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ABSTRACT 

Binding of proteolyzed fragments of proteins to 

MHC molecules is essential and the most selective 

step that determines T-cell epitopes. Therefore, the 

prediction of MHC-peptide binding is principal for 

anticipating potential T cell epitopes and is of 

immense relevance in vaccine design. Despite 

numerous methods for predicting MHC binding 

ligands, there still exist limitations that affect the 

reliability of a prevailing number of methods. 

Certain important methods based on 

physicochemical properties have very low reported 

accuracy. The aim of this paper is to present a new 

approach of extracting the most important 

physicochemical properties that influence the 

classification of MHC-binding ligands. In this 

study, we have developed rule based classification 

models which take into account the 

physicochemical properties of amino acids and 

their frequencies. The models use k-means 

clustering technique for extracting the relevant 

physicochemical properties. The results of the 

study indicate that the physicochemical properties 

of amino acids contribute significantly to the 

peptide-binding and that the different alleles are 

characterized by a different set of the 

physicochemical properties. 

Key words:K – mean clustering, The rule based classification, MHC - peptide binding.

1. INTRODUCTION 

Binding of peptides, derived by the intracellular 

processing of protein antigen(s) (Ag(s)) to MHC 

proteins, is the most selective step in defining T-cell 

epitopes. Computational methods, based on reverse 

immunology, are essential steps in the identification of 

T-cell epitope candidates, and complement epitope 

screening by predicting the best binding peptides.  

Computational epitope-prediction programs are 

trained on the known peptide-binding affinities to a 

particular MHC molecule (or a defined set of MHC 

molecules) and fall into two categories (Brusić et al., 

2004), (Yang et al.,2009): sequence-based and 

structure-based. The focus of this study is on 

sequence-based methods. A detailed list of the 

majority of currently available predictors with their 

prediction precision is described in (Luo et al., 2014).  

Most of the predictors are based on sparse or 

BLOSUM50 encoding of peptide sequences, and 

different methods of machine learning are used: ANN, 

HMM, Decision Tree and SVM. Of all the predictors 

presented above, only POPI (Tung et al., 2007) uses 

physicochemical (PC) properties as input features. 

However, this predictor gives a evaluation qualitative 

of prediction with very low reported accuracy (~ 60%) 

(Luo et al., 2015). This was the reason for the 

investigation of the influence of different PC 

properties on peptide-binding.  

The models obtained here predict MHC-binding 

ligands with very high accuracy. However, the main 

purpose of the developed models was not the 

prediction of MHC binding ligands, but rather 

identification of those PC characteristics that have the 

greatest impact on the classification of peptides into 

binders and non-binders.  Fromour previous research 

(Mitić et al., 2014), (Pavlović et al., 2014), (Jandrlić et 

al, 2016) there was evidence that there were some 

characteristics that influence the binders appearance, 

for example, hydrophobicity, hydrophilicity, 

appertaining to ordered protein structure, etc., and 

there is certainly a great need for reliable methods 

based on high-quality experimental data for 

classification and prediction of MHC binding ligands 

and epitopes as a complement to existing ones. 
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2. EXPERIMENTAL 

2.1. Materials and methods 

In order to avoid the problems of inconsistent data 

to obtain reliable models, such as differing measures 

of binding affinity, etc., we chose to use only the data 

from the Immune Epitope Database (IEDB) 

(http://www.iedb.org/), June 2015 version, which is 

regularly updated, as the most reliable source of 

MHC-binding ligands. All experimentally proven 

MHC-binding ligands for all available alleles were 

downloaded. The research has been limited to peptides 

of 9 amino acids (AAs) in length because nonamers 

are the most common MHC-I epitopes, and to peptides 

of 15 amino acids (AAs) in length for MHC-II class, 

because there are only enough experimental data to 

construct good models for that length of the peptide.  

The data for those ligands for which there were no 

qualitative and quantitative measures (binding affinity 

and verification of whether a ligand is positive or 

negative), ligands labeled as both positive and 

negative, and as being found in the same protein at the 

same position and peptides containing AA not in α = 

{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, 

Y, V}, were discarded. For all the alleles listed in 

Table 1 we created separate models and provided the 

results. For each of the allele the numbers of positive 

and negative epitopes involved in developing and 

testing the model are shown. 

Table 1. Overview of alleles for which prediction models were made, as well as the number of positive and 

negative ligands (peptides) per studied allele. 

Allele No. of ligands 
Trainset 

(Positive/Negative) 

Test set 

(Positive/Negative) 

HLA-A*02:01 5915 2010/2130 416/789 

HLA-A*03:01 4014 970/1839 416/789 

HLA-A*11:01 3306 972/1341 417/576 

HLA-A*02:03 2304 793/819 340/352 

HLA-B*15:01 3160 1010/1201 433/516 

HLA-B*07:02 2606 97/1127 299/483 

HLA-A*01:01 2577 347/1456 149/625 

HLA-A*02:06 1695 733/452 315/195 

HLA-A*24:02 1568 609/488 261/210 

HLA-A*02:02 1339 618/319 265/137 

HLA-B*08:01 1570 388/710 167/305 

HLA-A*26:01 2534 244/1528 106/656 

HLA-A*A31:01 2970 644/1434 277/615 

HLA-DRB1*04:01 1321 657/267 282/115 

HLA-DRB1*01:01 4987 2977/513 1276/221 

 

2.1.1. Model building 

The most important step in designing a reliable 

classification model is the choice of methodology for 

representing the data and feature selection. The most 

convenient way to represent the input data is in the 

form of a vector. That is why each peptide has to be 

represented by a vector whose components are 

obtained by the application of some weighting 

function. The representation of peptides in the form of 

vectors of its PC properties is also not uncommon, but 

as mentioned above, these methods are not shown 

very well in term of accuracy. The possible problem 

could be that each allele is generalized and all are 

characterized by the same group of PC properties (by 

applying principal component analyses or factor 

analyses). In this study, the peptide is represented 

using its combination unigrams and bigrams 

frequencies and specific PC properties, as described 

below. 

2.1.2. Calculating the frequency of AAs 

Calculating the frequency of AAs at appropriate 

positions in a peptide is aimed at extracting the 

features of occurrence of AAs in peptide binders and 

non-binders, which would enable easier classification. 

Instead of the standard calculation of AA frequency 

by position in a peptide, we used a modified 

calculation of frequency which was successfully 

implemented in document classification. Δ-TFIDF 

technique was first introduced in (Martineau et al., 

2009) for the document classification problems, where 

this technique was applied to terms within a text, 

providing better results in classification of documents, 

than those obtained by a simple calculation of the 

frequency of terms or binary encoding. The task of 

classifying documents can easily be turned into the 

task of classifying peptides into binding and non-

binding ligands. In a similar way, we calculated the Δ-

TFIDF for individual AAs and bigrams in a peptide. 
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In our case, the term t, element of this method, is an 

AA (unigram) or bigram from the set of all AAs that 

occur in a peptide. For instance, in a peptide p = 

LVIKALLEV, t could be from the set {L, V, I, K, A, 

L, L, E, V, LV, VI, IK, KA, AL, LL, LE, EV}. Table 

2 shows the basic definition and equations used for 

calculation of AA frequencies, applying Δ-TFIDF 

technique. 

 

Table 2. Frequency measures 

Equation Definition 

        Represents the frequency of the term t in a set of peptides S. 

             

   

       
 

Represents the inverse frequency of the term t in the set of peptides S, where 

    is the cardinality of set S. 

              Represents the number of occurrences of the term t in the peptide Peptide 

itself. 

 

Taking into account equations from the table 2, the Δ -

TFIDF measure, is introduced as: 

                          

                     
    

         
  

 
        

  

    
(1) 

where ti is AA or bigram in peptide Peptide from set 

S, at position i.  S
+
 and S

-
 are the subsets of S, of 

positive ligands (binders) and negative ligands (non 

binders), respectively. |S
+
| and |S

-
 | are the cardinalities 

of the positive and negative sets. This way of 

transforming the frequency of AAs in a peptide gives 

greater importance to AAs that are not equally 

represented in the positive and negative sets, and less 

importance to those AAs that are more or less equally 

represented (the same holds for bigrams). Using the Δ 

-TFIDF measure, each peptide is represented as a 

vector of weights of its AAs and bigrams. If peptides 

are 9 AAs in length,  an assigned vector is 9 + 8 = 17 

in length. An obvious problem arises with peptides 

that have AAs or bigrams that do not occur in both 

classes, i.e. where df(t, S
±
) = 0. Another problem is the 

non-linearity of AA frequency. These issues are 

resolved with the introduction of smoothing factors 

(Joachims, 1997). Here we engaged the Δ-BM25 

smoothing measure (Joachims, 2005), a corrected 

frequency calculation, so as to avoid division with 0 in 

those cases where an AA occurs in only one of the 

sets. The Δ-BM25-IDF measure was chosen because it 

was found to be the best solution in the classification 

of texts (Joachims, 2005). With the inclusion of the Δ-

BM25 smoothing factor, frequency is calculated 

through the equation: 

               

   
                

                  
      

                
                  

      
    (2) 

This technique is simple and easily applied and 

understood. 

2.1.3. Encoding peptide using physicochemical 

properties 

The PC properties of the AAs are the information 

that could point to the similarity between AAs or 

bigrams within the peptide. The 119 PC properties (23 

kinds of electronic properties, 37 kinds of steric 

properties, 54 kinds of hydrophobic properties and 5 

kinds of hydrogen bond) were taken from the paper 

(Tian et al., 2009). Instead of using all PC properties 

for peptide representation, the common practice of 

reducing the number of properties which uses 

principal component analysis (PCA) or factor analyses 

(FA) and then selects some of the principal 

components or factors. This way, all the alleles are 

generalized, irrespective of whether certain properties 

are characteristic for a single allele. The aim of this 

research was to investigate specific allele 

characteristics and to evaluate influence of each 

individual PC property on classification peptides into 

MHC binders or non-binders. The peptide is firstly 

encoded with single PC property, in this way peptide 

is represented with vector of length 17 (9 + 8) with the 

numerical value obtained by applying PC property on 

appropriate consecutive AAs and bigrams from that 

peptide.  This procedure is carried out for every single 

PC. 

2.1.4.Classification rule based model building and 

selection of the most important physicochemical 

properties 

To evaluate the importance of single PC property, 

for each PC property fk (k = 1,..., 119) and every 

single allele, a new rule based classification model 

was constructed. The set of all peptides associated 

with single allele is divided into a training and test 

subsets (70:30%).  The peptides in both sets were 
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encoded with Δ-BM25 technique applied on unigrams 

and bigrams (see 2.1.2) and the component values 

were multiplied by the appropriate PC property value 

(see 2.1.3). For example, for the first PC property the 

following vector was obtained:  

           

                                              (3) 

    
               

 
       

 
               

 
  

Then the k-means clustering technique (Hartigan, 

1975) was applied to the positive (binders) and 

negative (non-binders) subsets of the training set, 

individually, with k = 3, three centroids per set are 

found that define the clusters. As a measure of the 

distance of the vector from the centroids, Euclidean 

distance was used. The number of clusters was 

determined empirically. Increasing the number of 

clusters increases the precision of the methods, but 

decreases the recall. Silhouette method was used for 

validation of consistency of the data within clusters 

(Rousseeuw, 1986).  

 

Fig. 1 Visualization of the clusters from thepositive 

training set for the HLA-A*1101 allele, where the 

peptides (binders) are encoded with the best PC 

property.  

 

Fig. 1. represents clusters visualization of 

silhouette measure forallele HLA-A*1101. The 

silhouette value for each point i is a measure of how 

similar that point is to points in its own cluster, when 

compared to points in other clusters. The silhouette 

value ranges from -1 to +1. A high silhouette value 

indicates that i is well-matched to its own cluster, and 

poorly-matched to neighboring clusters. If most points 

have a high silhouette value, then the clustering 

solution is appropriate. The main purpose of clustering 

is to find the centroids, cluster representatives, that 

define all peptides from positive set and negative set. 

The centroids could serve as leading points for 

separating binders from non-binders. 

The rule based binary classification models were 

made and identification of the best PC properties was 

done through the following steps: 

1. Each peptideis encoded in the 

abovementioned manner; it is understood that if a 

peptide is closer to one of the positive class centroids, 

then it is a binder, but if it is closer to one of the 

negative class centroids, then it can be considered a 

non-binder. 

2. For individual PC property the model is 

constructed (step 1.), the model was applied on the test 

set and the Kappa statistic, Accuracy, Precision and 

Recall are calculated (as described in the chapter 2.2); 

3. The procedure (step 1. and 2.) is carried out 

for each of the PC properties. 

4. Ten models with the highest accuracy are 

selected. The PC property involved in peptide 

encoding for the input into these models have been 

chosen as the best. 

5. Finally, a consensus model is constructed 

from these ten best models. The consensus model 

takes into account results from k number of models (k 

is fewer or equal to 10) and if k number of these 

models are in agreement that peptide is binder then the 

observed peptide is considered a binder. Otherwise, 

the peptide is considered as non-binder. The choice of 

threshold for value k is treated as a maximization 

problem in terms of accuracy of the final model, on 

the training set. The minimal number of individual 

models is chosen to achieve the best accuracy. 

6. The consensus model is tested on a set of 

peptides which were not presented during the training 

stage (Test Set, see Table 1).  

The 119 models obtained in step 2. (for single 

allele) served for the selection of the 10 “best” PC 

properties (for unigrams and bigrams); and their 

construction was to compare the contributions of 

individual PC properties in the separation of binders 

from non-binders for a particular allele. The results of 

the consensus model constructed from the 10 best 

models are shown in Table 3, in the chapter Results. 

The list of 10 best PC properties (identified from these 

models) for each individual allele is presented in 

Supplement.  

2.2. Performance evaluation 

To evaluate the performance of our methods 

comprehensively, we report standard performance 
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measures, including accuracy, precision, recall and 

Kappa statistic as follows: 

         
     

           
 

          
  

     
                        (4) 

       
  

     
 

where TP, TN, FP and FN respectively denote the 

number of true positives (correctly predicted binders), 

true negatives (correctly predicted non-binders), false 

positives (falsely predicted binders) and false 

negatives (falsely predicted non-binders). 

Calculation of Cohen’s kappa is performed 

according to the following formula: 

      
                

         
 

       
     

           
                             (5) 

     

  
                               

              
 

Pr(a) represents the actual observed agreement, 

and Pr(e)represents chance agreement (Roy et al., 

2015). Cohen’s kappa analysis returns values between 

−1 (no agreement) and 1 (complete agreement). 

3. RESULTSAND DISCUSSION 

The results and performance measures of 

developed models for each individual allele are 

presented in the table 3. The measures of the training 

set indicate how well binders and non-binders are 

separated by calculated centroids of positive and 

negative clusters respectively. The measures of 

accuracy for all models are over 94% indicating that 

the centroids represent the binders and non binders 

well, i.e. binders indeed cluster around the 3 positive 

cluster centroids selected in this way. Similarly, non-

binders cluster around negative3 centroids. Chosen PC 

properties are very good for characterizing binders 

related to individual allele.  

Furthermore, clustering peptide into two groups - 

binders and non binders - is not a feasible task, and 

cannot be done just by applying k-means clustering 

algorithm on the entire set of peptides. In this 

research, it was established that a selection of three 

appropriate centroids for positive ligands (binder), 

based on extracted PC properties, describes very well 

the entire bindersset for single alleles (the same 

conclusion holds for negative ligands, as well). The 

results on test sets indicate how well the developed 

rule-based classification model generalizes on the 

blind set. Accuracy for almost all models on test sets 

is close to or over 80%, which confirms that certain 

combinations of physicochemical properties of AAs in 

peptide separates binders from non-binders with high 

accuracy. All models are tested on another MHC class 

I and II dataset collected from the MHCBN repository 

(http://www.imtech.res.in/raghava/mhcbn/mhcbinder_

download.html). There is no overlapping between 

these datasets and IEDB datasets. The results on this 

dataset for all models also show high accuracy (see 

Supplement where comparative results for all datasets 

are shown). 

Table 3. Comparative performance evaluation in terms 

of precision/recall/accuracy for: developed rule based 

classification models on training and test sets, the best 

currently existing predictor NetMHCpan (for MHC 

I)/NetMHCIIpan (for MHC class II) and MHCPred 

predictor. 

 

The consensus threshold value represents the 

number of models, based on individual PC property, 

that are enough to include in the consensus model to 

achieve the best accuracy. The values of threshold k 

smaller than ten indicate that for a good classification 

model it is not necessary to use all ten PC properties 

and that a smaller number of k properties have enough 

influence to separate binders from non-binders for that 

allele. An interesting finding is that for MHC II class 

alleles (HLA-DRB1*01:01 and HLA-DRB1*04:01) 

there are only three PC properties that have enough 

influence on decision when the peptide is a potential 

binder.  The list of PC properties associated for all 

involved alleles is presented in the Supplement. On 

the basis of alleles that are associated with the same 

physicochemical properties we can make a conclusion 

about similarity of alleles themselves. It is expected 

that alleles classified into the same supertype (Sidney 

et al., 2001), share data about most important PC 

Allele Training Test NetMHCPan2.8 MHCPred

HLA-A0201 0.93 / 0.95 / 0.94 0.87 / 0.82 / 0.85 0.97 / 0.83 / 0.91 0.73 / 0.76 / 0.74

HLA-A0301 0.88 / 0.98 / 0.95 0.76 / 0.71 / 0.82 0.90 / 0.86 / 0.92 0.43 / 0.86 / 0.56

HLA-A1101 0.93 / 0.97 / 0.95 0.86 / 0.72 / 0.83 0.97 / 0.86 / 0.93 0.42 / 0.99 / 0.43

HLA-A0203 0.95 / 0.98 / 0.97 0.81 / 0.75 / 0.79 0.96 / 0.88 / 0.92 0.54 / 0.88 / 0.57

HLA-B1501 0.95 / 0.98 / 0.97 0.90 / 0.79 / 0.86 0.99 / 0.80 / 0.90 N/A

HLA-B0702 0.95 / 0.99 / 0.98 0.84 / 0.65 / 0.82 0.92 / 0.92 / 0.94 N/A

HLA-A0101 0.93 / 0.99 / 0.97 0.78 / 0.51 / 0.88 0.72 / 0.97 / 0.92 0.55 / 0.71 / 0.83

HLA-A0206 0.98 / 0.99 / 0.98 0.79 / 0.84 / 0.76 0.94 / 0.89 / 0.90 0.63 / 0.83 / 0.59

HLA-A2402 0.98 / 0.98 / 0.98 0.72 / 0.71 / 0.70 0.88 / 0.85 / 0.85 N/A

HLA-A3101 0.89 / 0.97 / 0.95 0.72 / 0.61 / 0.81 0.86 / 0.82 / 0.90 0.41 / 0.41 / 0.63

HLA-A0202 0.99 / 0.99 / 0.99 0.81 / 0.91 / 0.79 0.96 / 0.85 / 0.88 0.77 / 0.78 / 0.70

HLA-B0801 0.98 / 0.99 / 0.98 0.84 / 0.74 / 0.86 0.97 / 0.87 / 0.95 N/A

HLA-A2601 0.87 / 0.99 / 0.98 0.73 / 0.51 / 0.91 0.78 / 0.90 / 0.95 N/A

Allele Training Test NetMHCIIPan20 MHCPred

HLA-DRB10101 0.99 / 0.94 / 0.95 0.88 / 0.92 / 0.82 0.97 / 0.92 / 0.91 0.85 / 0.99 / 0.85

HLA-DRB10401 0.98 / 0.98 / 0.98 0.78 / 0.93 / 0.76 0.95 / 0.80 / 0.64 0.72 / 0.99 / 0.72
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properties. It also can be seen that some of PC 

information is shared between different supertypes.  

Fig. 2 presents six of the most important PC 

properties, in the sense of being common for the 

largest number of alleles, their relationship is depicted 

with arrows from allele to PC property. It could be 

seen that an allele HLA-A*68:02 is characterized with 

PC properties: PC21, PC90, PC58, PC1 (pK-C, 

Partition coefficient, Flexibility parameter for no rigid 

neighbors, alpha-NH chemical shifts) and share 

importan PC properties as allele HLA-A*11:01 and 

HLA-A*31:01 which is to be expected as they  belong 

to the same supertype A3. However, for allele HLA-

A*02:03 and allele HLA-B*08:01 the common PC 

properties are crucial for separating binders from non-

binders even if these two alleles do not belong to the 

same supertype. This confirm the claim by Heckerman 

(Heckerman et al., 2007) that there are some 

characteristics that are common for binders 

independent off allele and supertypes specific 

characteristics. All this information could be used in 

consideration for making better MHC binding 

prediction models. We have analyzed this information 

and used it as input features in different machine 

learning models, which produce even better results 

(this part of research is submitted for publication 

elsewhere). 

 

Fig. 2. The first six PC properties, according to 

number of alleles that are assigned to, that best 

separate binders from non binders: PC1 - alpha-NH 

chemical shifts; PC48 – Bulkiness; PC58 - Flexibility 

parameter for no rigid neighbors; PC90 - Partition 

coefficient; PC21- pK-C; PC93 Average gain ratio in 

surrounding hydrophobicity (all of them are taken 

from (Tian et al., 2009)and HLA – alleles related to 

them. 

4. CONCLUSION 

In this study, the new position-dependent method 

for classifying peptides into MHC binders and non-

binders, is presented. Binary rule based classification 

models were made for 13 different alleles of MHC 

class I and 2 alleles for MHC class II. Vector 

components used as input features into models that 

represent peptides were obtained based on the 

physicochemical properties of the consecutive amino 

acids and bigrams contained in the peptides and 

application of the weighting technique for frequency 

calculation well established in the problems of the text 

categorization and opinion mining problems, but had 

never before been used for this type of problem. The 

models obtained have high accuracy. The goal of 

developed models was not to beat currently existing 

predictors, but to identify the most relevant PC 

properties for classification peptides into MHC 

binding ligands and non-binding ligands. However, in 

order to demonstrate the usefulness and reliability of 

the models developed, we compared them with two 

predictors: NetMHC(II)pan (Nielsen et al., 2007), 

(Nielsen et al, 2008) which is refered as the best 

curruntly existing predictors and MHCPred (Pingping 

et al, 2003). Summary results are shown in Table 3. 

and graphical presentation of comparative analyses is 

illustrated in Fig 3. The developed models had a 

significanty higher predictive performance than 

MHCPred predictor, but lower that NetMHCpan 

predictor.It should be noted that the test set for 

evaluation of these three predictors was blind test only 

for models developed here, but probably involved in 

training for NetMHC(II)pan models. 

 

Fig. 3. The comparative analysis of the accuracy of 

the rule-based classification (RBC) models, 

NetMHC(II) Pan and MHC Pred predictor. 

It is demonstrated that the certain PC properties 

have huge impact on the separation binders from non-

binders and that their combination with a frequency 

measure can serve as input features in the new models 

for predicting MHC binding ligands. One would 

65



Information technologies 

expect that machine learning models with the these 

input parameters provide even better performance. 
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