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INTRODUCTION 

 

Large-scale livestock breeding has become a serious 

social problem with respect to the storage and treatment of 

livestock manure. The waste generated in the process of 

handling livestock manure contains a large amount of 

nitrogen and phosphorus, which are the main agents causing 

eutrophication. If the waste is discharged or an excessive 

amount is used as a fertilizer on soil without proper 

treatment, environmental problems can occur. Solid and 

liquid composting are widely used as resource recovery 

methods for the disposal of domestic livestock manure, and 

biological treatment is predominantly used for the 

purification of urine and wastewater. However, because the 

soil is not sufficiently secured for distributing fertilizers, it 

is desirable to produce safe and high quality fertilizers by 

decomposing the manure and storing or transporting it for 

future use. Treatment costs of livestock manure with water 

contents above 97% are high because it is necessary to mix 

a large amount of sawdust or husk. Moreover, this manure 

is highly likely to become sawdust compost, in which the 

content of the fertilizer active ingredient is low. In addition, 

during the manufacturing of liquid fertilizer, highly 

concentrated ammonium is present, and therefore, the 

fertilizer is strongly aerated to remove the bad odor. 

Accordingly, most of the ingredients undergo nitrification to 

produce the content of the fertilizer active ingredient low. 

Further, it is difficult to handle and transport the fertilizer 

because it is liquid. The fertilization period is fixed 

according to the state of the domestic farming industry, and 

thus, it is difficult to spray fertilizers in autumn and winter. 

Thus, tremendous amounts of liquid fertilizer are stored. 

Although there is a necessity for the recovery of livestock 

resources, civil complaints have been filed due to the odor 

emanating from the treatment process; the product is also a 

low quality fertilizer, with low added value, and thus 

becomes a nuisance.  

Unless the quality of life is improved and meat 

consumption is reduced, domestic livestock farming will 
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continue to increase. Recovering the energy in manure is a 

good method of disposing the constantly increasing 

livestock manure more effectively. Currently, the method 

mostly used for this is the production of biogas through 

anaerobic digestion. However, this method creates problems 

related to disposing the solid and anaerobic digestion 

wastewater that remains after energy recovery. 

Anaerobic digestion fluid contains more highly 

concentrated nitrogen and phosphorus than ordinary 

livestock wastewater, and thus, it is very difficult to meet 

the reinforced water quality standard for anaerobic 

digestion fluid. Anaerobic digestion liquid can cause bad 

odor and contains high-molecular substances that have 

chromaticity. Thus, if this liquid flows into a river or lake 

without treatment, the increase in chromaticity could cause 

a decrease in the transillumination of the aquatic ecosystem, 

which could lead to secondary problems including 

degradation of the self-purification capacity of the 

ecosystem and the reproduction of pathogenic bacteria. Due 

to such problems, most treatment facilities face difficulties 

in disposing of highly concentrated nitrogen and 

phosphorus in anaerobic digestion liquid. If the organic 

fertilizer ingredients, which are largely contained in the 

livestock wastewater or anaerobic digestion fluid, are 

powdered or solidified, they can be conveniently 

transported to other regions. It would also be possible to use 

them all-year round like chemical fertilizers and this would 

reduce the amount sprayed on farmlands; thus, it is thought 

that there would be an effect of reducing the number of 

workers. Further, when the fertilizer used in the farmland is 

in the form of urea, only 40% of N is used as fertilizer by 

plants and the rest is swept away in various forms (Liang et 

al., 2007); a large amount (26.5% to 29.4%) is also 

discharged as greenhouse gases such as N2O. Since the heat 

absorption rate of N2O is higher than that of CO2, N2O 

contributes to global warming by more than about 300 

times that of CO2 (Hallett, 2002). When struvite is used as a 

fertilizer, the plant absorbs all the N due to struvite’s slow 

releasing characteristics (Lee et al., 2009) and this can also 

minimize N2O emissions (Chu et al., 2007). 

In the Netherlands, in order to recover and recycle 

phosphorus from livestock manure, manure is completely 

incinerated and the ashes are recycled (Willem et al., 2001). 

Ren et al. (2014), Enhanced adsorption of phosphate by 

loading Nanosized Ferric Oxyhydroxide on anion resin. 

Currently in South Korea, the source materials needed in 

the phosphorus-related industry are imported from other 

countries. The exhaustion of phosphorus is a global concern, 

and, therefore, securing sources for replacing phosphorus is 

an urgent problem (Moriyama et al., 2001; Frank and Mark, 

2009). As a practical measure to this problem, struvite 

crystallization, which is a chemicophysical treatment 

method, is mainly being studied, and the phosphorus 

generated and recovered through such processes is available 

as high-priced fertilizer in some countries including Japan 

(Moriyama et al., 2001; Ueno and Fujii, 2001). 

Struvite, generally called guanite or magnesium 

ammonium phosphate (MAP), is combined with a 

NH4
+:Mg2+:PO4

– mole ratio of 1:1:1. Struvite crystallization 

has advantages in that it can process highly concentrated 

nitrogen and phosphorus at the same time, the detention 

period is short, there is no need for another facility, and the 

site area can be reduced (Jo et al., 2003; Kim et al., 2006; 

Weon et al., 2009). In particular, the wastewater generated 

after the thermophilic digestion contains highly 

concentrated phosphorus and thus can reduce the injection 

volume of outer phosphorus (PO4
3–) that is required in the 

crystallization. The subjects of struvite studies until now 

have included livestock wastewater, sewage water, and 

anaerobic digestion fluid. The concentration of early total 

chemical oxygen demand (TCOD) values and NH4
+-N of 

the studied wastewater was about 2,700 mg/L and 1,700 to 

2,000 mg/L on average. However, the treatment of TCOD 

and NH4
+-N in anaerobic digestive fluid of swine 

wastewater containing highly concentrated nitrogen is a 

significant problem with respect to factors such as recovery 

rate. 

Thus, in this study, struvite crystallization was 

conducted using thermophilic aerobic digestion sludge fluid 

of swine manure containing 17,125 mg/L of TCOD, 3,534 

mg/L of total Kjeldahl nitrogen. During the crystallization 

reaction, the influence of factors affecting the treatment of 

highly concentrated ammonia nitrogen and phosphorus such 

as pH, mixing time (td) and mixing intensity (G), injection 

volume of magnesium and phosphorus, and temperature 

were analyzed. 

 

MATERIALS AND METHODS 

 

Wastewater characteristics 

The wastewater used in this study comprised the 

supernatant of anaerobic digestive fluid of swine manure 

containing highly concentrated nitrogen and phosphorus. 

The characteristics of the wastewater are shown in Table 1; 

Table 1. Characteristics of the thermophilic anaerobic digestion 

fluid 

Parameter Concentration range Average 

TCOD (mg/L) 15,900 to 18,600 17,125 

TKN (mg/L) 3,100 to 4,046 3,534 

TSS (%) 3.08 to 3.26 3.15 

VSS (%) 56.15 to 62.18 59.08 

NH4
+-N (mg/L) 2,974 to 3,907 3,400 

PO4
3--P (mg/L) 1,120 to 1,468 1,342 

pH 8.10 to 8.26 8.15 

TCOD, total chemical oxygen demand; TKN, total Kjeldahl nitrogen; 

TSS, total suspended solid; VSS, volatile suspended solid. 
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the average concentration of ammonia nitrogen and 

phosphate phosphorus was 3,400 mg/L and 1,342 mg/L, 

respectively. The ratio of the ammonia nitrogen to the total 

nitrogen of the subject wastewater was over 96%, and the 

ratio of the phosphate phosphorus to the total phosphate 

was over 77%, confirming that the wastewater was 

appropriate for struvite crystallization. T-COD of this 

anaerobic digestive fluid was 17,125 mg/L, which was very 

highly concentrated nitrogen containing wastewater.  

 

Experimental materials 

A 1,000 mL beaker was used in the experiment and the 

amount of wastewater was set to 900 mL. The reagent used 

in the struvite crystallization was MgCl2⋅6H2O. Every 

experiment for the struvite crystallization reaction of 

anaerobic digestive fluid of swine manure was conducted 

by placing 1,000 mL of digestion fluid in a 2,000 mL 

Erlenmeyer flask at various temperatures, pH, and mixing 

speed. Except for special circumstances, the digestion fluid 

was centrifuged (10,000 rpm, 10 min) and then the 

supernatant was used for the experiment at room 

temperature and 100 rpm. The pH of the digestion fluid was 

controlled by adding 5 N NaOH before the addition of 

MgCl2⋅6H2O, and by mixing the fluid through the impeller. 

Experimental conditions were shown in Table 2.  

 

The influence of initial pH during struvite 

crystallization  

To observe the influence of pH during the struvite 

crystallization reaction, 1,000 mL of anaerobic digestion 

supernatant was placed in the prepared beaker and evenly 

mixed at 100 rpm. After measuring the initial pH and 

temperature, magnesium and phosphate phosphorus were 

injected to obtain a Mg2+:PO4
3– mole ratio of 1:1. The initial 

pH of the wastewater was 8.3, and thus the pH was set to 9, 

10, 11, 12, and 13 by adding 5 N NaOH after injecting 

magnesium. After the struvite crystallization reaction, the 

volume of the precipitates was measured 10 minutes after 

precipitation to check the treatment efficiency of ammonia 

nitrogen and phosphorus after the crystallization. Then, the 

obtained supernatant was filtered with 0.45 μm syringe 

filters.  

 

Influence of mixing time and intensity during struvite 

crystallization 

During the struvite crystallization reaction, the mixing 

time was set to 10 minutes, 60 minutes, and 24 hours, and 

the intensity was variously set to 100 rpm and 200 rpm. 

Here, the reaction pH was not adjusted, as the phosphate 

removal efficiency in a previous experimental result was 

similar in the range from 9 to 13. After the struvite 

crystallization reaction, the volume of the precipitates was 

measured after 10 minutes, 1 hour, and 24 hours of 

precipitation to check the treatment efficiency of ammonia 

nitrogen and phosphorus after the crystallization. After that, 

the mixing intensity increased to 200 rpm for 24 hour 

reaction. In this reaction, magnesium and phosphate 

phosphorus mole ratio (Mg2+:PO4
3–) was 1:1.5, which has 

been determined to be the optimal mole condition as it 

resulted in the maximum phosphate removal efficiency in a 

previous experimental result. Then, the obtained 

supernatant was filtered and analyzed with 0.45 μm syringe 

filters.  

 

Optimal mole ratio of Mg
2+

 and PO4
3
-P 

In this study, a large amount of NH4
+-N was present in 

the wastewater making it impossible to obtain the ratio of 

1:1:1 that is generally used in the process of crystallizing 

struvite. Thus, with a focus on the recovery of phosphorus, 

the optimal injection amount of Mg2+ and PO4
3-P was 

determined. After preparing 1,000 mL of the subject 

wastewater, the injected mole ratio was altered by setting 1 

as the reference point in order to derive the optimal 

injection amount. Here, the pH not adjusted before injecting 

Mg and the reaction was conducted at room temperature at 

100 rpm for 1 hour.  

 

Analysis method 

Analysis of every sample used in this study was 

conducted after filtering the samples with 0.45 μm syringe 

filters in order to remove the floating materials in the 

samples. The ammonia nitrogen was measured using a 

HACH DR-5000 and analyzed using the Salicylate method 

in the HACH DR-4000 manual (DR5000, HACH Inc., 
Loveland, CO, USA). Phosphorus was analyzed by using 

the Molybdovanadate method. 

Table 2. Experimental conditions of struvite crystallization 

Parameters 
Conditions 

Test 1 Test 2 Test 3 

Sample Anaerobic digestion supernatant of swine manure, 1 L 

pH pH 9, 10, 11, 12, 13 pH 8.8 pH 8.8 

Molar ratio of PO4
3–:Mg2+ 1:1 1.5 1:1, 1,1, 1,2, 

1,3, 1,4, 1:1.5 

Agitating velocity, temp. 100 rpm, Room temp. 100 rpm, 200 rpm, Room temp. 100, Room temp. 

Reaction time 1 h 10 min, 1 h, 24 h 1 h 
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The pH meter (Orionstar, ThermoScientific, Walthem, 

MA, USA) was calibrated after each experiment. After 

struvite crystallization, the precipitates were dried at room 

temperature, and the type and shape of the crystals were 

identified through X-ray diffraction (XRD) analysis (using 

the X-ray diffractometer of Advance D8, Bruker Co., 

Billerica, MA, USA) and standard error of the mean 

(scanning electron microscopy) measurements (using JSM-

5600, JEOL Co., Tokyo, Japan).  

 

RESULTS AND DISCUSSION 

 

Influence of early pH on struvite crystallization 

Factors such as the concentration of Mg2+, ratio of Mg2+, 

NH4
+, and PO4

3-, pH, temperature, aeration rate, and 

presence of Ca2+ significantly affect struvite crystallization 

(Yetilmezsoy and Zengin, 2009). In particular, pH is 

extremely important. Generally, the solubility of struvite 

increases according to increases in pH, and thus it is 

desirable to induce crystallization by maintaining a high pH 

in order to remove nitrogen and phosphorus. The influence 

of pH change in the struvite crystallization reaction of 

anaerobic digestion fluid with an average concentration of 

ammonia nitrogen is shown in Figure 1. As shown in the 

figure, the removal efficiency of ammonia nitrogen has a 

wide range, from pH 9 to pH 13. However, ammonia 

nitrogen was more effectively removed in an environment 

with pH over 12. The removal efficiency was 33.1%, 52.6%, 

and 54.9% at pH 11, 12, and 13, respectively. Previous 

studies have reported that the most appropriate pH for 

struvite crystallization of swine manure and sewage water is 

alkaline condition such as 8 to 12 (Lee et al., 2010; Rahman 

et al., 2011; Ye et al., 2011; Hutnik et al., 2013).  

A removal of phosphorus was observed in wide range of 

pH from 9 to 13 (Figure 1) in this research. The removal 

efficiency was 73.0%, and 77.8% at pH 9, and 13, 

respectively. With the increase in pH, the solubility of 

struvite decreased, but it has been reported that the added 

Mg2+ forms coagulations such as Mg(OH)2, which cause 

relatively low NH4
+-N removal efficiency (Choo et al., 

2011). The pH is an extremely significant factor in struvite 

crystallization, and in consideration of the ratio of the 

chemicals, it would be most effective to remove phosphorus 

and nitrogen through only a simple mixing under weak 

alkaline conditions.  

  

Influence of mixing time and intensity during struvite 

crystallization  

During struvite crystallization, aeration rate plays an 

important role in removing ammonia. Air flow volatilizes 

and removes dissolved ammonia through mixing in the 

wastewater. Moreover, air flow becomes the driving force, 

which dilutes the concentration of gas-phase NH4
+-N and 

separates the dissolved NH4
+-N from the gas-phase. It has 

been reported that sufficient aeration time can enable the 

effective removal of ammonia (Yetilmezsoy and Zengin, 

2009). Yetilmezsoy and Zengin (2009) reported that NH4
+-

N in the reactor could be removed by up to 95.3% by 

mixing at a speed of 0.6 L·m-1 for 24 hours (Yetilmezsoy 

and Zengin, 2009). Liu et al. (2011b, c) stated that the 

formation of struvite in the reactor is proportional to the 

aeration rate, and that it reaches a plateau at a speed of 0.73 

L·m-1. According to Suzuki et al. (2007) and Battistoni et al. 

(1997), the pH of wastewater increased with the aeration 

because of CO2 stripping (Suzuki et al., 2007). They also 

stated that at an aeration rate of 12 m3·h-1, the pH was 

within 7.5 and 8, and that at an aeration rate of 16 m3·h-1, 

the pH increased from 8.0 to 8.5. According to Choo et al. 

(2011), struvite crystallization is not largely affected when 

the mixing time is set between 1 min and 30 min and when 

the mixing intensity is set to over 85 s-1. Kim et al. (2006) 

stated that the NH4
+-N and PO4

3-P removal efficiency was 

75% and 89% within 5 minutes, and 82.1% and 96.8% at 10 

minutes, respectively, and that the efficiency did not 

increase after 10 minutes (Kim et al., 2006). Although there 

was slight difference in the time of arriving at the maximum 

efficiency, they inferred that the maximum efficiency was 

arrived at within a short time span of between 0 min and 30 

min.  

In this study, NH4
+-N showed 37% removal under the 

condition of 1 h, and then, it increased to 80% for 24 h 

reaction (Figure 2). It was considered because of the 

nitrogen (CO2) stripping effect. In the case of PO4
3-P, the 

increasing reaction time from 10 min to 24 h did not have a 

large influence on the crystallization (about 88% removal) 

and changing the mixing speed between 100 rpm and 200 

rpm had the same result.  
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Figure 1. Effect of the initial pH on the struvite crystallization of 

anaerobic digestive fluid of swine manure. 
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Optimal injection amount of Mg
2+

  

It has been reported that, in general, for NH4-N, COD, 

and chromaticity removal, there is no major difference 

when using MgSO4⋅6H2O or MgCl2⋅6H2O as the samples 

for struvite crystallization (Yetilmezsoy and Zengin, 2009). 

However, it has been reported that when MgO is used, 

Mg(OH)2 raises the total suspended solid and, thus, reduces 

the NH4-`N removal efficiency. However, the Ca2+ in the 

wastewater reacts with PO4 generating substances such as 

hydroxyapatite, dicalcium phosphate, and octacalium 

phosphate. Thus, it has been reported that the generation of 

calcium phosphate inhibits struvite crystallization (Doyle 

and Parsons, 2002).  

The ratio of PO4
3-P:Mg2+ that is known to be 

appropriate for struvite crystallization is either 1:1 or 1:1.2 

(Rahman et al., 2011). According to Yetilmezsoy and 

Zengin (Yetilmezsoy and Zengin, 2009), the N and COD 

removal rate is lower when the ratio of Mg2+:NH4
+:PO4

2– is 

lower (0.5:1:1, 0.8:1:1, 1:1:0.5, 1:1:0.8) than the high mole 

ratio (1.2:1:1, 1.5:1:1, 1:1:1.2, 1:1:1.5).  

The concentration ratio of NH4
+-N and PO4

3-P was 

approximately 30:1 in the livestock wastewater, and 

therefore, the phosphorus removal efficiency was high 

while the ammonia removal efficiency was low. In 

consideration of such characteristics of anaerobic digestive 

fluid of swine manure, the PO4
3-P dissolved in the 

wastewater was taken as the reference point in this study in 

order to determine the addition ratio. Accordingly, PO4
3-P: 

Mg2
+ was altered to be 1:1, 1:1.1, 1:1.2, 1:1.3, 1:1.4, and 

1:1.5, and then the removal efficiency of NH4
+-N and 

PO4
3-P was measured (Figure 3). As a result, the NH4

+-N 

removal efficiency (40%) was highest when 1.2 M of Mg2+ 

was added. In the subsequent concentration, the removal 

efficiency showed a tendency to decrease. The PO4
3-P 

removal efficiency increased from 75% to 88% as the 

amount of added Mg2+ increased from 1.0 M to 1.5 M, 

respectively. 

It has been reported that although all the PO4
3-P 

participates in the crystallization of struvite at the optimal 

injection amount, above that level it forms substances such 

as hydroxyapatite by reacting with other spilt or dissolved 

ions (Dorozhkin, 2010; Capdevielle et al., 2013). There are 

several studies reporting that, generally, in the 

crystallization of struvite, an injection mole ratio of 

NH4
+:Mg2+:PO4

3– higher than 1:1:1, which is the theoretical 

mole ratio, is necessary. This appears to result from the 

consumption of injected Mg due to the crystallization of 

substances such as calcium dissolved in the wastewater 

through reaction with substances such as PO4
3–-P, or the 

formation of amorphous precipitate or complex compounds 

such as Mg(OH)2 and MgHPO4·3H2O (Schulze-Rettmer, 

1991).  

The optimal mole ratio can differ according to the type 

and characteristics of the wastewater used in the struvite 

crystallization because of the variation of the dissolved 

NH4+-N and PO4
3-P concentrations. The theoretical optimal 

value of 1:1:1 cannot be achieved because the NH4
+:PO4

3- 

ratio of wastewater cannot be 1:1, and, thus, when the 

PO4
3-P concentration is lower, the values of the variables in 

the reaction can vary. Generally, the ammonia removal rate 

is within ~20% to 40% (Cho et al., 2009; Ye et al., 2011), 

and the phosphorus removal rate is relatively high, ranging 

from 67% to a maximum of 99% (Kim et al., 2004; Liu et 

al., 2011a).  
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Figure 2. Effect of mixing time on the struvite crystallization of 

anaerobic digestive fluid of swine manure. * This experiment was 

done at 200 rpm for 1 h; others (without asterisk) were done at 

100 rpm for 10 min, 1 h, and 24 h. 
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Figure 3. Effect of PO4
2–-P to Mg2+ mole ratio on the struvite 

crystallization of anaerobic digestive fluid of swine manure. 
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Observation of struvite crystallization  

Figure 4 shows the microscopic picture of the struvite 

crystal generated by adding the MgCl2⋅6H2O. Figure 4a was 

the scanning electron microscope image of the MAP 

(magnesium ammonium phosphate) crystal generated by 

mixing the MgCl2⋅6H2O for 5 days at 100 rpm and pH 8.8. 

The morphology was X-shaped branch crystal and the size 

was about 45 to 55 μm. Figure 4b was the light microscope 

image with a magnification of 100 times. 

It has been reported that the MAP crystal generated in 

livestock wastewater tends to be treated repetitively and 

increases in size as time passes. Ueno and Fujii (2001) 

reported that the size of a struvite crystal grows by 0.5 to 1 

mm during a 10 day-long reaction, and Schulze-Rettmer et 

al. (2001) reported that a crystal with a size of 1 cm was 

found in their manure storage tank. Published morphology 

types range from coffin-like (Wierzbicki et al., 1997) and 

needle-like (Abbona and Boistelle, 1985) to trapezoidal 

(Munch and Barr, 2001). All of these forms are described as 

‘typical for struvite’. In our experiment, X-shaped branched 

crystals were observed. This shape was reported by Mariska 

et al. (2010).  

The solids obtained in the experiments were subjected 

to XRD analysis. The powdered XRD pattern of synthetic 

and struvite pellets matched very well with that of the 

published pattern for struvite (Figure 5). The slight 

 

Figure 4. Microscopic pictures of struvite crystal morphology: scanning electron microscopy at pH 8.8 with magnification of ×700 (a), 

light microscopy at pH 8.8 with magnification of ×100 (b); The measure bars on (a) indicate 20 μm. 

 
Figure 5. X-ray diffraction patterns of struvite crystal. 



Lee et al. (2015) Asian Australas. J. Anim. Sci. 28:1053-1060 

 

1059 

difference between the XRD patterns of the two kinds of 

struvite may be due to the amount of impurity present in the 

struvite pellets. Infrared (IR) spectra for both synthetic 

struvite and struvite pellets were also consistent with the 

published IR spectrum of struvite in the wave number range 

of 400 to 4,000 cm-1 with 100% recovery of spectra 

according to the standards. As such, the struvite samples 

were considered to be a single-phase material. 

 

CONCLUSION 

 

Struvite crystallization using the anaerobic digestive 

fluid of swine manure containing highly concentrated 

nitrogen is a highly effective and eco-friendly process that 

can collect or remove phosphorus and nitrogen. If the 

potential hazardous substances in wastewater are not 

removed before being placed in an ecosystem, it can result 

in eutrophication. However, if they are collected, they can 

be precious resources. The effect of pH, temperature, 

reaction mixing speed, and the Mg2+:PO4
3– ratios, which are 

important factors that affect the struvite crystallization 

reaction, was determined. In this study, approximately 88% 

of P and 40% of N were removed and collected from the 

existing livestock wastewater through struvite 

crystallization. However, even if the N removal efficiency is 

low, a tremendous amount of nitrogen in the wastewater can 

be removed through ammonia stripping. Struvite is an 

important material that can become a major source of slow-

release fertilizers using phosphorus even after the 

phosphorus in the phosphorus mines is completely 

exhausted. 
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