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INTRODUCTION 

 

AMPK is the central component of a cellular signaling 

system that monitors cellular energy change, acting as 

‘metabolic master switch’ to regulate ATP concentrations in 

the face of stress. AMPK can be activated by allosteric 

effect of AMP and/or by threonine phosphorylation of one 

subunit in response to AMPK kinases (Hong et al., 2003; 

Hawley et al., 2005; Hurley et al., 2005; Hardie, 2006). In 

some cases, activation of AMPK requires phosphorylation 

of T-172 by an upstream protein kinase such as LKB1 

(Hawley et al., 1996). LKB1 is a serine/threonine protein 

kinase which was first discovered in the study of Peutz-

Jeghers syndrome (Hemminki et al., 1998; Jenne et al., 

1998). LKB1 is a complex with two accessory proteins, 

pseudokinase STRAD (alpha or beta isoforms) and scaffold 

protein MO25 (alpha and beta isoforms) (Bass et al., 2003; 

Boudeau et al., 2003). AMPK can be activated in a variety 

of physiological circumstances, including hypoglycemia (da 

Silva Xavier et al., 2000), ischemia (Marsin et al., 2000), 

heat shock (Corton et al., 1994) and exercise (Mu et al., 

2001; Musi et al., 2001). AMPK is also affected by several 

orexigenic and anorexigenic signals in the hypothalamus 

(e.g. thyroid hormones, ghrelin, insulin and leptin) (Kola et 

al., 2006). AMPK is widely expressed in the brain, 

including the areas that control feed intake and 

neuroendocrine function. Immunostaining revealed that 

various AMPK isoforms distributed in hypothalamus and 

the hindbrain (Turnley et al., 1999). In mammals, AMPK 

exists as a heterotrimeric enzyme complex consisting of one 

catalytic (alpha) subunit and two regulatory (beta and 

gamma) subunits (Mitchelhill et al., 1994). There are two 

known alpha subunit isoforms (alpha-1 and alpha-2, 

Stapleton et al., 1996), two beta subunit isoforms (beta-1 

and beta-2, Stapleton et al., 1997) and three gamma subunit 

isoforms (gamma-1, gamma-2 and gamma-3, Cheung et al., 

2000). 
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ABSTRACT: The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts 

to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the 

gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old 

male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and 

then refed for 24 h. Compared with the control, the hypothalamic gene expression of AMPK2, AMPK1, AMPK2, AMPK1, Ste20-

related adaptor protein  (STRADβ), mouse protein 25 (MO25α) and agouti-related peptide (AgRP) were increased after fasting for  

24 h. No significant difference among treatments was observed in mRNA levels of AMPK1, AMPK2, LKB1 and neuropeptide Y 

(NPY). However, the expression of MO25, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid 

synthase (FAS), acetyl-CoA carboxylase  (ACC), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding 

protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK 

subunits, appetite regulation peptides and lipometabolism related factors in chick’s hypothalamus; the hypothalamic FAS signaling 

pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry. (Key Words: Metabolism, 
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Previous studies in mammals showed that hypothalamic 

AMPK integrates nutrient and hormonal signals from both 

anorexigenic and orexigenic pathways to regulate feed 

intake (Obici et al., 2003; Andersson et al., 2004; 

Minokoshi et al., 2004). Minokoshi et al. (2004) reported 

that fasting resulted in increased hypothalamic AMPK 

activity, whereas refeeding inhibited it (Minokoshi et al. 

2004). AMPK is considered as a major regulator of fatty 

acid synthesis pathway due to its function to phosphorylate 

and inactivate key enzymes in fatty acid metabolism such as 

acetyl-CoA carboxylase (ACC). Pharmacological inhibition 

of fatty acid synthase (FAS) produces anorexia in mice 

(Loftus et al., 2000). It is reported that the activation of 

AMPK in the hypothalamus is associated with activation of 

mitochondrial enzyme carnitine palmitoyltransferase-1 

(CPT1), leading to a decrease in the cellular levels of long-

chain acyl-CoAs and increase feed intake (Andersson et al., 

2004). The modest reduction of long-chain acyl-CoAs 

within the arcuate nucleus (ARC) would increase the 

expression of both agouti-related peptide (AgRP) and 

neuropeptide Y (NPY) and enhance feed intake (Obici et al., 

2003). 

There have been numerous reports showing that AMPK 

is involved in appetite regulation in mammals (Claret et al., 

2007; Dzamko et al., 2010). Because feeding behavior and 

energy homeostasis are basic processes crucial to the 

survival of all animals (Richards and Proszkowiec-Weglarz, 

2007), it is logical to assume that AMPK should be 

involved in poultry feed intake control. Gene expression of 

AMPK in chicken embryos has been explored 

(Proszkowiec-Weglarz and Richards, 2009), but 

information of its expression in chicks hypothalamus 

remains scarce. Previous studies in mammals showed that 

isoform composition of AMPK subunit changes during 

physiological and pathological conditions (Gregor et al., 

2006; Kim et al., 2009). The aim of the present experiment 

was to investigate if AMPK subunits (,  and ) gene 

expression is modulated by 24 h fasting in meat-type chicks 

and to determine the interrelationship between AMPK and 

the mRNA levels of some hypothalamic feeding regulatory 

neuropeptides (i.e. corticotropin-releasing hormone (CRH), 

neuropeptide Y (NPY), agouti-related peptide (AgRP), pro-

opiomelanocortin (POMC)) and fatty acid synthase (FAS). 

 

MATERIALS AND METHODS 

 

Animals, experimental protocol and sample collection 

Male broiler (Arbor Acres) chicks were obtained from a 

local hatchery at 1 d of age and reared in an 

environmentally controlled room. The brooding temperature 

was maintained at 35C (65% RH) for the first 2 d, and then 

decreased gradually to 31C (45% RH) until 10 d. The light 

regime was 23 L/1 D. All chicks received a starter diet with 

21.5% crude protein and 12.33 MJ/kg of metabolizable 

energy (Zhao et al., 2009). All the birds had free access to 

feed and water during the rearing period. The study was 

approved by the University and carried out in accordance 

with the “Guidelines for Experimental Animal” of Ministry 

of Science and Technology (Beijing, P. R. China). All the 

chicks were cared for in accordance with the Guide to the 

Care and Use of Experimental Animals (Olfert et al., 1993). 

Seven-day-old male broiler chicks were allocated into 

three equal treatments: control, fed ad libitum (C); fasted 

for 24 h (S24); fasted for 24 h and then refed for 24 h 

(S24R24). At the end of each treatment period, birds were 

sacrificed by exsanguination (Close, 1997), and then the 

whole hypothalamus was collected. After snap frozen in 

liquid nitrogen, the tissue samples were stored at -80C for 

RNA extraction. 

 

RNA isolation and analysis 

The expression of genes in hypothalamus was 

quantified using quantitative real-time PCR with SYBR 

Green I labeling. Total RNA was isolated using the 

guanidinium isothiocyanate method with Trizol Reagent 

(Invitrogen,San Diego, CA, USA). The quality of the RNA 

was tested by electrophoresis on an agarose-gel and the 

quantity of the RNA was determined with biophotometer 

(Eppendorf, Germany). 

RT reactions (10 l) consisted of 500 ng total RNA, 5 

mmol/L MgCl2, 1 l RT buffer, 1 mmol/L dNTP, 2.5 U 

AMV, 0.7 nmol/L oligo d(T) and 10 U Ribonuclease 

inhibitor (TaKaRa Biotechnology, Co., Ltd. Dalian, P. R. 

China). Real-time PCR analysis was conducted using the 

Applied Biosystems 7500 Real-time PCR System (Applied 

Biosystems, Foster, CA, USA). Each RT-reaction served as 

a template in a 20 l PCR reaction containing 0.2 mol/L of 

each primer and SYBR green master mix (Takara 

Biotechnology, Co., Ltd. Dalian, P. R. China). Primer-set 

sequences are described in Table 1. Real-time PCR 

reactions were performed at 95C for 10 s, followed by 40 

cycles at 95C for 5 s and 60C for 34 s. SYBR green 

fluorescence was detected at the end of each cycle to 

monitor the amount of PCR product. When calculating the 

efficiency of qPCR primers, a standard curve was made in 

10 fold dilutions, and its slope was used to calculate 

efficiency. 

The relative amount of mRNA for a gene was calculated 

according to the method of Livak and Schmittgen (Livak 

and Schmittgen, 2001). The mRNA levels of these genes 

were normalized to 18s rRNA levels (ΔCT) (Proszkowiec-

Weglarz et al., 2006). The ΔCT was calibrated against an 

average of the control chicks. The linear amount of target 

molecules relative to the calibrator was calculated by 2
-CT

. 
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Therefore, all gene transcription results are reported as the 

n-fold difference relative to the calibrator. Specificity of the 

amplification product was verified with melt curve. 

 

Statistical analysis 

Data are presented as meansSEM. Homogeneity of 

variances among groups was confirmed using Bartlett's test. 

All data were subjected to one-way ANOVA analysis testing 

the main effect of the treatment ((Version 8e, SAS Institute, 

Cary, NC, USA). When the main effect of treatment was 

significant, differences between means were assessed by 

Duncan's multiple range analysis. p<0.05 was considered 

significant. 

 

Table 1. Gene-specific primers used for the analysis of chick gene expression 

Gene  GenBank accession no. Primer sequences (5’-3’) Orientation Product size (bp) 

18s AF173612 ATAACGAACGAGACTCTGGCA 

CGGACATCTAAGGGCATCACA 

Forward 

Reverse 

136 

LKB1 NM_001045833 TGAGAGGGATGCTTGAATACGA 

ACTTGTCCTTTGTTTCTGGGC 

Forward 

Reverse 

158 

AMPKa1 DQ302133 CGGAGATAAACAGAAGCACGAG 

CGATTCAGGATCTTCACTGCAAC 

Forward  

Reverse 

266 

AMPKa2 DQ340396 GGGACCTGAAACCAGAGAACG 

ACAGAGGAGGGCATAGAGGATG 

Forward  

Reverse 

215 

AMPK1 XM_415278 ATGGTGGACTCCCAGAAGTG 

GAGCACCATCACTCCATCCT 

Forward  

Reverse 

254 

AMPK2 BG713266 CTGTCATGGGGAACACCAC 

GGTCCAGGATAGCGACAAAG 

Forward  

Reverse 

363 

 

AMPK1 DQ133597 AGCTGCAGATCGGTACCTACA 

CGTCACGTCCAGGTTGTTGT 

Forward  

Reverse 

200 

AMPK2 DQ212708 ATCGGCATTACCTGTTGTGG  

ACCACCAAACGATGAACCTC 

Forward  

Reverse 

231 

NPY M87294 GAGGCACTACATCAACCTCATCAC 

TGTTTTCTGTGCTTTCCCTCAA 

Forward  

Reverse 

101 

AgRP NM_001031457 GGAACCGCAGGCATTGTC 

GTAGCAGAAGGCGTTGAAGAA 

Forward 

Reverse 

163 

POMC NM_001031098 CGCTACGGCGGCTTCA 

TCTTGTAGGCGCTTTTGACGAT 

Forward 

Reverse 

88 

CRH NM_001123031 CTCCCTGGACCTGACTTTCC 

TGTTGCTGTGGGCTTGCT 

Forward  

Reverse 

86 

Ghrelin AB075215 CCTTGGGACAGAAACTGCTC 

CACCAATTTCAAAAGGAACG 

Forward  

Reverse 

203 

POMC NM_001031098 AGAACAGCAAGTGCCAGGAC 

TGCGGAAATGCCTCATCACG 

Forward  

Reverse 

162 

FAS J03860 CTATCGACACAGCCTGCTCCT 

CAGAATGTTGACCCCTCCTACC 

Forward  

Reverse 

107 

ACC NM_205505 AATGGCAGCTTTGGAGGTGT 

TCTGTTTGGGTGGGAGGTG 

Forward  

Reverse 

136 

CPT1 AY675193 GGAGAACCCAAGTGAAAGTAATGAA 

GAAACGACATAAAGGCAGAACAGA 

Forward  

Reverse 

135 

SREBP-1 AY029224 GAGGAAGGCCATCGAGTACA 

GGAAGACAAAGGCACAGAGG 

Forward  

Reverse 

392 

MO25 XM_422642 GTGGAGATGTCGACGTTTGA 

ATTGTTCATCCTCGGTCCTG 

Forward  

Reverse 

439 

MO25 NM_0010006272 CTGGAATCTGCTTTCCCATC 

GCAGGATTTTTGTGCGATTT 

Forward  

Reverse 

252 

STRAD XM_421938 CTCCATTCATGGCCTATGGT 

TCGTCATTGTGCGTGTCATA 

Forward  

Reverse 

558 

18s = 18s rRNA; LKB1 = Liver kinase B1; AMPK = AMP-activated protein kinase; NPY = Neuropeptide Y; AgRP = Agouti-related peptide; CRH = 

Corticotropin-releasing hormone; POMC = Pro-opiomelanocortin; FAS = Fatty acid synthase; ACC = Acetyl-CoA carboxylase ; CPT-1 = Carnitine 

palmitoyltransferase 1; SREBP-1 = Sterol regulatory element binding protein-1; MO25 = Mouse protein 25; STRAD = STE20 related adaptor protein; 

STRAD. 
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RESULTS 

 

Expression of AMPK and related genes of hypothalamus 

during fasting and refeeding 

Fasting for 24 h increased the gene expression of 

AMPK2, AMPK1, AMPK2, AMPK1, STRAD and 

MO25 (p<0.05), but showed no significant effects on the 

gene expression of AMPK1, AMPK2 and LKB1 (p>0.05). 

The gene expression of MO25 was decreased (p<0.05) by 

24 h fasting. Refeeding for 24 h restored the gene 

expression of AMPK2, AMPK1 and MO25 to the 

control levels (Figure 1). 

 

Expression of feed intake regulation peptides of 

hypothalamus during fasting and refeeding  

Fasting for 24 h had no significant (p>0.05) effects on 

gene expression of NPY. However, mRNA levels of POMC, 

CRH and ghrelin were significantly (p<0.05) lower during 

   

  

 

Figure 1. Effect of fasting and refeeding on mRNA levels of AMP-activated protein kinase AMPK1 (A), AMPK2 (A), AMPK1 (B), 

AMPK2 (B), AMPK1 (C), AMPK2 (C), LKB1 (D), STRAD (D), MO25 (E), MO25 (E) in hypothalamus of broiler chicks. Values 

are meansSEM (n = 4). a, b Means with different letters differ significantly (p<0.05). 
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fasting compared to fed control. AgRP gene expression was 

significantly increased (p<0.05) by 24 h fasting. After 24 h 

of refeeding, mRNA levels of POMC and ghrelin were 

significantly increased (p<0.05). Refeeding decreased 

mRNA levels of NPY and restored gene expression of 

AgRP to control levels (p<0.05, Figure 2). 

 

Expression of lipid metabolism-related genes in 

hypothalamus during fasting and refeeding  

Fasting for 24 h significantly (p<0.05) decreased ACC, 

FAS, CPT-1 and SREBP-1 mRNA levels compared to ad 

libitum fed controls (Figure 3). Refeeding for 24 h restored 

ACC, FAS, CPT-1 and SREBP-1 gene expression; in some 

cases (ACC, FAS, SREBP-1), increased expression levels 

were significantly above the control levels, which indicated 

that there was a classical ‘overshoot’ response (p<0.05). 

 

DISCUSSION 

 

Effect of 24 h fasting on gene expression of AMPK 

subunits in chick’s hypothalamus 

AMPK has emerged as a nutrient and glucose sensor in 

the hypothalamus (Momcilovic et al., 2006). It is 

demonstrated that hypothalamic AMPK activity increases 

during fasting and decreases during refeeding in mammals 

(Culmsee, 2001; Minokoshi et al., 2004). AMPK switches 

on the oxidative metabolism of glucose and fatty acids to 

generate ATP, while switching off ATP consuming pathways. 

It achieves this metabolic switching both by direct 

phosphorylation of metabolic enzymes and via effects on 

transcription (Hardie and Hawley, 2001; Hardie et al., 2003). 

However the information of avian AMPK remains obscure, 

especially its definite roles in avian energy and appetite 

homeostasis. 

In the present study, the expression of AMPK subunits 

increased after fasting for 24 h, except for 1 and 2. It has 

been shown that AMPK subunit genes have tissue-specific 

expression and both alpha subunit isoforms (alpha-1 and 

alpha-2) were co-expressed in all tissues examined 

(Proszkowiec-Weglarz et al., 2006). The current results 

were inconsistent with some previous reports in chicken 

liver (Proszkowiec-Weglarz et al., 2009). Whether this 

 

 

Figure 2. Effect of fasting and refeeding on mRNA levels of 

POMC (A), CRH (A), ghrelin (A), NPY (B) and AgRP (B) in 

hypothalamus of broiler chicks. Values are meansSEM (n = 4).  
a , b Means with different letters differ significantly (p<0.05). 

 
 

 

Figure 3. Effect of fasting and refeeding on mRNA levels of ACC 

(A), CPT-1 (A), FAS (B) and SREBP-1 (B) in hypothalamus of 

broiler chicks. Values are meansSEM (n = 4). a,b Means with 

different letters differ significantly (p<0.05). 
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difference derived from the tissue specific expression of 

AMPK needs further investigation. Based on the present 

results, AMPK 1 was less sensitive to different nutritional 

conditions than AMPK 2 in the chick’s hypothalamus. 

When chicks were refed, the increased gene expression of 

AMPK subunits were reduced except AMPK 1. The 

integration of these data implied that the different AMPK 

subunits did not respond to the fasting in the same way, 

which revealed the complexity of the function of AMPK in 

the chick’s hypothalamus. However, phosphorylation 

reaction of AMPK protein(s) would be a key of the 

activation and inactivation of AMPK signaling and the 

relationships among changes in gene expression of AMPK 

subunits and its protein phosphorylation during fasting 

needs further investigation. 

LKB1 is one of the AMPK upstream protein kinases 

(Hawley et al., 1996). Hawley et al. (2003) demonstrated 

that complexes of LKB1 tumor suppressor, STRAD and 

MO25 are upstream kinases in the AMPK cascade. In 

chicken, a functional LKB1/AMPK pathway, similar to the 

corresponding pathway in mammals has been suggested 

(Proszkowiec-Weglarz et al., 2006). The hypothalamus of 

chicken expresses high amount of LKB1, MO25 and both 

isoforms of STRAD (Proszkowiec-Weglarz et al., 2006). In 

the present study, the gene expression of MO25 was 

decreased with 24 h fasting; however, the gene expression 

of STRAD and MO25 were increased. The Increased 

gene expression of STRAD and MO25 might result in 

the up-regulation of AMPK 2 in the chick’s hypothalamus. 

 

Effect of 24 h fasting on gene expression of appetite 

regulation peptides in chick’s hypothalamus 

Multiple neuron populations distributed throughout the 

brain influence the decision to seek and consume food 

(Morton et al., 2006). It is known that hypothalamic 

melanocortin system (HMS) has a crucial rule in feeding 

regulatory neural circuitry. HMS is composed of two 

different populations of neurons, one set that expresses 

neuropeptides Y (NPY) and agouti-related protein (AgRP) 

and a second set that expresses proopiomelanocortin 

(POMC), a precursor containing -melanocyte-stimulating 

hormone (Richards et al., 2010). In the present study fasting 

broiler chicks for 24 h did not change mRNA level of NPY 

in the hypothalamus of broiler chicks, however the mRNA 

level of AgRP and POMC were increased and decreased 

respectively (Figure 2). 

It is demonstrated that AgRP increase food intake when 

injected into the brain (Ollmann et al., 1997). Moreover, 

Takahashi and Cone (2005) discovered that the firing rate of 

AgRP neurons is elevated in brain slices from food-

deprived mice. Hahn et al. (1998) suggested that 

hypothalamic AgRP neuron constitute a unique cell type 

that is activated by fasting to stimulate food intake via a 

simultaneous decrease of melanocortin. In contrast, genetic 

and pharmacologic evidence suggest that POMC neurons 

inhibit feeding by releasing -melanocyte-stimulating 

hormone, a melanocortin receptor agonist (Tsujii and Bray, 

1989; Yaswen et al., 1999). It is suggested that opposite 

trend of AgRP and POMC gene expression implies that 

AgRP neurons inhibit POMC neurons in ARC (Cowley et 

al., 2001; Roseberry et al., 2004). 

In the present study, fasting resulted in a decrease in the 

mRNA level of ghrelin and CRH in the hypothalamus of 

broiler chicks. It is known that ghrelin acts as orexigenic 

peptide in mammals when injected centrally and 

peripherally (Nakazato et al., 2001; Date et al., 2002). In the 

case of mammals, orexigenic activity of ghrelin is mediated 

by activation of other orexigenic peptides such as NPY, 

AgRP and orexin (Toshinai et al., 2003). In neonatal 

chickens, intracerebroventricular (icv) administration of 

ghrelin potently inhibits food intake in a dose dependent 

manner (Khan et al., 2006). Saito et al. (2005) suggested 

that anorexigenic effects of central ghrelin mediated via 

CRH in chickens. 

 

The potential relationship between AMPK, appetite 

regulation peptides and lipid metabolism related genes 

All isoforms of AMPK are expressed in neuronal tissues, 

including these involved in the control of food intake and 

neuroendocrine function, such as the hypothalamus and the 

hindbrain (Turnley et al., 1999; Kola, 2008). 

Pharmacological activation of AMPK in rodent 

hypothalamus with 5-aminoimidazole-4-carboxamide 

riboside (AICAR) causes an increase in food intake (Xue 

and Kahn, 2006). In line with this, it has been also recently 

reported that AMPK1 KO mice reduce food intake, either 

under low fat (LFD) or HFD (Dzamko, 2010). Deletion of 

AMPK2 in AgRP neurons led to the development of an 

age-dependent lean phenotype (Claret et al., 2007; Lim et 

al., 2010). In the present study, the enhanced gene 

expression of 2, 1, 2 and 1 isoforms of AMPK was 

accompanied by a reduction in the mRNA levels of POMC 

and ghrelin and an enhancement of the AgRP mRNA levels 

in the hypothalamus of broiler chicks after 24 h fasting. 

Based on these results, it was speculated that AMPK might 

be involved in the appetite regulation in the hypothalamus 

of the chicks. AMPK might have enhanced the appetite of 

chicks via increasing the orexigenic gene expression of 

AgRP and decreasing the anorexigenic gene expression of 

POMC in chicks with 24 h fasting. 

The level of metabolic flux through the fatty acid 

biosynthetic pathway in hypothalamic neurons as regulated 

by AMPK determines the levels of two key metabolites, 

malonyl-CoA, and long chain fatty acyl-CoA, which in turn 

lead to changes in feed intake and energy expenditure by 

altering the expression of orexigenic and anorexigenic 
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neuropeptides in melanocortin system neurons (Lam et al., 

2005; Lane et al., 2005; He et al., 2006). AMPK can 

regulate the transcription and expression of FAS and ACC 

in hypothalamus of mammals and avian species (Xue and 

Kahn, 2006; Xu et al., 2011a; Xu et al., 2011b). The AMPK 

inhibits the activity of ACC, the rate-limiting enzyme 

involved in the production of malonyl-CoA used for fatty 

acyl-CoA biosynthesis, and causes a reduction in this 

reaction, which stimulates CPT1 and reduces the flux of 

substrates in the fatty acid anabolic pathway (Carling et al., 

2008; Lage et al., 2008). In this study, although we 

anticipated an increase in the mRNA level of CPT1, 

however, 24 h fasting significantly decreased CPT1 gene 

expression in the hypothalamus of broiler chicks. The 

underlying mechanism needs further investigation. 

In our experiment, the mRNA levels of FAS and 

SREBP-1 were reduced after 24 h fasting and refeeding 

caused an overshooting of FAS and SREBP-1 gene 

expression. FAS inhibitor reduces food intake in mammals 

and chickens (Dridi et al., 2006). Feed restriction decreased 

gene expression of FAS in an AMPK-dependent manner in 

mammals (López et al., 2008) and chickens (Dridi et al., 

2006; Proszkowiec-Weglarz et al., 2006). AMPK can 

directly decrease FAS gene transcription via regulating the 

gene expression of SREBP-1 in mammals and avian (Foretz 

et al., 2005; Shaw et al., 2005; Proszkowiec-Weglarz et al., 

2009). Bennett et al. (2008) recently reported that the 

lipogenic enzyme gene expression ‘overshoot’ in response 

to refeeding with a high carbohydrate diet in mice following 

a fast, which was attributable to enhanced binding of 

SREBP-1c to SRE sites located in lipogenic enzyme target 

gene promoters, as well as increased co-regulatory protein 

recruitment. In line with previous reports, the present 

findings revealed that the AMPK/SREBP-1/FAS signal 

pathway might be involved in the 24 h fasting induced 

appetite regulation in chicks. 

In conclusion, 24 h fasting altered gene expression of 

AMPK subunits, appetite regulation peptides and 

lipometabolism related factors in chick’s hypothalamus; the 

hypothalamic FAS signal pathway might be involved in the 

AMPK regulated energy homeostasis and/or appetite 

regulation in poultry. 
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