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Abstract— Simulated radar observations of the sea surface dy-
namics as used in the MODENA project, are based on an original
methodology for sea states : the ”groupy” wave model (GWM).
Random wave fields can have very different modulations but
nearly identical spectra. Nevertheless, the response of a floating
object to waves depends strongly on the likelihood of large wave
encounters. Sea surface fluxes also depend on wave breaking and
air-flow separation, both being consequences of large-amplitude
events. So wave group structure is one key description to simulate
radar clutter under various environmental and instrumental
configurations. The GWM builds on random distributions of
wave groups and conditionally distributed breaking waves over
these groups. Each wave group travels across the simulated area,
and breaking waves appear dynamically on the wave crest at the
rear of a group, propagating and disappearing at the front of
this group. The generation of sea states follows a prescribed
sea wave directional spectrum, and any breaking wave statistical
distribution such as Λ(~c)d~c describing the total length of breaker
per unit area and time with phase speed between ~c and ~c + d~c.
Accordingly, the group density per surface unit can lead to very
different sea state structures, and the results will be discussed.

I. INTRODUCTION

Description of sea states rests on statistical distributions for
waves and breakings. Wind waves for example are described
by a spectrum associating to each sea wave vector an average
energy. These descriptions are associated to observations of
sea-states during almost 20 minutes[Longuet 84]. This obser-
vation period averages the modulations of the wave field.

Random wave fields can have very different modulations
but nearly identical spectra. Furthermore, the response of a
floating object to waves depends strongly on the likelihood of
large wave encounters. Sea surface fluxes also depend on wave
breaking and air-flow separation, both being consequences of
large-amplitude events.

If one takes the sinusoidal map as a primitive for the
simulation of waves, the energy will be homogeneously dis-
tributed over the simulation surface and we’ll have no explicit
way to control the different modulations occuring in a wave
field. Furthermore, to coherently distribute multiscale breaking
events over such a wave description may not be so easy.

So wave group structure is one key description to simulate
radar clutter under various environmental and instrumental
configurations. Following previous work on group-based sea
state simulations [Parenthoen 04], [LeGal 07], we propose an
alternative to sinusoidal maps named ”wave group maps”,

which does explicit the localisation of multiscale phenomena
observed in sea-states : wave groups and breakers.

The Groupy Wave Model (GWM) builds on random distri-
butions of wave groups and conditionally distributed breaking
waves over these groups. Each wave group travels across the
simulated area, and breaking waves appear dynamically on the
wave crest at the rear of a group, propagating and disappearing
at the front of this group.

The generation of sea states by the GWM can follow a
prescribed sea wave directional spectrum, and any breaking
wave statistical distribution such as Λ(~c)d~c describing the total
length of breaker per unit area and time with phase speed
between ~c and ~c + d~c. Accordingly, the group density per
surface unit can lead to very different sea state structures, and
the results will be discussed.

II. THE GROUPY WAVE MODEL (GWM)

We present here the groupy wave model (GWM) for sea
state simulation, based on a simple model for independant
dynamical wave groups, which are distributed into wave group
maps according to a prescribed directional spectrum.

A. Wave group model

Our wave group model is a reified Morlet wavelet, with its
mean wave vector ~k, its maximum amplitude a at its center
~x0 at t = 0, its phase θ0 at this center at t = 0, its pulsation
ω and its enveloppe extension %. The pulsation ω also follows
the open sea dispersion relationship :

ω2 = gk
(
1 + (k/km)2

)
(1)

where km =
√
ρwg/T ≈ 370rad.m−1.

Surface elevation [m] in the (~k, ~z) plane function of position [m] for a
group whith parameters k = 0.01 ∗ 2π radm−1, a = 1 m, % = 5 ∗ π/k
and θ such that the center ~xc is a crest position.

Fig. 1. Our primitive for the groupy wave model



Such a single group acts on sea surface elevation η(~x, t) as
following :

η(~x, t) = a·exp
(
−(~x− ~xc(t))2

2%2

)
·sin

(
~k.(~x− ~x0) + θ0 − ωt

)
(2)

with its center ~xc moving at group speed in open sea from ~x0

at t = 0 :

~xc = ~x0 + t · ~c
2

(3)

where ~c = ω~k/k2, is its phase speed. Waves are travelling at
phase speed from the backward to the forward of the group.

Finally, the enveloppe extension % of the group is chosen
greater than the wavelength 2π/k and is proportional to the
number of waves nwaves ≥ 2 actually expressed by the group :

% = nwaves
π

k
(4)

Figure 1 illustrates the shape of such a group on the surface.
We make the assumption that sea surface can be described

by the linear superposition of such independant wave groups :
when several groups act, the resulting elevation is the sum of
elevations due to each group.

B. Wave group maps

We organize groups with the same wave vector ~k into what
we call a wave group map. Our map for a given wave vector ~k
at a given time t, is the sum of a Morlet wavelet family, each
wavelet has its own phase θn uniformly distributed in [0, 2π[,
its own amplitude an following a Rayleigh law with parameter
σ, and its own position center ~xn uniformly distributed on a
surface S. The number N of wavelets on a given surface S
follows a Poisson law with parameter λ. The surface elevation
η due to this map at this fixed time is then :

η(~x) =
N∑
n=1

hn(~x, an, ~xn, θn) (5)

where hn is the contribution of the nth group :

hn(~x, an, ~xn, θn, %n) = an·exp
(
−(~x− ~xn)2

2%2
n

)
sin
(
~k.~x+ θn

)
(6)

with a constant enveloppe extension %n = %(~k) = πnwaves(k)
k ,

that specifies the number of waves per group for this map.
We suppose that random variables hn follow the same law

and are independant as function of independant variables :
– amplitude : an ∼ Rayleigh(σ)
– position : ~xn ∼ UniformS

– phase : θn ∼ Uniform[0,2π[

Under these assumptions, to build a sea spectrum as a
superposition of such maps rests on the simple summation
of the spectra due to each map involved.

(1)

(2)
Two single wave group maps with the same wave number k = 0.2 radm−1

and the same enveloppe extention % = 3 ∗ π/k. The surface S of the red
squares (at level z = 0) is such that λ1/S = 1 (up) while λ2/S = 4
(down). The average steepnesses at the center of the groups of these maps
are σ1k = π.0.06 and σ2k = π.0.03. Since λ1σ2

1 = λ2σ2
2 , both blue

sea-surfaces (500m× 500m) present the same map spectrum.

Fig. 2. Maps with different wave structures but identical spectra

C. Wave group map spectrum

A group map on a surface S is fully determined by its wave
vector ~k0, its Poisson parameter λ, its Rayleigh parameter σ
and its enveloppe extention %.

Lets start the computation of such a map spectrum by the
two point caracteristical function :

Φ(u, v) = 〈exp ((iuη(~r)− ivη(~r + ~x))〉 (7)

where 〈.〉 is the mean over the whole processus. For our map,
this can be rewriten as :

Φ(u, v) = exp (λ 〈exp(iuη(~r)− ivη(~r + ~x)〉 − 1) (8)

and the mean is over ~r, an, ~xn, θn.



The autocorrelation function ρ0 obeys :

ρ0(~x) =
∂2Φ(u, v)
∂u∂v

|u,v=0 (9)

Then we obtain the energy spectral density Ψ for this group
map as the Fourier Transform (FT) of the autocorrelation
function :

Ψ(~k) =
∫
ρ0(~x)e−i~k.~x d~x

= 2π2λσ2%4

S

(
e−2π2%2‖~k− ~k0‖22 − e−2π2%2‖~k+ ~k0‖22

)2

(10)
where ~k0 is the wave vector of the map, λ/S is the mean
number of groups per surface unit (or the group density), σ
is the mean amplitude at the center of these groups and % is
their enveloppe extention.

Equation (10) shows that for a given wave number ~k0 and
group extention %, any product λ · σ2 = Cte for the map
parameters gives the same spectrum for those maps. If the
number of wave group per surface unit is low (λ/S < 1), the
group amplitude is high and the energy distribution could be
very heterogeneous, while if the group density is high (λ/S >
4), the group amplitude is moderated and the energy is more
homogeneously distributed over the surface as it is illustrated
by figure 2.

D. Directional spectrum simulation by the GWM

We aim at simulating a prescribed directional spectrum
Ψtarget by our wave group model with wave numbers range
from kmin to kmax, and directions range from −π/2 to π/2,
as for example a Donelan and Pierson spectrum, an Elfouhaily
spectrum or any experimental spectrum. Naturally, we use our
wave group maps. To do so, we not only need to discretize
wave numbers and directions, but we also need to choose for
each wave vector a density of groups per surface unit λ(~k)/S
and a enveloppe extention %(~k) depending on hypothesis about
the heterogeneity of energy distribution in function of scale.

For example, the enveloppe extention could be :

%(~k) =
πnwaves

k
(11)

with a constant nwaves > 3 ; the corresponding assumption is
an invariant of scale for group shapes. And the Poisson law
parameters could be :

λ(~k)/S =
%2(~k)dgroups

S
(12)

with a constant dgroups > 0 ; corresponding to an invariant of
scale for group density per surface unit.

The given spectrum can approximativly be covered by wave
group maps so that :

∀~k, Ψtarget(~k) ≈
∑
j

Ψ(~k)~kj ,λ(~kj),σj(~kj),%(~kj)
(13)

where Ψ(~k)~kj ,λ(~kj),σj(~kj),%(~kj)
given by the equation (10) is

the spectral contribution of the jth wave group map with its
parameters ~kj , λ(~kj), σj(~kj), %(~kj).

To numerically solve the previous equation with a given
number nmaps of maps, we use the following algorithm :
Initialisation :

No wave group map exists yet : j = 0
We initialize the 0th residual spectrum :

Ψ0 = Ψtarget

While j < nmaps :
1) To find a ~kj such that : Ψj(~kj) = max(Ψj)
2) To compute σj = σj(~kj) such that Ψ(~kj) = max(Ψj)

where Ψ(~kj) is given by equation (10, used with ~kj
instead of both ~k0 and ~k), in function of group density
λj/Sj and enveloppe extention %j parameters :

σj =

√
Sj max(Ψj)

2λjπ2%4
j (1− e

−8π2%2jk
2
j )

(14)

3) To update the jth residual spectrum :

Ψj+1 = Ψj −Ψ

where Ψ is the spectrum due to the jth map given by
replacing ~k0,

λ
S , σ, % by ~kj ,

λj

Sj
, σj , %j in equation (10).

4) To increment j
End
where Ψj is the jth residual spectrum, e.g : the difference
between the target spectrum and the spectrum due to the j
first maps.

With such a method, if nmaps is large enough, the last
update Ψnmaps of the residual spectrum should be nearly null.
That is to say that the spectrum Ψ of the superposition of such
nmaps maps equals approximativly Ψtarget.

Thus, we can obtain various sea-state multiscale structures
with the same spectrum, as each map involved in the simu-
lation can offer various wave structures at a given scale (the
wave length of that map) with identical spectra.

III. BREAKING WAVE DISTRIBUTION OVER WAVE GROUPS

The sea surface is peopled by independant wave groups
localising energy nearby their center. We’ll see now how
breaking events are added over these groups, respecting break-
ing statistics and offering some spatial coherency between
breaking front and high wave crest positions.

A. Models for breaking statistics

Incremental breaking statistics Λ(~c) [m−2s] is the average
length of breaking fronts per unit surface per unit speed
interval [Phillips 85]. When a single breaking event starts,
a turbulent foam patch is generally initiated at some point
on the wave crest, and during the active breaking period, the
pach speads laterally along the direction of travel of the wave.
At any instant, its lateral dimention can be represented by a
main axis having the shape of an arc segment. The length
of the breaking front Λ at that particular time is a mesure
of the length of this arc segment. As the wind blows over
the water surface, at any instant, the fronts of the breaking
waves therefore define a distribution of isolated lines or arc



segments. The distribution Λ(~c) is such that Λ(~c)d~c represents
the average total length per unit surface of breaking fronts that
have velocities in the range ~c to ~c+ d~c.

The omni-directional distribution of breaking front length
Λ(c) is :

Λ(c) =
∫ π/2

−π/2
cΛ(~c)dθ (15)

Different models for incremental breaking statistics Λ(~c) or
the omni-directional breaking statistics Λ(c) are reviewed for
example in [Reul 03] :

eq : a model for fully developped sea states [Phillips 85] :

Λeq(~c) = −4b′−1
mg5c−14u2

∗Ψ(~k)cos(θ) (16)

where b′ ≈ 9.10−3 is the average value for unsteady
breaker modified similarity factor, m ≈ 0.04± 0.02
is a parameter for wind induce wave growth rate,
g is the acceleration due to gravity, u∗ is the wind
friction velocity, Ψ is the directional spectrum, and
θ is the angle between ~c (or ~k) and the wind vector.

emp : a model for the omnidirectional distribution of break-
ing front length based on experimental measure from
an aircraft [Melville 02] :

Λemp(c) = (U10/10)3 × 3.3× 10−4e−0.64c (17)

where U10 is the wind speed at 10 meters above the
sea surface. The validity of this formula is for U10

ranges 7 to 14 ms−1, and well developped sea states
(wind wave fetch ranges 100 to 150 km).

dom : a statistical model for a narrow band spectrum (wave
number k ranges kpeak/2 to 2kpeak) :

cΛdom(c) =
k

2π
exp

(
−ε

2
T

ε2s

)
(18)

where εT ≈ 0.24 is a tuning constant [Makin 02],
εs = 2kmM

1/2
00 is the dominant wave steepness,

km =
√
M20/M00 defines the mean wavenumber

and Mmn =
∫
kmx k

n
yΨ(~k)d~k are the spectral mo-

ments of order mn.
Thus, one can choose any appropriate model for incremental

breaking statistics that we’ll distribute over wave groups.

B. Conditional distribution of a breaking front length over a
group map

We equip the wave groups of a wave group map with
breaking fronts attached to wave crests. For that, we define a
breaking area as a circle centred at the center ~xc of the group
with a radius rbreaking . Any crest belonging to this area is
considered as a breaking wave (inside the breaking area) and
its velocity ~c is then the phase speed of that group.

Lets call lbreaking the mean breaking front length carried
by such a group. Because for a given crest, its temporal mean
length inside the breaking area during the crossing period
is πr2breaking/(2rbreaking) = πrbreaking/2, and because the

A wave group map expresses breaking fronts (white patches) on wave group
crests with a breaking front length per surface unit L = 10−3m−1. Wave
group map parameters are k = 0.2 radm−1, % = 5 ∗ 2π/k. The surface
S of the red square (at level z = 0) is such that λ/S = 4. The group
map steepnesses is σk = π.0.03. The cumulated breaking length over the
blue sea-surface (25000m2) is worth on average 25m. Here, every groups
are equiped with the same breaking area. This is a screenshot of a coherent
dynamical simulation.

Fig. 3. Breaking fronts over the groups of a map

mean number of breaking crests is 2rbreaking × k/2π, we
have :

rbreaking =

√
2lbreaking

k
(19)

where k is the wave number of the group.
If one wants now to distribute a breaking front length Lj

per unit area over the crests of a wave group map ~kj , dj , σj , %j
where ~kj is the wave vector, dj = λj/Sj the group density per
unit surface (λj is the Poisson law parameter, e.g : the average
number of groups covering the surface Sj), σj the average
amplitude at the group center which follows a Rayleigh
law and %j their enveloppe extention, the appropriate radius
r̄breakingj so that this map j expresses the given breaking
length is :

r̄breakingj
=

√
2Lj
kjdj

=

√
2LjSj
kjλj

(20)

We also specify the breaker geometry using similarity laws
[Bortkovskii 87]. Accordingly, the average whitecap thickness
δ̄j for the breakers of the jth map shall apply the following
similarity law :

δ̄j = b · 2π
kj

(21)

where b is an empirical constant estimated to be b ≈ 0.03 for
quasi-steady breakers [Ducan 81].

Figure 3 illustrates the spatial coherency that can be easily
obtained by our conditional distribution of breaking fronts over
the wave crests of the group map.



If we want to take attention to the Rayleigh distribution of
amplitudes for the wave groups of that map, one can choose to
set the breaking radius rbreakingi for a group which amplitude
is ai, with :

rbreakingi
=
ai
σj
r̄breakingj

(22)

this will increase the spatial coherency between breaking
fronts and highest crests positions. Futhermore, we can decide
that only groups with an amplidude greater than αjσj express
their breaking fronts (αj > 0) and the precedent formula
becomes :

rbreakingi
=

ai(
{a (a>αiσj)}

) · r̄breakingj
(23)

where {a (a>αjσj)} is the mean value of a random variable a
following a σj-Rayleigh law restricted by a > αjσj .

Thus, we know how to distribute a breaking front length Lj
per surface unit over a group map by adding to each group i
of the map j a breaking area specified by its breaking radius
rbreakingi

using equations (20) and (22) or (23).

C. Conditonal distribution of incremental breaking statistics
Λ(~c) over group maps

We distribute now the average total length per unit surface
of breaking fronts Λ(~c)d~c, that have velocities in the range
~c, ~c + d~c over the groups of a map so that the phase speed
of the group crests ranges in the same set. As we don’t have
a continuum for ~c because we have discretised wave vectors
for covering the full spectrum with a finite number of wave
group maps, we decide to distribute breaking front lengths so
that the total length Ltot of breaking fronts per surface unit is
preserved :

Ltot =
∫ +∞

0

∫ π/2

−π/2
Λ(~c)d~c (24)

Each map j will then be associated to a breaking front length
Lj per surface unit as following :

Lj =
Λ(~cj)∑
j

Λ(~cj)
· Ltot (25)

where ~cj is the phase speed for the jth group map.
If we only have the omni-directional distribution of breaking

front length Λ(c) cumulating Λ(~c) for all directions with the
same speed norm c, we use in the precedent formula an angular
spreading function (c.f. : [Elfouhaily 97]) to distribute Λ(c)
over different directions.

The precedent section explains how each Lj can be dis-
tributed over the groups of the jth wave group map, thanks
to equations (20) and (22) or (23).

Thus any incremental breaking statistics can be condition-
ally distributed over the wave crests of the groups mapping
the sea surface. The whole system of waves and breaking
fronts evolves dynamically thank to the GWM, while respecing
any given directional spectrum and keeping some spatial
coherency between phenomena (wave groups and breaking
fronts) involved in this sea-state.

IV. CONCLUSION AND DISCUSSION

The groupy wave model allows dynamical multiscale simu-
lations of sea states involving simple models for wave groups
and breakers. The GWM builds on random distributions of
wave groups and conditionally distributed breaking waves over
these groups. Each wave group travels across the simulated
area, and each breaking wave appears dynamically on a
wave crest at the rear of a group, propagating with crests
and disappearing at the front of this group. We have shown
how the GWM can build a multiscale sea state that follows
any prescribed sea wave directional spectrum Ψ(~k) with any
breaking wave statistical distribution Λ(~c).

In addition to these average statistics, the WGM user needs
to choose his own hypothesis about wave field modulations in
function of the scale ; namely the mean number of groups per
surface unit and the mean number of waves per group. These
parameters offer a wide range of different sea state structures,
all of them offering the same average statistics. Futur work
should study the impact of these parameters on the sea clutter.

Until now, we have used a model for the surface as the
sum of random processes specifying vertical displacement. In
fact water motion involves orbital movements with horizontal
displacements highly correlated to vertical ones. We’ll modify
our wave group vertical primitive into an orbital primitive and
spectral results obtained for the GWM will have to be dressed.
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