P (ON

t+1|St) =∫ ∫
P (AN

t+1, B
N
t+1|Xt+1, Yt+1)

P (Xt+1, Yt+1|Xt, Yt)dXt+1dYt+1 (9)

After combining both forward and backwards recursion
parameters (see equations 7, 8, 9), an audio signal is tested
on the trained model, generating a synthesized equivalent
gesture that most likely fit the model. The generated
gesture sequence is determined when the change in the
likelihood is below a fixed threshold. Figure 4 summarizes
the entire process.

Fig. 4. The architecture of the robot arm gesture genera-
tion behavior



Fig. 5. Typical view of the database test avatar and the
Nao robot performing its own generated arm gestures

5. EXPERIMENTAL RESULTS

The database used in this research is the Stanford database
available online (Levine et al. (2010)), which is composed
of many avatar videos. The data is acquired from human
individuals using the PhaseSpace motion capture system
and processed with the MotionBuilder system, which pro-
vides an approximation of the Euler rotations of the arms’
joints.

The synthesized Euler angles of each articulation are
compared to the original Euler angles in terms of the
similarity between the trajectory classes (see Table 3).
However, during human-human interaction, the generated
arm gestures differ from one person to another in terms of
the direction and the amplitude of the performed gesture.
Therefore, the obtained scores of similarity between the
original and synthesized trajectories could be considered
as reasonable results (see Figure 5, 6, and 7) because
this research focuses on automatic robot arm gestures
generation based only on human user prosody.

Table 3. Comparison between the original to
synthesized gestures’ trajectory classes

Articulation Similarity Scores between
Trajectory Classes

Left Shoulder 47%
Left Elbow 55%
Left Wrist 57%

Right Shoulder 52%
Right Elbow 59%
Right Wrist 61%

A video of the speech-arms’ gestures mapping system with
Nao robot is available at: http://www.ensta-paristech.
fr/~tapus/HRIAA/media.html.

6. CONCLUSION

This research focuses on synthesizing robotic arm gestures
based on human user speech characteristics (e.g., pitch and
intensity of the signal). Our mapping system is based on
the Coupled Hidden Markov Models (CHMM) that try
to find a coupling joint between the audio and gesture
sequences. The obtained scores of similarity between the
trajectories of the synthesized and the original Euler angles
are in the range of 55%. Moreover, the synthesized gestures
are similar to the real gestures and therefore still relevant

Fig. 6. Original and Synthesized pitch curves of the left
shoulder articulation

Fig. 7. Original and Synthesized roll curves of the right
shoulder articulation

to the interaction context and capable of conveying a
similar message meaning to the message transmitted by
the original gestures.

Further, we will focus on combining head gestures, arm
gestures, and prosody all together. While this work aims
to generate metaphoric arm gestures based on voice tonal-
ity, other gesture categories (e.g., iconic gestures) could
not be generated by this methodology, which necessitates
a semantic analysis of the spoken language in order to
understand the conveyed meaning and to align it to the
performed gesture. In this way, the robot after a suffi-
cient training phase on coupled verbal-nonverbal behaviors
could generate similar iconic gestures in different interac-
tional situations.
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