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ABSTRACT 
Static deflection and free nonlinear vibrations of thin 

square plate made of biological material are investigated. The 
involved physical nonlinearity is described through Neo-
Hookean, Mooney-Rivlin and Ogden hyperelastic laws; 
geometrical nonlinearity is modeled by Novozhilov nonlinear 
shell theory. The problem is solved by sequentially constructing 
the local models that describe the behavior of plate in the vicinity 
of a certain static configuration. These models are the systems of 
ordinary differential equations with quadratic and cubic 
nonlinear terms in displacement, which allows application of 
techniques used in analysis of thin-walled structures of 
physically linear materials. The comparison of static and 
dynamic results obtained with different material models is 
carried out. 

 

INTRODUCTION 
 Dynamic properties of structures made of materials that are 
not linearly elastic are poorly understood. They are currently 
being investigated in many research areas and increasingly used 
in engineering, more specifically in biomedical engineering, 
because they can model the mechanical properties of real soft 
tissues.  
 Most of studies on shell-type structures of hyperelastic 
materials involve using finite elements approach [1, 2], which 
requires large number of degrees of freedom. This significantly 
complicates the investigation of the dynamics. Another widely 
used simplification is the assumption of known simple shape of 
the structure after deformation (see, for example, [3, 4]). 
However, this assumption also is valid mostly in static problems. 

 

 Another approach, that does not have the drawbacks of the 
above-mentioned ones, is used in this study. The approach 
consists in the meshless approximation of the deformed shape by 
truncated series of eigenmodes with the convergence study of the 
series. Such approach is frequently employed in problems of 
shells made of linear materials and also was applied to solve 
problems of hyperelastic plates [5, 6] and membranes [7-9]. Also 
it was used in the problem with another type of physical 
nonlinearity [10].  
 The present study uses a general methodology dedicated to 
exploration of the statics as well as the dynamics of a square plate 
made of biomaterial. The material nonlinearity is captured by 
Neo-Hookean, Mooney-Rivlin and Ogden hyperelastic laws in 
order to reproduce a key structural feature of biological materials 
that is a sharp increase in stiffness above a strain threshold. The 
geometrical nonlinearity induced by large displacements is also 
accounted for through Novozhilov’s plate theory. The results 
obtained with different material models are compared. 

GEOMETRICAL AND PHYSICAL PARAMETERS OF 
THE PROBLEM  

A square plate made of biomaterial is considered. It is 
defined on the following domain: 

 

𝑉 = {𝑥 ∈ [0, 𝑎]; 𝑦 ∈ [0, 𝑏]; 𝑧 ∈ [
−ℎ

2
,

ℎ

2
]} , 

 
with a = 0.1 m, b = 0.1 m, h = 0.0005 m.  

We aimed to model only the key feature of soft biological 
tissues, i.e., a sharp increase in stiffness after a given strain 
threshold is reached. The experimental data for the adventitia of 
human aorta from [11] were approximated by Neo-Hookean, 



Mooney-Rivlin and Ogden hyperelastic laws. Also, linear 
material model is used. The strain energy densities for these laws 
are given in Tab. 1. 
 

Table 1. STRAIN ENERGY DENCITIES FOR 
DIFFERENT MATERIAL MODELS. 

 
Neo-Hookean [12, 13] 𝑊 =

𝐸

6
(𝐼1 − 3)    

(1) 

Mooney-Rivlin [12, 
13] 

𝑊 =
𝜇1

2
(𝐼1 − 3) +

𝜇2

2
(𝐼2 − 3)      

(2) 

Ogden [12] 𝑊 = ∑
𝜇𝑖

𝛼𝑖

(𝜆1
𝛼𝑖 + 𝜆2

𝛼𝑖 + 𝜆3
𝛼𝑖 − 3)

𝑁𝑇
𝑖=1  (3) 

Plate of linear material 
[5, 14] 

𝑊 =
𝐸

6
(4(𝜀1

2 + 𝜀2
2 + 𝜀1 𝜀2 ) +

𝜀12
2 ) (4) 

 
In Tab. 1, 𝐼1 is the first invariant of the right Cauchy-Green 

deformation tensor C; E is the Young’s modulus of the plate's 
material; 𝐼2 stands for the second invariant of the right Cauchy-
Green deformation tensor; 𝜆1, 𝜆2, 𝜆3 are the principal stretches of 
the plate; 𝜀𝑖, are the components of the Green-Lagrange strain 
tensor for thin plates. 

The parameters of the models (1-4) 𝐸, 𝜇𝑖 , 𝛼𝑖  are fitted to 
experimental data by least-squares method. The stress-strain 
diagram and experimental points for uniaxial tension for material 
under consideration are shown in Fig. 1. 

 

 
Figure 1. STRESS-STRAIN CURVES AND 
EXPERIMENTAL POINTS FOR UNIAXIAL TENSION 
OF BIOMATERIAL.  
 
 

Table 2. BIOMATERIAL PARAMETERS OF 
HYPERELASTIC LAWS. 

 
Neo-Hookean 𝐸 = 59383.2 Pa 
Mooney-Rivlin 𝜇1 = 25829.8 Pa,  𝜇2 = −6035.4 Pa 

Ogden 

𝜇1 = 466515161.8 Pa,  
 𝜇2 = 2.49 ∗ 10−9Pa, 

 𝜇3 = −1115907998.2 Pa,  
𝜇4

= 649412722.6 Pa, 
𝛼1 = 7.385, 𝛼2 = 84.402, 

 𝛼3 = 7.365, 𝛼4 = 7.35 
 

CONSTITUTIVE RELATIONS  
The Lagrange equations are used to describe the dynamic 

behavior of the plate. The potential and kinetic energies are given 
by the formulas [14]:  

 

𝛱 = ∭ 𝑊𝑑𝑉
𝑉

 ,   (5) 
 

𝑇 =
𝜌ℎ

2
∬ (�̇�2 + �̇�2 + �̇�2)𝑑𝑆,

𝑆
  (6) 

 
where V is the volume of the plate, S is the surface of the middle 
plane of the plate, ρ is the mass-density of the plate material, h is 
the thickness of the plate and u, v, w are the displacements along 
the axes of the rectangular coordinate system x, y, z, respectively. 
The dot stands for differentiation with respect to time.  

The geometrical nonlinearity is described by Novozhilov 
strain-displacement relationships [14]: 

 

𝜀1 = 𝑢𝑥 +
1

2
(𝑤𝑥

2 + 𝑢𝑥
2 + 𝑣𝑥

2) − 𝑧𝑤𝑥𝑥; 

 
𝜀2 = 𝑣𝑦 +

1

2
(𝑤𝑦

2 + 𝑢𝑦
2 + 𝑣𝑦

2) − 𝑧𝑤𝑦𝑦;      (7) 
 

𝜀12 = 𝑢𝑦 + 𝑣𝑥 + 𝑤𝑥 𝑤𝑦 + 𝑢𝑥 𝑢𝑦 + 𝑣𝑥 𝑣𝑦 − 2𝑧𝑤𝑥𝑦 . 
 
The right Cauchy-Green deformation tensor C is defined as 

[5, 6, 13]: 
 

𝑪 = (

2𝜀1 + 1 𝜀12 0
𝜀12 2𝜀2 + 1 0
0 0 2𝜀3 + 1

). (8) 

 
The principal stretches are the square roots of the 

eigenvalues of C and three invariants can be calculated 
according to known formulae: 

 



𝐼1 = 𝑇𝑟(𝑪), 𝐼2 =
1

2
(𝑇𝑟(𝑪)2 − 𝑇𝑟(𝐶2)),   𝐽2 = |𝑪|. 

 
However, the expression in terms of displacements for one 

strain component in Eqn. (8), namely for 𝜀3, is unknown. To 
obtain this expression the fact that soft biological tissues are 
incompressible [12, 13] is used. The incompressibility condition 
𝐽 = 1 yields 

 
𝜀3 =

1

2((2𝜀1+1)(2𝜀2+1)−𝜀12
2 )

−
1

2
. 

 
A so-called local models method is purposely developed for 

the problem of interest. It can be described as Newton-Raphson 
method with expanding at each step the non-polynomial strain 
energy densities Eqns. (1-3) into a truncated power series 
expressed in the strain components. In more details the method 
is described in [5].  

BOUNDARY CONDITIONS AND DISCRETIZATION 
The plate is simply supported with immovable edges, giving 

the following boundary conditions [14]: 
 

𝑤|𝜕𝛬 = 𝑀|𝜕𝛬 = 𝑢|𝜕𝛬 = 𝑣|𝜕𝛬 = 0, 
 

where 𝜕𝛬 denotes the boundary of the plate middle surface. The 
bending moment per unit length M [14] reads: 
 

𝑀 = −𝐷 (
𝜕2𝑤

𝜕𝒏2 + 𝜐
𝜕2𝑤

𝜕𝝉2 ), 
 

where n and τ are the outer normal and tangent directions to 𝜕𝛬, 
respectively. 

Since the boundary conditions are linear the linear 
combination of the eigenmodes also satisfies them, so there is no 
need in additional transformations [14, 15].  

In problem under considerations as  well as in certain close 
problems the eigenmodes of linear vibrations can be expressed 
in terms of trigonometric functions [14, 16]. The displacements 
are expanded into truncated series of eigenmodes [5, 14, 17]: 

 
    𝑤(𝑥, 𝑦, 𝑡) = 

  ∑ 𝑤2𝑛+1,2𝑚+1(𝑡)𝑠𝑖𝑛
(2𝑛 + 1)𝜋𝑥

𝑎
𝑛,𝑚∈𝑁

𝑠𝑖𝑛
(2𝑚 + 1)𝜋𝑦

𝑏
; 

 

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑢2𝑛,2𝑚+1(𝑡)𝑠𝑖𝑛
2𝑛𝜋𝑥

𝑎
𝑠𝑖𝑛

(2𝑚 + 1)𝜋𝑦

𝑏
;

𝑛,𝑚∈𝑁

 (9) 

 

𝑣(𝑥, 𝑦, 𝑡) = ∑ 𝑣2𝑛+1,2𝑚(𝑡)𝑠𝑖𝑛
(2𝑛 + 1)𝜋𝑥

𝑎
𝑛,𝑚∈𝑁

𝑠𝑖𝑛
2𝑚𝜋𝑦

𝑏
. 

The convergence study showed that model with four summands 
in each of the expressions (9) provides good approximation of 
the solution. 

STATIC BENDING OF A PLATE  
Attention is now paid to the static bending of the plate under 

uniformly distributed pressure. The pressure-deflection curves 
obtained with the exact method are depicted in Fig. 2. 

We can see that the Neo-Hookean and Mooney-Rivlin 
results are fairly similar, while the Ogden curve presents large 
differences at deflections higher than 80h (see Fig. 2). Ogden 
material becomes much stiffer at these deflections.  

 

 
Figure 2. PRESSURE LOAD VERSUS CENTRAL 
DEFLECTION FOR DIFFERENT HYPERELASTIC 
MODELS OF BIOMATERIAL.  

 

FREE VIBRATION OF A PLATE 
Free vibrations around different deformed configurations 

are investigated with the help of the harmonic balance method 
[18].  

Fig. 3 displays the dimensionless backbone curves for free 
vibrations around the first eigenfrequency of the pre-loaded plate 
for the three hyperelastic laws. For corresponding static 
configuration the principal bending coordinate 𝑤1,1 = 70ℎ. The 
comparison with the exact static solution shows that Neo-
Hookean and Mooney-Rivlin local models are accurate for 
deflection up to 10h, but Ogden model is limited to deflections 
not larger 3h only. 

The evolution of the backbone curve with initial static 
deflection is shown in Fig. 4. We can see that nonlinearity 
weakens with the growth of initial deflection. We can see that 
the curves in Figs. 4 b)-4 d) are non-symmetric with respect to 
the horizontal axis due to the pre-load of the plate. For bended 
plates the amplitudes inward are greater than the amplitudes 



outward [14]. In Fig. 4 curves for Neo-Hookean material are 
shown; other material models exhibit similar behavior.  

 

 
Figure 3. BACKBONE CURVES FOR FREE 
VIBRATIONS AROUND THE DEFORMED 
CONFIGURATION WITH 𝑤1,1 = 70ℎ FOR DIFFERENT 
HYPERELASTIC LAWS. NON-DIMENSIONAL 
FREQUENCIES, NORMALIZED WITH RESPECT TO 
THE FIRST NATURAL FREQUENCY OF THE 
DEFORMED PLATE, ARE SHOWN IN ABSCISSA.  
 
The nonlinearity is of softening type and is very weak for all 

material models. The Neo-Hookean and Mooney-Rivlin 
backbone curve are very close and show a softer behavior than 
the Ogden curve. 

 

CONCLUSIONS  
Static deflection and free vibration of plate made of 

biological material are explored with the purposely created 
method. It is found that Mooney-Rivlin and Neo-Hookean 
materials exhibit similar behaviors. Corresponding constitutive 
laws properly capture the behavior of the actual material at 
moderate strains. The best approximation is provided by Ogden's 
model. The latter correctly reproduces the behavior at high 
strains, including the sharp increase in stiffness. However, this 
increase in stiffness limits the range of vibrations amplitudes 
which can be targeted.  

It is also shown that the pre-loaded plate exhibits very weak 
dynamic nonlinearity, i.e. the frequencies of the oscillations 
around the deformed configuration are close to the associated 
eigenfrequencies. 

The sensitivity of the backbone curves to the initial 
deflection is also discussed. It is shown that the higher the initial 
deflection, the higher the range of amplitudes at which the 
backbone curve displays softening behavior. Also, the frequency 

shift between low- and large-amplitude vibrations weakens with 
an increase of the initial deflection. 

 

 
a)  

       
b) 

       
c) 

 
 

 
d) 

Figure 4. BACKBONE CURVES FOR PLATE 
VIBRATIONS IN THE VICINITY OF DIFFERENT 
DEFORMED CONFIGURATIONS; NEO-HOOKEAN 
MODEL. a) 𝑤1,1 = 0 (FLAT PLATE); b) 𝑤1,1 = 5ℎ; 
c) 𝑤1,1 = 30ℎ; d) 𝑤1,1 = 55ℎ. 
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