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INTRODUCTION 

 

The pig (Sus scrofa) has been widely used as a model 

for studying the development of human organs and disease 

progression, owing to the similarity in size and physiology 

of the two species (Butler et al., 2007; Lunney, 2007; Ojeda 

et al., 2008). The Landrace is one of the pig breeds that are 

used world-wide in research and production because of its 

genetic stability and high lean percentage.  

The alimentary tract is essential for absorption of 

nutrients and the function of the immune system. A notable 

feature of the intestine is the complex changes that occur 

over the lifetime of an individual (Weaver et al., 1991; 

Thompson et al., 2008). The development of the intestine is 

regulated by a large number of factors, including nutrients, 

the micro flora, the epithelium, innate and adaptive 

immunity (Pacha, 2000; Caicedo et al., 2005; Donovan, 

2006; Commare et al., 2007; Ojeda et al., 2008), which 

constitute the intestinal ecosystem. It is known that the 

adaptive change involved in enteric development is highly 

conserved and is a complex process (Gilbert and Lloyd, 

2000). The underlying molecular mechanism of intestinal 

development is associated with genes and the corresponding 

proteins that participate in this change, and with the 

interactions and signal transduction processes of the gene 

and/or protein networks. It is almost impossible. However, 

to understand the complex interactions of genes and 

proteins by studying them in an individual and static 

manner. The study of gene regulatory networks makes it 

feasible to analyze the interactions of genes in an integral 

and dynamic way (Tomita et al., 1999; Gilbert and Lloyd, 

2000). Gene regulatory networks have attracted 

considerable research interest owing to the rapid 

accumulation of genomic information (Kitano, 202). 

Comprehensive assessment of the gene expression profiles 

needs to be carried out in order to identify gene networks 

(Kitano, 2002), and the high-throughput techniques of 
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molecular biology can be used to provide insight into such 

networks.  

Microarray technologies have enabled researchers to 

explore the dynamics of transcription on a genome-wide 

scale (Young, 2000; Jiang and Deyholos, 2006; Zhang et al., 

2008), and they provide a systematic insight into the crucial 

factors that control development. They can be used to 

elucidate the mechanisms of intestinal development at a 

molecular level. Studies of gene expression profiling using 

microarray technologies in the development of plants and 

the human fetal pancreas have made significant progress 

(Sarkar et al., 2008; Wechter et al., 2008), but there have 

been no reports of such studies on the development of the 

porcine intestine. In the present study, we aimed using 

microarray technology to identify the significant pathways 

and key genes that regulate the intestinal development of 

Landrace piglets. 

 

MATERIALS AND METHODS 

 

Animals and tissue preparation 

All animals used in this study were managed humanely 

according to the established guidelines of the Animal Care 

Committee, Sichuan Agricultural University, P. R. China. 

The four Landrace sows were mated with a boar of the 

same breed. Two male piglets were sacrificed at 0, 3, 8, 14 

and 21 d after birth, respectively. The mid-section of the 

jejunum of each piglet was dissected rapidly. The samples 

were snap-frozen in liquid nitrogen and stored at -80C 

until further use.  

 

Microarray analysis  

Isolation of RNA was performed with the QIAGEN 

RNeasy mini kit (QIAGEN, Valencia, CA, USA) following 

the manufacturer’s instructions. The RNA samples were 

then analyzed using the Affymetrix GeneChip Porcine 

Genome Array (Affymetrix, Santa Clara, CA, USA), which 

contains 23,937 probes sets that interrogate approximately 

23,256 transcripts from 20,201 genes of S. scrofa. Statistics 

were computed using the GeneChip Operating Software 

(GCOS). The data discussed in this article have been 

deposited in the NCBIs Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) and are accessible 

through GEO Series accession number GSE13456. 

 

Time sequence profile analysis of gene expression 

The differentially expressed genes from four time points 

(d 3, 8, 14, and 21) were compared with those of d 0 using 

Affymetrix GCOS software. The raw values for gene 

expression were converted to log2ratio. According to the 

analysis strategy for an experiment representing a cluster of 

short time series (Ernst et al., 2005), 80 profiles were 

defined in the experiment. The profiles were analyzed that 

had the most significant probability assigned in comparison 

with that expected by the Fisher exact test and the multiple 

comparison test. If the p-value of the profiles was less than 

0.01, the gene expression profiles were identified to be 

significantly different with respect to time.  

 

Functional analysis of significant profiles of co-

expressed genes  

According to previous studies (Yu et al., 2003; Pan et al., 

2008; Rawat et al., 2008), co-expressed genes have similar 

functions. The important functions were analyzed for those 

profiles found to be significant using Gene Ontology (GO), 

which organizes genes into hierarchical categories based on 

biological processes, molecular functions, and cellular 

components (Ashburner et al., 2000). To undertake GO 

analysis, the p-values from the Fisher's exact test for over-

representation of the selected genes in all GO biological 

categories are computed, as described previously. 

Significance of the GO was accepted when the p-value was 

less than 0.05. Functional annotation can provide a detailed 

description of the roles of genes located in deeper 

categories of GO, according to the hierarchical organization 

of GO. Therefore, the enrichment value was defined to filter 

the deeper categories of GO: the higher the enrichment 

value of GO, the more target GO were expected. Within a 

given category, the enrichment Re is given by equation, 

where 
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 nf is the number of differentially 

expressed genes within the particular category, n is the total 

number of genes within the same category, Nf is the number 

of different genes on the entire microarray, and N is the 

total number of genes on the microarray. 

 

Pathway analysis of differentially expressed genes 

A pathway is defined as a functional unit in which genes 

interact with each other and achieve a process of signal 

transduction. To explain test phenotypic features with 

respect to development processes, significant pathways are 

identified from differentially expressed genes. This is based 

on the p-values of the Fisher's exact test for over-

representation of the selected genes in all pathway 

categories, as described perviously (Shalgi et al., 2007). A 

significant pathway was specified when the p-value was 

less than 0.05. To assess the significance of a particular 

category with respect to random chance, the false discovery 

rate (FDR) was estimated for a set of categories. After 

resampling 5,000 times, the FDR was defined by equation, 

where Nk refers to the number of Fisher’s test p-values less 

than x2 test p-values T

N
FDR k1=

.  

The p-values obtained using Fisher’s exact test are 
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lower than x2 test p-values. Pathway enrichment analysis 

was performed according to a method reported previously 

(Kanehisa and Goto, 2000) to investigate whether particular 

functions were enriched among the genes that control 

distinctive characters in groups of genes that were 

differentially expressed on d 3, 8, 14, and 21, in comparison 

with d 0 (the control time point). With increasing 

enrichment, the corresponding function becomes more 

significant. Within a given category, the enrichment Re is 

given by equation, where nf is the number of different 

genes within the particular pathway category, and n is the 

total number of genes within the same category, Nf is the 

number of different genes on the entire microarray, and N is 

the total number of genes on the microarray.  

 

Construction and topological analysis of the gene co-

expression network 

We transformed the normalized expression values of 

profile 66 and profile 13 from the individual correlation 

analysis into measures of pair-wise connection strengths for 

the construction of a co-expression network (Carlson et al., 

2006). The network edges were specified to be more than 

0.9, which is the value of the coefficient correlation that 

incidates a strong relationship, such as co-expression of 

genes. The centrality of a network is represented by the 

central degree (Barabasi and Oltvai, 2004). It is possible to 

determine the characteristic variables that are related to the 

distances among genes. The core of maximum order is 

referred to as the main core, or the highest k-core of the 

graph (Huber et al., 2007). A k-core subgraph of a graph can 

be generated by deleting the vertices recursively from the 

graph whose degree is less than k (Huber et al., 2007). 

Larger values of “coreness” clearly correspond to vertices 

of larger degree and a more central position in the structure 

of the network. In this work, we applied the notion of the k-

core subgraph to predict similarity of gene function (Altaf-

Ul-Amin et al., 2006). The nodes labeled by the same color 

may represent similar gene ontology terms. The highlight 

ontology of nodes of the same color was assessed by 

counting the genes of the same GO that had the same color.  

 

Real-time quantitative PCR 

Fourteen differentially expressed genes (AREG 

(Amphiregulin), ATRN (Attractin), CD59 (CD59 molecule), 

CLU (Clusterin), CST3 (Cystatin C), DPEP1 (Dipeptidase), 

EPHX1 (Epoxide hydrolase), LEAP2 (Liver expressed 

antimicrobial peptide 2), LOC396871 (Arginine rich 

antibacterial peptides), MS4A2 (Membrane-spanning 4-

domains), PIAP (Putative inhibitor of apoptosis), RETN 

(Resistin), UBP (Ubiquitin-specific protease), FBP (Folate 

binding protein) dentified in the array experiment were 

selected and analyzed by RT-qPCR. Aliquots of the same 

RNA samples used for the microarray analysis were used 

for the real-time PCR. The reverse transcriptions (RT) were 

carried out with the total cellar RNA using TRIZOL 

Reagent (Invitrogen California, USA). Each sample of 

cDNA was diluted 1:4 fold in sterile ddH2O, and 1 l of 

this dilution was used as the template for qPCR. Primers for 

the PCR reactions were designed by DNAStar (DNASTAR 

Inc) to have a Tm of 62 to 65C and an optimal annealing 

temperature of 63C, with a length of 100 and 250 bp. Real-

time PCR was performed with SYBR®  Premix Ex TaqTM 

(TaKaRa, Dalian, China) in 20 l reaction volumes using 

the iCycler System (BioRad, Richmond, CA, USA) 

according to the manufacturer's instructions. Each PCR 

reaction contained 1 l of cDNA, 0.2 M of each of the 

primers (Table 1) and 10 l of PCR master mix. The initial 

denaturing time was 95C per minute, followed by 40 

cycles consisting of 94C for 15 s, 63C for 20 s, and 72C 

for 30 s with a single measurement of fluorescence.  

 

RESULTS 

 

Microarray analysis  

To characterize the genes involved in intestinal 

development during the first 21 d in piglets’ life, total RNA 

was extracted from the mid-section of the jejunum on post-

natal d 0, 3, 8, 14 and 21. Gene expression was analyzed 

using a porcine genome array and
 
statistics were computed 

using GCOS. In total, 8,427 significant transcripts were 

identified. Among these statistically significant expression 

ratios, probes representing 4,789 unique genes increased in 

transcript abundance at least 2.0 fold at one or more time 

points, while probes representing 3,618 unique genes 

decreased in abundance at least 2.0 fold. Thus, at least 24% 

of the total number of transcripts from S. scrofa were 

strongly (i.e. >2.0 fold) induced by intestinal development; 

however, at least 18% of transcripts were repressed by an 

equivalent amount (Table 2).  

 

Gene expression profiles significant to the development 

process  

During the course of intestinal development from d 0 to 

21, 80 model profiles were identified in which we defined 

the value of maximum unit change to be 1. For these model 

profiles, 30 were identified as significant (Figure 1). Among 

them, the two most significant profiles were profile 66 and 

profile 13, according to ascending order of the p-values 

(Figure 2). If the p-value of a profile was less than 0.01, the 

gene profile was identified as one that changed significantly 

with time. According to this principle, the lowest p-value 

profiles may represent the regulatory genes that affect the 

development of the porcine 539 genes, the expression of 

which increased significantly at d 3 and maintained a 

similar level of expression until d 21. In contrast, profile 13  
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had a significance level of 8.810
-87

 and contained 351 

genes, the expression of which decreased significantly at d 

3 and maintained a similar level of expression until d 21.  
 

Significant gene functions and genes of significant 

profiles 

Results of the analysis of GO categories for profile 66 

implied that the main enriched GO categories were focused 

on control checkpoints for cell size, cell wall biogenesis, 

deoxyribonucleotide catabolic processes, fungal-type cell 

wall biogenesis, fungal-type cell wall organization and 

biogenesis, lymphocyte chemotaxis, M phase-specific 

microtubule processes, membrane depolarization, 

microvillus biogenesis, mitochondrial depolarization, 

mitotic metaphase, etc. during growth from 0 to 21 d (Table 

3). To further investigate the most significant functions, the 

Table 2. Summary of data obtained from the genechip analysis 

 d 3 vs d 0 d 8 vs d 0 d 14 vs d 0 d 21 vs d 0 

Total transcripts 20,201 20,201 20,201 20,201 

Differentially expressed genes (DEG) 1,881 1,918 2,204 2,404 

DEG/total (%) 9.31 9.49 10.91 11.9 

Increased genes (IG) 1,117 994 1340 1338 

IG/DEG (%) 59.38 51.82 60.8 55.66 

Decreased genes (DG) 764 924 864 1,066 

DG/DEG (%) 40.62 48.18 39.2 44.34 

Table 1. Primer sequences and PCR product sizes of genes selected for validation by RT 

Gene GenBank  ID Primer sequence 
Annealing tm 

(C) 

Product size 

(bp) 

-actin SSU07786 Forward5’-GCTGGCCGGGACCTGACCGACT-3’ 63.5 154 

Reverse5’-TTGGCATAATTGTTACACGTTTGG-3’ 

Amphiregulin AREG AY028311.1 Forward5’-GGCGCCCGTGGTGCTGTCACTC-3’ 61.5 179 

Reverse5’-CGCTAGCAGGGGGAGCCTCACTT-3’ 

Clusterin CLU NM_213971.1 Forward5’-AAGTCCCGCTTCGCCCGGAACATC-3’ 61.4 225 

Reverse5’-CCTCAGGCATCCCGTGGAGTTGTG-3’ 

Dipeptidase DPEP1 NM_214108 Forward5’-CAACACGCCCTGGGCCGACAACTG-3’ 64.1 183 

Reverse5’-ACGGGGGCCTGGGACAGCTTCAGA-3’ 

Epoxide hydrolase  

EPHX1 

NM_214355 Forward5’-CCCGTCCCCCTGGCCTACAT-3’ 62.3 243 

Reverse5’-AAAGCCGGTGGGCACGTGGACCTT-3’ 

Liver expressed  

antimicrobial peptide 2 

LEAP2 

NM_213788 Forward5’-ACGGCTCCCCGATACCGGAACGAG-3’ 59.9 169 

Reverse5’-TCCTGGGCCACACTTAGGGAACAGC-3’ 

Arginine rich antibacterial  

peptides LOC396871 

NM_214355.1 Forward5’-TGCCGGAACATCTATGAGAATGACT-3 57 250 

Reverse 5’-AATCAGGGGCAGAAGCTATCTCCTT-3’ 

Membrane-spanning  

4-domains MS4A2 

NM_214092.1 Forward5’-TGCCGGAACATCTATGAGAATGACT-3’ 54.8 244 

Reverse5’-AATCAGGGGCAGAAGCTATCTCCTT-3’ 

Putative inhibitor  

of apoptosis PIAP 

NM_214181 Forward5’-GCAGCCCGCTTTAAAACATTCTGTA-3’ 56.1 240 

Reverse 5’-TTGAACGCGACTGATGAACTCCTGT-3’ 

Resistin RETN NM_213783.1 Forward5’-GGGGCTGCTGGTGTGGGGCAAGT-3’ 

Reverse5’-CGCGCACGTCCCAAGAGCCACAG-3’ 

63 218 

Forward5’-GGGCCCGGTCGGTTTGCACAACAT-3’ 

Ubiquitin-specific  

protease UBP 

NM_213826.1 Reverse5’-CACCGCCTTCTGCCGGCTGTCCT-3’ 61 199 

Forward5’-AAGCCGTGCCACCCAAAACTTACTA-3’ 

CD59 molecule CD59 NM_214170 Reverse5’-CAGCAGAGCGGTTTTCCCTGATGA-3’ 56.2 167 

Forward 5’-TGGCCAGTCGTCCGTTTGCCTCTG-3’ 

Attractin ATRN AB271953 Reverse 5’-AGGGCGCTGGCCACTGCGAGAC-3’ 61.5 220 

Forward: 5’-ACGGGGACCACCTGCGACACATT-3’ 

Folate binding protein  

FBP 

NM_213853 Reverse: 5’-CGCACTCAAGGCCAAGGCGTAGA-3’ 66 1,320 

Forward: 5’-CCCAACAGGCAAGGCAGCTAAAGC-3’ 

Cystatin C CST3 NM_001044602 Reverse: 5’-CTGCCAAGACCGCGTGGTTGAGATT-3’ 59.3 203 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NM_214355.1
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annotation of the GO was analyzed using Amigo (a website 

tool (http://amigo.geneontology.org/cgi-bin/amigo/go.cgi). 

It was concluded that the process of the cell cycle initiated 

at a checkpoint and the immune response to fungi 

stimulated by fungal infection were the most significant 

phenomena that occurred from d 3 to d 21.  

In contrast, the main enriched GO categories for profile 

13 were focused on folic acid transport, negative regulation 

of endocytosis, the phosphatidylcholine biosynthetic 

process, phosphatidylcholine metabolic processes, the 

response to cobalt, manganese and zinc ions, catabolic 

processes for aminoglycans, glycosaminoglycans, and 

leucine, leucine metabolic processes, a lipopolysaccharide-

mediated signaling pathway, Mo-molybdopterin cofactor 

biosynthetic processes, and Mo-molybdopterin cofactor 

metabolic processes, etc., as presented in Table 4.  

 

Distribution of significant pathways of differentially 

expressed genes 

The pathway was analyzed using the KEGG and 

Genmapp databases. The significant pathways for 

differentially expressed genes were applied to the Fisher 

exact test and tests of multiple comparisons to obtain the 

significant functions. From the results of Table 6, it can be 

seen that the metabolism of xenobiotics by cytochrome 

P450, Alzheimer's disease, antigen processing and 

presentation, the PPAR signaling pathway, complement and 

coagulation cascades, cell adhesion molecules (CAMs), 

autoimmune thyroid disease, allograft rejection, graft-

versus-host disease, natural killer cell mediated cytotoxicity, 

and cytokine-cytokine receptor interaction were the 

significant pathway categories. It is well known that owing 

to the changes in diet and living environment that occur 

after the birth of piglets, adaptive changes occur in the 

internal environment. In this process various immune 

reactions are activated, such as antigen processing, 

complement cascades, allograft rejection, graft-versus-host 

disease, natural killer cell mediated cytotoxicity and 

cytokine-cytokine receptor interaction. It can be concluded. 

Therefore, that the immune response may be coupled with 

the growth of the organism (Table 5).  

 

The gene co-expression network  

The gene co-expression network was constructed with 

respect to gene function associations. Given that the 

elements of a network represent a variety of gene regulatory 

abilities, a large-scale gene network can be divided into 

subgraphs, named k-core networks, in which all genes 

 

 
 

Figure 1. Model expression profiles of differentially expressed genes. The number in the top left hand corner of a profile box is the 

model profile ID number, which has no special meaning; the lower left hand corner contains the p-value. Model expression profiles are 

ordered from left to right and from top to bottom according to gradually increasing significance. Significant profiles have statistical 

significance (corrected with the multiple permutation test) less than 0.01. 
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affect each other (Huber et al., 2007). Generally, the 

complexity of gene relationships increases with the rank of 

the k-core value. In the light of the definition of the k-core 

network, the core status within a large-scale gene network 

consists of subgraphs of higher k value. In this work, we 

used the k-cores of protein-protein interaction networks to 

define the main gene functions in the main subgraph. 

Moreover, we aimed to find the main GO assigned by the 

maximum number of genes in a separate k-core and then to 

define the key gene functions at each level of the network.
  

It has been reported that the core functions at the core 

status of a network have a top k-core level (Altaf-Ul-Amin 

 

 
 

Figure 2. Gene clusters of significant expression profiles 66 and 13. The horizontal axis represents time, and the vertical axis shows the 

time series of the level of gene expression after log normal transformation. Each diagram contains the model profile ID at the top center. 

“Genes assigned” represents the number of genes actually assigned to the profile; “Genes expected” represents the expected number of 

genes based on a permutation test of time points; p-value represents the significance of the number of genes assigned versus expected. 
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et al., 2006), and a higher degree but lower clustering 

coefficient (Barabasi and Oltvai, 2004). A k-core 

subnetwork with a k-value of 12 was located at the core 

status within the large scale gene network (Figure 3). Using 

the hierarchical categories of gene ontology, it could be 

concluded that most of the genes in this subnetwork are 

attributed to cell communication, which may be related to 

cell division or proliferation through cell adhesion and 

transport of nutrients (for details of the genes, Tables 3 and 

4). In addition, most genes in the secondary network (with a 

k-core value of 11) play an important role in metabolic 

processes of nitrogen compounds and amines (for detailed 

information, Tables 3 and 4), except for those genes without 

detailed functional annotation. Among these genes, 

CN161469 is similar to methylcrotonoyl-Coenzyme A 

carboxylase 2 (beta) when analyzed by BLAST, and it takes 

part in the regulation of other genes within the secondary 

level subnetwork because of the higher value of its degree. 

Most notably, the gene U89949.1, which encodes a folate 

binding protein, possessed the highest k-core and degree, 

and the lowest clustering coefficient (Table 6). These 

features indicate that this is the core gene that is located at 

the center of both the large scale network and the 12 k-core 

subnetwork, and it regulates directly 28 neighboring genes. 

 

Validation of the gene chip data by RT-PCR  

To confirm whether the genes identified were 

differentially expressed, quantitative RT-PCR analysis for 

specific transcripts was carried out as described previously. 

Based on our microarray analysis, 14 genes, including three 

antimicrobial peptides (LEAP2, LOC396871, and MS4A2), 

two proteins involved in the regulation of proliferation and 

apoptosis of epithelial cells (PIAP and AREG), and genes 

Table 3. Significant GO of profile 66 

Go ontology p-value Enrichment 

Cell size control checkpoint 0 5.94 

Cell wall biogenesis 0 5.94 

Deoxyribonucleotide catabolic process 0 5.94 

Fungal-type cell wall biogenesis 0 5.94 

Fungal-type cell wall organization  

and biogenesis 

0 5.94 

Lymphocyte chemotaxis 0 5.94 

M phase specific microtubule process 0 5.94 

Membrane depolarization 0 5.94 

Microvillus biogenesis 0 5.94 

Mitochondrial depolarization 0 5.94 

Mitotic metaphase 0 5.94 

Negative regulation of  

calcium-dependent cell-cell adhesion 

0 5.94 

Negative regulation of  

megakaryocyte differentiation 

0 5.94 

Negative regulation of  

mitochondrial depolarization 

0 5.94 

Phosphatidic acid biosynthetic process 0 5.94 

Phosphatidic acid metabolic process 0 5.94 

Pyrimidine deoxyribonucleotide  

catabolic process 

0 5.94 

Regulation of calcium-dependent  

cell-cell adhesion 

0 5.94 

Regulation of  

mitochondrial depolarization 

0 5.94 

Regulation of mitochondrial  

membrane potential 

0 5.94 

Release of cytochrome c  

from mitochondria 

0 5.94 

Deoxyribonucleoside monophosphate  

biosynthetic process 

0 3.96 

Deoxyribonucleoside monophosphate  

metabolic process 

0 3.96 

Leukocyte mediated cytotoxicity 0 3.96 

Negative regulation of leukocyte  

mediated cytotoxicity 

0 3.96 

Negative regulation of T cell  

mediated cytotoxicity 

0 3.96 

Regulation of cell killing 0 3.96 

Table 4. Significant GO of profile 13 

Go ontology p-value Enrichment 

Phosphatidylcholine biosynthetic process 0 5.94 

Folic acid transport 0 5.94 

Response to manganese ion 0 5.94 

Response to cobalt ion 0 5.94 

Negative regulation of endocytosis 0 5.94 

Response to zinc ion 0 5.94 

Phosphatidylcholine metabolic process 0 5.94 

Negative regulation of  

chemokine biosynthetic process 

0 2.97 

Aminoglycan catabolic process 0 2.97 

Lipopolysaccharide-mediated  

signaling pathway 

0 2.97 

Glycosaminoglycan catabolic process 0 2.97 

Regulation of lipopolysaccharide- 

mediated signaling pathway 

0 2.97 

Vitamin transport 0 2.97 

Molybdopterin cofactor  

biosynthetic process 

0 2.97 

Leucine catabolic process 0 2.97 

Mo-molybdopterin cofactor  

metabolic process 

0 2.97 

Negative regulation of lipopolysaccharide- 

mediated signaling pathway 

0 2.97 

Negative regulation of JNK activity 0 2.97 

Molybdopterin cofactor metabolic process 0 2.97 

Leucine metabolic process 0 2.97 

Mo-molybdopterin cofactor  

biosynthetic process 

0 2.97 

Cellular zinc ion homeostasis 0 2.38 
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associated with a number of physiological and metabolic 

processes (ATRN, CD59, CLU, DPEP1, EPHX1, RETN 

and UBP) were selected. The core gene FBP was also 

involved in the RT-PCR analysis. For all of these genes, the 

expression ratios measured by RT-qPCR and by microarray 

were highly correlated (r = 0.74, 0.73, 0.95, 0.93 at d 3, 8, 

14, 21 respectively) (Table 7). Genes involved in apoptosis, 

signal transduction, and energy and protein metabolism, 

such as CLU, MS4A2 and UBP, were up-regulated during 

suckling, as indicated by both the Genechip and RT-qPCR 

experiments. However, HCRTR2 displayed significant 

differential expression when detected by RT-qPCR but no 

significance on Genechip testing. The correlation of the 

results from the RT-qPCR and Genechip testing helped us to 

analyze the reliability of the assays so as to reveal true 

differences in the gene expression profiles in the intestine.  

 

DISCUSSION 

 

Owing to the continuous improvement of microarray 

technology, the rapid development of bioinformatics and the 

depth of research on genomics and proteomics, global 

genome expression profile analysis provides a more 

Table 5. Significant pathway categories (p<0.01, FDR<0.05) 

Pathway p-value Enrichment FDR 

Metabolism of xenobiotics  

by cytochrome P450 

0 4.25 0 

Alzheimer’s disease 0 4.12 0 

Antigen processing  

and presentation 

0 4.1 0 

PPAR signaling pathway 0 3.89 0 

Complement and  

coagulation cascades 

0 3.57 0 

Cell adhesion molecules  

(CAMs) 

0 3.47 0 

Autoimmune thyroid disease 0 3.36 0 

Allograft rejection 0 3.36 0 

Graft-versus-host disease 0 3.27 0 

Natural killer cell  

mediated cytotoxicity 

0 2.7 0 

Cytokine-cytokine  

receptor interaction 

0 2.19 0.01 

Table 6. Network structure parameter lists for each gene 

Probe Set ID NCBI-geneID Clustering coefficient Degree k-core 

Ssc.14544.1.S1_at U89949.1 0.58 28 12 

Ssc.21579.1.S1_at CF789025 0.58 27 12 

Ssc.1735.1.S1_at BI118904 0.62 26 12 

Ssc.5250.1.S1_at BQ604261 0.58 26 12 

Ssc.15069.1.S1_at BI345060 0.63 25 12 

Ssc.22910.1.A1_at CO986224 0.67 24 12 

Ssc.10748.1.A1_at BQ597862 0.61 24 12 

Ssc.16817.1.S1_at BE233328 0.64 23 12 

Ssc.25002.1.S1_at BG833819 0.69 22 12 

Ssc.6080.1.S1_at NM_213870.1 0.68 22 12 

Ssc.15430.1.A1_at CO937301 0.67 22 12 

Ssc.11246.1.A1_at BI181165 0.55 22 12 

Ssc.18215.1.S1_at NM_214365.1 0.71 21 12 

Ssc.13713.1.A1_at BQ603271 0.62 20 12 

Ssc.3714.1.S1_a_at CK456589 0.71 19 12 

Ssc.21141.1.S1_at BX666500 0.6 19 12 

Ssc.26028.1.S1_at BX926563 0.43 19 9 

Ssc.1209.1.S1_at CK465976 0.76 18 12 

Ssc.18033.1.A1_at CF180565 0.75 18 12 

Ssc.5052.1.S1_at BI398918 0.69 18 12 

Ssc.2795.1.S1_at BI183754 0.68 18 12 

Ssc.21952.1.S1_at BX666921 0.54 18 10 

Ssc.9503.1.A1_at CF789586 0.46 18 9 

Ssc.24263.2.S1_at AW480085 0.55 16 9 

Ssc.12622.2.A1_a_at CO948012 0.52 16 9 

Ssc.27572.1.S1_at CN161469 0.67 15 11 

Ssc.10988.1.S1_at CO947173 0.72 15 10 

Representative public ID can be queried on NCBI. Clustering coefficient and degree describe the network properties of genes. K-core represents the 

subnetwork in which genes are located. 
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Table 7. Genes differentially expressed in the Genechip data 

Symbol Method 0-d 3-d old 8-d old 14-d old 21-d old 

Clusterin  

CLU 

RT-PCR 1 0.584 0.822 8.830 10.255 

Genechip 1 1.546 2.923 8.558 13.860 

Amphiregulin  

AREG 

RT-PCR 1 2.263 1.004 1.546 1.969 

Genechip 1 10.317 1.950 5.347 7.130 

Folate binding  

FBP 

RT-PCR 1 1.005 0.380 0.850 3.235 

Genechip 1 0.295 0.304 0.264 0.2606 

Dipeptidase 

DPEP1 

RT-PCR 1 0.115 0.111 0.179 0.251 

Genechip 1 0.255 0.248 0.375 0.468 

Membrane-spanning 4-domains 

MS4A2 

RT-PCR 1 0.475 2.670 31.138 7.704 

Genechip 1 0.831 1.798 8.877 4.304 

Utative inhibitor of apoptosis  

PIAP 

RT-PCR 1 0.905 1.449 6.358 2.027 

Genechip 1 2.366 2.106 4.854 3.761 

Ubiquitin-specific protease  

UBP 

RT-PCR 1 5.199 1.770 5.554 28.016 

Genechip 1 4.774 3.007 3.499 16.768 

Attractin 

ATRN 

RT-PCR 1 0.211 0.477 0.758 0.197 

Genechip 1 0.239 0.679 0.186 0.361 

Liver expressed antimicrobial peptide 2 

LEAP2 

RT-PCT 1 1.775 4.712 2.652 2.841 

Genechip 1 3.882 3.552 2.484 2.758 

Resistin 

RETN 

RT-PCT 1 0.995 2.634 1.1760 0.309 

Genechip 1 2.874 3.181 3.077 2.113 

CD59 molecule  

CD59 

RT-PCT 1 0.080 0.099 0.346 0.197 

Genechip 1 1.485 0.848 1.048 0.992 

Epoxide hydrolase EPHX1 RT-PCT 1 6.169 22.177 64.977 33.188 

Genechip 1 12.195 26.257 25.856 35.314 

Arginine rich antibacterial peptides  

LOC396871 

RT-PCT 1 4.342 23.007 10.273 1.649 

Genechip 1 3.211 3.927 4.822 1.118 

Cystatin C  

CST3 

RT-PCR 1 1.588 0.718 2.674 8.490 

Genechip 1 1.474 2.631 2.469 1.996 

r  1 0.74 0.72 0.95 0.93 

 

 

 
Figure 3. Gene association network. Nodes denote genes; undirected links represent gene-gene interrelation; the size of the nodes 

represents the power of the interrelationship among the nodes. Different colors of nodes represent distinct k-core gene classes. 
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comprehensive and dynamic analysis of intestinal 

development at the genome-wide transcriptional level 

(Ravasz et al., 2002; Schlitt et al., 2003; Stears et al., 2003; 

Barabasi and Oltvai, 2004; Han, 2008; Lee et al., 2008). 

The understanding and description of cells, organs and 

living individuals on a system level is a new area of 

biological research (Davidson et al., 2002; Kitano, 2002; 

Oltvai and Barabasi, 2002). Various kinds of model 

organism have been proved to be useful in this area 

(Covington et al., 2008; Sarkar et al., 2008; Schweikl et al., 

2008; Wechter et al., 2008). To our knowledge, this is the 

first study involving whole genome analysis of the genes 

related to intestinal development in Landrace piglets at 

different stages of growth (0, 3, 8, 14, and 21 d after birth).  

In the present study, more than 8,000 differentially 

expressed transcripts were identified by microarray 

technology. This technique was validated by RT-qPCR for 

utilization in a comprehensive study of gene expression 

profiles. However, many of these transcripts had no detailed 

information in the cDNA resources deposited for swine, 

which limited the analysis of their biological importance. 

This indicates that many porcine genes have yet to be 

analyzed. Complex molecular events pertinent to intestinal 

development occur during the suckling stage in piglets 

(Hall and Byrne, 1989; Buddington, 1994; Thaler and 

Cummings, 2008). We analyzed the development process of 

the gene expression profile, and 80 model profiles were 

obtained in all. These profiles do not cover all the possible 

profiles that could be generated in the intestine of Landrace 

piglets during suckling. Among these profiles, 30 were 

identified as significant and two of them (profiles 66 and 13) 

were highly significant. Significant profiles may indicate 

that common functions were mainly attributed to the co-

expressed genes, and these functions influence the 

biological characteristics of the organism (Gracey et al., 

2004). We can therefore conclude, according to the 

significance of the profiles, that the genes assigned to these 

two profiles may be highly specific for the intestinal 

development of piglets in early life. In order to obtain a 

better understanding of the genes assigned to these two 

profiles and to elucidate the molecular mechanism of 

development of the intestine, analysis of GO categories, 

pathway analysis, and topological analysis of the gene co-

expression network were carried out.  

Annotation of GO categories has proved to be 

remarkably useful for the mining of functional and 

biological significance from the results of microarray 

studies. In our study, significant GO categories were 

determined by the hypergeometric distribution and multiple 

comparison tests. The results obtained for the GO 

categories implied that the genes in profiles 66 and 13 were 

involved in many biological processes, among which the 

distinguished phenomena were initiation of the cell cycle at 

a checkpoint and the immune response to fungi for profile 

66, while the folic acid transport process was most notable 

for profile 13. These results suggest that the genes in profile 

66 may regulate cell proliferation and differentiation, and 

the genes in profile 13 may modulate the metabolism of 

nutrients.  

Analysis of the pathway for the lists of differentially 

expressed genes may allow us to find the target pathway 

that regulates phenotypic differences. Pathway analysis in 

the present study indicated that the genes in profiles 66 and 

13 focused mainly on the immune system, metabolism, cell 

adhesion molecules, etc. It may be concluded that these 

genes play an important role in the above pathways, which 

agrees with the results obtained from the analysis of the GO 

categories.  

During biological processes, a macromolecular network 

can be constructed according to the yeast two-hybrid 

method (Y-2H) (Smidtas et al., 2006) or an algorithmic 

prediction based on the gene function correlation and 

expression profiles (Nikiforova and Willmitzer, 2007). The 

complexity of the network model based on the high 

throughput gene expression test using the algorithmic 

prediction made it feasible to determine snapshots of 

protein-protein interactions, gene expression regulatory 

networks, and metabolic networks among different gene 

groups (Carlson et al., 2006). To find the most effective 

genes in profiles 66 and 13, the gene co-expression network 

was constructed using the algorithmic prediction, and 

topological analysis was carried out, the results of which 

demonstrated that more than 20 effective genes were 

identified. Most of these genes were attributed to cell 

communication, which may be related to cell division or 

proliferation through cell adhesion and the transport of 

nutritients. Among these genes, CN161469 was found to be 

similar to methylcrotonoyl-Coenzyme A carboxylase 2 

(beta), which suggests that it possesses the similar 

biological functions. In addition, the gene U89949.1, which 

encodes a folate binding protein that is involved in the 

transport of foliate (Vallet et al., 2001; Kim and Vallet, 

2004), played an major role in the network. This finding 

was in accordance with the results of the assessment of the 

GO categories and pathway analysis. It has been 

demonstrated that down-regulated genes reflect a state of 

malnutrition, which may be induced by a lack of the 

essential molecules for growth, such as folic acid, trace 

elements, and aminoglycan, in early life. In profile 13, the 

gene U89949.1 was down-regulated, which may imply a 

decrease in folic acid transport that may subsequently 

induce malnutrition. This gene therefore provides a channel 

that allows regulation of the metabolism on a molecular 

level to balance malnutrition and over–nutrition. 
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IMPLICATIONS 

 

In order to increase our understanding of the molecular 

mechanisms involved in intestinal development, it is 

essential to obtain more information on the functions of 

genes in the mammalian genome and their corresponding 

products. In the present study, we have provided a rich new 

information resource, which describes the significant 

pathways and effective transcripts that are related intimately 

with porcine intestinal development. Although there was a 

certain degree of ambiguity when we established the 

regulatory network based on the expression profiling data, 

this represents a valuable attempt to guide further in-depth 

research into the candidate genes and signal transduction 

pathways involved in intestinal development. 
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