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a b s t r a c t

Based on the recent research concerning the PageRank Algorithm used in the famous search engine Google

[1], a new Inverse-PageRank-Particle Swarm Optimizer (I-PR-PSO) is presented in order to improve the per-

formances of classic PSO. The resulted algorithm uses a stochastic Markov chain model to define an intelligent

topological structure of the swarm’s population, in which the better particles have an important influence on

the others. In the presented experiments, calculations on some benchmark functions classically used to test

optimization methods are performed, and the results are compared to different versions of the standard PSO,

that is using different topological structures of the population. The experimental results show that I-PR-PSO

can converge quicker on the tested functions, and can find better results in the solution domain than its tested

peers.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction, state of the art

For decades, the field of optimization has been explored as an ac-

ive research area. An unconstrained optimization problem can be

ormulated as D-dimensional minimization problems as follow

Min f (�x) �x = (x1, x2, x3, . . . , xD) (1)

here D is the number of design variables to be optimized, that is

he dimension of the problem, and f is the objective function to min-

mize. The past few years saw the development of many different

ptimization techniques. The population-based metaheuristic meth-

ds have been demonstrated and defined as very useful and efficient,

ven though there is not any mathematical evidence of their conver-

ence to the global optimum. In fact, those methods consider a pop-

lation of solutions instead of a single one. Using some stochastic pa-

ameters, they can converge efficiently to the global optimum. They

re generally inspired by physical or biological phenomena, such as

he Ant Colony Optimization [2] which draws its inspiration from the

oraging behavior of some ant species, the evolutionary algorithms

3–5] which mimic the process of natural evolution, using processes

uch as inheritance, mutation, selection and crossover. The Particle

warm Optimization Algorithm (PSO) comes from the observation

f some flocks of birds by Reynolds [6] in 1987, and has been de-

eloped by Kennedy and Eberhart [7] in 1995. Understanding how

he birds can achieve their complex and optimal movement, a new

ptimization method which uses a swarm of potential solutions has

een proposed. Because of stochastic parameters, these solutions can
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ollow the best particles and converge together to the global opti-

um of the considered objective function. Lately, lots of different im-

rovements of PSO concerning the population’s topology have been

resented in the literature [8–18]. The population’s topology defines

ow the particles are structured, thus defines the influence they have

n each others. The first population’s topology proposed in the lit-

rature is statical. Therefore, each particle is always influenced by

he same other particles all along the calculation. For example, Eber-

art and Kennedy [9] have developed the well known LBEST1 and

BEST2 topologies. In the classical GBEST population topology, the

ntire population is treated as the individual’s neighborhood [19].

ventually, the particles are influenced by the global best one, as

ne can see in Fig. 1. In the local LBEST version, the particles are

inked with two of the other particles. The population topology is

hen a ring, as one can see in Fig. 2, and the best performance of each

articular neighborhood is chosen between the two particles of its

eighborhood.

In their work, Mendes et al. [19] proposed different statical popu-

ation topologies, such as the pyramid, which is a three-dimensional

ire-frame triangle, the Von Neumann, which is a square lattice

hose extremities connect as a torus, and the four clusters one, in

hich four clusters of particles are completely interconnected, con-

ected among themselves by a few short-cuts, as one can see in Fig. 3.

n approach in which the quality of the solution is considered in a

eighted definition of the particles’ moving has also been presented

n [8]. In fact, it has been noted by Mendes et al. [20] that all the

eighbors of a particle can be a source of influence.
1 Local Best particle’s topology
2 Global Best particle’s topology
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Fig. 1. The famous GBEST population topology.

Fig. 2. The famous LBEST population topology.

Fig. 3. The 4-clusters population topology.
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3 Called “the velocity” in the literature, this parameter is actually the displacement

of the particle in the solution domain.
The second type of population topology is the evolutive one. This

type defines a population topology which is able to change through

the iterations of the optimization algorithm. Akbari and Ziarati have

applied the concept of ranking to the Particle Swarm Optimization

[8]. In this work, at each iteration, the particles are sorted on the ba-

sis of their fitness value. Then, the γ best particles are used to in-

fluence the moving of the other particles. γ decreases during the it-

erations, thus the particles are less linked to the others during the

optimization process: this algorithm starts with a GBEST topology,

and finally the particles are only influenced by the global best one.

This type of evolutionary topology has been also used in the work of

Suganthan [13] in which the swarm starts linked as a LBEST topology.

Then the number of links between the particles are extended dur-

ing the PSO iterations, to finish with a GBEST topology. In a simpler

way, Pasupuleti and Battiti [14] proposed to use only the best par-

ticle of the swarm to influence the others in his Gregarious Particle

Swarm Optimizer. Janson and Middendorf [15] suggested a hierarchi-

cal Particle Swarm Optimizer in which all particles are arranged in a

hierarchy tree that defines the neighborhood structure. The particle

which achieves the global best fitness is the tree’s root. If a particle

finds a better solution than the one found by its direct hierarchical

superior in the tree, the particles switch their places. Then, an evolu-

tive topology of the population is provided, and the results proposed

are globally better than the classical versions of PSO, that is with the
BEST and LBEST topologies. Jiang et al. [10], Lovbjerg et al. [16] and

lackwell and Branke [18] have proposed to partition the population

nto sub-swarms to improve the ability of exploration and exploita-

ion. Angeline [11] have proposed a selective mechanism which ranks

he particles as a function of the obtained fitness. Then, the worst half

art of the swarm is teleported in the area of the best half part, but

eep in memory its own best performances. Then, the moving of the

warm can be compared to the evolutionary algorithms, because of

he sudden teleportation of the particles in the solution domain. In

heir work, Mohais et al. [12] generated a random oriented graph,

efining the influences of the particles on the others. The topology

f the swarm can be redefined randomly, with the static probability

r defined at the beginning of the calculation. In conclusion of this ar-

icle, it has been shown that evolutionary topology can exhibit better

esults than algorithms using a statical topology.

In this paper, a new efficient population topology based on a

tochastic Markov chain model, used as in the inverse PageRank

algorithm, is proposed. The population topology has the ability to

volve, and the calculations of the particles’ motions are smartly

eighted considering the quality of the solution. The linked parti-

les are then considered as a Markov chain, and the quality of the

olutions defines the probability transition of the chain, which de-

ermines the influence of the particles on the others. Section 2 gives

he mathematical bases concerning the classical PSO. In Section 3,

he mathematical background concerning the Markov chains and the

ageRank algorithm, as well as the inverse PageRank methodology

re depicted. Then, based upon the previous mathematical theory,

he newly developed I-PR-PSO is proposed. Section 4 describes the

imulations performed to test and validate the new optimization pro-

ess, and the obtained results. Finally, Section 5 concludes the work.

. Review of standard PSO

Such as the Genetic Algorithms [21], or the Ant Colony Optimiza-

ion [2], the Particle Swarm Algorithm (PSO) [7] is a population-based

etaheuristic optimization method. In PSO, the potential solutions of

he optimization problem, called particles, move in the solution do-

ain with a velocity3, which is adjusted as a function of the position

f other particles. All the particles follow the best one during the iter-

tions and converge together to the global optimum of the considered

bjective function. Then, in the linear version of PSO which considers
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4 http://www.slate.com/blogs/future_tense/2013/03/27/google_pagerank_

algorithm_markov_chains_and_cancer.html Last connexion: June, 30, 2014.
he neighborhood of the particles, the position of a particle noi at it-

ration t + 1, noted Xt+1
i

is given as a function of

• Xt
i : The position of the particle i at the iteration t,

• V t
i : The velocity of the particle i at the iteration t,

• Gt
i,best : The position of the best particle in the neighborhood of the

particle, at iteration t,
• Pt

i,best : The position of the best personal performance of the parti-

cle found at the iteration t.

The position change of each particle of the swarm is given in the

ollowing manner [22]

V t+1
i = ω × V t

i + c1 × rand1 × (Pt+1
i,best − X t

i )

+ c2 × rand2 × (Gt+1
i,best − X t

i )

X t+1
i = X t

i + V t+1
i

(2)

here c1 and c2 are acceleration factors, ω is the inertia weight de-

ned to control the influence of the previous velocity on the next one

23], and rand1 and rand2 are some random real numbers distributed

n [0, 1].

The speed of the particles has to be constrained for the calcu-

ation to converge. The speed of the particles in then defined in

−Vmax;Vmax] where Vmax depends on the solution domain, such as

max = Xmax where Xmax is the maximum position of the particles in

he domain.

. A new hybrid PSO based on a stochastic Markov chain model

.1. Mathematical background concerning the Markov chains

A discrete-time Markov chain is a mathematical system that de-

cribes the transitions from one state to another, both given in a state

pace. This stochastic mathematical process is characterized as mem-

ryless, which means that the future and the past are independent

rom the present state. Formally, a Markov chain is a sequence of Xn

andom variables in a state space E, where Xn is the state of the pro-

ess at discrete time n. Then, the Markov process is defined such as

ollow.

∀ n ≥ 0, ∀ (p0, p1, . . . , pn−1, k, l) ∈ En+2, we have

P(Xn+1 = l|Xn =k, Xn−1 = pn−1, . . . , X0 = p0)=P(Xn+1 = l|Xn = k)

(3)

Markov chains can also be described by a sequence of oriented

raphs, in which the edges of graph are weighted by the probabilities

f going from one state at time n to the following state at time n + 1.

he process can then be written in a simpler way using the transition

robability matrix. If the probability of moving from state k to state l

n one time step is noted P(l|k) = Ck,l , then the stochastic transition

atrix, also called the stochastic connectivity matrix of the Markov

hain, is given by Ck,l, where k is the row number, and l the column

umber. Since the probability of transitioning from state k to the oth-

rs is 1, this matrix is a right stochastic matrix and we have

l

Ck,l = 1 (4)

Generally speaking, the probability transition of going from one

tate to another one in m discrete time steps is given by Cm. Thus, a

tationary probability vector π is defined as the steady state of the

arkov chain model and does not change under application of the

ransition matrix C over the iterations. π is thus defined by a left

igenvector of the probability matrix associated with eigenvalue 1,

nd we have

C = π (5)
For a matrix with strictly positive entries, which is the case for the

atrix C of a Markov chain, this vector is unique, and can be com-

uted by observing that

∀k limm→∞(Cm)k,l = πl (6)

Named after Larry Page, one of the founders of Google®, the

ageRank algorithm is a powerfull method to rank the web pages.

ctually, a page is important if it is pointed to by other important

ages [24]. The web is then considered as an oriented graph, in which

he nodes represent the webpages, and the links are weighted by

he probability to click on. Thus, in the PageRank model, the web is

onsidered as a Markov chain. The PageRank algorithm is detailed in

ppendix.

.2. Analogy with our topological structure of the PSO population

In PSO, the population of the swarm can be seen as an oriented

raph. The nodes represent the particles, and the transition probabili-

ies can be seen as the influences of the particles on the others. In this

aper, a new PSO algorithm based on the inverse PageRank algorithm

s proposed. In the PageRank algorithm, the stochastic connectivity

atrix between the nodes of the graph is known, and the PageRank

ector is searched. In this work, the exact opposite is done. As said

y Newton, talking about the work presented in [25]: “Basically, we

re doing the inverse of what Google does. They know the transition

robabilities and compute the steady-state, we know the steady-state

nd compute the transition probabilities.”4 While the basic calcula-

ion of Google is presented in Fig. 4, the calculation proposed in this

aper, that is an inverse PageRank calculation, is presented in Fig. 5.

The using of the connectivity matrix C in inverse Markov chains

alculations has already been studied in the literature. The solu-

ion to this linear inverse problem in not unique, and has been

ddressed in the works of Gzyl and Velásquez [26,27] and Csiszar

28]. In those papers, the solution to this constrained linear inverse

roblem is obtained by identifying the transition matrix that satis-

es a certain maximum entropy condition, satisfying a least-squares

ondition.

In Inverse-Page-Rank PSO (I-PR-PSO), to define the PageRank vec-

or, that is the steady-state of the Markov chain, the relative success of

ach particle of the swarm is used. Then, at each iteration, the relative

uccess of each particle k regarding the best one Gbest is calculated

s given in Eq. (7). The vector containing all the relative successes

espectively to each swarm’s particle is then normalized as given in

q. (8).

T
target(1, k) =

∣∣∣∣ fitness(Gbest) × 100

fitness(Gbest) − fitness(Pk) + ε

∣∣∣∣∀k ∈ [1, n] (7)

here fitness(X) represents the value of the objective function for the

article X, and n is the number of particles in the swarm. The param-

ter ε (10−7 or 10−15 depending on the precision of the computer)

s used in order to avoid a division by zero when fitness(Gbest) =
fitness(Pk). Eq. (7) represents a classification of the particles based

ot on their ranks in the population but with respect to the distance

rom the global best particles Gbest. If a particle Pk is close to the Gbest,

ts value in πtarget is big.

The advantage of the newly developed I-PR-PSO algorithm is to

ake into account not only the fitness of the individuals at current

osition but especially the history of the iterations. The memory of

http://www.slate.com/blogs/future_tense/2013/03/27/google_pagerank_algorithm_markov_chains_and_cancer.html
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Fig. 4. The classic PageRank calculation done by the search engine developed by Google ®.

Fig. 5. The inverse calculation of a Markov chain model.
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previous iterations is stored and used in the Gbest variable in order to

avoid premature convergence.

πT
target(1, k) ← πT

target(1, k)∑D
k=1 (πT

target(1, k))
∀k ∈ [1, n] (8)

where k is the kth component of the vector πT
target .

As πT
target is a probability vector, it is then normalized so that

πT
target(1, k) ∈ [0, 1]∀k and the sum of all its components is 1. This

mathematical expression is effective only in the case of a minimiza-

tion optimization problem. The vector defined by Eq. (7) is then con-

sidered as the target vector of the connectivity calculation. In fact,

as it can be seen in Fig. 4, the PageRank vector is calculated know-

ing the stochastic connectivity matrix C. Then, the purpose of our in-

verse PageRank algorithm is to find the stochastic connectivity matrix

C (also called the “help matrix” in [29]) which fits with the previ-

ously defined target vector πT
target (also called the “reputation vector”

in [29]).

In I-PR-PSO, this target vector πT
target defines the influence of

each particle in the swarm according to their personal fitness.

πT
target can be seen as the steady state of the Markov chain de-

fined by the graph of the PSO population topology. Its dimensions

are (1 × n), where n is the number of nodes in the considered

graph, that is the number of particles in the swarm. It can be seen

that the sum of all of its components is equal to 1. Then, the goal

of this work is to find the (n × n) connectivity matrix C defining

the transition probabilities between the nodes of the considered
raph, that is the influence of all the particles on the others, corre-

ponding to this target vector. The constraints are 0 ≤ Ckl ≤ 1 and
n
l=1 Ckl = 1.

In this way, the best particles will be the most influent among the

warm, and the worst ones will not have an important influence on

he others. This calculation is then an inverse PageRank process, in

hich the steady-state of the Markov chain is known and given in

q. (7), and the transition probabilities are searched.

.2.1. Algorithm to compute the connectivity matrix

As it has been done in [25], the algorithm to compute the Markov

ransition matrix, that is in our case the stochastic connectivity ma-

rix defining the influence of all the particles on the others, is given

y the following steps

tep 1: The choice of an initial matrix C0. In our case, the initial matrix

is random, but each line is then normalized, because the sum

of all the terms in each line has to be 1.

tep 2: An iterative process is performed to adjust the entries of C0 in

order to find a final transition matrix Cf. The steady-state vec-

tor of Cf is the previously defined target vector πT
target . Let us

define Cm the stochastic connectivity matrix during the step m

of the iteration process, with the corresponding steady-state

πT
m. Then the Markov process at time m can be described as

T
m(Cm − I) = 0 (9)
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Algorithm 1 Algorithm to compute the stochastic connectivity ma-

trix C.

Starting with the initial connectivity matrix C0 (m = 0), calculate

the residual rm at step m. The first steady-state vector π0 is given

as 1/n for all its components.

Calculation of δ using Algorithm 2.

while ||rm+1||2 > εPR do

Pick the column of Cm corresponding to the maximum entry of

the residual rm.

Pick the column of Cm corresponding to the minimum entry of

the residual rm.

Pick a random row of Cm.

Check if the application of δ on the chosen row could alternate

the positivity of all terms in the matrix Cm. Check also if the ap-

plication of δ does not keep the elements of C in [0; 1]. If it is the

case, pick another row.

Increase the entry of Cm selected in step (2) by δ. Decrease the

entry of Cm by δ. This is the new connectivity matrix Cm+1.

Calculate the new steady state vector πT
m+1 corresponding to

Cm+1 using Eq. (A.4).

Calculate the new residual rm+1 using Eq. (11).

end while
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Fig. 6. Convergence of the residual rm during the iterations.
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As said previously, the purpose of this calculation is to find the

ntries of Cm so that we have

T
target(Cm − I) = 0 (10)

hat is ||πT
m − πT

target ||2 = 0. Then, a residual rm can be defined at the

teration m, which is

m ≡ (πT
target − πm)(Cm − I) (11)

Finally, the goal of this work is to find the components of Cm so

hat ||rm||2 ≤ εPR � 1, where εPR is the convergence threshold of the

alculation. To do this, the components of Cm are adjusted at each

teration m by the factor δ, according to Algorithm 1 [25].

In the final converged connectivity matrix Cf, the nonzero ele-

ents of row k are relative to the links going out of the page k,

hereas the nonzero elements of column k are relative to the links

oming in the page k. Then, in our case, the nonzero elements of col-

mn k show how the particle k influences the others, whereas the

onzero elements of row k show how the particle k is influenced by

he others. As the sum of all the terms in each line of C is , one can note

hat the total influence of all the particles on one of them is always 1.

It is important to note that the changing parameters δ is defined

s a function of the target vector πT
target . In fact, δ is the order of mag-

itude of the minimum component of πT
target . Then, δ is calculated

ccording to Algorithm 2.

Because there are lots of random parameters in the algorithm, the

nal matrix Cf can be slightly different, from one calculation to an-

ther, even though the initial matrix C0 is the same [25]. Indeed, the

nal matrix depends on the randomly chosen row to be modified.

ewton et al. [25] performed a statistical study to show the differ-

nces of the final matrices Cm, which are all conditioned by the same

nitial matrix C0. It has been shown that the sensitivity of the final
lgorithm 2 Algorithm to compute the factor δ.

ii = min(πT
target)

order magnitude = 0

while ii ≤ 1 do

ii = ii × 10

order magnitude = order magnitude + 1

end while

δ = 1 × 10−order magnitude

b

i

m

fi

i

s

s

a

A

f

onverged connectivity matrix Cf with respect to the initial connec-

ivity matrix C0 could be neglected (the order of magnitude of the

tandard deviation is 10 at the outside).

Finally, this calculation allows us to find a stochastic connectivity

etween all the particles of the swarm. The weighted influence be-

ween the particles, corresponding to the normalized target PageR-

nk vector πT
target is defined in Eq. (8).

.2.2. Examples of calculations performed and issues

Some examples have been performed to show how the con-

ectivity matrix C is calculated by Algorithm 1. The first ex-

mple is the following : the target vector πT
target is given by

T
target =

[
1 2 3 4

]
and then the normalized vector is πT

target =
0.0667 0.1333 0.2000 0.6000

]
. The first initial matrix C0

s random, and each line is normalized so that the sum of all

he terms in each line is 1. Using Algorithm 1, the final PageRank

ector is πT
m =

[
0.0737 0.1435 0.2099 0.5729

]
and we have

πT
target

∥∥ −
∥∥πT

m

∥∥ = 0.0314. One can see here that the two vectors are

uiet similar. The final population connectivity is given by Eq. (12),

nd the convergence of the residual rm during the iterations is given

n Fig. 6.

0.0024 0.0981 0.1648 0.7347
0.0092 0.0098 0.2633 0.7178
0.0031 0.1443 0.2773 0.8470
0.1250 0.1826 0.2773 0.4151

⎤
⎥⎦ (12)

One can note that the particle no4 is the most influent in the

warm, which is coherent because its target value in πT
target is the

pmost.

It is important to note that if the values in the target vector πT
target

re too far from each other (about some powers of ten), the calcu-

ation does not converge. Actually, in that case, the factor δ is too

mall to change efficiently the connectivity matrix. For example, if the

arget vector is given by πT
target =

[
1 1.E−10 1.E−10 1.E−10

]
efore normalization, the final connectivity matrix is the same as the

nitial one, because δ is 1E−10 and can not change the connectivity

atrix components sufficiently to converge to πT
target .

In the same way, if the components of πT
target are the same, the

nal topology should be a GBEST topology, in which all the particles

nfluence the others with the same weight. The connectivity matrix

hould be full of non-zero components which would be slightly the

ame. Nevertheless, in that case, the calculation does not converge

t all, because πT
target = πT

0
, and the first residual is then 0. Though,

lgorithm 1 does not activate the loop because ‖rm+1‖ is directly in-

erior to ε .
PR
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Algorithm 3 Global Inverse-PageRank-PSO algorithm.

Random definition of the particles’ velocity

Random definition of the particles’ position

Random definition of the normalized connectivity matrix

for iterationPSO = 1 to itPSO,MAX do

Calculation of the fitness

Calculation of the target vector using eq. (7).

Random definition of the first connectivity matrix C0

Calculation of the first residual rm

while (||rm|| > ε) AND (iterationPR ≤ itPR,MAX) do

Research of the best connectivity matrix C using Algorithm 1

end while

Updating of all P
iterationPSO

i,best

Updating of the best performance found so far by all the swarm

GBest and its fitness

Calculation of the new speed of the particles using eq. (13)

Calculation of the new position of the particles using eq. (13)

end for Fig. 7. Dimension 10.

Fig. 8. Dimension 20.
3.3. Definition of the newly developed Inverse-PageRank-PSO

In I-PR-PSO, all the particles are used to influence each others, but

their respective influences are weighted by the components of the

previously seen stochastic connectivity matrix C. Then, the position

change of each swarm’s particle is then given in the following way⎧⎪⎨
⎪⎩

V t+1
i = ω × V t

i + c1 × rand1 × (Pt+1
i,best − X t

i )

+ c2 × rand2 × ∑n
j=1 Ci j ×

[
Pt+1

j,best − X t
i

]
X t+1

i = X t
i + V t+1

i

(13)

As we have previously seen, the particle i is influenced by all the

particles of the swarm, and their respective influence are given by the

components of the ith line of C, that is Cij ∀j.

The global I-PR-PSO algorithm is described in Algorithm 3 in

which itPSO,MAX is the maximum number of PSO iterations, and

itPR,MAX is the maximum number of PageRank iterations, that

is the iterations needed to calculate the stochastic connectivity

matrix C.

Concerning the issues previously presented in part (3.2.2), one

can note that when the particles have the same fitness values (that

is when the components of πT
target are slightly the same), or when

the particles have fitness values far from each other in the solu-

tion domain (that is when the components of πT
target are very dif-

ferent (about some powers of ten)), the population topology is then

given by the first random connectivity matrix C0. This strategy cor-

responds to the one proposed by Mohais et al. in [12], in which

it has been suggested that random topologies can be competitive

to predefined ones [30]. Moreover, it has been shown in the liter-

ature that the proximity of individuals could cause premature con-

vergence problems, because of the loss of diversity. This random re-

actualization of the population topology is a solution to this loss of

diversity.
Table 1

Calculation parameters.

Number of particles 50

Inertia weight ω 0.8

Acceleration constant c1 2

Acceleration constant c2 2

Maximum number of PSO iterations 600

Convergence threshold of the PageRank algorithm εPR 1E − 03

Maximum number of PageRank iterations 6000

Dimension of the problem 10, 20, 30 and 50

Fig. 9. Dimension 30.

4

4

g

. Simulation results

.1. PSO parameters and benchmark functions

I-PR-PSO has been tested on the different benchmark functions

iven in Table 2 in which D represents the dimension of the problem.
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Fig. 10. Dimension 50 (Reached values of the tested objective functions after 600 PSO

iterations (mean of the 100 runs, in a log scale)).

Fig. 11. Ackley.

t

b

c

c

t

Fig. 12. Griewank.

Fig. 13. Rastrigin.

P

v

t

s

4

t

A statistical study has been performed to obtain sufficient results

o prove the efficiency of I-PR-PSO. On each function, 100 runs have

een performed in the dimensions 10, 20, 30 and 50, with 50 parti-

les. As it has been shown in the literature that PSO can be more effi-

ient than other metaheuristic methods in large dimensions [31,32],

his research focuses especially on the comparison between different
Table 2

Benchmark functions.

Function Mathematical expression

f1 Ackley 20 + e − 20e−0.2

√ ∑
(xD

i−1
)2

D − e

∑D
i=1

cos(2πxi )

D

f2 Griewank 1 +
∑D

i=1 (xi−100)2

4000
− ∏D

i=1 cos( xi−100√
i

)

f3 Rastrigin
∑D

i=1 x2
i

− 10cos(2πxi) + 10D

f4 Rosenbrock
∑D−1

i=1 100(xi+1 − xi)
2 + (xi + 1)2

f5 Sphere
∑D

i x2
i

f6 Rotate hyper ellips.
∑D

i=1 (
∑i

j=1 x j)
2

f7 Shifted Rastrigin
∑D

i=1 ((xi − 1)2 − 10cos(2π(xi − 1)) + 10) + 390

f8 Shifted Rosenbrock
∑D−1

i=1 (100((xi+1 − 1) − (xi − 1)2)2 + (xi−1 − 1)2) + 390

f9 Shifted Sphere
∑D

i=1 ((xi − 1)D) + 400

f10 Shifted Ackley −20exp(−0.2

√
1
D

∑D
i=1 (xi − 1)2) − exp( 1

D

∑D
i=1 cos(12π(

f11 Bohachevsky
∑D−1

i=1 (x12
i

+ 2x2
i+1

− 0.3cos(3πxi) − 0.4cos(4πxi+1) + 0.7

f12 Schwefel’s problem 1.2
∑D

i=1 (
∑i

j=1 x j)
2

SO variants. Then, I-PR-PSO has been compared to three different

ersions of classic PSO, that is with the previously presented GBEST

opology, the LBEST topology, and the 4-clusters topology, with the

ame calculation parameters given in Table 1.

.2. Obtained results

In this paper, the best value of the objective function reached af-

er 600 PSO iterations is investigated, for all the twelve objective
Opt. pos. Opt. val. Type Domain Vmax

(0, 0,…, 0) 0 Multimodal [−1; 1] 1

(0, 0,…, 0) 0 Multimodal [−600; 600] 500

(0, 0,…, 0) 0 Multimodal [−5.12; 5.12] 5

(1, 1,…, 1) 0 Unimodal [−50; 50] 50

(0, 0,…, 0) 0 Unimodal [−50; 50] 50

(0, 0,…, 0) 0 Multimodal [−65.536; 65.536] 65

(1, 1,…, 1) 390 Multimodal [−5; 5] 5

(1, 1,…, 1) 390 Multimodal [−100; 100] 100

(1, 1,…1, ) 450 Multimodal [−100; 100] 100

xi − 1))) (1, 1,…, 1) 200 Multimodal [−32; 32] 32

(0, 0,…, 0) 0 Unimodal [−15; 15] 15

(0, 0,…, 0) 0 Unimodal [−65.536; 65.536] 65.536
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Fig. 14. Rosenbrock.

Fig. 15. Sphere.

Fig. 16. Rotate hyper ellipsoid function (convergence curves of 50 dimensional prob-

lems (mean of the 100 runs)).

Fig. 17. Shifted Rastrigin.

Fig. 18. Shifted Rosenbrock.

Fig. 19. Shifted Sphere.

e

t

f

a

g

functions, with all the 4 different PSO variants. The results, that is

the best values of the objective function found so far, are presented in

a log scale in Figs. 7–10. The values obtained are given in Tables 3 and

4 in which the mean and the standard deviation of all the 100 runs

are presented.

Based on the results given in Figs. 7–10, we conclude that our pro-

posed I-PR-PSO is more efficient than the tested peers on the tested

objective functions in dimensions 10, 20, 30 and 50.
Finally, to have a visual aspect of the convergence of the differ-

nt algorithms on the considered objective functions, the mean of

he best fitness values found over the iterations, for the 100 dif-

erent calculations performed, is presented. The convergence curves

re presented for the dimension 50 in Figs. 11–22. Some of these

raphs are presented in a log scale, so that the results are readable.
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Table 3

100 runs: reached values after 600 PSO iterations (mean ± st. dev.).

Inverse-PageRank-PSO PSO GBest PSO Lbest PSO 4-clusters

Dimension 10

f1 2.98E-03 ± 1.263E-03 1.95E-01 ± 5.79E-02 1.01E-01 ± 3.26E-02 7.68E-01 ± 1.24E-01

f2 4.26E-01 ± 1.19E-01 1.77E+00 ± 3.48E-01 1.21E+00 ± 1.68E-01 6.03E+00 ± 1.46E+00

f3 1.17E+01 ± 6.86E+00 4.06E+01 ± 6.04E+00 3.65E+01 ± 6.04E+00 4.91E+01 ± 6.51E+00

f4 5.23E+01 ± 9.39E+01 2.23E+04 ± 1.62E+04 3.96E+03 ± 3.31E+03 6.74E+05 ± 3.62E+05

f5 1.59E-02 ± 1.57E-02 2.97E+01 ± 1.36E+01 1.14E+01 ± 6.34E+00 2.01E+02 ± 5.64E+01

f6 8.89E+00 ± 7.55E+00 5.93E+02 ± 1.98E+02 2.09E+02 ± 8.56E+01 1.11E+03 ± 3.78E+02

f7 4.06E+02 ± 4.93E+00 4.30E+02 ± 5.32E+00 4.37E+02 ± 7.39E+00 4.37E+02 ± 7.39E+00

f8 5.68E+02 ± 4.13E+02 2.98E+05 ± 2.79E+05 3.58E+04 ± 3.88E+04 9.03E+06 ± 5.02E+06

f9 4.00E+02 ± 7.80E-02 5.12E+02 ± 5.82E+01 4.42E+02 ± 2.04E+01 1.19E+03 ± 2.14E+02

f10 2.00E+02 ± 3.80E-01 2.06E+02 ± 8.00E-01 2.04E+02 ± 6.43E-01 2.10E+02 ± 8.87E-01

f11 9.95E-01 ± 6.39E-01 1.32E+01 ± 3.32E+00 7.47E+00 ± 1.90E+00 5.46E+01 ± 1.30E+01

f12 3.48E-01 ± 3.87E-01 2.43E+02 ± 1.06E+02 1.02E+02 ± 6.19E+01 1.73E+03 ± 5.34E+02

Dimension 20

f1 3.39E-02 ± 1.22E-02 5.51E-01 ± 1.08E-01 4.58E-01 ± 9.59E-02 1.43E+00 ± 1.72E-01

f2 1.06E+00 ± 5.36E-02 7.44E+00 ± 1.74E+00 5.91E+00 ± 1.46E+00 2.69E+01 ± 5.22E+00

f3 5.62E+01 ± 2.55E+01 1.29E+02 ± 1.02E+01 1.17E+02 ± 1.37E+01 1.46E+02 ± 1.09E+01

f4 8.24E+02 ± 8.21E+02 8.22E+05 ± 4.50E+05 4.17E+05 ± 2.51E+05 1.14E+07 ± 4.21E+06

f5 2.29E+00 ± 1.34E+00 2.62E+02 ± 7.46E+01 1.85E+02 ± 4.96E+01 1.03E+03 ± 2.13E+02

f6 1.97E+02 ± 9.46E+01 9.00E+03 ± 2.19E+03 3.32E+03 ± 1.29E+03 1.52E+04 ± 3.86E+03

f7 4.52E+02 ± 2.57E+01 5.19E+02 ± 1.03E+01 5.11E+02 ± 1.35E+01 5.38E+02 ± 1.10E+01

f8 8.35E+03 ± 1.28E+04 1.37E+07 ± 7.24E+06 6.81E+06 ± 3.91E+06 2.92E+08 ± 2.71E+08

f9 4.09E+02 ± 5.00E+00 1.47E+03 ± 2.96E+02 1.07E+03 ± 2.10E+02 4.47E+03 ± 7.34E+02

f10 2.03E+02 ± 4.89E-01 2.09E-02 ± 8.66E-01 2.08E+02 ± 8.03E-01 2.14E+02 ± 6.33E-01

f11 9.76E+00 ± 2.35E+00 7.87E+01 ± 1.72E+01 6.15E+01 ± 1.51E+01 2.75E+02 ± 4.93E+01

f12 7.25E+01 ± 4.12E+01 4.24E+03 ± 1.11E+03 3.15E+03 ± 9.79E+02 1.74E+04 ± 2.88E+03

Table 4

100 runs: reached values after 600 PSO iterations (mean ± st. dev.).

Inverse-PageRank-PSO PSO GBest PSO Lbest PSO 4-clusters

Dimension 30

f1 1.01E-01 ± 2.69E-02 8.57E-01 ± 1.46E-01 8.18E-01 ± 1.27E-01 1.78E+00 ± 1.63E-01

f2 1.52E+00 ± 2.33E-01 1.78E+01 ± 3.52E+00 1.74E+01 ± 3.93E+00 6.00E+01 ± 9.33E+00

f3 1.02E+02 ± 4.39E+01 2.27E+02 ± 1.40E+01 2.17E+02 ± 1.93E+01 2.55E+02 ± 1.46E+01

f4 1.14E+04 ± 9.16E+03 4.63E+06 ± 2.08E+06 3.20E+06 ± 1.49E+06 4.77E+07 ± 1.47E+07

f5 1.97E+01 ± 7.62E+00 6.86E+02 ± 1.54E+02 6.14E+02 ± 1.46E+02 2.36E+03 ± 4.15E+02

f6 7.98E+02 ± 4.15E+02 4.41E+04 ± 1.31E+04 1.49E+04 ± 5.18E+03 6.95E+04 ± 2.12E+04

f7 5.12E+02 ± 4.02E+01 6.18E+02 ± 1.40E+01 6.40E+02 ± 1.98E+01 6.46E+02 ± 1.51E+01

f8 1.19E+05 ± 9.57E+04 7.07E+07 ± 3.37E+07 5.34E+07 ± 2.60E+07 6.92E+08 ± 2.71E+08

f9 4.76E+02 ± 2.91E+01 3.05E+03 ± 6.11E+02 2.76E+03 ± 5.17E+02 9.68E+03 ± 1.38E+03

f10 2.04E+02 ± 5.41E-01 2.11E+02 ± 9.36E-01 2.11E+02 ± 8.24E-01 2.15E+02 ± 5.88E-01

f11 2.43E+01 ± 5.45E+00 2.07E+02 ± 4.13E+01 1.83E+02 ± 3.67E+01 6.21E+02 ± 1.00E+02

f12 2.43E+01 ± 4.45E+00 1.77E+04 ± 4.05E+03 1.42E+04 ± 3.24E+03 5.48E+04 ± 8.89E+03

Dimension 50

f1 2.35E-01 ± 5.10E-02 1.27E+00 ± 1.90E-01 1.26E+00 ± 1.65E-01 2.13E+00 ± 1.25E-01

f2 4.90E+00 ± 1.18E+00 5.41E+01 ± 1.03E+01 5.79E+01 ± 1.13E+01 1.52E+02 ± 1.89E+01

f3 2.20E+02 ± 7.53E+01 4.41E+02 ± 1.82E+01 4.18E+02 ± 2.73E+01 4.90E+02 ± 2.21E+01

f4 1.67E+05 ± 8.13E+04 2.53E+07 ± 9.20E+06 2.29E+07 ± 8.61E+06 1.79E+08 ± 4.93E+07

f5 1.35E+02 ± 3.80E+01 2.13E+03 ± 3.83E+02 2.15E+03 ± 3.59E+02 5.91E+03 ± 8.87E+02

f6 5.59E+03 ± 3.09E+03 3.21E+05 ± 8.21E+04 1.10E+05 ± 4.17E+04 5.10E+05 ± 1.59E+05

f7 6.51E+02 ± 7.02E+01 8.28E+02 ± 1.93E+01 8.08E+02 ± 2.60E+01 8.79E+02 ± 2.29E+01

f8 2.52E+06 ± 1.47E+06 4.01E+08 ± 1.32E+08 3.41E+08 ± 1.23E+08 2.77E+089 ± 7.59E+08

f9 9.66E+02 ± 1.66E+02 8.52E+03 ± 1.45E+03 8.44E+03 ± 1.40E+03 2.38E+04 ± 3.03E+03

f10 2.00E+02 ± 3.80E-01 2.13E+02 ± 5.95E-01 2.13E+02 ± 7.30E-01 2.17E+02 ± 4.22E-01

f11 7.28E+01 ± 1.63E+01 5.87E+02 ± 1.11E+02 6.14E+02 ± 9.87E+01 1.63E+03 ± 2.46E+02

f12 5.18E+03 ± 1.53E+03 7.96E+04 ± 1.49E+04 7.94E+04 ± 1.42E+04 2.34E+05 ± 3.12E+04
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s one can see in these figures, the results presented are coherent

ith those previously presented. The Inverse-PageRank-PSO algo-

ithm converges closer to the global optimum than its tested peers,

n all dimensions. Moreover, I-PR-PSO is quicker to converge than

he tested peers. Actually, the algorithm has a better global research

bility, while its local research ability is not better than the other
lgorithms: once the swarm is close to the global optimum of the

ested objective function, Inverse-PageRank-PSO needs lots of itera-

ions to finally stabilize the swarm. I-PR-PSO is also quicker to con-

erge and converges closer to the global optimum than its tested

eers in dimensions 10, 20 and 30, but the convergence curves are

ot presented here.
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Fig. 20. Shifted Ackley.

Fig. 21. Bohachevsky.

Fig. 22. Schwefel’s problem 1.2 (convergence curves of 50 dimensional problems

(mean of the 100 runs)).
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5. Discussion and conclusions

In this paper, I-PR-PSO is proposed to solve unconstrained mini-

mization optimization problems defined in continuous solution do-

mains. In I-PR-PSO, the population topology evolves during the it-

erations. The population developed is a weighted GBEST topology,

in which the weights are defined using the Markov chains theory,

and the Inverse PageRank algorithm in particular. Indeed, Inverse-

PageRank-PSO provides a general adaptive algorithm that updates the

population topology of the swarm, without any additional parameter
ompared to classical PSO. Its social behavior is then enhanced based

n the actual evolution of the population.

The obtained numerical results show that I-PR-PSO has the abil-

ty to find the global optimum of the considered objective function

han its peers. So I-PR-PSO achieves a better balance between the

xploration and exploitation phases needed by the particles to find

he global optimum in large dimensions. Nevertheless, the algorithm

as a better global research ability than its peers, while its local re-

earch ability is not better than the other algorithms: once the swarm

s close to the global optimum of the tested objective function, I-PR-

SO needs lots of iterations to finally stabilize the swarm.

Moreover, I-PR-PSO is quicker to converge than the tested peers

n terms of number of objective function evaluations needed to con-

erge. Comparing I-PR-PSO with the work of Lim and Isa [33], we can

how that I-PR-PSO has a better ability to push the swarm close to

he global optimum (I-PR-PSO needs approximately 1000 function

valuations while its peers need approximately 5000 function evalu-

tions on the same objective functions). However, an additional itera-

ive process is needed to calculate the connectivity matrix C. I-PR-PSO

s then much more longer than its peers to converge in terms of CPU

ime. Thus, I-PR-PSO is very efficient in mechanical applications when

he Finite Element Method is used because, in this context, the eval-

ations of the cost function are very expensive. Then, reducing the

umber of calls to the objective function could also reduce efficiently

he CPU time. On the contrary, if the objective function evaluations

re not very expensive in terms of CPU time, I-PR-PSO could be more

xpensive than its peers, but could find better results, as it has been

een in Figs. 7–10 and 17–22.

Obviously, the No Free Lunch theorem has shown that no algo-

ithm can perform better than any other, on all possible objective

unction [19,34]. Then, testing I-PR-PSO on different benchmark func-

ions that have been identified as hard problems can show that this

ewly developed algorithm could be more efficient on lots of differ-

nt objective functions. This algorithm has been tested on engineer-

ng structural optimization problems [35], and has been shown to be

ery efficient on constrained optimization problems.
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ppendix. The PageRank algorithm

As given in the literature, the PageRank of a page Pk, noted PR(Pk),

s the sum of the PageRanks of all pages Pl pointing into Pk normed

y the number of outgoing links from Pl, as one can see in Eq. (A.1).

R(Pk) =
∑

Pl∈BPk

PR(Pl)

|Pl| (A.1)

here BPk
represents the set of all the pages pointing to the page Pk,

nd |Pl| is the number of links outing Pl. Then, it can be easily un-

erstood that an iterative process is required to solve this problem,

ince the PageRanks of the pages Pl are not known at the beginning

f the calculation. Eq. (A.1) is successively applied and the PageRanks

re updated at each iteration to effectively compute the PageRanks

f all the considered pages. Noting PRm+1(Pk) the PageRank of Pk at

teration m + 1, the iterative process is given as

Rm+1(Pk) ⇐
∑

Pl∈BPk

PRm(Pl)

|Pl| (A.2)

This process starts with PR0(Pk) = 1/n for all pages Pk where n is

he number of webpages in the collection, and the previous iterative

rocess is achieved until some stable values are found. Using a matrix

otation, Brin and Page have greatly simplified and improved these
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alculations. At each iteration, a PageRank vector, noted πT is com-

uted, which is a 1 × n vector holding all the PageRank values for all

he pages of the web. A n × n matrix C, which is the stochastic proba-

ilistic adjacency matrix of the graph, is defined. This matrix is a row

ormalized hyperlink matrix [36] given by

Ckl = 1
|Pk| if there is a link from node k to node l

0 otherwise
(A.3)

One can notice that the nonzero elements of row k are relative

o the links going out the page k, whereas the nonzero elements of

olumn k are relative to the links coming in the page k. Moreover, as

he components of C are normalized, the sum of all the terms in each

ine is 1, as it has been seen in Eq. (4).

With this notation, the Markov dynamical model given in Eq. (A.2)

an be written as

(m+1)T = π(m)TC (A.4)

here π(m+1)T and π(m)T are the state vectors of the Markov chain at

iscrete times m and m + 1, respectively.

Two numerical methods have been developed to solve the PageR-

nk Problem. The first one is the solving of the following eigenvector

roblem for πT

πT = πTC

πT e = 1
(A.5)

The second one is the solving of the following linear homogeneous

ystem for πT

πT (I − C) = 0T

πT e = 1
(A.6)

here I is the dimension-n identity matrix, and eT is the row vector

f all ones.

In the first case, the goal is to find the normalized dominant left-

and eigenvector of C, corresponding to the dominant eigenvalue

1 = 1. In the second case, the goal is to find the normalized left-hand

ull vector of I − C. In both, the second equation πT e = 1 insures that
T is a probability vector. These observations allow us to calculate

irectly the steady state distribution πT from the stochastic connec-

ivity matrix C. As it has been seen in Eq. (A.3), the sum of all elements

f the rows of C is equal to 1, that is why there is always at least one

igenvalue equals to 1.
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