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Abstract. Distributed catchment models are widely used
tools for predicting hydrologic behavior. While distributed
models require many parameters to describe a system, they
are expected to simulate behavior that is more consistent with
observed processes. However, obtaining a single set of ac-
ceptable parameters can be problematic, as parameter equifi-
nality often results in several “behavioral” sets that fit obser-
vations (typically streamflow). In this study, we investigate
the extent to which equifinality impacts a typical distributed
modeling application. We outline a hierarchical approach
to reduce the number of behavioral sets based on regional,
observation-driven, and expert-knowledge-based constraints.
For our application, we explore how each of these constraint
classes reduced the number of “behavioral” parameter sets
and altered distributions of spatiotemporal simulations, sim-
ulating a well-studied headwater catchment, Stringer Creek,
Montana, using the distributed hydrology–soil–vegetation
model (DHSVM). As a demonstrative exercise, we investi-
gated model performance across 10 000 parameter sets. Con-
straints on regional signatures, the hydrograph, and two in-
ternal measurements of snow water equivalent time series re-
duced the number of behavioral parameter sets but still left
a small number with similar goodness of fit. This subset was
ultimately further reduced by incorporating pattern expecta-
tions of groundwater table depth across the catchment. Our
results suggest that utilizing a hierarchical approach based
on regional datasets, observations, and expert knowledge to

identify behavioral parameter sets can reduce equifinality
and bolster more careful application and simulation of spa-
tiotemporal processes via distributed modeling at the catch-
ment scale.

1 Introduction

The field of hydrology has been built upon the combination
of field measurements and computational modeling to ob-
serve, understand, and predict hydrologic behavior (Craw-
ford and Linsley, 1966; Beven and Kirkby, 1976, 1979;
Ponce and Shetty, 1995a, b). Towards this end, distributed,
physically based models were first developed as tools to rep-
resent spatially discretized processes with physically mean-
ingful parametric relationships (Freeze and Harlan, 1969;
Beven and Kirkby, 1979; Band et al., 1991, 1993; Wigmosta
et al., 1994; Refsgaard and Storm, 1995; Bixio et al., 2002;
Qu, 2004; Qu and Duffy, 2007; Camporese et al., 2010;
Fatichi et al., 2016). Distributed models should represent the
characteristics of the catchment environment in space, given
that this variability impacts how water is stored, partitioned,
and released across the landscape (O’Loughlin, 1981; Beven,
1989; Kampf and Burges, 2007; Wagener et al., 2007; Nipp-
gen et al., 2015). Many physically based, distributed models
use similar equations to predict water movement, have com-
parably large data input requirements, and feature numerous
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model parameters (see Singh and Woolhiser, 2002; Kampf
and Burges, 2007; Paniconi and Putti, 2015, for a review of
distributed models).

Alongside variations in the structural equations, dis-
tributed models may take a number of different forms, in-
cluding those that use only distributed inputs (e.g., Ajami et
al., 2004; Das et al., 2008; Fenicia et al., 2008; Kling and
Gupta, 2009; Euser et al., 2015), those that may lump to-
gether portions of a watershed with similar characteristics
in a semi-distributed fashion (e.g., Leavesley et al., 1983;
Flugel, 1995; Ajami et al., 2004; Das et al., 2008; Zehe et
al., 2014), those that may upscale sub-grid variability to pa-
rameterize models (e.g., Samaniego et al., 2010; Kumar et
al., 2013), and those that use physically based parameter val-
ues (e.g., Qu and Duffy, 2007; Wigmosta et al., 1994) versus
conceptual values or transfer functions (e.g., Samaniego et
al., 2010; Kumar et al., 2013). These differences can be sep-
arated into two primary categories (1) the nature of parameter
values (physically based or conceptual) and (2) whether and
how parameter values are distributed (cell-by-cell, grouped
or lumped in some meaningful way, or undistributed). It is
also worth noting that an important feedback on these de-
cisions is the scale of the application alongside the scale at
which inputs and parameters are distributed. In this study, we
focus specifically on physically based, fully distributed (cell-
by-cell basis) models applied at the small-scale watershed
scale (< 25 km2).

Despite the widespread application and advancement of
physically based, fully distributed (cell-by-cell basis) mod-
els, one of the foremost challenges in distributed model ap-
plication continues to be parameter estimation (Beven and
Binley, 1992; Gupta et al., 1998; Wagener and Gupta, 2005;
Beven, 2006; Gharari et al., 2014; Chen et al., 2017). Model
simulations and predictions require specification of param-
eter set(s) or ranges; selecting these set(s) and appropriate
ranges is especially challenging given that fully distributed
models, where inputs such as soil or vegetation are dis-
tributed across the watershed, require a larger number of
model parameters (∼ 50–100 or more) and longer model
run times than conceptual or lumped models. In particu-
lar, a large number of model parameters, corresponding to a
large number of degrees of freedom, may lead to equifinality
(Hornberger and Spear, 1980, 1981; Spear and Hornberger,
1980; Beven and Binley, 2014), a well-documented problem
with respect to all models (Beven, 1989, 1993, 2001). Many
studies have documented the presence of parameter equifi-
nality in terms of parameter sensitivity, concluding that the
potential for equifinality in distributed model applications is
high in both time (Franks et al., 1998; van Werkhoven et al.,
2008; Zhang et al., 2013; Kelleher et al., 2015; Ghasemizade
et al., 2017; Guse et al., 2016) and space (Wagener et al.,
2009; Herman et al., 2013; Moreau et al., 2013).

A great deal of research has been devoted to developing
approaches that either seek to reduce or to explore equifi-
nality across multiple parameter sets, but these approaches

are typically demonstrated for lumped or conceptual mod-
els (e.g., Keesman, 1990; van Straten and Keesman, 1991;
Beven and Binley, 1992; Gupta et al., 1998). Currently, re-
searchers approach distributed modeling and parameter set
selection in a number of different ways, all of which have
implications for reducing equifinality. Many studies avoid
the topics of uncertainty or equifinality by assigning parame-
ter values from measurements (e.g., Du et al., 2014), though
the sheer number of parameters, heterogeneity of the catch-
ment environment, uncertainty in model structure and inputs,
and problems translating measurements from the point to the
grid scale can make this difficult (Grayson et al., 1992; Sur-
fleet et al., 2010; Paniconi et al., 2015). Other approaches
involve fixing some parameters, while letting others vary, of-
ten through manual calibration. Decisions regarding how to
constrain ranges and distributions for priors on model pa-
rameters often depend on the availability of field measure-
ments, awareness of the catchment or model, and may in-
volve sensitivity analysis to identify which parameters are
most influential to simulations (Tang et al., 2007; Saltelli et
al., 2008; Cuo et al., 2011). A subset of distributed modeling
studies has directly incorporated parameter uncertainty into
final simulations, sampling across ranges of values obtained
either from literature or measurements (e.g., Surfleet et al.,
2010; Shields and Tague, 2015; Gharari et al., 2014; Silve-
stro et al., 2015). Very few studies have shown the implica-
tions of this equifinality during model calibration, an impor-
tant consideration given that selection of a parameter set or
sets will influence conclusions made for validation and sce-
nario analysis. One noted exception is the work that has been
done to parameterize models via regularization (Hundecha
and Bardossy, 2004; Hundecha et al., 2008; Pohkrel et al.,
2008; Samaniego et al., 2010; Rakovec et al., 2016). Regu-
larization creates global functional relationships describing
transfer functions that link model parameters and catchment
characteristics (e.g., Samaniego et al., 2010; Kumar et al.,
2013). As the number of parameters used to describe global
functional relationships is far fewer than the number of pos-
sible total model parameters using cell-by-cell parameteriza-
tion, regularization is able to limit parameter equifinality.

Researchers must also determine which observations to
incorporate and compare to model simulations (as well as
which criteria to measure “goodness of fit” by, and how to
judge whether or not this “goodness of fit” is good enough)
in order to justify the selection of a parameter set or sets
(Bennett et al., 2013). While there are examples where dif-
ferent observations, including snow accumulation and melt
(Thyer et al., 2004; Whitaker et al., 2003), soil moisture
(Koren et al., 2008; Graeff et al., 2012), and catchment
chemistry (Birkel et al., 2014), have been incorporated into
the calibration and parameter set selection process, many
catchments lack measurements beyond streamflow, suggest-
ing that other sources of information are needed (Yapo et
al., 1998; Grayson et al., 2002; Paniconi et and Putti, 2015).
Finally, while examples exist where model simulations are
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compared to internal measurements of different hydrologic
processes at a few points, there are fewer examples where re-
searchers holistically evaluate the patterns of these simulated
processes (Franks et al., 1998; Lamb et al., 1998; Grayson et
al., 2002; Wealands et al., 2005; Koch et al., 2016).

Given many of the outlined challenges discussed above,
we need to improve our understanding of equifinality in dis-
tributed model applications and to better constrain this equi-
finality towards predictive use of distributed models. In this
study, we demonstrate an approach to characterizing and
reducing equifinality for distributed models. We apply this
approach as a case study in the Stringer Creek headwater
catchment, located in Tenderfoot Creek Experimental For-
est in central Montana, modeled with the widely applied
distributed hydrology–soil–vegetation model (DHSVM). We
investigate how the paradigm for identifying “behavioral”
model simulations, defined as those that meet a certain cri-
terion or multiple criteria for error with respect to observa-
tions, may impact the presence of equifinality in terms of pa-
rameter estimation and constraining simulations and predic-
tions of different hydrologic processes. Within our proposed
framework, we test many of the subjective choices a modeler
must make during calibration with respect to impacts on pa-
rameter set selection, parameter values, model performance,
and model simulations. We explore model performance for
a shorter period of time but for a large number of model
runs. Our goal is to support distributed models’ utilization
to their full potential and ensure that parameter set(s) used
for prediction or scenario analysis match hydrologic obser-
vations and perceptions in both space and time. Secondar-
ily, we also explore whether this type of approach, using ob-
servations of a subset of hydrologic processes, may inform
simulations of other unmeasured spatially distributed hydro-
logic processes. Thus, we seek to test whether temporal ob-
servations may contain information regarding simulation of
spatially distributed hydrologic patterns. While our approach
is demonstrated for a single catchment for a relatively short
time period, it has broader implications for the use of alterna-
tive data sources in the parameter estimation process as well
as the application of distributed models to simulate internal
catchment behavior.

2 Case study: Stringer Creek, Tenderfoot Creek
Experimental Forest

2.1 Study site

We present a case study applying this methodology to a head-
water catchment (5.5 km2) located in the Tenderfoot Creek
Experimental Forest in central Montana. The case study fo-
cuses on Stringer Creek, though we simulate the entire Ten-
derfoot Creek catchment (22.5 km2). The Stringer Creek
headwater catchment is located in Tenderfoot Creek Experi-
mental Forest in central Montana. Tenderfoot Creek experi-

ences a continental climate with the majority of its 880 mm
of precipitation falling as snow from November through May
(Farnes et al., 1995). Snowmelt, occurring in May or June, is
the primary driver of the hydrologic cycle. Bedrock under
Stringer Creek includes biotite hornblende quartz monzonite
overlaying a layer of shale in the upper parts of the catchment
and flathead sandstone underlain by granite gneiss in the
lower portions of the catchment (Reynolds, 1995). Lodge-
pole pine dominates the forest vegetation types, with shrubs
and grasses occurring in riparian areas (Farnes et al., 1995;
Mincemoyer and Birdsall, 2006). Stringer Creek, the most
well-studied catchment in Tenderfoot Creek Experimental
Forest, is a second-order catchment that drains an area of
5.5 km2.

2.2 The distributed hydrology soil vegetation model

The entire Tenderfoot Creek catchment was modeled us-
ing the distributed hydrology–soil–vegetation model (Wig-
mosta et al., 1994, 2002). DHSVM is a physically based,
spatially distributed catchment model typically used to simu-
late mountainous catchments at small to intermediate scales
in the Pacific Northwest and the Mountain West. The model
includes a two-layer snow accumulation and melt model with
a full energy balance and a Penman–Monteith approach for
simulating evapotranspiration. Unsaturated soil water move-
ment is simulated via Darcy’s law with hydraulic conduc-
tivity calculated via the Brooks–Corey equation. Saturated
subsurface flow is routed cell by cell using either a kinematic
or diffusion approximation. Streamflow is routed through a
user-defined stream network via linear channel reservoirs.
The model framework and forcing data used to simulate Ten-
derfoot Creek were previously employed and described in
Kelleher et al. (2015). Key details for spatial and meteoro-
logical forcing data are described below.

2.2.1 Spatial forcing data

Tenderfoot Creek was simulated within DHSVM at a resolu-
tion of 10 m and a time step of 3 h using spatially distributed
information for topography, soil depth, soil type, and vegeta-
tion (Fig. 1). Spatially distributed information for topography
and vegetation height were obtained via airborne laser swath
mapping (ALSM) at 1 m resolution and resampled to 10 m
resolution (Fig. 1a, b). Soil depth was held at a constant 1 m,
as spatially distributed soil data are limited. However, > 160
well and piezometer installations indicate that 1 m is a rea-
sonable average with limited variance (Jencso et al., 2009).

DHSVM distributes parameter values based on vegetation
and soil “types”, with one vegetation and soil type assigned
to each cell within the catchment. To minimize potential for
equifinality, we employed a model framework to distribute
soil and vegetation parameters using as few different classes
as possible while still representing functional differences
that we expected to impact hydrology across the catchment.
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Figure 1. Tenderfoot Creek Experimental Forest (a) digital elevation model (DEM) and instrumentation used in the study and (b) vegetation
type used by DHSVM to distribute model parameters. (a) Instrumentation includes a streamflow calibration station at the outlet of Stringer
Creek (LSC) as well as streamflow gaging stations at the outlet of Tenderfoot Creek (LTC) and middle Stringer Creek (MSC). Most forcing
data are measured at SNOTEL sites Stringer Creek and Onion Park. Water balance time series are extracted at both SNOTEL locations,
as well as streamflow behavior at the Stringer Creek outlet. (b) Vegetation type is distributed based on vegetation height, with cells with
undergrowth vegetation shown in white, cells with canopy vegetation shown in light green, and cells with tall tree vegetation shown in dark
green. (c) The model is forced with air temperature and precipitation data collected at the two SNOTEL locations. Catchment observations
include snow water equivalent at two SNOTEL sites and streamflow at three gauges.

Vegetation was grouped into three classes based on vegeta-
tion height, as vegetation species are relatively homogenous
across the catchment (Farnes et al., 1995; Mincemoyer and
Birdsall, 2007) and height is an important determinant of
aerodynamic resistance, used within both the snow and evap-
otranspiration modules to estimate catchment response on a
cell-by-cell basis (Wigmosta et al., 2002). Vegetation classes
included tall trees (> 10 m), trees (2–10 m), and undergrowth

(< 2 m; Fig. 1b). Vegetation parameters were distributed by
vegetation type, with individual parameters partitioned be-
tween an understory (13 parameters) and an overstory (17 pa-
rameters). Cells with only undergrowth include only under-
story parameters; cells with a canopy (trees or tall trees) have
both an understory and an overstory. Parameter values asso-
ciated with understory vegetation were varied concurrently
across the catchment. Overstory parameters were varied in
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Table 1. Parameter types, names, numbers (with reference to Fig. 8), and ranges for all 53 parameters included in the analysis. Sources for
ranges are detailed in Kelleher et al. (2015).

No. Name Minimum Maximum No. Name Minimum Maximum

Snow/climate Understory vegetation

1 Snow water capacity (–) 0.01 0.08 27 Minimum resistance (s m−1) 100 175
2 Rain LAI multiplier (–) 0.0002 0.001 28 Moisture threshold (–) 0.115 0.165
3 Snow LAI multiplier (–) 0.0002 0.0025 29 Vapor pressure deficit (Pa) 200 4000
4 Minimum intercepted snow (–) 0.001 0.01 30 Fraction of photosynthetically active radiation (–) 0.1 1
5 Snow threshold (◦C) 0 2 31 Root fraction, layer 1 (–) 0.25 0.45
6 Rain threshold (◦C) −2 0 32 Root fraction, layer 2 (–) 0.45 0.65

Soils 33 Monthly LAI (–) 0.65 1.35

7 Lateral conductivity (KLAT) (m s−1) 1× 10−5 1× 10−2 34 Monthly albedo (–) 0.1 0.23

8 Exponential decrease in KLAT with depth (–) 0.5 5 Overstory – trees

35 Fractional coverage (–) 0.287 0.575
9 Maximum infiltration (m s−1) 3.6× 10−5 5.38 × 10−4 36 Trunk space (–) 0.37 0.79
10 Capillary drive (–) 0.03 0.6 37 Aerodynamic attenuation (–) 0.3 4.25
11 Surface albedo (–) 0.2 0.3 38 Radiation attenuation (–) 0.1 0.2
12 Porosity (–) 0.38 0.47 39 Maximum snow interception capacity (–) 0.05 0.2
13 Pore size distribution index (–) 0.07 0.559 40 Mass release drip ratio (–) 0 1
14 Bubbling pressure (m) 0 1.24 41 Snow interception efficiency (–) 0 1
15 Field capacity (–) 0.15 0.25 42 Height (m) 2 7.5
16 Wilting point (–) 0.07 0.15 43 Maximum resistance (s m−1) 500 3000
17 Bulk density (kg m−3) 1390 1650 44 Minimum resistance (s m−1) 150 300
18 Vertical conductivity (m s−1) 1.42× 10−10 2.02× 10−4 45 Moisture threshold (–) 0.115 0.165
19 Thermal conductivity (W m−1 ◦C−1) 0.3 0.8 46 Vapor pressure deficit (Pa) 200 4000
20 Thermal capacity (J m−3 ◦C−1) 1× 106 3× 106 47 Rpc (–) 0.1 1
21 Manning’s n (–) 0.11 0.35 48 Root fraction, layer 1 (–) 0.65 0.15

Understory vegetation 49 Root fraction, layer 2 (–) 0.75 0.25

22 Maximum snow interception capacity (–) 0.05 0.2 50 Monthly LAI (–) 0.5 1.5
23 Mass release drip ratio (–) 0 1 51 Monthly albedo (–) 0.06 0.23

24 Snow interception efficiency (–) 0 1 Overstory – tall trees

25 Height (m) 0 1.2 52 Fractional coverage (–) 0.322 0.594
26 Maximum resistance (s m−1) 500 1000 53 Height (m) 10 14.7

tandem for cells with both canopy and tall canopy vegeta-
tion, with the exception of vegetation height and overstory
fractional coverage (aerial percentage of each cell covered
by canopy vegetation) which we expected to differ between
these two vegetation classes. Parameter values for vegetation
were constrained, when possible, based on the plant species
at different heights (lodgepole pine when species information
was available, more generally “evergreen conifer” for 2–10 m
and “grasses and shrubs” for < 2 m). All vegetation parame-
ters are listed in Table 1, with the minimum and maximum
bounds on uninformed (uniform) prior parameter distribu-
tions specified in Appendix A and sources for these ranges
provided in Kelleher et al. (2015).

A single soil type was used to distribute soil parameters
across the catchment, as there is limited small-scale infor-
mation about soil properties across Stringer Creek. Parame-
ter values for soil information were obtained, when possible,
from the CONUS soils database as well as from texture esti-
mates from CONUS combined with the soil water character-
istics’ hydraulic properties calculator following Saxton and
Rawls (2006). Within DHSVM, a total of 15 parameters are
used to describe soil characteristics for each soil type.

2.2.2 Meteorological forcing data

The model was executed at a time step of 3 h to effec-
tively simulate snowmelt while balancing computational
cost. Model forcing data include air temperature, precipita-
tion (which is partitioned between rain and snow using two
temperature thresholds set by parameter values within the
model framework), relative humidity, wind speed, and solar
and longwave radiation (Fig. 1c). All but solar and longwave
radiation were measured continuously at two SNOTEL sites
within Tenderfoot Creek Experimental Forest, with one site
located at low elevation and another site located at high ele-
vation. Air temperature was distributed across the basin us-
ing a lapse rate calculated at each model time step between
the two SNOTEL sites; all other meteorological information
from SNOTEL sites was distributed using an inverse distance
weighting approach contained within the model. Solar ra-
diation data at the SNOTEL sites were sparse and discon-
tinuous; instead, solar radiation measured at a FLUX tower
was scaled to SNOTEL site locations using topographic po-
sition (Kelleher et al., 2015). Within the model, solar radi-
ation is distributed across the catchment using monthly av-
eraged shading maps for each model time step across a 24 h
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period. These shading maps incorporate both the effects of
topographic shading, diel variability, and monthly variability
in sun position and angle. Uniform shading maps were aver-
aged for the months of November, December, and January, as
spatially distributed shading maps produced simulations of
climate and hydrology that exceeded realistic ranges for the
model (Kelleher et al., 2015). As these months are primarily
periods of accumulation and very little to no melt, we do not
expect this to affect model results. Longwave radiation was
calculated using the Stefan–Boltzmann equation (Dingman,
2001).

2.2.3 Model initialization and setup

For each parameter sample, the model was run for a 6-month
warm-up period from 1 April 2006 tp 30 September 2006
and an analysis period of 1 October 2006 to 1 October 2008.
We calibrate to the 2008 water year (1 October 2007–1 Oc-
tober 2008) but demonstrate results for the 2007 water year
(1 October 2006–1 October 2007) to show the value of our
approach across a longer period. While these periods are
short, they encompass both a wetter (2008) and a drier (2007)
year across the known climatic record at this site. The model
was initialized using observations from the two SNOTEL sta-
tions. To test that the warm-up period was sufficiently long
for the impact of initial conditions on simulations to dis-
sipate, we initialized nine parameter sets from varying ini-
tial conditions (results shown in Appendix A). Similar to
other distributed model studies (e.g., Melsen et al., 2016), we
found that model simulations diverged quickly, suggesting
that 6 months should be sufficiently long for the influences
of parameter values on model simulations and predictions to
emerge. This 6-month period of initialization was not used in
any of the calibration or validation processes of the model.

3 A framework for constraining environmental
simulations and predictions

3.1 Assessing model performance

There is a wealth of information and approaches researchers
use to assess model performance and presence of equifinality,
often by quantifying how well simulations match observa-
tions, aggregated catchment or regional data, and/or percep-
tions of system functioning (Bennett et al., 2013). Across the
modeling and prediction in ungauged catchment literature,
we have found that constraints on model-derived hydrologic
behavior generally fall into three general categories:

1. regional signatures of similarity (e.g., Yadav et al.,
2007; Bloeschl et al., 2013; Hrachowitz et al., 2014),
typically applied to regionalize hydrologic models for
streamflow prediction in ungauged catchments;

2. objective functions or error metrics (e.g., Wagener et al.,
2001; Gupta et al., 2008; van Werkhoven et al., 2008;

Pfannerstill et al., 2014; Shafii and Tolson, 2015), which
measure how well simulations match observations; and

3. measures of internal catchment behavior, which de-
scribe how well simulations match either observations
or perceptions of the spatiotemporal variability of hy-
drologic behavior (e.g., Franks et al., 1998; Lamb et al.,
1998; Grayson et al., 2002; Wealands et al., 2005; Kurás
et al., 2011; Koch et al., 2016).

Whether within an uncertainty framework or applied to cal-
ibrating a single parameter set, most studies typically use
one of the three types of constraints outlined above to ob-
tain a “best” parameter set; few have made use of more
than one constraint type, though many studies have shown
the value of multi-objective approaches (Yapo et al., 1998;
Gupta et al., 1998; van Werkhoven et al., 2009). Recently, a
number of studies have advanced approaches for assessing
alternative information sources (i.e., model realism via ex-
pert knowledge) and constraining both parameter values and
model simulations in pursuit of reducing equifinality (Seib-
ert and McDonnell, 2002; Hrachowitz et al., 2014; Gharari
et al., 2014; Silvestro et al., 2015). In spite of these many ex-
amples, a general framework for how to systematically con-
strain environmental simulations and parameter inference is
still needed.

Building on the uncertainty literature across distributed
model applications, we recommend constraining envi-
ronmental simulations following a hierarchy of met-
rics/signatures and corresponding constraints (McGlynn et
al., 2013). This framework builds from sources of informa-
tion that should be widely available and have low cost to ob-
tain, to information that may not be available everywhere and
that may be more expensive to obtain. We present this frame-
work in Fig. 2, outlining information sources that range from
regional signatures, to error metrics, to spatial patterns in-
formed by observations and expert judgment. In this study,
we use this framework as a path to evaluate distributed model
equifinality during model calibration.

These signatures/error metrics are summarized as follows:

Regional Signatures Regional signatures, increasingly
used in hydrological model applications (e.g., Yadav
et al., 2007; Bloeschl et al., 2013; Hrachowitz et al.,
2014), constrain key annual dynamics. Ranges for a
region may be informed by global or regional data
sources and publications (e.g., Krug et al., 1990; Milly,
1994; Church et al., 1995; Zomer et al., 2007, 2008).

Local signatures In the absence of measurements, field re-
searchers often have a broad sense of feasible and infea-
sible ranges for different types (e.g., evapotranspiration,
water table height/soil saturation, snow water equiva-
lent) of annual or seasonal hydrologic behavior. These
constraints are best applied to average catchment con-
ditions, with a goal to remove simulations that are too
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Figure 2. Conceptual framework for constraining environmental
predictions for application to a distributed hydrologic model. The
framework begins with criteria based on information that have po-
tential to be widely available and relatively inexpensive to acquire,
to criteria based on observations, ending with criteria based expert
knowledge that may not be available or achievable everywhere.

wet or too dry at an annual or seasonal timescale. This
information could be considered “soft information” as
described by Seibert and McDonnell (2002), because
it may not directly based on measurements within the
catchment.

Error Metrics In general, error metrics are calculated by
comparing time series of observational records (most
commonly, streamflow, but can include snow water
equivalent or snow depth (e.g., Whitaker et al., 2003),
road ditch flow (e.g., Surfleet et al., 2010), and soil
moisture (e.g., Cuo et al., 2006) to model simula-
tions. We recommend comparing observed and simu-
lated time series data in two ways (e.g., van Werkhoven
et al., 2009; Hrachowitz et al., 2014): as statistical met-
rics, which measure model performance with respect
to the entire time series, e.g., root mean squared error
(RMSE), Nash–Sutcliffe efficiency coefficient (NSE;
Nash and Sutcliffe, 1970), and dynamic metrics, which
measure model performance with respect to different
periods or types of hydrologic behavior, e.g., the base-
flow index, the slope of the flow duration curve (Wa-
gener et al., 2001; Gupta et al., 2008; Pfannerstill et
al., 2014; Shafii and Tolson, 2015). Performance across
statistical metrics is typically judged with respect to a
threshold value, e.g., NSE greater than 0.8, or some
threshold percentage, e.g., top 10 % of RMSE values
(e.g., Moriasi et al., 2007; Harmel et al., 2014). Dy-
namic metrics may expand assessment of hydrologic
behavior, as existing work has shown that there is infor-
mation contained not only in different types of data but

also in different periods for an observational time series
(Wagener et al., 2001; Gupta et al., 2008; Pfannerstill et
al., 2014; Shafii and Tolson, 2015).

Internal catchment behavior Aggregated spatial predic-
tions (if values are unknown) and simulations (if val-
ues are known) may be used to assess the realism of
predicted internal catchment behavior (Grayson et al.,
2002; Wealands et al., 2005; Kuraś et al., 2011; Koch et
al., 2016; Fang et al., 2016). There are many examples
of distributed models that have evaluated internal catch-
ment behavior using what Grayson et al. (2002) refer
to as the “many points” approach – comparing model
simulations to (often, time series) observations at sev-
eral locations throughout the catchment for a given pro-
cess of interest (e.g., Thyer et al., 2004; Kuraś et al.,
2011). However, in the absence of internal observations,
we suggest that internal simulations may still be incor-
porated into evaluations of distributed model behavior
and parameter estimation. First, we suggest researchers
apply a simple “reality check”: are the predictions pos-
sible? This step may help to identify runs that predict
behavior outside of the realm of possibility. Secondarily,
we suggest that researchers should consider the param-
eter influences that generate differences in the spatial
representations, to evaluate and either accept or reject
parameter sets as more realistic or less realistic repre-
sentations of the system. This type of evaluation will
benefit from involving experimentalists that have expe-
rience in a particular catchment. While this evaluation
is often qualitative, it will rely on expert knowledge,
previous experimental catchment studies, as well as a
perceptual catchment model.

3.2 Approach

In this study, we apply the framework demonstrated in Fig. 2
within a Monte Carlo based uncertainty analysis, interro-
gating relationships between model parameter values, model
simulations and predictions, and model metrics that summa-
rize model performance and behavior as catchment-wide sig-
natures and error. We applied Monte Carlo sampling to a
priori constrained parameter ranges for 53 independent pa-
rameters associated with basin-wide properties, soil proper-
ties, and vegetation properties to produce 10 000 parameter
samples (Table 1; Appendix A). The model was executed
for each parameter sample, and model simulations were used
to calculate 11 different metrics for each model run. We ac-
knowledge that 10 000 parameter sets will not fully explore
the entire parameter space for a 53-parameter model. How-
ever, our approach here serves as a demonstrative exercise to
provide an example of how a modeler could approach this
type of reduction via multiple constraints. As such, having
a greater number of parameter sets should not influence our
general conclusions.
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Table 2. Signatures and error metrics used in the analysis. The table contains abbreviations for each signature/error metric, units, the general
equation used for calculation, and the constraints chosen to separate behavioral and non-behavioral runs. Abbreviations in equations refer to
time step t , total number of time steps m, observed values O, and simulated value S.

Signature/metric Abbrev. Data Units Equation Constraints

Si
gn

at
ur

es

R
eg

io
na

l Runoff ratio RR Q, P (–)
∑m

t=1Qt/
∑m

t=1Pt 0.2 < RR < 0.7
Aridity index AI PE, P (–)

∑m
t=1PEt/

∑m
t=1Pt 0.33 < AI < 1.206

L
oc

al Annual evapotranspiration ET ET (mm)
∑m

t=1ETt 300 mm < ET < 650 mm
Average annual water WT WT (m) 1

m

∑m
t=1WTt WT < 0.5 m

Table depth

E
rr

or
m

et
ri

cs St
at

is
tic

al Nash Sutcliffe efficiency NSEQ Q (–)
1−

∑m
t=1(Ot − St )

2/
∑m

t=1

(
Ot −

1
m

∑m
t=1Ot

)2 NSEQ > 0.6
Coefficient NSES SWE (–) NSES > 0.8

D
yn

am
ic

Runoff ratio error RRE Q (%) 100 ·
∣∣∣∣∑m

t=1Qt,s∑m
t=1Pt,s

−

∑m
t=1Qt,o∑m
t=1Pt,o

∣∣∣∣ · ∣∣∣∣∑m
t=1Pt,o∑m
t=1Qt,o

∣∣∣∣ RRE < 20 %

Error in the slope of SFDCE Q (%) 100 ·
∣∣∣Q10 %,S−Q30 %,S

30−10 −
Q10 %,O−Q30 %,O

30−10

∣∣∣ · ∣∣∣ 30−10
Q10 %,O−Q30 %,O

∣∣∣ SFDCE < 30 %
the flow duration curve
Error in peak Q magnitude PQ Q (%) 100 ·

∣∣PQ,S −PQ,O

∣∣/PQ,O PQ < 35 %
Error in peak Q timing TQ Q (days)

∣∣TQ,S − TQ,O

∣∣ PT < 12 days
Error in SWE volume VOLS SWE (%) 100 ·

(∫m
t=1S (t)dt −

∫m
t=1O (t)dt

)
/
∫m
t=1O (t)dt VOLS < 20

Following the framework in Fig. 2, Table 2 lists all met-
rics used to assess catchment behavior, the equations used
to calculate each metric, the associated constraints we ap-
plied in this study, and the source of information for defin-
ing each constraint. Due to the relatively short time pe-
riod for which all meteorological measurements were present
within the catchment and at both SNOTEL sites, we assessed
model calibration across a single year of data correspond-
ing to the 2008 water year (WY) for one discharge location
(Stringer Creek, LSC). All metrics are calculated with re-
spect to this period and are annual metrics unless otherwise
stated. Metrics related to discharge are calculated using ob-
served Stringer Creek streamflow, and metrics using data be-
yond streamflow represent average conditions for the Ten-
derfoot Creek watershed. To further demonstrate the value
of this approach, we also include model performance for
two other discharge locations, a smaller catchment (middle
Stringer Creek, MSC) and a larger catchment (Tenderfoot
Creek, LTC) for the 2008 water year. We additionally display
simulations for the 2007 water year.

The framework begins with an evaluation of whether
model simulations match signatures of regional behavior,
evaluated via the runoff ratio and aridity index. While
the latter is calculated from potential evapotranspiration
(PET), which may be supplied as input for some mod-
els, PET varies with parameters in DHSVM. Signatures
were constrained using existing datasets and regional re-
ports/publications (e.g., Sankarasubramanian and Vogel,
2003), including the CGIAR-CSI Global Aridity and Global-
PET database (Zomer et al., 2007, 2008), which was used
to limit the aridity index (AI) to values obtained within a
50 km radius of Tenderfoot Creek. Constraints on AI from

this dataset represent long-term average conditions for the
region, and are used to broadly eliminate simulations outside
of the realm of regionally realistic estimates.

We additionally incorporated local signatures of cumula-
tive annual evapotranspiration and average annual water ta-
ble depth (WTD), applied to catchment-wide averages. Ex-
perimentalists can often recommend basic ranges for these
values from fieldwork or from numerous visits or observa-
tions of other hydrologic processes across the catchment.
ET was constrained based on calculations from Mitchell et
al. (2015), from observations at a meteorological tower lo-
cated within the catchment. We limited annual water table
depths based on previous findings that the water table is only
active for a small portion of the year during snowmelt, with
most of the catchment experiencing very little response (Jen-
sco et al., 2009; Jensco and McGlynn, 2011).

Error metrics were calculated for observed streamflow
measurements as well as snow water equivalent (SWE) mea-
surements at two SNOTEL stations within the larger Tender-
foot Creek catchment. While there are more observational
data present within the catchment than are used to constrain
the model, our goal in this application was to make use of
observations that are likely to be available in many exper-
imental catchments. Thus, we focus on metrics that assess
streamflow and SWE. Continuous observations of snow wa-
ter equivalent are available at both SNOTEL sites. Statistical
fits for simulated and observed streamflow and SWE were
assessed with the NSE. We additionally selected five metrics
to describe dynamic streamflow and SWE behavior:

– runoff ratio error (RREQ), to capture the annual water
balance;
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– error in the slope of the flow duration curve (SFDCEQ),
assessed between the 10th (pl) and 30th (ph) percentile
exceedance flows, to capture the variability in transition
flows;

– error in the magnitude of the streamflow peak (PQ);

– timing of the peak magnitude (TQ), both selected to cap-
ture the interaction between snowmelt and streamflow;
and

– total storage error (VOLS), similar to the RRE but rep-
resentative of total annual SWE storage behavior, to
match overall SWE volume.

As individual daily flow events are the most difficult to match
and tend to be influenced by a range of different model pa-
rameters, we left constraints on these behaviors to be widest
(Table 2). Additionally, as peak flow is likely to be most in-
fluenced by epistemic errors, we left bounds on peak flow
to be reasonably wide, so as to avoid incorrectly constrain-
ing a potentially uncertain measurement. Recognizing that
many of these metrics may be conflicting, our goal is to end
with parameter sets that perform reasonably well for many
different types of streamflow and SWE behavior, as opposed
to performing well for only one or two metrics, yielding an
unrealistic hydrograph or SWE time series.

Error metrics for the SNOTEL sites were computed at each
site but presented in the paper as a single measure across both
sites using an 80 % (Onion Park) – 20 % (Stringer Creek)
weighting. We chose this weighting because Onion Park el-
evation is more representative of Stringer Creek catchment
topography, with more than 90 % of the catchment at an el-
evation closer to the Onion Park (2259 m) than to Stringer
Creek (1983 m) site elevations. When weighting both sites
into a single metric, the absolute values of the storage vol-
umes were averaged, as the model tended to underpredict at
Stringer Creek and overpredict at Onion Park. Last, we ex-
tracted spatial predictions of water table depth for Stringer
Creek at noon each day from 1 October 2007 to 1 Oc-
tober 2008 across the entire catchment. These maps were
averaged across different periods to create maps of aver-
age annual predictions, average predictions during snowmelt
(1 May–30 July), and average predictions during the dry pe-
riod during the late summer (1 August to 30 September).

4 Results

4.1 How do single constraints influence model
performance?

As can be seen in Fig. 3, constraining with a single metric
yields good performance for matching observations of SWE
(with respect to NSE and error in SWE volume). However,
the ranges and first and third quantiles for all other metrics
are well outside of constraints. For example, error in peak

timing may exceed upwards of a month (30 days) and error
in peak magnitude ±100 % when the model is constrained
with just one metric.

4.2 How do constraints on model simulations influence
the number of acceptable parameter sets?

The number of parameter sets that met constraints applied in-
dividually, hierarchically, and as a group are shown in Fig. 4.
When applied hierarchically, a total of nine parameter sets
met all metric constraints (Fig. 4a). Individually, a large num-
ber of parameter sets met behavioral constraints on SWE
NSE, removing only 489 of the 10 000 sets. The opposite was
true for behavioral sets constrained based on peak stream-
flow, which identified only 626 behavioral parameter sets.

Figure 4b summarizes the number of acceptable parameter
sets that meets groups of constraints, as introduced in Fig. 2.
Across the different types of signatures and metrics, dynamic
constraints overwhelmingly had the single greatest impact on
reducing acceptable parameter sets, with just 26 sets meeting
all criteria for dynamic metrics. Interestingly, statistical and
regional constraints identified a similar number of behavioral
sets. While combining regional and local metrics reduced the
number of behavioral sets, combining statistical and dynamic
constraints did not reduce the number of behavioral sets.

4.3 Are all metrics needed?

To evaluate whether all 11 metrics and corresponding con-
straints are needed to ensure behavioral consistency within
this framework, we examined model behavior and perfor-
mance across subsets of metrics (n= 2 to 10) as well as the
level of redundancy across metrics (Appendix B). Employ-
ing only 2 or 3 metrics removes 69.7 and 74 %, respectively,
of the sets removed when all 11 metrics are used, suggest-
ing that 25 to 30 % of parameter sets inconsistent with model
behavior across our framework would remain. By compari-
son, including eight metrics generally removes an average of
92.6 % of all non-behavioral parameter sets. Of the 165 com-
binations of eight different metrics evaluated in this analy-
sis, 83 % included at least one metric in each of the different
framework groups (regional, local, statistical, dynamic). The
redundancy of each metric was also evaluated by comparing
the non-behavioral sets identified via constraining one metric
that would not be found by another (Appendix B). While we
found that redundancy did occur in this type of framework,
more than half of the simulations found to be non-behavioral
by constraining one metric were considered behavioral by
another metric across a majority of metric combinations.

4.4 How do single and multiple constraints impact the
distributions of metrics of catchment behavior?

Initial distributions (I) of metric values across all 10 000 pa-
rameter sets include a wide range of behavior (Fig. 5).
While these distributions can be narrowed by the addition
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Figure 3. Ranges, interquartile ranges, and mean values for distributions of regional and local signatures, statistical metrics, and dynamic
metrics used in the proposed framework. Distributions are shown when a given metric is constrained to behavioral ranges and when a metric
is constrained by other metrics, compared to behavioral ranges set in this study. Arrows indicate that ranges exceed the visualized axis limits.
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of one constraint, many distributions of behavioral perfor-
mance were also narrowed by the addition of all constraints.
The addition of all constraints favored higher values (∼ 0.5
to 0.7) for the runoff ratio and lower values (∼ 0.35 to
0.5) for the aridity index and average water table height
(∼−0.75 to−0.95). Performance improved slightly for both
statistical metrics (NSEQ and NSES) and narrowed ranges
for both error in the runoff ratio (RREQ) and slope of the
flow duration curve (SFDCEQ). While behavioral sets both

over- and underestimated RREQ and SFDCEQ, the final be-
havioral sets only included simulations that underestimated
peak streamflow alongside earlier-than-observed peak tim-
ing, while overpredicting SWE.

4.5 How do constraints impact predictions and
simulations of catchment behavior?

Figure 6 displays the impact of different constraints on the
range of model simulations for streamflow (LSC), snow wa-
ter equivalent (Stringer Creek SNOTEL), and average wa-
ter table depth for the 2007 and 2008 water years. Stream-
flow simulations for the calibration period (WY 2008) were
best narrowed by the addition of statistical and dynamic con-
straints and poorly narrowed by the addition of regional and
local constraints. Constraining behavior via regional and lo-
cal metrics resulted in behavioral simulations that underesti-
mated peaks and poorly matched timing of streamflow initi-
ation and maximum response. While statistical and dynamic
metrics both predict an earlier streamflow response on the ris-
ing limb of the hydrograph, simulations were well matched
with behavior on the falling limb of the hydrograph. Dy-
namic metrics also better constrained streamflow simulations
during baseflow, which tended to be overestimated by behav-
ioral sets selected by statistical metrics.

Predictive ranges for SWE were similar across different
constraints. All metrics had well constrained SWE behavior
(shown for the Stringer Creek SNOTEL station), with con-
sistent differences between simulations and observations re-
gardless of metrics used to constrain behavior. SWE magni-
tude was overestimated for all behavioral sets, though the ini-
tiation of melt timing was similar, producing simulations that
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overestimated the time that the last of the snowpack melted
during late May and early June.

In contrast to simulations of SWE, behavioral simulations
of average water table depth varied widely depending on
which metrics were used to constrain behavior. Behavioral
sets identified via statistical metrics included a wide range
of average water table behavior, suggesting that statistical
metrics may poorly inform water table dynamics. Behavior
constrained by local and regional metrics produced a pattern
of average water table depth consistent with general under-
standing of water table behavior (Jensco et al., 2009; Jencso
and McGlynn, 2011). As a metric for average water table
depth was directly incorporated into the assessment of re-
gional and local behavior, this result is expected. Dynamic
metrics had the largest impact on narrowing WTD simula-

tions, identifying behavioral simulations that were most con-
sistent with our understanding of water table response across
Tenderfoot Creek.

4.6 How well do model simulations match
observations?

Calibration to the 2008 water year utilizing all metrics and
corresponding constraints identified behavioral sets corre-
sponding to hydrographs and SWE time series that reason-
ably matched observations (Fig. 7). Simulations of stream-
flow at the calibration site (LSC) for the 2008 water year
simulated the double streamflow peaks and match periods
of wetting up and drying down that occurred in the observa-
tional record, with some differences between simulations and
observations. However, the timing of streamflow on the ris-
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satisfy all hierarchically applied constraints. Each grey line corre-
sponds to the simulation from one of nine behavioral parameter sets.

ing limb of the hydrograph and the first streamflow peak was
poorly matched. SWE at both SNOTEL sites was overesti-
mated in terms of magnitude and timing, though simulations
generally matched observations. Melt timing generally ap-
proximated observed behavior at Onion Park but was slightly
early at Stringer Creek, though again dynamics in both cases
are largely matched, especially the timing of accumulation
and melt from April through June.

To demonstrate the value of this approach with respect to
other streamflow observation locations and for years beyond
the calibration period, we also display fits to the 2008 water
year for middle Stringer Creek and lower Tenderfoot Creek.
Streamflow NSE at these two locations varied between 0.63
and 0.83 for LTC and between 0.47 and 0.74 for MSC. Like
fits to Stringer Creek, timing and peak magnitude for stream-
flow at MSC and LTC were underpredicted with respect to
observations, though simulations approximate behavior of
observations on the rising and falling limbs, and accurately
predict the presence of observed double streamflow peaks for
the 2008 water year. Performance for other metrics for these
two discharge locations is reported in Table B1.
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Figure 8. Distributions of behavioral parameter values meeting
framework criteria for the 53 parameters varied within the analy-
sis (nine final sets). The ranges for each parameter are listed above
(maximum) and below (minimum) each distribution. Distributions
are normalized to values between 0 and 1 (y axis) to enable eas-
ier comparison (linearly scaled for all parameters except KLAT,
which was log10 scaled). Parameters are grouped by type, with
numbers referring to parameter names listed in Table 2. A two-
tailed Kolmogorov–Smirnov test was used to assess whether there
was a statistically significant difference (p < 0.1) between the origi-
nal parameter sample and the parameter sets that met all framework
criteria (nine sets).

Outside of the calibration period, fits for the 2007 water
year for all locations were high (Fig. 8). NSE for the cali-
bration site (LSC) varied between 0.65 and 0.82, while NSE
for the other two streamflow locations varied between 0.64
and 0.91 at LTC and between 0.51 and 0.78 at MSC. While
the water balance (RREQ) was well approximated for LSC,
estimates were higher than observations for both MSC and
LTC, though timing and magnitude of peak streamflow were
well approximated. The values for all metrics are reported in
Appendix B.

4.7 How do constraints impact parameter uncertainty?

To test whether multiple model constraints on hydrologic
behavior were able to reduce parameter equifinality, we in-
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vestigated the extent to which constraining model-predicted
and simulated behavior narrowed ranges for parameter val-
ues, with results displayed in Fig. 8. While ranges remained
wide for many parameters, ranges were greatly narrowed for
several of the 53 model parameters. Narrowed ranges were
observed especially for lateral conductivity (7) and its expo-
nential decrease with depth (8), maximum (26) and minimum
(27) understory stomatal resistance, and a scalar on over-
story leaf area index (LAI) (50). We applied a two-sample
Kolmogorov–Smirnov test to assess whether there was a sta-
tistically significant difference (p < 0.1) between the unin-
formed prior distribution of parameter values (Table 1) and
the distribution of parameter values for sets that met frame-
work criteria. We found that all but five parameters exhibited
statistically significant differences between their original and
final value distributions. However, ranges were still wide for
many parameter values.

4.8 Do assessments of catchment averages and
observations produce consistent internal
predictions of catchment behavior?

In this study, we do not directly compare simulations of wa-
ter table depth to well observations. Instead, we sought to
assess the variability across these simulations for three differ-
ent time periods, to determine whether behavioral parameter
sets yielded similar simulations, and to ask whether spatial
diagnostics beyond time series observations should be incor-
porated into assessments of distributed model behavior. All
predictions of water table depth are included in Fig. B3, with
three predictions of water table depth displayed in Fig. 9.
These three encompass the range of predictions from low
to high water table depth for annual, snowmelt (1 May–
31 July), and late summer dry-down (1 August–30 Septem-
ber) periods. Seasonally, water tables were simulated closer
to the surface during snowmelt and closer to bedrock dur-
ing late summer, with average behavior somewhere between
these two extremes.

4.8.1 Are simulations of water table depth consistent in
space and time?

Across simulated water table depths for nine behavioral pa-
rameter sets, differences in simulations were large in both
space and time (Figs. 9, B3). At annual timescales, many
parts of the catchment were predicted to have similar annual
average behavior, with differences below 0.1 m for 38 % of
all cells. Simulations across 13.3 % of the catchment differed
by more than 0.2 m, 20 % of the modeled soil depth. These
numbers were comparable for simulations during late sum-
mer, when the majority of the catchment was simulated to
have similar behavior. Differences were greatest during the
snowmelt period, exceeding simulated ranges of 0.2 m over
more than 64 % of the catchment. The locations of the largest
differences also varied across seasonal and annual periods.

Our results show that equifinality can produce vastly differ-
ent simulations of internal catchment behavior.

4.8.2 Can simulations be used to further reduce
equifinality?

Evaluating whether simulations of internal behavior of water
table depth match perceptions and observations of catchment
functioning may be done using simple metrics of spatial be-
havior. One such example is the presence of the water table at
the land surface. Tenderfoot Creek field researchers suggest
that there are few locations and few times where the water
table should be at the land surface across the catchment (Jen-
sco et al., 2009; Jensco and McGlynn, 2011). Based on these
recommendations, we expect high water tables to be present
across minimal areas (< 5 %) of the catchment. To test the
ability of a spatially distributed high water table metric to
discern differences between behavioral sets, we calculated
the percentage of cells across Stringer Creek where the wa-
ter table was simulated to be within 0.05 m of the surface for
the entire snowmelt period (May–July). Four different behav-
ioral sets simulated high water tables over more than 5 % of
catchment; at the extreme end, one set simulated high water
tables over 24 % of the catchment. Five sets simulated high
water tables over less than 5 % of the catchment, with sim-
ulations below this threshold across the entire catchment for
four of these sets. We would conclude from this evaluation
that these four sets produce spatial behavior that is consistent
with experimental insight across Stringer Creek.

5 Discussion

Within this study, we develop a conceptual uncertainty anal-
ysis and framework for parameter uncertainty reduction with
application to distributed modeling of headwater systems.
We demonstrate how this framework can be applied with re-
spect to a case study in Stringer Creek, a headwater catch-
ment located in Montana. While there are a few examples
of frameworks for model calibration (e.g., Refsgaard, 1997)
as well as several studies that have evaluated the trade-offs
between model complexity and predictive uncertainty, there
remain few guidelines for specific use in distributed hydro-
logic models, which have their own challenges. In this study,
we sought to create and test a framework that considered
many of the above-discussed limitations and capitalized on
the strengths of such complex models.

5.1 The value of suites of metrics in distributed model
applications

Many distributed model applications use only one constraint
to select behavioral parameter sets or to justify model perfor-
mance. As we show in Fig. 3, model simulations that meet
just one set of criteria may poorly match other catchment-
wide basin behavior. Of particular interest is the impact of
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Figure 9. Predictions of annual, May–July, and August–September water table depths (a) in space, across the watershed (for a subset of three
parameter sets (1, 2, and 3) corresponding to sets 1, 5, and 9 in Fig. B3), (b) shown as differences in space across nine equifinal parameter
sets, and (c) with differences on a cell-by-cell basis summarized as histograms per time period. Color on maps indicates (a) the average
depth across a given period between bedrock (−1 m) and the surface (0 m) and (b) the largest difference between all nine predictions at each
cell. Predictions are shown for three parameter sets that span the range of behavior from lower (set 1) to higher (set 9) water table conditions
across all nine parameter sets. Predictions of water table depth across all behavioral sets are included in Fig. B3.

other constraints on catchment-wide signatures, including
the runoff ratio, aridity index, annual evapotranspiration, and
annual average water table depth. For our application, apply-
ing a single statistical or dynamic metric did not narrow any
signature to ranges deemed to be representative of regional
or catchment behavior.

Interestingly, despite the snow-driven nature of Tenderfoot
Creek, many parameter sets were equifinal with respect to
the NSE for SWE (Fig. 5). This suggests, for this particu-
lar application, that a priori parameter ranges did not gen-
erate wide variability in SWE time series at the two obser-
vation sites, leading us to believe that within DHSVM the
meteorological forcing data are a greater driver of modeled
SWE. Since these forcing data are also uncertain, there is
potential for this uncertainty to propagate into model sim-
ulations, and it may be driving the overestimation of SWE
observed at both SNOTEL sites. Previous model analysis in
this catchment found that many snow accumulation and melt
parameters were insensitive and highly interactive (Kelleher
et al., 2015). Together, these results broadly suggest that not
all observations will reduce equifinality. Other studies have
questioned the empirical equations used to calculate SWE
accumulation and melt, and have found improvements in the
prediction of SWE accumulation and melt by altering hard-
coded parameters within the model framework (Thyer et al.,
2004; Jost et al., 2009).

The largest number of non-behavioral sets was identified
by errors in peak streamflow magnitude. While there were
several sets that had very small errors in peak streamflow
magnitude (Fig. 5), many overestimated the annual water bal-
ance, and were therefore identified as non-behavioral. While
peak timing was underestimated by the addition of all 11 cri-
teria, errors in the runoff ratio and the slope of the flow dura-
tion curve were narrowed to ranges of lower errors, and aver-
age water table depth was constrained to more representative
ranges when all 11 criteria were added (Fig. 6, 7).

In the absence of time series observations, our results show
that regional and local metrics could be used to narrow pre-
dictions but may poorly match hydrologic behavior for some
years (Fig. 6). While statistical or dynamic metrics may in-
form predictive uncertainty for streamflow in similar ways,
we found that they impacted simulations of other key catch-
ment behaviors differently. Statistical constraints poorly con-
strained simulations of water table depth (Fig. 6). In con-
trast, dynamic constraints, applied only to errors in stream-
flow and SWE time series, yielded behavioral simulations
that closely matched expectations of average water table be-
havior across the catchment (Jencso et al., 2009; Jensco and
McGlynn, 2011). Our results demonstrate that suites of met-
rics related to hydrologic behavior may inform simulations of
other hydrologic processes (i.e., average water table depth).
In contrast, we found statistical metrics to carry little infor-
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mation regarding other types of simulated or predicted be-
havior (Figs. 3, 6). To our knowledge, most uncertainty anal-
ysis studies with semi-distributed or distributed models typ-
ically favor statistical constraints over dynamic constraints
(e.g., Shields and Tague, 2012; Safeeq and Fares, 2012). It
is unclear whether this result is generalizable to other catch-
ment applications, though we expect the impact of dynamic
metrics with regards to discerning catchment behavior to
only increase for a greater number of hydrologic events.

5.2 Benchmarking simulations against other model
applications to Stringer Creek

Altogether, application of a framework for distributed mod-
eling yields model simulations that match streamflow at the
calibration site and that generally match patterns of SWE ac-
cumulation and melt (Fig. 7). In general, while results for the
2008 water year bracket observations, results for the 2008
water year are underpredicted with respect to peak behavior
and timing. Given that snowmelt drives both rising limb and
peak hydrograph response, uncertainty related to solar radia-
tion or air temperature forcings may be driving the difference
in rising limb behavior that we found in our simulations.

Simulations compare favorably to other conceptual and
lumped model applications to Stringer Creek. Nippgen et
al. (2015) developed a parsimonious distributed model, with
application to Stringer Creek yielding NSE values of 0.8 for
WY 2007 and 0.94 for WY 2008. Smith et al. (2013) devel-
oped the catchment connectivity model (CCM), a conceptual
hydrologic model that predicts streamflow based on relation-
ships between terrain, connectivity between the hillslope and
stream found in Jensco et al. (2009), and the duration of flow.
Simulation of Stringer Creek with CCM achieved similar lev-
els of fit to our study (NSE of 0.81 for Box–Cox transformed
streamflow; Smith et al., 2013), as did model simulations of
LTC (NSE of 0.903) and MSC (NSE of 0.856; Smith et al.,
2016). Simulations of streamflow by Nippgen et al. (2015)
and Smith et al. (2016) also underestimated peak streamflow
for the 2008 water year, suggesting that uncertainty in the
meteorological forcing data may be responsible for poor per-
formance during the calibration period for snowmelt. Ahl et
al. (2008) modeled Tenderfoot Creek streamflow using the
soil and water assessment tool (SWAT) for the period 1995–
2002 and achieved an average NSE of 0.86 during calibration
and 0.76 during validation. Our best fit by NSE to Stringer
Creek was 0.79 for the 2008 water year and 0.82 for the 2007
water year, while best fits for Tenderfoot Creek were 0.83 for
the 2008 water year and 0.91 for the 2007 water year. Thus,
the level of fit we achieved through this investigation was
similar to other model applications to this catchment. More-
over, we ensure that the selected model runs also match key
catchment-wide behavior as well as dynamical streamflow
behavior through the use of additional metrics. We acknowl-
edge, however, that sources of uncertainty beyond those con-
sidered by our study may still be driving differences between

simulations and observations. Possible sources of error in
simulations of both SWE and peak magnitude and timing er-
rors may be related to uncertainty in the model framework,
model forcing data, and observations used to judge perfor-
mance. Future work modeling these catchments will seek to
address these other sources of uncertainty alongside uncer-
tainty in parameter values.

The three models to which we compare our results demon-
strate a range of model frameworks that can be used to evalu-
ate model behavior: conceptual (Smith et al., 2013), lumped
(Ahl et al., 2008), and distributed without physically based
parameters (Nippgen et al., 2015). As is shown in this study,
all of these models are able to accurately simulate the hy-
drograph for this catchment. The primary trade-offs across
these models include requirements for inputs and parameters
alongside computational requirements, which are inversely
related to the complexity of simulated behavior that can be
produced from each of these models. While any of these ap-
proaches may be used to simulate streamflow, each will en-
able researchers to answer different questions related to hy-
potheses about catchment functioning, the use of field infor-
mation to inform model parameter constraints, and predic-
tions of spatiotemporal hydrologic processes. Finally, these
contrasting models also illustrate the differences between a
model like DHSVM that may be applied to many differ-
ent catchments versus the models introduced by Smith et
al. (2013) and Nippgen et al. (2015), in which the model
framework and structural equations were developed only for
this catchment. In this study, we specifically evaluate the ap-
plication of physically based, distributed models to simulate
experimental catchments, though we encourage researchers
to select the right tool, and therefore the appropriate model,
for a given study objective.

5.3 Parameter uniqueness and equifinality

We are often interested in how constraints influence pre-
dictive uncertainty of hydrologic behavior. Thus, the logi-
cal follow-up question is whether these constraints help to
narrow values for model parameters. Across the 53 model
parameters included in our analysis, constraints had a mini-
mal impact on narrowing parameter ranges for most param-
eters. However, we did detect a subset of soil and vegeta-
tion parameters that were reasonably narrowed from their
original ranges. This suggests that equifinality is still present
but that uncertainty analysis may also narrow parameter un-
certainty. In a similar application of DHSVM to the Oak
Creek catchment near Corvallis, OR, Surfleet et al. (2010)
also found significant equifinality when using a similar ap-
proach to characterize uncertainty with respect to streamflow
and road-ditch flow prediction. While we cannot formulate
any strong conclusions regarding predictive uncertainty in
parameter values given our limited sampling of the parameter
space, we assert that equifinality may overwhelm the ability
to extract much information regarding parameter values in

www.hydrol-earth-syst-sci.net/21/3325/2017/ Hydrol. Earth Syst. Sci., 21, 3325–3352, 2017



3340 C. Kelleher et al.: Characterizing and reducing distributed model equifinality

complex distributed model applications. However, equifinal-
ity with respect to catchment average conditions may man-
ifest in variable predictions of internal catchment behavior
(e.g., Fig. 9). Thus, evaluating spatial predictions may be one
of the few practical approaches to reducing this equifinality.

5.4 Interpretation of internal behavior

Both field investigations and modeling at Tenderfoot Creek
have focused on observation and prediction of water table
response with the goal of improving our interpretation of
streamflow generation and the connection between rainfall
and runoff (Jencso et al., 2009; Jensco and McGlynn, 2011;
Nippgen et al., 2015). Thus, we chose to evaluate simula-
tions of water table depth for our case study. We found that
parameter sets that were equifinal with respect to streamflow
and SWE (Figs. 7, 8) produced vastly different annual and
seasonal simulations of water table depth (Fig. 9). Moreover,
the locations where simulated differences were largest and
smallest across the catchment also varied with time. By as-
sessing the fraction of the catchment simulated to be at or
near the surface across the snowmelt period, we found that
four of the nine sets produced near-surface water tables over
a larger area than previous work suggests is likely. In this
sense, internal behavior can be used to identify simulations
that do not match perceptions or direct observations of catch-
ment behavior beyond comparison with time series. This ap-
proach enables one to move beyond just matching to a few
points with observations, encouraging modelers to holisti-
cally evaluate performance and simulation of multiple hy-
drologic processes.

5.5 The case for adding spatial predictions

Although constraints on the hydrograph and other hydrologic
behavior may ultimately match observations, we are still
faced with the likelihood that parameter equifinality may not
be eliminated by matching predictions to a few time series
observations. Aggregating model predictions of spatial pat-
terns is time intensive but can be highly informative. There-
fore, we recommend mapping these patterns once regional
values and/or observations have already been used to narrow
the parameter space.

Distributed model predictions of internal behavior are
often performed by matching model predictions of differ-
ent catchment variables (e.g., snowmelt, Thyer et al., 2004;
groundwater table dynamics, Kurás et al., 2011) to multi-
ple observations at discrete points across a given catchment,
though several studies have also shown how patterns of hy-
drologic processes may be directly incorporated into evalu-
ating and applying complex environmental models (Grayson
et al., 2002; Wealands et al., 2005; Fang et al., 2016; Koch
et al., 2016). In the absence of time series observations of
other hydrologic processes, simulated patterns may be evalu-
ated using expert knowledge, understanding of process con-

trols across landscapes, and other information knowledge
and experience about model output realism (e.g., Franks et
al., 1998). In our example, nine parameter sets that matched
the hydrograph and associated SNOTEL station SWE ob-
servations equally well (Figs. 5, 6, and 7) predicted very
different patterns of internal catchment behavior (Fig. 9).
However, these same sets also exhibited divergent parame-
ter values for several different soil and vegetation properties
(Fig. 8). This result exemplifies the additional information
available to constrain behavioral sets as well as the potential
for catchment-scale predictive uncertainty driven by param-
eter equifinality. Sets that met framework criteria simulated
very different patterns of water table depth across both an-
nual and seasonal periods (Fig. 9). Differences typically were
between 0 and 0.2 across all simulations and all catchment
cells, but were especially large (> 0.5 m) over small fractions
of the catchment. If spatial predictions were not used to limit
the parameter sets, any one of the nine sets has potential to
propagate predictions for future land use or climate change
scenarios that would lead to vastly different expectations of
water table presence across the landscape. We conclude that
equifinal sets may generate very different simulations of in-
ternal catchment behavior and therefore recommend that spa-
tial simulations should be incorporated into assessments of
distributed catchment behavior (Fig. 2). While we chose to
highlight only one spatial diagnostic in this paper, we ad-
vocate the inclusion of multiple diagnostics related to key
catchment storages (e.g., water table depth) and fluxes (e.g.,
evapotranspiration).

5.6 Future uncertainty analysis of distributed
catchment models

Applying this framework to other catchments will require re-
searchers to select a set of metrics for assessing model perfor-
mance, emphasizing both temporal and spatial metrics that
may help to ensure appropriate representation of key catch-
ment processes (e.g., Yilmaz et al., 2008). Evaluating any of
these aggregated signatures, metrics, and spatial diagnostics
should be based on a strong conceptual understanding of the
catchment and how processes that govern the water balance
change temporally and spatially at multiple scales. Such eval-
uations may especially benefit from joint evaluation by mod-
elers and experimentalists (Seibert and McDonnell, 2002).

The approach we recommend in this paper builds on and
compliments several recent studies that have sought to im-
prove process consistency across models of varying com-
plexity and within distributed hydrologic models. Many re-
cent studies have shown that, despite their weaknesses, dis-
tributed models typically outperform conceptual models with
respect to reproducing signatures (e.g., Hrachowitz et al.,
2014) and matching hydrograph dynamics (e.g., Euser et al.,
2015). Thus, the new objective we face is how to improve our
approaches to distributed modeling, ensuring model realism
while minimizing uncertainty. Work by several researchers

Hydrol. Earth Syst. Sci., 21, 3325–3352, 2017 www.hydrol-earth-syst-sci.net/21/3325/2017/



C. Kelleher et al.: Characterizing and reducing distributed model equifinality 3341

has evaluated methods for the spatial distribution of param-
eter values, to ensure process consistency across catchment
scales (Euser et al., 2015; Fenicia et al., 2016; Nijzink et al.,
2016). Others have sought to incorporate expert knowledge
to limit the feasible parameter space (Gharari et al., 2014;
Nijzink et al., 2016). In this vein, the choice of model struc-
ture may also offer another opportunity to reduce equifinal-
ity (Clark et al., 2008; Pokhrel et al., 2008; Samaniego et
al., 2010; Rakovec et al., 2016). In particular, the extensive
body of literature on parameter regularization may offer a
pathway for maintaining spatial complexity and consistency
while reducing the number of free model parameters (Hun-
decha and Bardossy, 2004; Hundecha et al., 2008; Pohkrel
et al., 2008; Samaniego et al., 2010; Rakovec et al., 2016).
Alternatively, there is also a body of work that treats the
model framework itself as a form of uncertainty, testing dif-
ferent model structures as hypotheses for how a catchment
may function (Clark et al., 2008, 2011; Fenicia et al., 2011;
Hrachowitz et al., 2014). This approach may also provide an
alternative to predicting hydrology via a model with fewer
parameters than the distributed application shown here, with
a model structure that incorporates the level of detail man-
dated by the complexities of the catchment (e.g., Zehe et al.,
2014; Euser et al., 2015). As encouraged by Beven (2002), to
best represent catchment behavior, we may need to not only
focus on model parameters but also the model structure in
terms of how this reflects the physical landscape. However, as
shown by Surfleet et al. (2010) in an application of DHSVM
to a series of small catchment areas in Oregon, equifinal-
ity may still overwhelm our ability to draw meaningful con-
clusions from distributed data, especially at small headwater
scales. Taken together, these studies suggest that equifinality
is likely to still limit application of distributed models, but
that prudently evaluating how this equifinality may impact
uncertainty in predictions and simulations alongside parame-
ter values may enable more careful use of distributed models.
Similarly, these studies also suggest that incorporating con-
straints within distributed model frameworks based on expert
knowledge and alternative data sources, whether applied to
model output, model setup, or model parameter values, may
ensure more holistic process representation across a given
catchment.

There are few studies that have sought to characterize
equifinality and uncertainty for physically based, distributed
model applications, but the number of distributed model ap-
plications that incorporate uncertainty is growing. Of those
that exist, most have focused on characterizing predictive un-
certainty in terms of uncertainty in parameter values (e.g.,
Cuo et al., 2011; Shields and Tague, 2012; Tague et al.,
2013), or in terms of model framework uncertainty, by mod-
ifying the model formulation to match multiple experimen-
tal observations throughout the critical zone (e.g., Thyer et
al., 2004). These studies exemplify the common need to con-
sider uncertainty when predicting environmental behavior
with complex, multi-parameter models. Our work suggests

this will only provide the modeler with a better understand-
ing of the catchment but also of the model in question. Alto-
gether, research with distributed models and our own analy-
sis does critique some of the challenges associated with dis-
tributed model application but also highlights the value of
distributed models for hydrological predictions (Hrachowitz
et al., 2014; Fatichi et al., 2016).

Ultimately, our ability to resolve issues with equifinality
and identify appropriate parameter sets in space and time is
challenged, as it was in this study, by the computational de-
mand of complex models. Executing model predictions for
the relatively short period of time investigated in this study
across 10 000 parameter samples required thousands of com-
puting hours (and even longer periods if the modeler retains
or “saves” spatial predictions across the catchment). While
distributed, physically based models like DHSVM may have
the ability to resolve predictions of hydrologic processes
through space and time, we do not yet have effective, com-
putationally inexpensive approaches for evaluating and rep-
resenting uncertainties in these types of applications. In order
to put these types of models to the test, we need better param-
eter sampling strategies (e.g., Rakovec et al., 2014; Jefferson
et al., 2015) and alternative approaches to those we use for
conceptual models, where executing a model many times is
not a challenge or limit on analysis. This may come in the
form of new methods, or alternatively, approaches that eval-
uate model adequacy via frameworks for computationally
frugal analysis (Hill et al., 2016). While quantifying or lim-
iting equifinality may always be a challenge for physically
based, distributed catchment models, we likely will need to
reframe our approaches for evaluating the uncertainties asso-
ciated with complex model applications. This challenge may
be best addressed by encouraging interaction across the con-
ceptual modeling community and the fully, distributed, phys-
ically based modeling community, in order to address broad
issues related to uncertainty and equifinality that, it can be ar-
gued, plague all models of any complexity (Hrachowitz and
Clark, 2017).

6 Conclusions

Distributed, complex models are powerful tools that enable
exploration of spatial and temporal simulations and future
scenarios of alteration. While beneficial, their complex na-
ture and subsequent potential for equifinality calls into ques-
tion the typical process researchers use to achieve a represen-
tative set of parameters for a given application. We performed
a modeling study for a headwater catchment, Stringer Creek,
located in Tenderfoot Creek Experimental Forest in cen-
tral Montana, and evaluated simulations using observational
records, expert insight from Tenderfoot Creek researchers
and existing publications, and regional datasets. In this appli-
cation, we demonstrate a method to evaluate how constrain-
ing model predictions via hydrologic signatures, model error,

www.hydrol-earth-syst-sci.net/21/3325/2017/ Hydrol. Earth Syst. Sci., 21, 3325–3352, 2017



3342 C. Kelleher et al.: Characterizing and reducing distributed model equifinality

and process insight impacts predictive and parameter uncer-
tainty, the size of the parameter set space, and potential for
equifinality. Constraints include those that have potential to
be available everywhere, based on both regional datasets and
local knowledge, and those that are based on observational
records of hydrologic behavior. We also include evaluation
of spatial patterns of model predictions, to evaluate how pa-
rameter sets that match point observations predict storages
and fluxes across the landscape.

Across all types of metrics and constraints, applied either
hierarchically or in smaller subsets, we found dynamic con-
straints on annual, seasonal, and event behavior to be most
important for reducing predictive uncertainty and selecting
behavioral parameter sets. This suggests that researchers
should use care when utilizing only statistical metrics to
judge model performance or to select behavioral parameter
sets, as for our application we found many model runs that
had high statistical metric performance poorly matched dy-
namical hydrologic behavior. Despite the large reduction re-
sulting from applying all constraints hierarchically, nine pa-
rameter sets met all criteria. Thus, we expect that there is
likely a point at which observational records and regional
datasets may no longer be able to reduce parameter sets and
subsequent equifinality.

It is worth noting that parameter set selection for dis-
tributed catchment models is often done without considering
whether the predicted internal behavior of the catchment is
even within the realm of reality for a site. Here, we recom-
mend the evaluation of internal catchment behavior as a final
diagnostic to arrive at a subset of parameter sets that rep-
resent time series observations at a few locations as well as
internal catchment behavior. While evaluating average catch-
ment behavior and time series observations can be helpful,
these types of behavior can often mask spatial variability
of simulations across the year. Our evaluation of spatially
distributed annual and seasonal water table depth revealed
somewhat consistent average behavior but considerably vari-
able spatial behavior.

Overall, this approach relies on a fundamental understand-
ing of the hydrology that governs a given area, and is only
improved by adding qualitative experimental insight. Trans-
ferring our approach to other locations creates the oppor-
tunity for a close interaction between experimentalists and
modelers (e.g., Seibert and McDonnell, 2002), given that the
value of a specific observations or insights to condition hy-
drologic models will vary widely. More than any single ap-
proach, we are advocating increased evaluation of distributed
catchment models as a step towards improved representation
and informed use, to ensure that spatiotemporal questions are
resolved with spatiotemporally vetted answers.

Code availability. DHSVM model code is freely available at
http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM/
code.shtml.

Data availability. Datasets were provided by the United
States Forest Service and Tenderfoot Creek Experimental
Forest researchers and by NSF support to Brian McG-
lynn. Stringer Creek streamflow data may be obtained
from the US Forest Service at a 15 min resolution from
http://www.fs.usda.gov/rds/archive/Product/RDS-2010-0003.2/
(Glasgow et al., 2013). Aridity data were obtained from the
CGIAR-CSI Global-aridity and Global-PET database, available
at http://www.cgiar-csi.org/data/global-aridity-and-pet-database
(Zomer et al., 2007, 2008). SNOTEL datasets are for sta-
tions Stringer Creek (site no. 1009, https://wcc.sc.egov.usda.
gov/nwcc/site?sitenum=1009&state=mt, National Resources
Conservation Service, 2017a) and Onion Park (site no. 1008,
https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=1008&state=mt,
National Resources Conservation Service, 2017b). ALSM data,
including topography and vegetation height, for Tenderfoot
Creek are maintained by OpenTopography (http://opentopo.
sdsc.edu/lidarDataset?opentopoID=OTLAS.102012.26912.4,
OpenTopography, 2017).
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Appendix A: Model initialization and parameterization

Figure A1 and Table A1 display information used to in-
form the model framework and setup. Figure A1 displays
the impact of three different hypothetical initial conditions
on model predictions and simulations across nine different
parameter sets. The nine parameter sets shown in Fig. A1
are the same sets that meet all criteria across the imposed
framework. This analysis was performed to determine when
the impact of initial conditions dissipated, to justify that a 6-
month warm-up period may be sufficiently long enough for
the paper application.
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Figure A1. Predictions of several watershed-averaged water balance components during model initialization (1 April 2006 through
30 September 2006) for nine equifinal parameter sets. Color indicates three different values for initialization, with initial values for wa-
ter balance components corresponding to the value shown on 1 April. (a) contains parameter sets 1 through 5 and (b) contains parameter sets
6 through 9.
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Appendix B: Additional reporting of model results and
spatial pattern predictions

To demonstrate additional analyses that were undertaken
within the uncertainty analysis framework, we have included
an assessment of redundancy, additional reporting of errors
for all gauge locations, and predictions of water table depth
for all equifinal parameter sets. Our analysis included 11
different metrics. To assess whether these metrics provide
unique information to the uncertainty analysis, we tested the
information contained in different combinations of metrics
(Fig. B1). Figure B1 displays the number of parameter sets
that would be removed by all different combinations of met-
rics, comparing these combinations for different subsets of
metrics (two metrics, three metrics, etc.). The number of non-
behavioral model runs identified by these different combi-
nations is shown as distributions for each subset of metrics
(two metrics, three metrics, etc.), and visualized as a per-
centage of non-behavioral runs as compared to the number
of non-behavioral model runs identified by the full 11 crite-
ria.
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Figure B1. This figure compares the number of non-behavioral sets removed by subsets of different metrics benchmarked by the number
of non-behavioral sets removed by all 11 criteria. Distributions for a given subset of metrics (n= 2 to n= 10) are shown for all possible
combinations of metrics.

We also benchmarked the redundancy of metrics and their
corresponding constraints within the framework and applica-
tion to Stringer Creek (Fig. B2). Figure B2 shows the per-
centage of sets removed by one metric (shown in the x axis)
that would not be removed by another metric (shown on the
y axis). We found that one metric, error in peak flow mag-
nitude, tended to remove non-behavioral sets identified by
other metrics. Similarly, we found that our statistical met-
ric (NSE) may be more informative than our dynamic metric
(VOL, error in SWE volume) for matching SWE time series
and identifying non-behavioral simulations. In spite of these
redundancies, many metrics do provide unique information,
demonstrating the value of a multi-objective approach to un-
certainty reduction.

Our analysis was applied to streamflow observed at the
outlet of Stringer Creek (LSC) during the 2008 water year,
but metrics were extracted for two additional gauge locations
(lower Tenderfoot Creek, LTC; middle Stringer Creek; MSC)
and for 2 years of complete simulation. Table B1 reports error
metrics for the three gaging sites for both the 2007 and 2008
water years for nine behavioral parameter sets. Finally, we
also include all water table depth predictions for nine equi-
final parameter sets included in our analysis in Fig. B3. Fig-
ure 9 displays a subset of predictions.
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removed from the analysis.
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Table B1. Error metrics for the nine behavioral sets. Metric abbreviations correspond to metrics shown in Table 2 and Figs. 3 and 4.

LTC MSC LSC

NSEQ RREQ SFDCEQ PQ TQ NSEQ RREQ SFDCEQ PQ TQ NSEQ RREQ SFDCEQ PQ TQ

(–) (%] (%) (%) (days) (–) (%) (%) (%) (days) (–) (%) (%) (%) (days)

W
at

er
ye

ar
20

08

Run 1 0.80 14.36 32.20 −14.8 −12.25 0.54 31.32 2.57 −16.35 7.50 0.68 −3.02 8.19 −29.02 7.50
Run 2 0.83 1.87 26.19 −19.3 −13.00 0.60 13.53 −5.19 5.73 7.50 0.70 −16.12 −2.43 −22.46 7.50
Run 3 0.80 34.63 17.85 −10.7 −11.50 0.56 44.15 0.95 −3.52 6.63 0.72 12.42 −6.20 −22.45 6.63
Run 4 0.63 −7.38 −0.19 −159.7 8.75 0.47 25.17 −7.88 0.54 8.75 0.63 −7.38 −1.60 −21.84 8.75
Run 5 0.76 3.76 −0.20 −25.6 −11.63 0.72 29.12 −13.96 −9.62 −11.63 0.76 3.76 −25.56 −26.61 −11.63
Run 6 0.72 0.87 −7.65 −22.1 7.75 0.56 36.60 −11.54 6.94 4.63 0.72 0.87 −7.65 −23.49 7.75
Run 7 0.79 −4.48 −18.41 −21.2 7.75 0.74 29.55 −18.67 −8.34 −12.00 0.79 −4.48 −18.41 −29.69 7.75
Run 8 0.74 −6.86 −3.72 −20.3 9.13 0.63 26.97 −7.80 −3.71 8.63 0.74 −6.86 −3.72 −28.19 9.13
Run 9 0.78 −14.41 3.47 −19.7 4.63 0.67 16.90 3.61 18.25 4.63 0.78 −14.41 3.47 −17.41 4.63
Minimum 0.63 −14.41 −18.41 −159.7 −13.00 0.47 13.53 −18.67 −16.35 −12.00 0.63 −16.12 −25.56 −29.69 −11.63
Average 0.76 2.48 5.50 −34.8 −1.15 0.61 28.15 −6.43 −1.12 2.74 0.72 −3.91 −5.99 −24.58 5.33
Maximum 0.83 34.63 32.20 −10.7 9.13 0.74 44.15 3.61 18.25 8.75 0.79 12.42 8.19 −17.41 9.13

W
at

er
ye

ar
20

07

Run 1 0.80 23.95 −0.55 −1.18 −0.50 0.60 42.90 −33.27 17.89 1.88 0.77 9.28 −22.17 −2.34 1.88
Run 2 0.91 10.79 13.06 −21.14 −1.50 0.69 25.21 −30.73 −3.69 4.63 0.76 −3.92 −17.57 −19.90 8.38
Run 3 0.64 48.94 −6.01 −5.04 −4.13 0.58 59.92 −35.76 14.30 6.38 0.78 34.54 −31.08 −8.78 −1.75
Run 4 0.85 18.21 −27.78 −26.55 −1.00 0.61 34.31 −64.39 −19.75 9.00 0.65 3.32 −62.07 −36.58 9.00
Run 5 0.78 48.37 −9.65 −18.38 −18.00 0.78 54.61 −35.83 −6.32 2.00 0.82 35.42 −30.08 −26.02 0.38
Run 6 0.75 30.18 14.63 8.49 −2.38 0.51 49.05 −28.69 28.23 2.38 0.75 14.29 −15.48 −1.14 0.25
Run 7 0.80 24.85 11.06 −5.44 −3.50 0.71 39.99 −14.98 7.89 −3.00 0.82 7.45 0.06 −13.26 1.38
Run 8 0.75 21.94 39.75 5.14 0.50 0.54 38.43 −4.29 32.23 3.75 0.75 5.48 14.82 5.35 3.75
Run 9 0.83 11.05 41.99 6.45 0.88 0.61 25.69 −10.32 22.52 2.63 0.75 −4.33 9.20 2.95 2.63
Minimum 0.64 10.79 −27.78 −26.55 −18.00 0.51 25.21 −64.39 −19.75 −3.00 0.65 −4.33 −62.07 −36.58 −1.75
Average 0.79 26.48 8.50 −6.40 −3.29 0.63 41.12 −28.69 10.37 3.29 0.76 11.28 −17.15 −11.08 2.88
Maximum 0.91 48.94 41.99 8.49 0.88 0.78 59.92 −4.29 32.23 9.00 0.82 35.42 14.82 5.35 9.00
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