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STRUCTURES OF SU-RANK OMEGA WITH A DENSEINDEPENDENT SUBSET OF GENERICSALEXANDER BERENSTEIN, JUAN FELIPE CARMONA∗, AND EVGUENI VASSILIEVAbstrat. Extending the work done in [5, 9℄ in the o-minimal and geometrisettings, we study expansions of models of a supersimple theory of SU-rank ωwith a "dense odense" independent olletion H of element of rank ω, wheredensity of H means it intersets any de�nable set of SU -rank omega. Weshow that under some tehnial onditions, the lass of suh strutures is �rstorder. We prove that the expansion is supersimple and haraterize forkingand anonial bases of types in the expansion. We also analyze the e�et theseexpansions have on one-basedness and CM-triviality. In the one-based ase,we desribe a natural "geometry of generis modulo H" assoiated with suhexpansions and show it is modular.1. IntrodutionThere are several papers that deal with expansions of simple theories with a newunary prediate. For example, there is the expansion with a random subset [8℄ thatgives a ase where the new theory is again simple and forking remains the same, inontrast to the ase of lovely pairs [2, 15℄, where the pair is usually muh riher andthe omplexity of forking is related to the geometri properties of the underlyingtheory [15℄.In [5℄ the �rst and the third authors studied, in the setting of geometri stru-tures, adding a prediate for an algebraially independent set H whih is dense andodense in a modelM (meaning every non-algebrai formula in a single variable hasa realization in H and a realization generi over H and its parameters). The papergeneralized ideas developed in the framework of o-minimal theories in [9℄. The keytool used in [5℄ was that the losure operator acl has the exhange property and thusgives a matroid that interats well with the de�nable subsets. A speial ase underonsideration was SU-rank one theories, where forking independene agrees withalgebrai independene. In this stronger setting the authors haraterized forkingand gave a desription of anonial bases in the expansion. As in the lovely pairase, the omplexity of forking is related to the underlying geometry of the basetheory T .In this paper we start with a theory T that has SU -rank omega and we usethe losure operator assoiated to the weight of generi types, namely for M |= T ,
a ∈ M , A ⊂M , we have a ∈ cl(A) if SU(a/A) < ω. This losure operator has theexhange property and many of the results obtained in [5℄ an be proved in the newframework: we expand M by a new prediate onsisting in a cl-dense cl-odense2000 Mathematis Subjet Classi�ation. 03C45.Key words and phrases. supersimple theories, SU-rank omega, unary prediate expansions,one-basedness, ampleness, CM-triviality .
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family of independent generis (see De�nition 2.3). In partiular, the extension issupersimple and we get a lear desription of anonial bases in the expansion, upto interalgebraiity (see Proposition 5.6).In the speial ase where the theory of M is superstable with a unique type of
U -rank ω, the prediate H is a Morley sequene of generis; this ase is related tothe work done in [1℄. Our work is also related to work of Fornasiero on lovely pairsof losure operators [10℄.Of speial interest is the e�et of our expansion on the geometri omplexity,namely the ampleness hierarhy. Following the ideas of [7℄, we show that the ex-pansion preserves CM-triviality, but one-basedness is preserved only in the trivialase.We then use this expansion to study the underlying geometry of the losureoperator loalized in H . We show that if T is a one-based supersimple theoryof SU-rank ω, (N,H) a su�iently (e.g. |T |+-) saturated H-struture, then theloalized losure operator cl(− ∪ H) is modular and its assoiated geometry is adisjoint union of projetive geometries over division rings and trivial geometries.This paper is organized as follows. In setion 2 we de�ne H-strutures assoiatedto modelsM of a theory T . We show that two H-strutures assoiated to the sametheory are elementary equivalent and all T ind this ommon theory. Finally weprove that that under some tehnial onditions (elimination of the quanti�er ∃largeand the type de�nablity of the prediates Qϕ,ψ) the saturated models of T ind areagain H-strutures.In setion 3 we study four di�erent examples of theories of SU -rank ω: dif-ferentially losed �elds, vetor spaes with a generi automorphism, H-pairs andlovely pairs of geometri theories. In eah ase we show the orresponding theoryof H-strutures is �rst order.In setion 4 we analyze the de�nable sets in the expansion, we prove that everyde�nable set is a boolean ombination of old formulas bounded by existential quan-ti�ers over the new prediate. In setion 5 we haraterize forking in the expansionand haraterize anonial bases. In setion 6 we study the question of preservationof one-basedness and CM-triviality under our expansion. Finally in setion 7 westudy the geometry of cl(− ∪H).2. H-strutures: definition and first propertiesLet T be a simple theory of SU -rank ω. Let H be a new unary prediate and let
clH = cl∪{H}. Let T ′ be the LH -theory of all strutures (M,H), where M |= Tand H(M) is an independent subset of generi elements of M , that is, all elementshave SU -rank ω. Note that saying that H(M) is an independent olletion ofgeneris is a �rst order property, it is simply the onjuntions of formulas of theform ¬ϕ(x1, . . . , xn), where SU(ϕ(x1, . . . , xn)) < ωn.For M |= T , A ⊂M and b ∈M , we write b ∈ cl(A) and say that b is small over
A if SU(b/A) < ω. By the additivity properties of SU rank we have that L gives apregeometry on M . We write dimcl(ϕ(x1, . . . , xn)) = n and say that ϕ(x1, . . . , xn)is large if SU(ϕ(x1, . . . , xn)) = ωnWe will assume that for every formula ϕ(x, ~y) there is a formula ψ(~y) suh thatfor any ~a ∈ M ϕ(x,~a) is large if and only if ψ(~a). We write ∃largeϕ(x, ~y) if ψ(~y)holds. 2



There is a strong analogy to what happens in geometri theories (see [3℄), wehange the pregeometry acl for the pregeometry L and the quanti�er ∃∞ for thequanti�er ∃large.Notation 2.1. Let (M,H(M)) |= T ′ and let A ⊂M . We write H(A) for H(M)∩
A.Notation 2.2. Throughout this paper independene means independene in thesense of T and we use the familiar symbol |⌣. We write tp(~a) for the L-type of aand dcl, acl for the de�nable losure and the algebrai losure in the language L.Similarly we write dclH , aclH , tpH for the de�nable losure, the algebrai losureand the type in the language LH .De�nition 2.3. We say that (M,H(M)) is an H-struture if(1) (M,H(M)) |= T ′(2) (Density/oheir property) If A ⊂ M is �nite and q ∈ S1(A) is the type ofa generi element (of SU -rank ω), there is a ∈ H(M) suh that a |= q.(3) (Co-density/extension property) If A ⊂M is �nite and q ∈ S1(A), there is

a ∈M , a |= q and a |⌣A
H(M).Lemma 2.4. Let (M,H(M)) |= T ′. Then (M,H(M)) is an H-struture if andonly if:(2') (Generalized density/oheir property) If A ⊂M is �nite and q ∈ Sn(A) has

SU -rank ωn, then there is ~a ∈ H(M)n suh that ~a |= q.(3') (Generalized o-density/extension property) If A ⊂M is �nite dimensionaland q ∈ Sn(A), then there is ~a ∈Mn realizing q suh that tp(~a/A∪H(M))does not fork over A.Proof. We prove (2') and leave (3') to the reader. Let ~b |= q, we may write ~b =
(b1, . . . , bn). Sine (M,H(M)) is an H-struture, applying the density property wean �nd a1 ∈ H(M) suh that tp(a1/A) = tp(b1/A). Let q(x, b1, A) = tp(b2, b1, A)and let A1 = A ∪ {a1}. Finally onsider the type q(x, a1, A) over A1, whih is thetype of a generi element. Applying the density property we an �nd a2 ∈ H(M)suh that tp(a2, a1/A) = tp(b2, b1/A). We ontinue indutively to �nd the desiredtuple (a1, a2, . . . , an). �Note that if (M,H(M)) is an H-struture, the extension property implies that
M is ℵ0-saturated.De�nition 2.5. Let A be a subset of an H-struture (M,H(M)). We say that Ais H-independent if A is independent from H(M) over H(A).Lemma 2.6. Any model M of T with a distinguished independent subset H(M)an be embedded in an H-struture in an H-independent way.Proof. Given any modelM with a distinguished independent subsetH(M) of gener-is, we an always �nd an elementary extension N of M and a set H(N) extending
H(M) suh that for every generi 1-type p(x, acl(~m)) (i.e. SU(p(x)) = ω), where
~m ∈M , there is d ∈ N suh that d |= p(x, acl(~m)) and d |⌣H(M)

~m. Add a similarstatement for the extension property. Now apply a hain argument. �In partiular, for a SU -rank ω theory T , H-strutures exist.3



Lemma 2.7. Let (M,H) and (N,H) be su�iently saturated H-strutures, ~a ∈Mand ~a′ ∈ N H-independent tuples suh that tp(~a,H(~a)) = tp(~a′, H(~a′)). Then
tpH(~a) = tpH(~a′).Proof. Write ~a = ~a0~a1

~h, where ~a0 is independent over H(M), ~h = H(~a) ∈ H(M)and ~a1 ∈ L(~a0
~h). Similarly write ~a′ = ~a′0~a

′
1
~h′.It su�es to show that for any b ∈ M there are ~h1 ∈ H(M), ~h′1 ∈ H(N)and b′ ∈ N suh that ~a~h1b and ~a′~h′1b′ are eah H-independent, tp(~a0~a1

~h~h1b) =

tp(~a′0~a
′
1
~h′~h′1b

′), and b ∈ H(M) i� b′ ∈ H(N).Case 1: b ∈ cl(~a)∩H(M). By H-independene of ~a, we must have b ∈ cl(~h) andsine H forms an independent set we must have b ∈ ~h. Let b′ ∈ ~h′ be suh that
tp(b′~a′) = tp(b~a) and the result follows. Here we an take ~h1 and ~h′1 to be emptyCase 2: b ∈ H(M) and is non small over ~a. Then tp(b/~a) is generi. By thedensity property, we an �nd b′ ∈ H(N) suh that tp(b′~a′) = tp(b~a). Here againwe an take ~h1 and ~h′1 to be empty.Case 3: b ∈ cl(~a). We laim that b |⌣~a

H(M). Indeed let ~h1 (say of length k) in
H(M) \ ~h. Sine ~a is H-independent, the elements in H(M) \ ~h are independentover ~a and thus SU(~h1/~a) = SU(~h1/~h) = ωk. On the other hand SU(b/~a) < ω, sothe types tp(b/~a), tp(~h1/~a) are orthogonal and the laim follows.Thus the tuple ~ab is H-independent. Let p(x,~a) = tp(b/~a). Now use the exten-sion property to �nd b′ ∈ N ′ suh that b′ |= p(x,~a′), b′ |⌣~a′

H(N), so by transitivity
~a′b′ is H-independent.Case 4: b ∈ cl(H(M)~a). Add a tuple ~h1 ∈ H(M) suh that ~ab~h1 is H-independent, and use Case 2 and Case 3.Case 5: b 6∈ cl(H(M)~a). By the extension property, there is b′ ∈ N suh that
b′ 6∈ cl(H(N)~a′) and tp(b′~a′) = tp(b~a). The tuples stay H-independent, so againwe an take ~h1 and ~h′1 to be empty.

�The previous result has the following onsequene:Corollary 2.8. All H-strutures are elementarily equivalent.We write T ind for the ommon omplete theory of all H-strutures of models of
T .De�nition 2.9. We say that T ind is �rst order if the |T |+-saturated models of
T ind are again H-strutures.To axiomatize T ind and to show that T ind is �rst oder, we follow the ideas of[15, Prop 2.15℄, [3℄ and [2℄. Here we use for the �rst time that T eliminates ∃large.Reall that whenever T eliminates ∃large the expression the formula ϕ(x,~b) is largeis �rst order.We also need the following de�nition from [2, De�nition 2.4℄:De�nition 2.10. Let ψ(~y, ~z) and ϕ(~x, ~y) be L-formulas. Qϕ,ψ is the prediatewhih is de�ned to hold of a tuple ~c (inM) if for all ~b satisfying ψ(~y,~c), the formula
ϕ(~x,~b) does not divide over ~c.The following result follows word by word from the proof of [2, Proposition 4.5℄,hanging the elementary substruture for the prediate H :4



Proposition 2.11. The following are equivalent:(1) Qϕ,ψ is type-de�nable (in M ) for all L-formulas ϕ(~x, ~y),ψ(~y, ~z).(2) The extension property is �rst order.(3) Any |T |+-saturated model of T ind satis�es the extension property.Corollary 2.12. Let T be a simple theory of SU -rank omega that satis�es wnfp.Then the extension property is �rst order.Proposition 2.13. Assume T eliminates ∃large and that the prediates Qϕ,ψ are
L-type-de�nable for all L-formulas ϕ(~x, ~y),ψ(~y, ~z). Then T ind is �rst order.Proof. The theory T ind is desribed by T ′, the density property and the extensionproperty.
T ′ is a �rst order property.The density property an be desribed in �rst order by the sheme:For all L-formulas ϕ(x, ~y)

∀~y(ϕ(x, ~y) large =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H)).Thus all saturated models of the sheme satisfy the density property. Finally byProposition 2.11 any |T |+-saturated model of T ind satisfy the extension property.
�Notation 2.14. Let (M,H(M)) be an H-struture and let A ⊂ M . We write

clH(A) for cl(AH(M)) and we all it the small losure of A over H.3. examplesIn this setion we give a list of examples of simple theories of SU -rank ω thateliminate ∃large and where the extension property is �rst order. We also list someexamples that eliminate the quanti�er ∃large but where it remains as an openquestion if the extension property is �rst order.3.1. Di�erentially losed �elds. Let T = DCF0, the theory of di�erentiallylosed �elds. This theory is stable of U rank ω and also RM(DCF0) = ω.Let p(x) be the unique generi type of the theory. This type is omplete, station-ary and de�nable over ∅. Let ϕ(x, ~y) be a formula and let ψ(~y) be its p-de�nition.Then for (K, d) |= DCF0, ~a ∈ K, the formula ϕ(x,~a) is large i� ψ(~a). Thus thistheory eliminates the quanti�er ∃large.Now let us study the extension property. Reall that DCF0 has quanti�er elimi-nation [12, Theorem 2.4℄ and eliminates imaginaries [12, Theorem 3.7℄. It is provedin [12, Theorem 2.13℄ that DCF0 has uniform bounding (i.e. it eliminates ∃∞) andthus it has nfp. This is also expliitly explained in [12, page 52℄. It follows byCorollary 2.12 that the extension property is �rst order.3.2. Free pseudoplane-in�nite branhing tree. Let T be the theory of thefree pseudoplane, that is, a graph without yles suh that every vertex has in-�nitely many edges. The theory of the free pseudoplane is stable of U -rank ωand MR(T ) = ω. For every A, acl(A) = dcl(A) = A ∪ {x| there are points a, b ∈
A and a path onneting them passing trough x}. For A algebraially losed and aa single element, U(a/A) = d(a,A) where d(a,A) is the minimum length of a pathfrom a to an element of A or ω if there is no path; in this last ase we say that a isat in�nite distane to A or that a is not onneted to A. Note that there is a uniquegeneri type over A, namely the type of an element whih is not onneted to A.5



The generi type is de�nable over ∅ and thus by de�nability of types T eliminatesthe quanti�er ∃large.An H-struture (M,H) assoiated to T is an in�nite olletion of trees with anin�nite olletion of seleted points H(M) at in�nite distane one from the otherand with in�nite many trees not onneted to them. If (N,H) |= Th(M,H), then
N has in�nitely many seleted points H(N) at in�nite distane one from the other.If (N,H) is ℵ0-saturated, then by saturation it also has in�nitely many treeswhih are not onneted to the points H(N). We will prove that in this ase
(N,H) is an H-struture. The density property is lear. Now let A ⊂ N be �niteand assume that A = dcl(A) and let c ∈ N . If U(c/A) = ω hoose a point b in atree not onneted to A ∪H , then tp(c/A) = tp(b/A) and b |⌣A

H . If U(c/A) = 0there is nothing to prove. If U(c/A) = n > 0, let a be the nearest point from A to
c. Sine there is at most one point of H onneted to a and the trees are in�nitelybranhing, we an hoose a point b with d(b, a) = n and suh that d(b, A∪H) = n;then tp(c/A) = tp(b/A) and b |⌣A

H . This proves that (N,H) is an H-strutureand that that T ind is �rst order.3.3. Vetor spae with a generi automorphism. Let T be the theory of(in�nite-dimensional) vetor spaes over a division ring F , and let Tσ by its (unique)generi automorphism expansion.This theory has a unique generi, whih is de�nable over ∅. By de�nability oftypes, Tσ eliminates the quanti�er ∃large.Now we prove that the extension property is �rst order.Let (M,H) be an H-struture assoiated to Tσ, let (N,H) |= Th(M,H) be
|T |+-saturated and let a,~b ∈ N .Note that the type of the element a over a tuple ~b in Tσ is determined by

qftp−(σZ(a)/σZ(~b)),where the supersript − refers to the language of T , and
σZ(~c) = . . . , σ−1(~c),~c, σ(~c), σ2(~c), . . . .There are three possible situations for tp(a/~b):(1) a ∈ span(σZ(~b))(2) a, σ(a), . . . , σn−1(a) are independent over σZ(~b), but
σn(a) ∈ span(a, σ(a), . . . , σn−1(a)σZ(~b))(3) σZ(a) is independent over σZ(~b)For the �rst ase, we have that a ∈ dcl(~b) and thus a |⌣~b

H .For the seond ase, assume now that σn(a) ∈ span(a, σ(a), . . . , σn−1(a)σZ(~b)).Sine M is an ℵ0-saturated, we an �nd a′,~b′ ∈ M suh that tp(a,~b) = tp(a′,~b′)and sine (M,H) is an H-struture we may assume that a′ |⌣~b′
H . In partiular,the elements a′, σ(a′), . . . , σn−1(a′) do not satisfy any nontrivial linear ombinationwith elements in dcl(~b′H(M)). Sine (N,H) |= Th((M,H)) is |T |+-saturated,we an �nd (a′′,~b) |= tp(a′,~b′) suh that a′′, σ(a′′), . . . , σn−1(a′′) do not satisfyany nontrivial linear ombination with elements in dcl(~bH(N)). This shows that

a′′ |⌣~b
H as we wanted. 6



For the third ase, sine (N,H) |= (M,H), we have that H(N) is an in�niteolletion of independent generis. Let a0, . . . , an2−1 ∈ H(N) be distint and on-sider c0 = a0 + · · · + an−1, . . . , cn−1 = an2−n + · · · + an2−1. Then the elements
c0, . . . , cn−1 are independent generis and neither one an be written as a linearombination of less that n elements in H . Sine (N,H) is |T |+-saturated, we an�nd in�nitely many independent generis that are independent overH(N). If σZ(a)is independent over σZ(~b) we an hoose a′ generi independent from ~bH(N) andthus a′ |⌣~b

H .3.4. Theories of Morley rank omega with de�nable Morley rank. Let Tbe a ω-stable theory of rank ω and letM |= T be |T |+-saturated. Assume also thatthe Morley rank is de�nable, that is, for every formula ϕ(x, ~y) without parametersand every α ∈ {0, 1, . . . , ω} there is a formula ψα(~y) without parameters suh thatfor ~a ∈M , MR(ϕ(x,~a)) ≥ α if and only if ψα(~a). To simplify the notation, we willwrite MR(ϕ(x,~a)) ≥ α instead of ψα(~a). We will prove that T ind is �rst order.Elimination of ∃large. Consider �rst ϕ(x, ~y) and let ~b ∈M . Then ϕ(x,~b) is largeif and only if MR(ϕ(x,~b)) ≥ ω, so T eliminates the quanti�er ∃large.Extension property. Now assume that (M,H) is anH-struture and let (N,H) |=

Th(M,H) be |T |+-saturated. Let a ∈ N and let ~b ∈ N . If MR(tp(a/~b)) = 0 thereis nothing to prove. Assume then that MR(tp(a/~b)) = n > 0.Let ϕ(x, ~y) ∈ tp(a,~b) with MR(ϕ(x,~b)) = n and Md(ϕ(x,~b)) = Md(tp(a/~b)).Let (a′,~b′) |= tp(a,~b) belong to M . Sine (M,H) is an H-struture, we mayassume that a′ |⌣~b′
H and thus for every formula θ(x, ~y, ~z) and every tuple ~h ∈

H , if MR(θ(x,~b′,~h)) < MR(ϕ(x,~b′)) = n then ¬θ(x,~b′,~h) ∈ tp(a′/~b′H). So
(M,H) |= ∀d′MR(ϕ(x, ~d′)) ≥ n =⇒ ∃cϕ(c, ~d′) ∧ ∀~h ∈ H(MR(θ(x, ~d′,~h)) <

n =⇒ ¬θ(c, ~d′,~h)).Sine (N,H) |= TH(M,H) is |T |+-saturated, we an �nd a′ suh thatMR(ϕ(a′,~b)) ≥

n and whenever ~h ∈ H(N) and θ(x,~b,~h) is a formula with Morley rank smallerthan n we have ¬θ(a′,~b,~h). This shows thatMR(a′/~bH) = MR(a′/~b) = MR(a/~b),
Md(a′/~b) = Md(a/~b), both a and a′ are generis of the formula ϕ(x,~b) and thus
tp(a/~b) = tp(a′/~b). Finally by onstrution a′ |⌣~b

H . It follows that T ind is �rstorder.3.5. H-triples. Reall from [3℄ that if T0 is supersimple SU -rank one theory whosepregeometry is not trivial, then T = T ind0 has SU -rank omega. The models of Tare strutures of the form (M,H1), where M |= T0 and H1 is a acl0-dense and
acl0-odense subset of M . We write L0 for the language assoiated to T0 and L forthe language assoiated to T . Similarly, we write acl0 for the algebrai losure inthe language L0 and for A ⊂M |= T0, we write S0

n(A) for the spae of L0-n-typesover A.We will assume that T0 has a strong form of non-triviality, namely for all L0-de�nable in�nite sets ϕ(x), there is an algebrai triangle inside ϕ(x). So thereis a set B and there are a |= ϕ(x) and there are b, c with eah of a, b, c acl0-independent from B and suh that a ∈ acl0(bcB)\acl0(bB). With this assumption,if (M,H) |= T , A ⊂M and a 6∈ acl0(AH1), then SU(tp(a/A)) = ω and the generisin the sense of (M,H1) have SU as required for the present paper.7



In this subsetion we hange our notation and we let H2 be a new prediatesymbol that will be interpreted by a dense and odense T -generi subset of (M,H1).The strutures (M,H1, H2) were already studied in [3℄. We reall the de�nitionsand the main result. The main tool for studying T ind is to take into aount thebase theory T0 and use triples.De�nition 3.1. We say that (M,H1(M), H2(M)) is an H-triple assoiated to T0if: (1) M |= T0, H1(M) is an acl0-independent subset of M , H2(M) is an acl0-independent subset of M over H1.(2) (Density property for H1) If A ⊂M is �nite dimensional and q ∈ S0
1(A) isnon-algebrai, there is a ∈ H1(M) suh that a |= q.(3) (Density property forH2/H1) If A ⊂M is �nite dimensional and q ∈ S0

1(A)is non-algebrai, there is a ∈ H2(M) suh that a |= q and a 6∈ acl0(A ∪
H1(M)).(4) (Extension property) If A ⊂ M is �nite dimensional and q ∈ S0

1(A) isnon-algebrai, there is a ∈M , a |= q and a 6∈ acl0(A ∪H1(M) ∪H2(M)).It is observed in [3℄ that if (M,H1(M), H2(M)), (N,H1(N), H2(N)) are H-triples, then Th(M,H1(M), H2(M)) = Th(N,H1(N), H2(N)) and we denote theommon theory by T tri0 .The folowing result is proved in [3℄ for geometri theories.Proposition 3.2. Let T be an SU rank one strongly non-trivial supersimple the-ory, let M |= T and let H1(M) ⊂ M , H2(M) ⊂ M be distinguished subsets. Then
(M,H1(M), H2(M)) is a H2-struture assoiated to T if and only if (M,H1(M), H2(M))is an H-triple.Thus, to show that the lass of H2-strutures assoiated to T is �rst order, itsu�es to prove that this is the ase for H-triples assoiated to T0. As pointed outin [3℄ we have:Proposition 3.3. The theory T tri is axiomatized by:(1) T.(2) M |= T0, H1(M) is an acl0-independent subset of M , H2(M) is an acl0-independent subset of M over H1.(3) For all L-formulas ϕ(x, ~y)

∀~y(ϕ(x, ~y) nonalgebrai =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H1)).(4) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)suh that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-brai in x)
∀~y(ϕ(x, ~y) nonalgebrai =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H2) ∧
∀w1 . . . ∀wm ∈ H1¬ψ(x,w1, . . . , wm, ~y))(5) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)suh that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-brai in x)
∀~y(ϕ(x, ~y) nonalgebrai =⇒ ∃xϕ(x, ~y) ∧
∀w1 . . . ∀wm ∈ H1 ∪H2¬ψ(x,w1, . . . , wm, ~y))Furthermore, if (M,H,H2) |= T tri is |T |+-saturated, then (M,H,H2) isan H-triple. 8



Thus when T0 is a strongly non-trivial supersimple SU -rank one theory, T ind =
T tri is �rst order.3.6. H strutures of lovely pairs of SU-rank one theories. Let T be a geo-metri theory, TP its lovely pairs expansion, and let

cl(−) = acl(− ∪ P (M))be the small losure operator in a lovely pair (M,P ). Our goal is to expand TP toa theory T indP in the language LPH = LP ∪ {H}, by adding a cl-independent denseset to a model of TP .The following de�nition is analogous to De�nition 3.1.De�nition 3.4. We say that an LPH -struture (M,P,H) is a PH-struture of Tif (1) P (M) is an elementary substruture of M ;(2) H(M) is acl-independent over P (M);(3) for any non-algebrai type q ∈ ST1 (A) over a �nite-dimensional set A ⊂M ,
q is realized in(density of P over H) P (M)\ acl(H(M)A);(density of H over P ) H(M)\ acl(P (M)A);(extension) M\ acl(P (M)H(M)A).Remark 3.5. (a) It su�es to require P (M) to be dense in the usual sense, i.e. qhaving a realization in P (M).(b) We an get a PH-struture from an H-triple (M,H1, H2) (see previous ex-ample), by letting P (M) = acl(H1).() A usual elementary hain argument shows that any LPH struture (M,P,H)satisfying (1,2) embeds in a PH-struture (N,P,H) so that H(N) |⌣H(M)

MP (N)and P (N) |⌣P (M)
MH(N). In partiular, PH-strutures exist.(d) Reduts (M,P ) and (M,H) of (M,P,H) are lovely pairs and H-strutures,respetively.While in linear examples the SU -rank of TP is two instead of ω, the mahineryfor this paper still goes through we our urrent assumptions for cl.De�nition 3.6. We say that (M,P,H) is an cl-struture if(1) (M,P ) is a lovely pair and H is an cl-independent set(2) (Density/oheir property for cl) If A ⊂ M is �nite dimensional and q ∈

SP1 (A) is large, there is a ∈ H(M) suh that a |= q.(3) (Extension property) If A ⊂M is �nite dimensional and q ∈ SP1 (A) is large,there is a ∈M , a |= q and a 6∈ cl(A ∪H(M)).Proposition 3.7. (M,P,H) is an cl-struture if and only if (M,P,H) is a PH-struture.Proof. Assume �rst that (M,P,H) is a cl-struture. Then the pair (M,P ) is lovelyand thus (M,P,H) satis�es the density axiom for P . Now let A ⊂ M be �nitedimensional and let q ∈ S1(A) be non-algebrai. Let q̂ ∈ SP1 (A) be an extension of
q that ontains no small formula with parameters in A. Then by the Density/oheirproperty for cl it follows that there is a ∈ H(M) suh that a |= q̂. In partiular,
a |= q and a 6∈ cl(A) and thus we get the density property for H over P . Finally,9



sine the same q̂ is not small, there is c ∈ M , c |= q̂ and c 6∈ cl(A ∪ H(M)) =
acl(A ∪ P (M) ∪H(M)). Thus the extension property holds as well.Now assume that (M,P,H) is an PH-struture. Then H is an cl-independentset, and by the density property for P and the extension property it follows that
(M,P ) is a lovely pair. Now let A ⊂ M be �nite dimensional and let q̂ ∈ SP1 (A)be non-small. We may enlarge A and assume that A is P -independent. Let q bethe restrition of q̂ to the language L. Note that q̂ is the unique extension of qto a non-small type. By the density for H over P , there is a ∈ H(M) suh that
a |= q, a 6∈ cl(A) and thus a |= q̂. Finally the extension property follows from theextension property for PH-strutures. �We will now show that the lass of PH-strutures is "�rst order", that is, thatthere is a set of axioms whose |T |+-saturated models are the PH-strutures. Theaxiomatization works as in H-triples.Proposition 3.8. Assume T eliminates ∃∞. Then the theory TPH is axiomatizedby: (1) T(2) axioms saying that P distinguishes an elementary substruture.(3) For all L-formulas ϕ(x, ~y)

∀~y(ϕ(x, ~y) nonalgebrai =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ P )).(4) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)suh that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-brai in x)
∀~y(ϕ(x, ~y) nonalgebrai =⇒ ∃x(ϕ(x, ~y) ∧ x ∈ H) ∧
∀w1 . . . ∀wm ∈ P¬ψ(x,w1, . . . , wm, ~y))(5) For all L-formulas ϕ(x, ~y), m ∈ ω, and all L-formulas ψ(x, z1, . . . , zm, ~y)suh that for some n ∈ ω ∀~z∀~y∃≤nxψ(x, ~z, ~y) (so ψ(x, ~y, ~z) is always alge-brai in x)
∀~y(ϕ(x, ~y) nonalgebrai =⇒ ∃x(ϕ(x, ~y) ∧ x 6∈ P ∧ x 6∈ H) ∧
∀w1 . . . ∀wm ∈ P ∪H¬ψ(x,w1, . . . , wm, ~y))Furthermore, if (M,P,H) |= TPH is |T |+-saturated, then (M,P,H) is a
PH-struture.Now we list a family of strutures of SU -rank ω where we do know if the orre-sponding theory of H-strutures is axiomatizable. In both ases it is open whetheror not the extension property is �rst order.3.7. ACFA. Let T = ACFA, (a ompletion) of the theory of algebraially losed�elds with a generi automorphism. This theory is simple of SU rank ω and it isunstable.Let p(x) be the generi type of the theory, namely the type of a transformallyindependent element. This type is omplete, stationary and de�nable over ∅. Let

ϕ(x, ~y) be a formula and let ψ(~y) be its p-de�nition. Then for (K,σ) |= ACFA,
~a ∈ K, the formula ϕ(x,~a) is large i� ψ(~a). Thus this theory eliminates thequanti�er ∃large.Question Does the extension property hold for ACFA? Does T0 satisfy wnfp?3.8. Hrushovski amalgamation without ollapsing. In this subsetion we fol-low the presentation of Hrushovski amalgamations from [16℄, all the results we men-tion an be found in [16℄. Let L = {R} where R stands for a ternary relation. We10



let C be the lass of L-strutures where R is symmetri and not re�exive. For A ∈ Ca �nite struture we let δ(A) = |A| − |R(A)| and we let C0
fin be the sublass of Consisting of all �nite L-strutures M where for A ⊂M we have δ(A) ≥ 0. Finally

M0 stands for the Fraïssé limit of the lass C0
fin. Let T0 be the theory of M0, then

MR(T0) = ω and Md(T0) = 1.Now let M |= T0 and for A ⊂ M �nite we de�ne d(A) = inf{δ(B) : A ⊂ B}.Then d is the dimension funtion of a pregeometry and that for an element a anda set B, d(a/B) = 1 if and only if MR(a/B) = ω if and only if U(a/B) = ω. Thusthe pregeometry studied in [16℄ orresponds to the pregeometry assoiated to cl.Sine the theory T0 has a unique generi type, by de�nability of types the theory
T0 eliminates the quanti�er ∃large.Question Does the extension property hold for T0? Does T0 satisfy nfp?4. Definable sets in H-struturesFix T a SUrank ω theory and let (M,H(M)) |= T ind. Our next goal is to obtaina desription of de�nable subsets of M and H(M) in the language LH .Notation 4.1. Let (M,H(M)) be an H-struture. Let ~a be a tuple in M . We de-note by etpH(~a) the olletion of formulas of the form ∃x1 ∈ H . . . ∃xm ∈ Hϕ(~x, ~y),where ϕ(~x, ~y) is an L-formula suh that there exists ~h ∈ H with M |= ϕ(~h,~a).Lemma 4.2. Let (M,H(M)), (N,H(N)) be H-strutures. Let ~a, ~b be tuples ofthe same arity from M , N respetively. Then the following are equivalent:(1) etpH(~a) = etpH(~b).(2) ~a, ~b have the same LH-type.Proof. Clearly (2) implies (1). Assume (1), then tp(~a) = tp(~b).Claim dimcl(~b/H) = dimcl(~a/H).Let ~h = (h1, . . . , hl) ∈ H(M) be suh k := dimcl(~a/~h) = dimcl(~a/H(M)). Wemay assume that ~a1 = (a1, . . . , ak) are independent overH and ~a2 = (ak+1, . . . , an) ∈

cl(a1, . . . , ak, h1, . . . , hl). Choose ψ(~x, ~y, ~z) suh that for any~b ∈M , ~c ∈M ψ(~b,~c, ~z)is always small in ~z and M |= ψ(~h,~a1,~a2). Sine etpH(~a) = etpH(~b) we get that
dimcl(~b/H) ≤ k. A similar argument shows that dimcl(~a/H(M)) ≤ dimcl(~b/H(N)).Claim tpH(~b) = tpH(~a).As before, let ~h = (h1, . . . , hl) ∈ H(M) be suh that k := dimcl(~a/~h) =

dimcl(~a/H(M)). Then ~a~h isH-independent. SineN is saturated as an L-struturethere are ~h′ = (h′1, . . . , h
′
l) ∈ H suh that tp(~a,~h) = tp(~b,~h′). By the laim above

~b~h′ is H-independent, so the result follows from Lemma 2.7. �Now we are interested in the LH -de�nable subsets of H(M). This material isvery similar to the results presented in [5℄.Lemma 4.3. Let (M0, H(M0)) � (M1, H(M1)) and assume that (M1, H(M1)) is
|M0|-saturated. The M0 (seen as a subset of M1) is a H-independent set.Proof. Assume not. Then there are a1, . . . , an ∈ M0 \ H(M0) suh that an ∈
cl(a1, . . . , an−1, H(M1)) and an 6∈ cl(a1, . . . , an−1, H(M0)). Let ϕ(x, ~y, ~z) be a for-mula whih is always small on x and~b ∈ H(M1)~z be a tuple suh that ϕ(an, a1, . . . , an−1,~b)11



holds. Sine (M0, H(M0)) � (M1, H(M1)) there is ~b′ ∈ H(M0)~z suh that
ϕ(an, a1, . . . , an−1,~b

′) ∧ ¬∃largexϕ(x, a1, . . . , an−1,~b
′)holds, so an ∈ acl(a1, . . . , an−1, H(M0)), a ontradition. �Proposition 4.4. Let (M,H(M)) be an H-struture and let Y ⊂ H(M)n be LH -de�nable. Then there is X ⊂Mn L-de�nable suh that Y = X ∩H(M)n.Proof. Let (M1, H(M1)) � (M,H(M)) be κ-saturated where κ > |M |+ |L| and let

~a,~b ∈ H(M1)
n be suh that tp(~a/M) = tp(~b/M). We will prove that tpH(~a/M) =

tpH(~b/M) and the result will follow by ompatness. Sine ~a,~b ∈ H(M1)
n, we getby Lemma 4.3 that M~a, M~b are H-independent sets and thus by Lemma 2.7 weget tpH(~a/M) = tpH(~b/M). �De�nition 4.5. Let (M,H) |= T ind be saturated. We say that an LH -formula

ψ(x,~c) de�nes a H-large subset of M if there is b |= ψ(x,~c) suh that b 6∈ cl(H~c).This is equivalent as requiring that there are in�nitely many realizations of ψ(x,~c)that are not small over H(M)~c.De�nition 4.6. Let (M,H) |= T ind be κ-saturated and let A ⊂ M be smallerthan κ. Let ~b ∈ M be a tuple. We say that ~b is in the H-small losure of Aif ~b ∈ cl(AH(M)). Let X ⊂ Mn be A-de�nable. We say that X is H-small if
X ⊂ cl(A ∪H(M)).Proposition 4.7. Let (M,H(M)) be an H-struture. Let ~a = (a1, . . . , an) ∈ M .Then there is a unique smallest tuple ~h ∈ H(M) suh that ~a |⌣~h

H.Proof. Sine T is supersimple, there is a �nite tuple ~h ∈ H suh that ~a |⌣~h
H .Choose suh a tuple so that |~h| (the length of the tuple) is minimal. We will nowshow suh a tuple ~h is unique (up to permutation).We an write ~a = (~a1,~a2) so that ~a1 is independent tuple of generis whih isindependent from H(M) and ~a2 ∈ cl(~a1). If ~a2 = ∅, then ~h = ∅ and the resultfollows. So we may assume that ~a2 6= ∅.Then ~a2 ∈ cl(~a1,~h). Let ~h′ be another suh tuple. Let ~h1 be the list of ommonelements in both ~h and ~h′, so we an write ~h = (~h1,~h2) and ~h′ = (~h1,~h

′
2).Claim ~h2 = ~h′2 = ∅.Assume otherwise. Then there is c ∈ ~a2 suh that c ∈ cl(~a1,~h1,~h2) \ cl(~a1,~h1).Sine ~a |⌣~h′

H , we must have that c ∈ cl(~a1,~h1,~h
′
2) \ cl(~a1,~h1). By the exhangeproperty dimcl(~h

′
2/~a1

~h1
~h2) < dimcl(~h

′
2/~a1

~h1). Sine ~a1 is a tuple of generi el-ements that are independent over H we get that dimcl(~h
′
2/
~h1
~h2) < dimcl(~h

′
2/
~h1)and sine H is independent, ~h2 has a ommon element with ~h′2, a ontradition. �Remark 4.8. Let (M,H(M)) be an H-struture. Let ~a = (a1, . . . , an) ∈ M andlet C ⊂ M be suh that C is H-independent. As before, there is a unique smallesttuple ~h ∈ H(M) suh that ~a |⌣~hC

H.Notation 4.9. Let (M,H(M)) be an H-struture. Let ~a = (a1, . . . , an) ∈ M . Let
~h ∈ H(M) be the smallest tuple suh that ~a |⌣~h

H. We all ~h the H-basis of ~a andwe denote it as HB(~a). Given C ⊂M suh that C is H-independent, let ~h ∈ H(M)the smallest tuple suh that ~a |⌣C~h
H. We all ~h the H-basis of ~a over C and we12



denote it as HB(~a/C). Note that H-basis is unique up to permutation, thereforewe will view the H-basis ~h = (h1, . . . , hk) either as a �nite set {h1, . . . , hk} or asthe imaginary representing this �nite set. If we view it as a tuple, we will expliitlysay so.Proposition 4.10. Let (M,H(M)) be an H-struture. Let a1, . . . , an, an+1 ∈ Mand let C ⊂M be suh that C is H-independent. Then HB(a1, . . . , an, an+1/C) =
HB(a1, . . . , an/C) ∪ HB(an+1/Ca1, . . . , anHB(a1, . . . , an/C)), where all H-basisare seen as sets.Proof. Let ~h1 = HB(a1, . . . , an/C). First note that sine a1, . . . , an |⌣C~h1

H , thenthe set a1, . . . , anC~h1 isH-independent and we an de�ne ~h2 = HB(an+1/Ca1, . . . , an~h1).Finally, let ~h = HB(a1, . . . , an, an+1/C).Claim ~h ⊂ ~h1
~h2.We have a1, . . . , an |⌣C~h1

H and an+1 |⌣C~h1
~h2a1,...,an

H , so by transitivity,
a1, . . . , anan+1 |⌣C~h1

~h2

H and by the minimality of an H-basis, we have ~h ⊂

~h1
~h2.Claim ~h ⊃ ~h1

~h2.By de�nition, a1, . . . , anan+1 |⌣C~h
H , so a1, . . . , an |⌣C~h

H and by minimalitywe have ~h1 ⊂ ~h. We also get by transitivity that an+1 |⌣Ca1,...,an
~h1
~h
H and by theminimality of H-basis we get ~h2 ⊂ ~h as desired. �Proposition 4.11. Let (M,H(M)) be an H-struture. Let a1, . . . , an ∈ M andlet C ⊂ D ⊂ M be suh that C, D are H-independent. Assume that there is

h ∈ HB(a1, . . . , an/C) \HB(a1, . . . , an/D). Then h ∈ D.Proof. Write hD = HB(a1, . . . , an/D) and see it as a set. Then a1, . . . , anD |⌣hDH(D)
Hand a1, . . . , an |⌣hDCH(D)

H . By minimality of HB(a1, . . . , an/C) we get that
HB(a1, . . . , an/C) ⊂ hDH(D) and thus if h ∈ HB(a1, . . . , an/C) \ hD, we musthave h ∈ H(D). �We will now apply the H-basis to haraterize de�nable sets in terms of L-de�nable sets.Proposition 4.12. Let (M,H(M)) be an H-struture and let Y ⊂ M be LH -de�nable. Then there is X ⊂ M L-de�nable suh that Y△X is H-small, where △stands for a boolean onnetive for the symmetri di�erene.Proof. If Y is H-small orH-osmall, the result is lear, so we may assume that both
Y andM \Y are H-large. Assume that Y is de�nable over ~a and that ~a = ~aHB(~a).Let b ∈ Y be suh that b 6∈ cl(~aH) and let c ∈ M \ Y be suh that c 6∈ cl(~aH).Then b~a, c~a are H-independent and thus there is Xbc an L-de�nable set suh that
b ∈ Xbc and c 6∈ Xbc. By ompatness, we may get a single L-de�nable set X suhthat for b′ ∈ Y and c′ ∈M \X not in the H-small losure of ~a, we have b′ ∈ X and
c′ ∈M \ Z. This shows that Y△X is H-small. �Our next goal is to haraterize the algebrai losure in H-strutures. The keytool is the following result:Lemma 4.13. Let (M,H(M)) be an H-struture, and let A ⊂M be acl-losed and
H-independent. Then A is aclH-losed. 13



Proof. Suppose a ∈M , a 6∈ A. If a 6∈ cl(AH), then A ∪ {a} is H-independent, andusing the extension property, we an �nd ai, i ∈ ω, acl-independent over A∪H(M),realizing tp(a/A). By Lemma 2.7, eah ai realizes tpH(a/A), and thus a 6∈ aclH(A).If a ∈ cl(AH), take a minimal tuple ~h ∈ H(M) suh that a ∈ acl(A~h). Usingonjugates of ~h over A it is easy to see that tp(a/A) has ∞-many realizations. �Corollary 4.14. Let (M,H(M)) be an H-struture, and let A ⊂ M . Then
aclH(A) = acl(A,HB(A)).Proof. By Proposition 4.7, it is lear thatHB(A) ∈ acl(A), so aclH(A) ⊃ acl(A,HB(A)).On the other hand, A ∪ HB(A) is H-losed, so by the previous Proposition,
acl(A ∪HB(A)) = aclH(A ∪HB(A)) and thus aclH(A) ⊂ acl(A,HB(A)) �5. SupersimpliityIn this setion we prove that T ind is supersimple and haraterize forking in
T ind.Theorem 5.1. The theory T ind is supersimple.Proof. We will prove that non-dividing has loal harater.Let (M,H(M)) |= T ind be saturated. Let C ⊂ D ⊂ M and assume that
C = aclH(C) and D = aclH(D). Note that both C and D are H-independent.Let ~a ∈ M . We will �nd a olletion of onditions for the type of ~a over C thatguarantee that tpH(~a/D) does not divide over C.We may write ~a = (~a1,~a2) ∈ M so that ~a1 is an independent tuple of generisover DH , ~a2 is a tuple suh that ~a2 ∈ cl(~a1DH).Assume that the following onditions hold for C:(1) HB(~a/D) = HB(~a/C).(2) SU(~a2/C~a1H) = SU(~a2/D~a1H)Claim tpH(~a/D) does not divide over C.Let p(~x,D) = tp(~a1, D). Let {Di : i ∈ ω} be an LH -indisernible sequeneover C. Sine ~a1 is an independent tuple of generis over D, tp(~a1/D) does notdivide over C and ∪i∈ωp(~x,Di) is onsistent. We an �nd ~a′1 |= ∪i∈ωp(~x,Di) suhthat {~a′1Di : i ∈ ω} is indisernible and ~a′1 is an independent tuple of generisover ∪i∈ωDi. By the generalized extension property, we may assume that ~a′1 isindependent over ∪i∈ωDiH . Note that ~a1D is H-independent, ~a′1Di is also H-independent for any i ∈ ω. So by Lemma 2.7 tpH(~a1D) = tpH(~a′1Di) for any
i ∈ ω.Now let ~h = HB(~a/C) (viewed as a tuple) and let q(~y,~a1, D) = tp(~h,~a1, D).Note that ~h is an independent tuple of generis over ~a1D (as well as an independenttuple over ~a1C). Sine {Di~a

′
1 : i ∈ ω} is an L-indisernible sequene, there is

~h′ |= ∪i∈ωq(~y,~a′1, Di). We may assume that ~h′ is independent from ∪i∈ωDi~a
′
1 andthus it is a tuple of generis over ∪i∈ωDi~a

′
1. Furthermore we may assume that thesequene {Di~a

′
1 : i ∈ ω} is indisernible over ~h′.By the generalized oheir/density property, we may assume that ~h′ ∈ H . Notethat sine eah ~a′1Di is H-independent, then ~h′~a′1Di is also H-independent. Onthe other hand, tp(~h,~a1, D) = tp(~h′,~a′1, Di) for eah i, so by Lemma 2.7 we have

tpH(~h,~a1, D) = tpH(~h′,~a′1, Di). This shows that tp(~a1,~h/D) does not divide over
C. 14



Now onsider t(~z,~a1,~h,D) = tp(~a2,~a1,~h,D). By the assumption SU(~a2/C~a1
~h) =

SU(~a2/D~a1
~h), so tp(~a2/~a1

~hD) does not divide over ~a1
~hC. Sine tp(~a1

~hD) =

tp(~a′1
~h′D0), then t(~z,~a′1,~h′, D0) does not divide over ~a′1~h′C.Sine {Di : i ∈ ω} is an L-indisernible sequene over C~a′1~h′, there is ~a′2 |=

∪i∈ωt(~z,~a′1,
~h′, Di). We may assume as before that ~a′2 |⌣~a′

1
~h′C

∪iDi.By the extension property, we may assume that ~a′2 |⌣~a′
1
~h′∪iDi

H . Using transi-tivity we also have ~a′2 |⌣~a′
1
~h′C

H ∪iDi and it follows that ~a′2 |⌣~a′
1
~h′Di

H , so we have
~a′1~a

′
2 |⌣~h′Di

H , and thus, also ~a′1~a′2Di |⌣~h′H(Di)
H for eah index i.Sine both ~a1~a2

~hD, ~a′1~a′2~h′Di areH-independent and tp(~a′1~a
′
2
~h′Di) = tp(~a1~a2

~hD)by Lemma 2.7 tpH(~a′1~a
′
2
~h′Di) = tpH(~a1~a2

~hD) .This shows that tp(~a/D) does not divide over C.Sine T is supersimple, for any D and ~a we an always hoose a �nite subset C0of D suh that C = aclH(C0) satis�es the onditions (1) and (2) above. This showsthat T ind is supersimple. �Proposition 5.2. Let (M,H) |= T ind be saturated, let C ⊂ D ⊂ M be suh that
C = aclH(C), D = aclH(D) and let a ∈M . Then tp(a/D) forks over C i� a ∈ D\Cor a ∈ cl(HD) \ cl(HC) or HB(a/C) ) HB(a/D) or, HB(a/C) = HB(a/D) and
SU(a/CH) 6= SU(a/DH) .Proof. In the proof of Theorem 5.1 we showed that if a ∈ C or if, HB(a/C) =
HB(a/D) and SU(a/CH) = SU(a/DH) then tp(a/D) does not fork over C. Soit remains to show the other diretion, whih we do ase by ase.Case 1: Assume that a ∈ D \C, then a beomes algebrai over D and tp(a/D)forks over C.Case 2: Assume that a ∈ cl(DH) \ cl(CH). Then SU(tp(a/DH)) < ω and
SU(tp(a/CH)) = ω. We will prove that tpH(a/D) divides over C.Let ~d ∈ D and let ~c ∈ C be suh that a ∈ cl(~c~dH), so SU(tp(a/~d~cH)) < ω. Byadditivity of Lasar rank, we an hoose ~d to be independent generis over HC.Let ~h ∈ H be suh that a ∈ cl(~c~d~h). Let p(x, ~y) = tpH(a, ~d/C).Let {~di : i ∈ ω} be an L -indisernible sequene in tp(~d/C) over C suh that
{~di : i ∈ ω} is independent over C. By the generalized extension property, wemay assume that {~di : i ∈ ω} is independent over HC. Note that by Lemma 2.7
{~di : i ∈ ω} is an LH -indisernible sequene of generis over C. Assume, in order toget a ontradition, that there is a′ |= ∪i∈ωp(x, ~di). Then there are {~hi : i ∈ ω} suhthat a′ ∈ cl(~di,~c,~hi) for every i, that is, SU(a′/~di,~c,~hi) < ω. But a′ 6∈ cl(CH), so
~d0 6 |⌣CH

~d1, a ontradition.Case 3: Assume that HB(a/D) 6= HB(a/C) and a ∈ cl(CH). Then HB(a/D)is a proper subset of HB(a/C). Write ~hC = HB(a/C), ~hD = HB(a/D) and let
~hE ∈ H be suh that ~hC = ~hD~hE . Note that ~hE 6= ∅ and that ~hE is an independenttuple over C.Let p(x, ~y) = tpH(a,~hE/C). Let {~hiE : i ∈ ω} be an L-indisernible sequene in
tp(~hE/C) suh that {~hiE : i ∈ ω} is independent over C. Then by the generalizeddensity property, we may assume that the sequene {~hiE : i ∈ ω} belongs to H .Note that by Lemma 2.7, the sequene {~hiE : i ∈ ω} is LH -indisernible over C.We will show that ∪i∈ωp(x,~hiE) is inonsistent.15



Assume, not, so there is a′ |= ∪i∈ωp(x,~hiE). Then we an �nd ~hDi
in H suhthat HB(a′/C) = ~hDi

~hiE . Sine the ~hiE are independent, we get that the HB basisof a′ over C is not unique, a ontradition.Case 4: Assume that a ∈ cl(HC), thatHB(a/D) = HB(a/C) and SU(a/CH) <
SU(a/DH).Let ~h = HB(a/D) = HB(a/C), so SU(a/C~h) < SU(a/D~h) and a 6 |⌣C~h

D.Write ~hD = H(D) \ H(C). Note that ~h is independent over D. Let p(x,~h,D) =

tp(a,~h,D) and let {Di : i ∈ ω} be an L-Morley sequene in tp(D/C~h) suhthat {p(x,~h,Di) : i ∈ ω} is k-inonsistent. Let ~hDi
be suh that tp(D,~hD) =

tp(Di,~hDi
), then {~hDi

: i ∈ ω} is a L-Morley sequene in tp(~hD/C~h). By thedensity property, we may hoose the elements in H . By the extension property,we an realize tp((Di : i ∈ ω)/C ∪i∈ω ~hDi
) independent from H over C ∪i∈ω

~hDi
. Then tp(D,~hD/C~h) = tp(Di,~hDi

/C~h) so by Lemma 2.7, tpH(D,~hD/C~h) =

tpH(Di,~hDi
/C~h) so we get that {Di : i ∈ ω} is a sequene in tpH(D/C~h) suhthat {p(x,~h,Di) : i ∈ ω} is k-inonsistent. Using Erdö-Rado, we an hange

{Di : i ∈ ω} for an indisernible sequene in tpH(D/C~h) with the property that
{p(x,~h,Di) : i ∈ ω} is k-inonsistent. This proves that tpH(a/D~h) divides over
C~h. But sine ~h ∈ aclH(Ca) we also get that tpH(a/D) divides over C.

�Corollary 5.3. Let (M,H) |= T ind be saturated, let C ⊂ D ⊂ M be suh that Cand D are H-independent and let a1, . . . , an ∈ M . We may reorder the tuple andassume that there is k ≤ n suh that a1, . . . , ak are independent generis over CHand ak+1, . . . , an ∈ cl(a1, . . . , ak, C,H). Then tpH(a1, . . . , an/D) forks over C i�(1) dimcl(a1, . . . , an/ cl(HD)) < dimcl(a1, . . . , an/ cl(HD)) or(2) dimcl(a1, . . . , an/ cl(HD)) = dimcl(a1, . . . , an/ cl(HD)) and HB(a1, . . . , an/C) )

HB(a1, . . . , an/D) or,(3) dimcl(a1, . . . , an/ cl(HD)) = dimcl(a1, . . . , an/ cl(HD)), HB(a1, . . . , an/C) =
HB(a1, . . . , an/D) and
SU(ak+1, . . . , an/a1, . . . , akCH) > SU(ak+1, . . . , an/a1, . . . , akDH).Proof. The proof is by indution on n. For n = 1 the result follows from Proposition5.2 notiing that the arguments in the proposition work with the weaker assumptionthat the base sets C,D are H-independent sets.Assume the result holds for n and onsider a1, . . . , an+1 ∈M .Assume that tp(a1, . . . , an/D) forks over C or that tp(an+1/a1, . . . , anD) forksover a1, . . . , anC. We apply the indution hypothesis and Proposition 5.2.If dimcl(a1, . . . , an/HD) < dimcl(a1, . . . , an/HC) or if dimcl(an+1/a1, . . . , anHD) <

dimcl(an+1/a1, . . . , anHC), then dimcl(a1, . . . , an+1/HD) < dimcl(a1, . . . , an+1/HC)as we wanted.Assume now that dimcl(a1, . . . , an/HC) = dimcl(a1, . . . , an/HD) and that
dimcl(a1, . . . , an+1/HC) = dimcl(a1, . . . , an+1/HD).If HB(a1, . . . , an/C) ) HB(a1, . . . , an/D), then there is h ∈ HB(a1, . . . , an/C)with h ∈ D. If an+1 |⌣HDa1, . . . , an, thenHB(a1, . . . , an+1/D) = HB(a1, . . . , an/D)and HB(a1, . . . , an+1/C) = HB(a1, . . . , an/C).So HB(a1, . . . , an+1/C) ) HB(a1, . . . , an+1/D) as needed.16



If an+1 ∈ cl(HDa1, . . . , an) then by the ondition on dimcl we must also havethat an+1 ∈ cl(HCa1, . . . , an) and thus
HB(an+1/Da1, . . . , an) ⊂ HB(an+1/Ca1, . . . , an).Thus we get again HB(a1, . . . , an+1/D) ( HB(a1, . . . , an+1/D).If HB(a1, . . . , an/C) = HB(a1, . . . , an/D) and
HB(an+1/Da1, . . . , an) ( HB(an+1/Ca1, . . . , an)then there is h ∈ HB(an+1/Ca1, . . . , an) with h ∈ D. Then HB(a1, . . . , an+1/C) (

HB(a1, . . . , an+1/D).Assume now that dimcl(a1, . . . , an+1/ cl(HD)) = dimcl(a1, . . . , an+1/ cl(HD)),
HB(a1, . . . , an+1/C) = HB(a1, . . . , an+1/D).Case 1. SU(ak+1, . . . , an/a1, . . . , akCH) > SU(ak+1, . . . , an/a1, . . . , akDH).Then if an+1 ∈ cl(a1, . . . , ak, C,H) we also get by additivity of SU -rank that
SU(ak+1, . . . , an+1/a1, . . . , akCH) > SU(ak+1, . . . , an+1/a1, . . . , akDH) as desired.If an+1 6∈ cl(a1, . . . , ak, C,H), then by the assumptions on dimcl we also have
an+1 6∈ cl(a1, . . . , ak, D,H) and tp(an+1/DHa1, . . . , ak) is orthogonal to

tp(ak+1, . . . , an/DHa1, . . . , ak)and
SU(ak+1, . . . , an/a1, . . . , akan+1CH) > SU(ak+1, . . . , an/a1, . . . , akan+1DH),as desired.Case 2. SU(ak+1, . . . , an/a1, . . . , akCH) = SU(ak+1, . . . , an/a1, . . . , akDH) and

SU(an+1/a1 . . . , anCH) > SU(an+1/a1 . . . , anDH). Then by additivity of SU -rank we have SU(ak+1, . . . , an+1/a1, . . . , akCH) > SU(ak+1, . . . , an+1/a1, . . . , akDH)as desired.The other diretion is proved in a similar way. �We use the above result to give a di�erent perspetive on H-basis.Lemma 5.4. Let (M,H(M)) be an H-struture. Let ~a = (a1, . . . , an) ∈ M andlet C ⊂ M be suh that C is H-independent. Let ~h be a minimal tuple suh that
dimcl(~a/C~h) = dimcl(~a/CH), then ~h = HB(~a/C).Proof. Write ~a = ~a1~a2, where ~a1 are independent generis over CH and ~a2 ∈
cl(~a1CH). Choose ~h minimal so that ~a2 ∈ cl(~a1C~h). Then ~a1 are independentgeneris over CH and SU(~a2/~a1C~h) < ω. Then tp(~a1/C) is independent from Hand tp(~a2/~a1C~h) is orthogonal to H . We get ~a |⌣C~h

H and HB(~a/C) ⊂ ~h. For theother diretion, ~a |⌣CHB(~a/C)
H implies that dimcl(~a/CHB(~a/C)) = dimcl(~a/CH)and by minimality of ~h we get HB(~a/C) ⊂ ~h. �We are interested in haraterizing anonial bases. We start with the followingresult whih holds also in the geometri setting:Lemma 5.5. Let (M,H) be a su�iently saturated H-struture of T , B ⊂ M an

H-independent set, and ~a ∈M , h = HB(~a/B) (viewed as an imaginary represent-ing a �nite set). Suppose e ∈ acleq(B) (in the original theory) is suh that ~ah |⌣e
B.Then ~a |⌣

ind

e
B. 17



Proof. We may assume that ~a = ~a1~a2, where ~a1 are generis over B ∪ H(M),
~a2 ∈ cl(H(M)B~a1). Note that ~a2 ∈ cl(~a1Bh), so ~ah |⌣e

B implies that ~a2 ∈

cl(~a1eh), SU(tp(~a2/B~a1h)) = SU(tp(~a2/e~a1h)) and also HB(~a/B) = HB(~a/e).Sine HB(~a/B) = HB(~a/e) and ~ah |⌣e
B by our haraterization of forking in

T ind we get ~a |⌣
ind

e
B. �Finally, the following result on anonial bases an be proved doing very smallmodi�ations to the argument presented in [5℄:Proposition 5.6. Let (M,H) be a su�iently saturated H-struture of T , B ⊂Man H-independent set, and ~a ∈ M . Then CbH(~a/B) and Cb(~aHB(~a/B)/B)) areinteralgebrai.Proof. Let e = Cb(~aHB(~a/B)/B)). We saw in the previous lemma that ~a |⌣

ind

e
Band thus CbH(~a/B) ∈ acleq(e).We will now prove that e is in the algebrai losure of any Morley sequene in

stpH(~a/B).Let {~ai : i < ω} be an LH -Morley sequene in tpH(~a/ acleqH (B)). Let hj =
HB(~aj/B) (viewed as an imaginary representing a �nite set), so we have hj ∈
dclH(~ajB). Thus {~aihi : i < ω} is also an LH -Morley sequene overB. This implies
hj = HB(~aj/B~a<jh<j). We an write ~aj = ~aj1~aj2 and hene by our harateriza-tion of forking in T eq we have that ~aj1hj is an independent tuple of L generis over
B~a<jh<j) and SU(~aj2/B~a<jh<j~aj1hj) = SU(~aj2/B~aj1hj). Then it follows that
tp(~ajhj/B~a<jh<j) does not fork (in the sense of L) over B. Thus, {~aihi : i < ω}is also an L-Morley sequene over B in tp(~ah/B). Sine tp(~a0h0/{~aihi : 0 <
i < ω}B) is a free extension of tp(~a0h0/{~aihi : 0 < i < ω}) we also get that
e = Cb(~a0h0/{~aihi : 0 < i < ω}). It follows that e ∈ acleq({~aihi : i < ω}).Sine T ind is supersimple there is N ∈ ω suh that for all n ≥ N , ~an |⌣

ind

~a<N
B.By Proposition 4.7 aclH(~a<N ) is H-independent. By our haraterization of non-forking, HB(~an/B) = HB(~an/B~a<N) = HB(~an/ aclH(~a<N )) and in partiular

hn ∈ aclH(~ai : i < ω) for every n ≥ N . We then get e ∈ acleqH ({~ai : N ≤ i < ω}).Now, sine {~ai : i < ω} is a Morley sequene in tpH(~a/ acleqH (B)), we have
{~ai : N ≤ i < ω}

ind

|⌣
CbH(~a/B)

B,and thus also
{~ai : N ≤ i < ω}

ind

|⌣
CbH(~a/B)

e.It follows that e ∈ acleqH (CbH(~a/B)), as needed. �6. AmplenessIn this setion we examine the relation between the ampleness of T and T ind.In [4℄ it is shown an example of an one-based geometri theory T suh that T ind isnot one-based. We follow the ideas on [7℄ to understand exatly when one-based ispreserved and to show that non 2-ampleness is also preserved. In this setion wewill assume that T eliminates imaginaries.18



Remark 6.1. If T eliminates imaginaries then anonial bases are interalgebraiwith real tuples. By Proposition 5.6 anonial bases in T ind are also interalgebraiwith real tuples. Hene T ind has geometri elimination of imaginaries.Example 6.2. Let G be an one-based stable group of U -rank ω and T = Th(G).Notie that T ind is again a stable theory so (M,H) is a stable group but learly His not a boolean ombination of osets of subgroups, so T ind is not one-based.De�nition 6.3. A pregeometry (X, cl) is trivial if for every A ⊂ X , cl(A) =⋃
a∈A cl(a) .Notie that if G is a group of U -rank ω then cl is not trivial (take a |⌣ b both ofrank ω and c = a+ b, then c ∈ cl(a, b) \ cl(a) ∪ cl(b)).Remark 6.4. In the theory of the free pseudoplane (see example 3.2 ) the prege-ometry generated by cl is trivial: for A algebraially losed and a a single element,

U(a/A) = d(a,A) where d(a,A) is the minimum length of a path from a to anelement of A (or ω if there is no path). If b ∈ cl(A) it means that there is a pathto some element a ∈ A so cl(A) =
⋃
a∈A cl(a).We will now prove that one-basedness is only preserved in T ind when the prege-ometry cl is trivial. It is worth to notie that, unlike the U -rank 1 ase, the trivialityof cl does not imply that T is one-based. In fat, the theory of the free pseudoplaneis the anonial example of a CM-trivial theory whih is not one-based. This is thereason why the statement of the following proposition is a little bit di�erent from[7℄.Lemma 6.5. If cl is trivial in T then for every ~a and for every B = aclH(B),

HB(~a/B) ⊂ HB(~a).Proof. Let h = HB(~a/B) = {hi|i ∈ I}. By minimality of H-bases for every i ∈ I
~a 6 |⌣Bh\hi

hi, then hi ∈ cl(~aBh \ hi). As B is H-independent and hi /∈ B then
hi |⌣Bh \ hi, hene hi /∈ cl(Bh \ hi). By triviality it means that hi ∈ cl(ai)for some ai ∈ ~a. By exhange property ai ∈ cl(hi), this implies ai 6 |⌣ hi and
ai |⌣hi

H beause tp(ai/hi) is orthogonal to H . We onlude that hi = HB(ai)and HB(~a/B) = {hi|i ∈ I} =
⋃
ai∈A

HB(ai) ⊂ HB(~a). �Proposition 6.6. Assume T is one-based, then T ind is one-based if and only if clis trivial in T .Proof of Proposition 6.6. (⇐) Assume cl is trivial, let ~a be a tuple, B an algebrailosed set in (M,H) and ~h = HB(~a/B). By the haraterization of anonial bases,
aclH(cbH(~a/B)) = aclH(cb(~a~h/B)), as T is one-based, cb(~a~h/B) ⊂ acl(~a~h). By theprevious lemma, ~h ⊂ HB(~a) then cbH(~a/B) ⊂ aclH(~aHB(~a)) = aclH(~a), i.e. T indis one-based.(⇒) Assume T ind is one-based and cl is not trivial, then there are a tuple ~aand elements b and h suh that b ∈ cl(~ah) and b /∈ cl(~a) ∪ cl(h). We an take ~a
cl independent tuple minimal with this property and, by the generalized extensionproperty, we may assume that ~a |⌣H . Moreover, as h /∈ cl(~a), we may assume alsothat h belongs to H by the generalized density property.As b ∈ cl(~ah) and ~ah is H-independent, tp(b/~ah) is orthogonal to H , i.e.
b |⌣h~a

H . Reall that b 6 |⌣~a
h and h is a single element, then h = HB(b/~a). By19



hypothesis T ind is one-based, then aclH(cbH(b/~a)) = aclH(b) ∩ aclH(~a). Now,
aclH(~a) = acl(~a) as ~a |⌣H . On the other hand, as ~a |⌣H , and b |⌣h~a

H we have
b |⌣
h

H . By hypothesis b /∈ cl(h), hene b |⌣ h (reall that b is a single element)and by transitivity b |⌣H . So HB(b) = ∅ and aclH(b) = acl(b). This means
aclH(cbH(b/~a)) = acl(b) ∩ acl(~a).Reall that aclH(cbH(b/~a)) = aclH(cb(bh/~a)). So a maximal cl-independentsubset ~d of cb(bh/~a) satis�es that b ∈ cl(~dh) and b /∈ cl(~d) ∪ cl(h). The minimalityof the length of ~a yields cl(cb(bh/~a)) = cl(~a), hene cl(~a) = cl(acl(a) ∩ acl(b)) ⊂
cl(~a) ∩ cl(b), then ~a ∈ cl(b) and h ∈ cl(~ab) ⊂ cl(b). This is a ontradition. �The notion of ampleness, de�ned by Pillay, aptures forking omplexity. Heproved in [13℄ that a theory T is one-based if and only if is not 1-ample, a theory
T is CM-trivial if and only if is not 2-ample. Moreover if T interprets a �eld thenit is n-ample for every n.De�nition 6.7. A supersimple theory T is CM-trivial if for every tuple c and forevery A ⊂ B, if acleq(cA) ∩ acleq(B) = acleq(A) then cb(c/A) ⊂ acleq(cb(c/B))De�nition 6.8. A supersimple theory T is n-ample if (possibly after naming someparameters) there exist tuples a0, ..., an in M eq satisfying the following onditions:For all 1 ≤ i ≤ n− 1.(1) ai+1 |⌣

ai

ai−1...a0,(2) acleq(a0...ai−1ai+1) ∩ acleq(a0...ai−1ai) = acleq(a0...ai−1).(3) an 6 |⌣
acleq(a1)∩acleq(a0)

a0.Following [7℄ we prove that CM-triviality is preserved in T ind. First we need thefollowing lemma.Lemma 6.9. Let A ⊂ B, A = aclH(A) y B = aclH(B). If aclH(cA) ∩B = A then
HB(c/A) ⊂ HB(c/B).Proof. It is lear that

HB(cA) ⊂ HB(cB).By transitivity
HB(cA) = HB(c/A) ∪HB(A),and the same with HB(cB), hene

HB(c/A) ∪HB(A) ⊂ HB(c/B) ∪HB(B),in partiular HB(c/A) ⊂ HB(c/B) ∪HB(B).Now, if HB(c/A) ∩H(B) = ∅ we are done, but
HB(c/A) ∩HB(B) ⊂ aclH(cA) ∩B = Aand HB(c/A) ∩A = ∅. �Proposition 6.10. Let T be a SU -rank ω theory eliminating imaginaries, then Tis CM-trivial if and only if T ind is CM-trivial.20



Proof. Assume T is 2-ample. Let a0, a1, a2 be tuples suh that:(1) a2 |⌣
a1

a0,(2) acl(a0a2) ∩ acl(a0a1) = acl(a0),(3) a2 6 |⌣
acl(a1)∩acl(a0)

a0.By the generalized extension property, there are a′0, a′1, a′2 suh that tp(a′0a′1a′2) =
tp(a0a1a2) and a′0a′1a′2 |⌣H .As the H-bases of any subset of {a′0a′1a′2} are empty, the algebrai losure in
T ind of any of these sets is the same as in T . So ondition (2) holds in T ind.By the haraterization of anonial bases, sine H-bases are empty then ondi-tion (1) holds also in T ind. But if

a′2
H

|⌣
aclH(a′

1
)∩aclH(a′

0
)

a′0then
a′2 |⌣

acl(a′
1
)∩acl(a′

0
)

a′0.This is a ontradition.Assume T is not 2-ample, so it is CM-trivial. Let us see that T ind is CM -trivial.Let c be a tuple and A ⊂ B be algebraially losed sets (in T ind) suh that
aclH(cA) ∩ B = A. De�ne h = HB(c/A), h′ = HB(c/B) and c′ = ch. ByProposition 5.6 we have aclH(cbH(c/A)) = aclH(cb(ch/A)) and by Lemma 6.9 h ⊂
h′. Note that acl(c′A) ∩ acl(B) = acl(A) beause acl(c′A) ⊂ aclH(cA), A = acl(A)and B = acl(B). So, by CM-triviality of T , cb(c′/A) ⊂ acl(cb(c′/B)). Reall that
c′ = ch. Hene

aclH(cbH(c/A)) = aclH(cb(ch/A))

⊂ aclH(cb(ch/B))

⊂ aclH(cb(ch′/B))

= aclH(cbH(c/B)).

�We an adapt the previous proof in order to prove that if T ind is n-ample then Tis n-ample for every n. In [7℄ the onverse has been proved for SU-rank 1 theorieswith a prediate, but we ould not adapt that proof to this ontext.7. Geometry modulo H in the one-based aseIn this setion we onsider the ase when T is one-based, and follow the proofsof Theorem 5.13 [15℄ and the results of Setion 6 of [15℄, and Setion 4 of [4℄, tostudy the geometry indued by cl loalized at H(M). Many of the proofs are nearlyidential to the ones from [15℄ and [4℄, we inlude them for ompleteness.Let (M,H) be a su�iently saturated model of T ind. Let clH be the loalizationof the operator cl at H(M), i.e. clH(A) = cl(A ∪H(M)). Thus, a ∈ clH(B) means
SU(a/B ∪H(M)) < ω.Proposition 7.1. Suppose T is one-based. Then the pregeometry (M, clH) is mod-ular. 21



Proof. It su�es to show that for any a, b ∈ M and a small set C ⊂ M , if
a ∈ clH(bC) then there exists d ∈ clH(C) suh that a ∈ clH(bd). We may as-sume that a, b 6∈ clH(C). Let ~h ∈ H(M) be �nite suh that a ∈ cl(bC~h). Let
e = Cb(ab/C~h). Thus, by one-basedness of T , e ∈ acleq(ab) ∩ acleq(C~h). Bythe density property, there is b′ |= tp(b/ acleq(C~h)), b′ ∈ H(M). Take a′ ∈ Msuh that tp(a′b′/ acleq(C~h)) = tp(ab/ acleq(C~h)). Then e ∈ acleq(a′b′). Clearly,
a′ ∈ cl(b′C~h) ⊂ clH(C). Also, ab |⌣e

C~h implies SU(a/be) = SU(a/bC~h) < ω.Sine e ∈ acleq(a′b′), we have SU(a/ba′b′) ≤ SU(a/be) < ω. Sine b′ ∈ H(M), thisimplies a ∈ clH(ba′). Hene, taking d = a′, we have d ∈ clH(C) and a ∈ clH(bd),as needed. �Let (M∗, cl∗) be the geometry assoiated with (M, clH) (i.e. M∗ is the set
M\ clH(∅) modulo the relation clH(x) = clH(y)) . For any a 6∈ clH(∅), let a∗ bethe lass of a modulo the relation clH(x) = clH(y). De�ne the relation ∼ by

a∗ ∼ b∗ ⇐⇒ | cl∗(a∗, b∗)| ≥ 3 or a∗ = b∗.Lemma 7.2. For any a, b ∈ M , a∗ ∼ b∗ if and only if there exist d1, . . . , dn ∈ Msuh that
a∗ ∈ cl∗(b∗d∗1 . . . d

∗
n)\ cl∗(d∗1 . . . d

∗
n).Proof. The "only if" diretion is lear. For the "if" diretion, suppose a∗ 6= b∗ and

a∗ ∈ cl∗(b∗d∗1 . . . d
∗
n)\ cl∗(d∗1 . . . d

∗
n). We may assume that n ≥ 1 is minimal suh.Then a ∈ cl∗(bd1 . . . dnh1 . . . hk) for some h1, . . . , hk ∈ H(M). We may assume that

k is minimal suh. Then the tuple abd2 . . . dnh1 . . . hk is cl-independent. By thedensity property, we an �nd d′2, . . . , d
′
n ∈ H(M) suh that tp(d′2, . . . , d

′
n/ab

~h) =

tp(d2, . . . , dn/ab~h). Let d′1 ∈M be suh that
tp(d′1, d

′
2, . . . , d

′
n/ab

~h) = tp(d1, d2, . . . , dn/ab~h).Then d′1 6∈ clH(∅) and (d′1)
∗ ∈ cl∗(a∗, b∗), while (d′1)

∗ 6= a∗, b∗. Thus, | cl∗(a∗, b∗)| ≥
3, as needed.

�Lemma 7.3. The relation ∼ is an equivalene on M∗.Proof. Re�exivity and symmetry are lear. For transitivity, assume a∗ ∼ b∗ ∼
c∗, with all three distint. Then there exist d∗1 ∈ cl∗(a∗b∗)\{a∗, b∗} and d∗2 ∈
cl∗(b∗, c∗)\{b∗, c∗}. If d∗1 = d∗2, then c∗ ∈ cl∗(b∗, d∗2) = cl∗(b∗, d∗1) = cl∗(a∗, d∗1), andtherefore d∗1 = d∗2 ∈ cl∗(a∗, c∗)\{a∗, c∗}, hene a∗ ∼ c∗.Now, assume that d∗1 6= d∗2 and a∗ ∈ cl∗(d∗1, d

∗
2). If a∗ = d∗2, then b∗ witnesses

a∗ ∼ c∗. If a∗ 6= d∗2, then d∗2 ∈ cl∗(a∗, d∗1). We also have b∗ ∈ cl∗(a∗, d∗1), c∗ ∈
cl∗(b∗, d∗2). Thus, c∗ ∈ cl∗(a∗, d∗1). If c∗ = d∗1, b∗ witnesses a∗ ∼ c∗. If c∗ 6= d∗1, then
d∗1 witnesses a∗ ∼ c∗. Finally, assume that d∗1 6= d∗2 and neither a∗ 6∈ cl∗(d∗1, d

∗
2).Then

a∗ ∈ cl∗(c∗d1d
∗
2)\ cl∗(d∗1d

∗
2).Thus, by Lemma 7.2, a∗ ∼ c∗.

�For any a∗ ∈M∗ let [a∗] denote the ∼-lass of a∗.22



Lemma 7.4. The ∼-lasses are losed in the sense of cl∗, i.e. for any a∗ ∈ M∗,we have cl∗([a∗]) = [a∗].Proof. Assume c∗ ∈ cl∗(b∗1, . . . , b
∗
n), ~b∗ = (b∗1, . . . , b

∗
n) ∈ [a∗] minimal suh tuple, and

n > 1 (if n = 1, we have c∗ = b∗1). Then b∗1 . . . b∗n−1 witnesses c∗ ∼ b∗n, by Lemma7.2. �For any geometry (X,Cl), a non-empty subset of X , with the losure operatorindued by Cl, is referred to as a subgeometry of (X,Cl). Clearly, a subgeome-try is itself a geometry. Next lemma shows that ∼ splits (M∗, cl∗) into disjointsubgeometries of the form ([a∗], cl∗), with no "interation" between them.Lemma 7.5. For any A ⊂M∗, cl∗(A) =
⋃

[a∗]∈M∗/∼ cl∗(A ∩ [a∗]).Proof. Suppose c∗ ∈ cl∗(A), and a∗1, . . . , a∗n ∈ A is a tuple suh that c ∈ cl∗(a∗1, . . . , a
∗
n),and n is minimal suh. It su�es to show that a∗i all ome from the same ∼-lass.If n = 1, we are done. Suppose n > 1. Then c∗a∗3 . . . a

∗
n witnesses a∗1 ∼ a∗2 byLemma 7.2. Similarly, a∗1 ∼ a∗i for all 2 < i ≤ n. Thus, all a∗i belong to the same

∼-lass. �Next, we will show that the ∼-lasses are either singletons or in�nite dimensional(as geometries).Lemma 7.6. If |[a∗]| > 1, then dim([a∗]) is in�nite.Proof. Suppose there exists b∗ ∼ a∗, b∗ 6= a∗. Let c∗ ∈ cl∗(a∗, b∗)\{a∗, b∗}. Let
a, b, c ∈ M be representatives of the lasses a∗, b∗ and c∗ modulo the relation
clH(x) = clH(y), respetively.Then SU(a/H(M)) = SU(b/aH(M)) = ω. By the extension property, wean �nd bi |= tp(b/a), i ∈ ω, independent over aH(M). Then, by Lemma 2.7,
tpH(bi/a) = tpH(b/a) for all i ∈ ω. Also, bi are clH -independent over a. Let ci besuh that tpH(bici/a) = tpH(bc/a) for i ∈ ω. Passing to the geometry (M∗, cl∗),we get b∗i ∼ a∗ witnessed by c∗i , i ∈ ω, with bi cl∗-independent over a∗. This showsthat that ([a∗], cl∗) is in�nite dimensional. �Reall the following lassial fat (see [11℄) about projetive geometries.Fat 7.7. A non-trivial modular geometry of dimension ≥ 4 in whih any losedset of dimension 2 has size ≥ 3 is a projetive geometry over some division ring.Lemma 7.8. If T is one-based and |[a∗]| > 1 , the geometry ([a∗], cl) is an in�nitedimensional projetive geometry over some division ring.Proof. By Proposition 7.1, (M∗, cl∗) is modular. By Lemma 7.5, [a∗] is losed in
(M∗, cl∗), and hene ([a∗], cl∗) is also modular. Sine |[a∗]| > 1, ([a∗], cl∗) is non-trivial (there are two distint point having a third one in its losure). Thus, thestatement follows by Fat 7.7 and the de�nition of ∼. �We are now ready to prove the haraterization of the geometry of clH , as wellas the original geometry of cl in the ase when T is one-based.Proposition 7.9. Suppose T is a one-based supersimple theory of SU-rank ω,
(N,H) a su�iently (e.g. |T |+-) saturated models of T ind, and M a small modelof T (e.g. of size |T |). Then 23



(1) The geometry (N∗, cl∗) of clH in (N,H) is a disjoint union of in�nite dimen-sional projetive geometries over division rings and/or a trivial geometry.(2) The geometry of the losure operator cl inM is a disjoint union of subgeometriesof projetive geometries over division rings.Proof. (1) Follows by Lemmas 7.5, 7.6 and 7.8.(2) By Lemma 2.6, any struture of the form (M,H) where M |= T , and H(M) isan independent set of generis, an be embedded, in an H-independent way, in asu�iently saturated H-struture. Thus we may assume that (M, ∅) ⊂ (N,H) with
M |⌣∅

H(N). Then cl-independene over ∅ in M oinides with cl-independene in
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