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Abstract 

In a series of experiments we tested 4- and 8-month-olds’ ability to represent 

the spatial layout of an object across changes in its orientation with respect to 

egocentric spatial coordinates.  A fixed-trial familiarisation procedure based on visual 

habituation behaviour shows that both age-groups are able to discriminate between 

different object-centred spatial configurations.  Furthermore, both age-groups 

demonstrate the ability to make discriminations of object-centred spatial coordinates 

that require simultaneous reference to at least two spatial axes of the object.  We 

discuss these findings in relation to theories of the early development of object 

recognition and spatial reference skills. 
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Recognition of complex object-centred spatial configurations in early infancy 

The origin of the human object concept continues to be a key topic for debate 

in developmental psychology.  An important component of the object concept, and 

one that was emphasised in Piaget’s (1937/1954) writings, is an appreciation of object 

constancy; that is, the understanding that some properties of objects remain invariant 

despite the various changes in proximal (retinal) stimulation that are caused by 

movement of both objects and observers.  Appreciation of an object’s constancy 

involves an understanding that it has a constant shape despite changes in orientation, a 

constant size despite changes in its distance, and continued existence (or permanence) 

despite its occlusion. 

One particularly important aspect of infants’ object concept development that 

has received relatively little attention so far is the ability to represent and recognise an 

object’s constant spatial layout across changes in its orientation.  Objects (especially 

manipulable objects), as well as moving in depth, frequently change in their 

orientation relative to the observer and environment.  As such, they do not retain a 

fixed spatial relation to either egocentric or environmental frames of reference.  Thus, 

in order to represent the spatial relations of features within objects, infants need to 

utilise a spatial frame of reference that is independent of retinocentric, egocentric, and 

allocentric coordinates1.  Marr (1980) termed such spatial representations in adults 

‘object-centred’, and claimed that these mental structures formed the basis of our 

object recognition abilities. 

Our current understanding of young infants’ competence at recognising 

objects across changes in orientation and distance has been gleaned indirectly from 

research into size and shape constancy.  Slater and colleagues have shown that 

newborns can discriminate between objects on the basis of their real shape despite 
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changes in slant (in depth) relative to the observer’s retina (Slater & Morison; 1985), 

and also their real size despite changes in their distance from the retina (Slater, 

Mattock & Brown; 1990). 

Recently however, Bremner, Bryant & Mareschal (2006) have tackled the 

problem of object-centred spatial representation more directly.  Using a fixed-trial 

familiarisation procedure similar to that employed by Slater et al (1983, 1990) they 

familiarised eighteen 4-month-old infants to a specific spatial configuration within an 

object across six different orientations within the frontal plane.  On subsequent test 

trials the object was presented to the infants in an entirely novel orientation.  Between 

successive test trials the within-object spatial configuration was alternated between 

novel and familiar.  The infants demonstrated a significant visual preference for the 

novel object-centred spatial configuration, indicating that by 4 months of age, infants 

can represent the spatial relation of a feature to an object-centred frame of reference. 

In order to understand the basis of this competence, it is important to 

determine what representations underlie the infants’ success at this task.  The 

representations underlying adults’ recognition of object-centred spatial configurations 

is a question of continued controversy (Biederman, 1987; Hummel, 2000; Mozer, 

2001; Tarr, Williams, Hayward & Gautier, 1999; Tipper and Behrmann, 1996; 

Vecera, Behrmann & Filapek, 2001).  One view is that objects are encoded and stored 

relative to egocentric spatial coordinates (Tarr, 1999), and that the information in such 

egocentric representations is rich enough to provide reliable object recognition across 

a variety of changes in orientation relative to the observer (Mozer, 2001).  In contrast, 

following Marr and Nishihara (1978), Biederman (1987) has argued that certain ‘3D 

volumes’ (or parts of objects) can be described by the visual system in a view 

invariant code. 
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Support for these ‘structural description’ theories has come from 

neuropsychological evidence of specific impairments in object-centred spatial 

representation (Tipper & Behrmann, 1996), and evidence for object- and part-guided 

attention in adults (Tipper, Driver & Weaver, 1991; Hummel, 2001; Vecera, 

Behrmann & Filapek, 2001), and object-guided attention in 8-month-old infants 

(Johnson & Gilmore, 1999).  Despite strong objections to a pure view-invariant code 

for object recognition (Tarr, 1999; Tarr and Bulthoff, 2001) there is still clear 

agreement that at least some degree of object-centred spatial representation exists 

(Mozer, 2001; Tarr & Pinker, 1990).  Indeed, the mature visual system may use both 

view-specific and view-invariant representations of objects (Hummel, 2001). 

One particularly important approach to characterising adult object recognition 

is to identify when viewer- or object-centred representations are employed.  Since 

Shepard & Metzler (1971), the use of view-centred codes in object recognition has 

been identified by measuring the speed of adult participants’ recognition of objects 

across changes in orientation.  If the speed of recognition is affected by difference in 

orientation, this is taken to imply that mental rotation is used to match objects against 

egocentrically/environmentally defined spatial maps (Shepherd & Metzler, 1971; 

Tarr, Williams, Hayward, & Gautier, 1998). 

Using this paradigm, Tarr & Pinker (1990) asked whether the complexity of 

the object-centred spatial relations required for distinguishing between objects has an 

affect on the choice of spatial code employed in recognition.  They gave adults the 

task of learning names for a set of three novel abstract shapes, and then timed the 

participants at naming reoriented versions of the same set of shapes.  All of the shapes 

were composed of the same local features so that recognition required the processing 

of a global configuration.  Four groups of participants were given different kinds of 
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shapes to recognise.  In three of these groups discrimination of the shapes across 

changes in orientation required spatial reference to only one axis (or dimension) of the 

object-centred framework.  However, the fourth group required coordinated reference 

to two axes of the object-centred framework.  Tarr and Pinker (1990) found that the 

time that the subjects took to recognise these shapes was constant across the degree of 

reorientation of the shapes in all conditions bar the two axis condition indicating that 

mental rotation was used in this condition only. 

Tarr & Pinker (1990) concluded that object recognition tasks requiring a 

representation of features relative to more than one axis of the object-centred 

framework are solved by mentally rotating an image of the object to match against a 

learned viewer-centred/egocentric representation.  Thus, it seems that a mature object 

concept is characterised by, on the one hand, at least some ability to represent object-

centred spatial relations independently of the egocentric and environmental 

frameworks, but also by an ability to represent changes in the orientation of the object 

with respect to the egocentric/environmental spatial array. 

The object-centred spatial discriminations presented to 4-month-old infants by 

Bremner et al (2006) only required 1-dimensional spatial reference for recognition.  

As detailed above, Tarr and Pinker (1990) have shown that adults do not usually form 

object-centred representations that coordinate features relative to two axes of the 

object-centred spatial framework – and in these situations resort to viewer-centred 

recognition strategies.  In this article we examine infants’ ability to make 

discriminations between objects that are differentiated at more than one level of 

object-centred spatial complexity.  We achieve this by manipulating the number of 

object-centred axes that must be coordinated in representation in order to discriminate 

these configurations across a change in orientation (as in Tarr and Pinker, 1990). 
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--Figure 1 about here-- 

The T-shape (see Figure 1) provides an easy way of contrasting 

discriminations of object-centred configurations that require one- or two-dimensional 

spatial reference.  In order to distinguish between ‘object-centred locations’ (OCLs) 1 

and 2, or between OCL 1 and 3, by the use of object-centred coordinates alone, 

representations of only one spatial axis is required, as the configurations of light to 

object differ with respect to both of the object’s axes (within the picture plane).  We 

will call this a ‘1D discrimination’.  However, in order to distinguish between OCLs 2 

and 3, in reference to the object-centred framework alone, an observer is required to 

coordinate representations of the light’s spatial relation to two axes of the object.  We 

will call this a ‘2D discrimination’. 

Figure 2 illustrates the distinction between 1D and 2D discriminations.  The 

two objects in each figure are disoriented from each other with respect to the 

egocentric spatial array.  The 1D discrimination only requires the representation of 

OCL within single axes of the object-centred frame of reference.  However, in the 2D 

OCL discrimination (see Figure 2b) OCLs 2 and 3 are distinguished by coordinating 

spatial information from two (picture plane) axes of the object (the x and y axes in the 

figure).  The spatial predicates required for representing the two-dimensional spatial 

structure of the object are necessarily more complicated than those required for 

representing a single spatial axis of the object. 

--Figure 2 about here-- 

The current experiments examine object-centred spatial representation 

competence across two age groups of infants.  In order to investigate the complexity 

of object-centred spatial representation available to these age-groups we presented 

both groups with 1D and 2D discriminations.  Experiment 1 compares 4-month-olds’ 
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and 8-month-olds’ ability to represent in memory and discriminate object-centred 

spatial relations at two degrees of complexity (1D and 2D).  Experiments 2a and 2b 

make a minor procedural modification to the familiarisation procedure employed in 

Experiment 1 in order to test 4-month-olds’ ability represent and discriminate 2D 

object-centred spatial configurations more fairly. 

Experiment 1 

 Experiment 1 examines 4- and 8-month-olds’ ability to make 1D and 2D OCL 

discriminations. Infants’ are first familiarised to one object-centred spatial 

configuration across six different object orientations.  Each of the six familiarisation 

trials last until the infant being tested has accumulated 15 seconds (Quinn, Slater, 

Brown & Hayes, 2001) of looking at the object.  After familiarisation they are then 

presented with two test trials in which novel and familiar object-centred 

configurations are presented side by side in novel orientations. 

Method 

Stimuli 

The target object was shaped in the form of a capital ’T’, and thus comprised 

three limbs; one perpendicularly oriented in relation to the other two.  All three limbs 

of the object were identical apart from their spatial relation to the other limbs.  Each 

limb also contained a marked location that was occupied by a light that could be 

switched on or off (labelled as OCLs 1 to 3 in Figure 1).  When illuminated these 

object-centred locations were identical in appearance, making it possible for us to 

manipulate the spatial relation of a feature (light) to the object framework, simply by 

changing the OCL that was illuminated. 

The object’s orientation could be changed by rotating it within the frontal 

plane around the central ’point of rotation’ labelled in Figure 1.  By rotating the object 
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we were able to present any one object-centred location in many different 

egocentric/allocentric locations.  As each of the OCLs was equidistant from the point 

of rotation, each also had the capacity to occupy the same distribution of locations in 

egocentric/allocentric space. 

Design 

In order to avoid confounding object-centred with egocentric/allocentric 

frameworks, we familiarised infants to a single object-centred location presented in 

six different orientations of the object.  Varying the object’s orientation across the 

familiarisation phase is a measure taken to desensitise the infants to the object’s 

coordinates in an egocentric spatial frame of reference (Slater, Morison & Rose, 

1983). 

The object was presented in a different orientation on each of the six 

familairization trials.  For all participants the object underwent a fixed order of 

rotations between trials: Trial 1-2: 225º anticlockwise, trial 2-3: 180º clockwise, trial 

3-4: 135º clockwise, trial 4-5: 180º anticlockwise, trial 5-6: 135º clockwise.  For each 

infant, the object started in one of two ‘starting orientations’, and thus the orientation 

of the object on each trial depended on the starting orientation of the object.  The two 

resulting series of orientations are shown in Figure 3. 

--Figure 3 about here-- 

On each familiarisation trial the same object-centred spatial location was lit 

up.  Thus, the object-centred location shown to each participant was invariant across 

all familiarisation trials.  An example familiarisation phase is shown in Figure 3.  In 

this example the familiarised object-centred location is OCL 2, and the starting 

orientation of the object is ’1’. 
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The test phase comprised two trials. In each test trial we presented two T-

shaped objects, side by side in the same orientation.  Between test trials, both objects 

remained in the same orientation.  On both test trials the familiarised OCL was lit up 

within one object, and the assigned novel OCL was lit up within the other.  This was 

reversed in the second test trial.   Thus, the object which displayed the novel OCL on 

test trial 1 showed the familiar OCL on test trial 2.  The object which displayed the 

familiar OCL on test trial 1, showed the novel OCL on test trial 2.  The order in which 

the novel/familiar stimuli were presented on left and right objects was systematically 

varied across subjects. 

The orientation of the objects at test was determined by the series of 

orientations presented during familiarisation.  Participants presented with 

Familiarisation Series 1 during familiarisation were presented with Test Orientation 1, 

and participants presented with Familiarisation Series 2 were given Test Orientation 2 

(see Figure 3).  This ensured that the novel and familiar OCLs are presented within a 

completely novel orientation of the object in the test trials. 

Half the infants in both age groups were given novel-familiar contrasts 

between OCL 1 and OCL 3, and the other half were given novel-familiar contrasts 

between OCL 2 and OCL 3 (see Figure 1).  Successful discrimination between OCLs 

1 and 3 requires the representation of a spatial relation to only a single spatial axis of 

the object (1D comparison).  However, the contrast between OCLs 2 and 3 requires 

more complex two axis spatial reference (2D comparison).  Thus, half the infants in 

each age group were given the 1D comparison and the other half the 2D comparison.  

Infants receiving a 1D comparison were either familiarised to OCL 1, or OCL 3, and 

were respectively assigned OCL 3, or OCL 1 as the novel OCL.  Likewise, infants 

presented with a 2D comparison were either familiarised to OCL 2 or OCL 3, and 
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were respectively assigned OCL 3 or OCL 2 as the novel OCL. A schematic example 

of a 1D and a 2D experimental session is given in Figure 3. 

The left-right Order in which the novel stimulus was presented on test trials, 

Dimension comparison, Novel OCL, and Familiarisation Series were all equally 

counterbalanced within both age-groups. 

Participants 

Forty-one infants took part in this study.  The data from sixteen 4-month-olds 

(of whom 9 were male and 7 female) were included in the analysis.  These 16 infants 

had a mean age of 118.4 days (SD = 4.0).  A further seven 4-month-olds were tested, 

but their data were not included due to fussing (6) or a complete left side bias at test 

(1).  The data of sixteen 8-month-olds (of whom 10 were female, and 6 male) were 

also included in the analysis.  These 16 infants had a mean age of 240.8 days (SD = 

3.9).  A further two 8-month-olds were tested but were excluded from the analysis 

due to fussing (1) or a complete right side bias at test trial (1).  The infants who 

participated in this experiment were selected on the basis of their parents volunteering 

to take part in the research programme. 

Apparatus 

All three limbs of the two T-shaped objects were 12.5cm long from the point 

of intersection, 4cm in width, and 4cm in depth.  Each OCL consisted of five green 

light emitting diodes (LEDs), fixed inside the T-shapes and concealed (when not 

illuminated) behind a square window made from diffuse plexiglass.  The objects were 

mounted on a pole extending back in depth from the point of rotation.  These poles 

were also mounted on a flat surface, so that, when rotated, the objects’ long axes 

moved within the frontal plane of an upright infant observer.  Everything behind the 

T-shapes, including the poles, was concealed behind a black screen.  Behind the 
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concealing screen Experimenter 1 was able to change the orientation of the 

familiarisation object by rotating the pole discreetly.  Experimenter 1 also controlled 

the lights in the T-shapes from a remote button box.  The concealing screen displayed 

no salient environmental landmark cues. 

The infants viewed the object(s) whilst sitting in an upright position on a 

parent’s lap so that their eyes were roughly 60 centimetres from the stimulus.  The 

seating position placed the infants such that during familiarisation the object was at 

their midlines.  The longest axis of the T-shape (top to bottom in Figure 1) presented 

roughly 22.6° of visual angle to the infant participants.  Thus, if the infant were 

fixating the point of rotation, the end of each of the limbs extended roughly 11.3° into 

the periphery.  In the test phase the two object presented together were separated by 

30 cm (14 degrees of visual angle) between their points of rotation.  The whole test 

display subtended 44 degrees of visual angle. 

A second experimenter (Experimenter 2) coded the infants’ fixations via a 

discreet infra-red camera placed 35 centimetres below the objects’ points of rotation, 

at the midline.  The procedure involved ‘accumulated looking’ familiarisation and 

testing (i.e. each trial lasted until the infant had regarded the object for a fixed amount 

of time), and so we wrote a programme to record accumulated looking, and also to 

cue the first experimenter when to switch the OCLs on and off.  The programme cued 

Experimenter 1 to turn the OCL on at the beginning of each trial with an audible beep.  

Once Experimenter 2 had recorded observed and recorded 15 seconds of object 

directed looking from the infant (using a millisecond timer) the computer produced a 

second beep to cue Experimenter 1 to turn off the OCL(s) and proceed to the next 

trial.  These beeps were audible to the infants and could obviously provide a cue to 

the turning on or off of the OCL.  However as the beeps were directed solely towards 
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the infants’ midlines and did not change direction, they could provide no cue to the 

egocentric location of the OCL, as this varied with respect to the infants’ egocentric 

coordinates throughout familiarisation and test. 

 Procedure 

Before testing began, we asked the parent to try to keep the infant in a 

constant upright posture, and not to direct the child’s attention during the whole 

procedure.  We also asked them to shut their eyes during the stimulus presentation. 

To keep the stimuli interesting to the infants, regularly spaced squeaking 

noises (every 3 seconds) were made from behind the screen during both 

familiarisation and test trials. There was an interval of approximately 3 seconds 

between each burst.  The location of the squeaking bursts was kept at the infants’ 

midlines throughout in order to avoid any possible side bias in the infants’ looking. 

The experimental session began once the parent had sat down and turned the 

infant round to face the familiarisation T-shape. The onset of each trial was signified 

by a short tone from the timing computer.  Each familiarisation trial began with a 

single location lighting up (the familiarised OCL).  When the infant had looked at the 

T-shape object (the whole object, not just the light) for 15 seconds a second tone 

sounded and the first experimenter turned the light off.  The first experimenter then 

rotated the T-shape to a new orientation (the rotation of the object was fully visible to 

the infant), and the next familiarisation trial would then begin (inter-trial interval was 

set to 4 seconds).  For each infant, the light event appeared in the same object-centred 

location on every familiarisation trial. 

Next followed a break in the experimental session of roughly 30 seconds, 

during which time the infants was moved out of the testing cubicle, and two objects 

were arranged next to each other in their correct testing orientations.  The first test 
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trial commenced, with the lights being turned on once the objects were in place, and 

the infant was settled again for the test phase.   It is important to note at this point that 

the infants do not see the objects being rotated into their novel test orientations.  As a 

consequence they cannot use previous viewer-centred appearances of the light and 

subsequent rotations of the object to make the discrimination.  The discrimination 

requires that the infants form a representation of the whole object. 

The beginning of each test trial was signalled by a short tone from the timing 

computer.  Once the infant had accumulated 15 seconds of total looking to both of the 

objects, recorded via the millisecond timer buttons, the computer signalled the end of 

the trial by another short tone, and Experimenter 1 turned the OCL lights off.  

Between the two test trials both objects remained in full view, without any OCLs lit 

up.  The interval between the test trials was set at 4 seconds. 

Because on-line time-keeping is an essential component of this procedure, we 

examined the reliability between Experimenter 2’s on-line looking time scores, and 

the same experimenter’s looking time scores from off-line viewings of video records 

(intra-observer reliability).  This enables us to determine whether Experimenter 2 was 

consistent in her looking time ratings whilst coding on-line.  In order to avoid 

observer bias, Experimenter 2 was blind to the novelty/familiarity of each object on 

each trial, whether coding on-line or off-line. 

Observer reliability for Experiment 1 was calculated from a sample of 16 test 

trials of 8 randomly selected infants.  The intra-observer reliability between on-line 

and off-line scores was high (Pearson’s r = 0.90). 

Results 

Familiarisation trials 
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Due to the fixed-trial accumulated looking procedure, all infants looked at the 

object for 15 seconds during each familiarisation trial.  Thus, each infant looked at the 

object + light event for a total of 90 seconds during the familiarisation phase.  Table 1 

details the length of time it took the infants of both age-groups to reach the 

familiarisation criterion across three blocks of familiarisation trials.  Trial block 1 

includes familiarisation trials 1 and 2, trial block 2 includes familiarisation trials 3 and 

4, and trial block 3 includes familiarisation trials 5 and 6.  The 4-month-olds took 

marginally longer than the 8-month-olds in total, and this difference seems to have 

been most apparent towards the end of the familiarisation phase (in the last two trial 

blocks).  Whilst the 8-month-olds remained relatively constant in their level of 

interest, the 4-month-olds appear to have habituated to or become fatigued with the 

stimuli. 

 --Table 1 about here--   

A repeated-measures ANOVA of one within-subjects factor (Trial Block: 1,2 

or 3) and one between-subjects factor (Age-Group: 4-month-olds or 8-month-olds) 

was performed on the length of time infants took to accumulate the required looking 

criterion of 30 seconds within each familiarisation trial block.  This analysis revealed 

no main effect of Trial Block, but a marginally significant interaction of Trial Block 

with Age-Group (F(2,60)=3.1, p=.051).  A main effect of Age-Group also approached 

significance (F(1,30)=3.4, p=.076).  The trends revealed by this analysis suggests a 

confirmation that the 4-month-olds either habituated or became fatigued more quickly 

than did the 8-month-olds. 

Test trials 

The percentage of test trial looking by each infant directed towards the object 

showing the novel OCL was recorded.  Any significant deviation of this score from 
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50% indicates discrimination of the two stimuli.  The mean of this preference across 

the whole sample was 46.2%, a familiarity preference which was significantly lower 

than that expected by chance (t(31)=2.2, p=.038).  Table 2 shows the familiarity 

preference as a function of age and the complexity of the discrimination presented.  

From this figure it appears that the familiarity preference is mostly due to the 8-

month-olds, as the 4-month-olds showed hardly any preference in both dimension 

groups.  In addition, the 8-month-olds demonstrated a reduced preference in the 2-

dimensional discrimination condition. 

 --Table 2 about here--   

We analysed all groups’ test trial percentage novelty preference scores using a 

repeated measures ANOVA of 1 within-subjects factor (Test Trial: 1 or 2) and two 

between-subjects factors (Age-Group: 4-month-olds or 8-month-olds, and Dimension: 

1D or 2D).  In an initial analysis of the infants’ looking preferences we found a 

substantial variation between subjects.  Variation in novelty preference scores is 

thought to be linked to individual differences in the speed at which infants habituate 

to the familiarisation stimuli (Cohen, 1969).  It seems reasonable to assume that the 

infants who take the longest time to reach the 90 second familiarisation criterion have 

habituated earlier than those who reached criterion rapidly.  A prediction which 

follows is that the infants who take longer to reach criterion will be more likely to 

show novelty preferences than those who reach criterion rapidly.  Given this 

individual variability, we also included the total time taken to reach criterion during 

familiarisation as a covariate in our analysis (familiarisation duration).  This analysis 

revealed a significant main effect of Age-Group (F(1,24)=8.2, p=.009), and a 

significant covariation of novelty preference with familiarisation duration 

(F(1,24)=11.6, p=.002).  There was also a significant interaction between 
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familiarisation duration age-group (F(1,24)=7.3, p=.012).  There were no main effects 

or interactions of Test Trial or Dimension. 

The main effect of Age-Group confirms that the 8-month-olds demonstrated a 

greater average familiarity preference than the 4-month-olds.  The significant 

covariation of novelty preference with familiarisation duration (time taken to reach 

criterion) indicates that there is a relation between the time an individual infant takes 

to familiarise and the preference that they demonstrate at the test trial.  This is 

consistent with previous research on habituation showing that depth of habituation is 

an important determinant of the degree of novelty preference observed (Hunter & 

Ames, 1988; Fantz, 1964; Lipsitt, 2002, Sirois & Mareschal, 2002).  The interaction 

of this covariation with age-group indicates that the way in which familiarisation 

duration affects novelty preference varies between age-groups.  We explored this 

interaction further by computing the correlation between familiarisation duration and 

novelty preference scores within each age-group. 

 --Figure 4 about here--   

Figure 4 demonstrates that the correlation between familiarisation duration 

and novelty preference is driven by the behaviour of the 8-month-old infants.  The 

significant positive correlation in this age-group shows that the 8-month-olds who 

took less time to familiarise to the OCL across the six orientations of the 

familiarisation phase were more likely to demonstrate a strong preference for the 

familiar, whereas those who took longer to familiarise directed more of their attention 

towards the novel OCL.  Length of familiarisation is an indication of the degree to 

which an infant has habituated to the familiarised stimulus.  Those who took longer to 

complete the familiarisation phase here (those who have habituated earliest) have 

shown a reduced preference for the familiar at test (and thus a greater novelty 
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preference) than those who completed the familiarisation phase more quickly (those 

who have habituated latest or not at all).  In contrast, the 4-month-olds did not differ 

significantly from 50%, whatever the duration of familiarisation. 

Importantly, the consistent relation between preference on test trials, and 

familiarisation duration demonstrates that 8-month-olds can encode and discriminate 

between object-centred spatial locations.  Indeed this relation holds up for both the 

simple 1D discrimination (r=.82, N=8, p=.014) and the complex 2D discrimination 

(r=.85, N=8, p=.007). 

Discussion 

These results clearly indicate that 8-month-old infants are able to make object-

centred spatial discriminations despite changes in object orientation, and furthermore 

that they are able to do this even when the discrimination pairs are only differentiated 

by reference to multiple axes of the object-centred frame of reference.  In contrast, the 

4-month-old infants whom we tested demonstrated no such ability even when the 

discrimination pairs were differentiated by simple reference to one object-centred 

spatial axis. 

There are two reasons to be cautious before drawing strong conclusions from 

the null finding with the younger age-group.  Firstly, we have previously found that 4-

month-olds could make simple 1D discriminations under different experimental 

conditions (Bremner et al, in 2006).  Using the same T-shaped stimuli as those 

employed here, we found that 4-month-olds would demonstrate a post-familiarisation 

preference for the novel OCL (in a 1D pair), but when tested using a shorter 

familiarisation period (10 seconds of accumulated looking per trial, as opposed to the 

15 used here) and with successive (rather than simultaneous) novel and familiar test 

trial presentation. 
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Secondly, we cannot conclude that differences in looking behaviour between 

two age-groups, given a constant experimental procedure, is necessarily driven by an 

underlying change in perceptual/cognitive competence.  Looking behaviour is an 

indirect measure of perceptual/cognitive competence, and as such it is always possible 

that any age-group differences reflect a developmental change in the looking response 

behaviour itself, rather than the cognitive/perceptual skill under investigation.  It 

could be that the 4-month-olds have shown no discrimination here because of a lesser 

tendency in this age group to show preferences for familiar stimuli, rather than an 

inability to make the spatial discrimination.  Indeed, age is one of the three factors 

implicated in Hunter & Ames’s (1988) model of novelty and familiarity preferences 

in infancy.  However, Hunter & Ames’s model and its supporting experimental 

evidence (Wetherford & Cohen, 1973) suggests, in contrast to the pattern shown here, 

that 4-month-olds would show a greater post familiarisation familiarity preference 

than 8-month-olds, as younger age-groups are thought to take longer to encode visual 

information before showing an orienting preference towards novel stimuli. 

Thus, it seems more likely that the 4-month-olds may have demonstrated no 

consistent preference due to the onset of fatigue before the beginning of the test 

phase.  In fact there is a suggestion in the familiarisation data that this was indeed the 

case.  Whereas most studies of infant habituation would suggest that the younger age-

group would habituate more slowly (and thus complete the familiarisation test phase 

faster) than the older age-group (Slater, 1995; Hunter & Ames, 1988), Table 1 shows 

that the 4-month-olds’ looking durations were actually higher than those of the 8-

month-olds in the last two familiarisation trial blocks.  This age-group difference was 

reflected in our analysis of familiarisation duration; the interaction of familiarisation 

trial block with age-group approached significance.  As argued above it seems 
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unlikely that the 4-month-olds would habituate more quickly than the 8-month-olds.  

Thus, it seems plausible that this trend is due to the earlier onset of fatigue in the 4-

month-old group. 

Thus, Experiment 2a examines whether 4-month-olds might show evidence of 

object-centred spatial discrimination when the familiarisation criterion is reduced in 

order to avoid fatigue. 

Experiment 2a 

Experiment 2a presented a group of 4-month-old infants with the same fixed 

trial familiarisation procedure as that used in Experiment 1, but with the 

familiarisation criterion set this time at 10 seconds of cumulative looking per trial 

rather than 15 seconds per trial as was used in Experiment 1. With this criterion the 

infants were familiarised to 60 seconds of accumulated looking across the whole 

familiarisation phase, rather than the 90 seconds that the infants in Experiment 1 were 

exposed to.  In addition, because we have already demonstrated elsewhere (Bremner 

et al, 2006) that 4-month-olds are able to make simple 1D discriminations of object-

centred location, this experiment tested the more complex 2D discriminations only. 

Method 

Design 

The design of Experiment 2a was the same as that of Experiment 1 with the 

following exceptions.  We assigned each infant with a comparison between novel and 

familiar locations which required a 2D discrimination. All infants were presented with 

an OCL comparison between OCLs 2 and 3.  The OCL that was assigned as ‘novel’ 

was varied between participants.  Thus infants were either familiarised to OCL 2, or 

OCL 3, and were thus respectively assigned OCL 3 or OCL 2 as the novel OCL. 

Participants 
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Eight infants participated in Experiment 2a (4 female, and 4 male).  Their 

mean age was 123 days (SD = 7.9).  A further three babies were tested but their data 

were excluded due to fussiness (2), and experimenter error (1). 

Apparatus and procedure 

Apparatus was identical to that used in Experiment 1.  The procedure was the 

same apart from two differences.  In the familiarisation phase of this experiment we 

only required that the infants accumulate 10 seconds of looking on each 

familiarisation trial.  The two test trials both also lasted for 10 seconds of accumulated 

looking.  The second difference between this procedure and that of Experiment 1 was 

the absence of the squeaking bursts behind the screen during familiarisation and test 

trials.  While the bursts could not have had any differential effect on 

novelty/familiarity preferences at test trials in Experiment 1, it is possible that they 

may have affected the overall level of arousal and thus the level and quality of 

encoding of the visual stimuli. 

Results 

Familiarisation trials 

All infants looked at the object for 10 seconds during each familiarisation trial.  

Thus, each looked at the object + light event for a total of 60 seconds during the 

familiarisation phase.  On average it took the infants 106.0 seconds (SE = 15.3) to 

accumulate 60 seconds of looking within the familiarisation period.  Within 

familiarisation trial blocks 1, 2, and 3 the infants took 38.4 seconds (SE = 9.5), 32.2 

seconds (SE = 3.8), and 35.4 seconds (SE = 3.6) respectively to accumulate the 20 

seconds of looking required within each block.  We conducted a one-way repeated 

measures ANOVA on the duration of the familiarization trials across the three 

familiarisation trial blocks.  This revealed no effect of Trial Block (F(2,14)=0.5, n.s.). 
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--Table 3 about here-- 

Test trials 

Seven of the eight infants tested showed an overall preference for the object in 

which the familiar OCL was highlighted.  On average infants directed 37.2% (SE = 

3.3) of their total object-directed looking towards the object in which the novel OCL 

was highlighted (see Table 3).  These data were subjected to a repeated measures 

ANOVA with one within-subject variable (Test Trial: 1 or 2), and one covariate 

(duration of the familiarisation period in seconds).  There were no main effects of 

Test Trial (F(1,6)=0.013, n.s.) or familiarisation duration (F(1,6)=0.16, n.s.).  Neither 

did we find an interaction between these two factors (F(1,6)=0.09, n.s.).  We next 

conducted a one-sample t-test in order to determine whether the infants’ percentage 

preferences for the novel OCL differed significantly from chance (50%).  As there 

was no effect of test trial, we used the infants’ total preference across both trials in 

this analysis.  The 37.2% score (a familiarity preference) was found to be significant 

(t(7)=3.9, p=.006). 

Discussion 

 The infants tested in this study demonstrated a consistent test trial preference 

for the object in which the familiar object-centred location was lit up.  With the 

current experimental design this result can be interpreted in two ways. 

Firstly, it is possible that the preference for the familiar OCL represents a 

visual preference for a novel location with respect to spatial coordinates that are not 

solely defined relative to the object’s frame of reference.  In the familiarisation phase, 

a single object-centred location was presented in six different environmental and 

egocentric locations, by virtue of the reorientation of the object between each of six 

familiarisation trials.  In the test phase, two objects were presented to either side of 
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the location where the familiarisation object had appeared in the familiarisation phase.  

While both test objects were presented in orientations such that both of the test OCLs 

were in new locations with respect to absolute environmental and body-centred 

spatial coordinates, it is still possible that the infants could have been coding location 

in environmental and egocentric space with respect to the rough position of the 

objects within such frames of reference (what we will refer to as a ‘landmark’ spatial 

code). 

Because of the particular set of orientations that we used during the 

familiarisation phase of Experiment 2a, the familiar OCL appeared to one side of 

(either above or below) the central point of rotation of the object two more times than 

the other.  On test trials the objects were oriented such that the novel OCL was in a 

familiar location with respect to this landmarked spatial framework, and the familiar 

OCL in a novel location with respect to this framework.  This point of design was 

initially included so that a preference for the novel OCL could not be explained by its 

novelty with respect to non object-centred spatial coordinates.  However, a preference 

for the familiar OCL, as was found here could represent a preference for a novel 

location in the egocentric field with respect to the object (a novel landmarked 

location). 

The distribution of landmark spatial locations that the light occupies during 

the familiarisation phase is shown in Figure 4, where the light appears twice on the 

object-defined horizontal axis, once below it and three times above it.  In both 

subsequent test trials the familiar OCL appears directly below the object’s point of 

rotation.  Thus, in this particular condition it is possible that the infants developed and 

familiarised to a generalised representation of ’above the object’ during the 
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familiarisation phase, and subsequently preferred the familiar OCL in the test trials 

due to its novel location with respect to the landmark spatial framework. 

It should be noted at this stage that this particular interpretation cannot 

account for the familiarity preference found in the 8-month-old group in Experiment 

1.  There, the significant correlation between the novelty/familiarity preference at test 

with the total duration of the familiarisation phase indicated that those individuals 

who took longer to familiarise (who habituated faster) directed less looking towards 

the familiar OCL.  This finding suggests that the 8-month-olds were responding to the 

object-centred location and not location with respect to any landmark spatial 

framework. 

The second possible interpretation of the results of Experiment 2a, and the one 

more pertinent to our research question, is that the infants looked longer at the 

familiar OCL stimuli due to a preference for the familiar OCL over the novel OCL.  

This would indicate that 4-month-old infants are able to make discriminations of 

object-centred location that require representations of location in relation to two 

spatial axes of the object-centred framework; ’2D OCL discriminations’.  Experiment 

2b tests these interpretations. 

Experiment 2b 

The aim of Experiment 2b is to distinguish between the two explanations of 

the visual preference offered here, by equating the two test stimuli on the basis of 

their novelty with respect to environmental and egocentric spatial coordinates.  In 

order to do this we conducted a further fixed-trial familiarisation experiment in which 

novel and familiar OCL stimuli are equated for their novelty with respect to 

environmental and egocentric spatial coordinates.  It is possible to do this by changing 

the sequence of rotations used in the familiarisation phase.  Thus, the sequence of 
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rotations that we decided to employ in the familiarisation phase of this experiment 

presents the familiar OCL in a balanced distribution of egocentric and environmental 

locations.  The test phase presents familiar and novel OCLs in locations that are 

equally familiar or novel with respect to environmental and egocentric space relative 

to the object landmarks. 

If the preference found in Experiment 2a is due to the novelty of the OCL in 

relation to environmental/egocentric reference with respect to the object landmarks, 

then we would predict there to be no preference in the current experiment.  However, 

if the preference found in Experiment 2a was due to the familiarity of the familiarised 

OCL then we would predict a similar familiarity preference in the current experiment. 

Method 

Design 

The design was the same as that used in Experiment 2a except that in the 

familiarisation phase of Experiment 2b the object underwent the following fixed order 

of rotations between trials: trial 1-2: 180º anticlockwise, trial 2-3: 135º clockwise, 

trial 3-4: 180º clockwise, trial 4-5: 225º anticlockwise, trial 5-6: 180º clockwise. 

Like Experiments 1 and 2a, just two starting orientations were used.  The 

starting orientations that we used here are different to those used previously, resulting 

in two possible sequences of orientations during the familiarisation phase.  These are 

shown in Figure 5. 

 --Figure 5 about here--   

The orientation of the objects in the test phase means that the novel OCL light 

(in this case OCL 2) is in a location ’below the object’ landmarked location that was 

not occupied by the familiarisation OCL on any of the familiarisation trials.  The 

same is true of the familiar OCL (in this case OCL 3) which occupies an ’above the 
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object’ landmarked location which is also novel.  Also, the number of times that the 

familiar OCL appears above and below the object-landmarked horizontal axis during 

the familiarisation phase is balanced (twice above, twice below, twice coincident 

with). 

This particular fixed set of rotations thus equates novel and familiar OCLs at 

test trial on the basis of the novelty/familiarity of their locations with respect to 

object-landmarked allocentric/egocentric space. 

Participants 

Eight infants participated in Experiment 2b (2 male, and 6 female).  Their 

mean age was 122 days (SD = 6.1).  One other infant was tested but not included in 

the analysis due to fussy behaviour. 

Apparatus and procedure 

Apparatus and procedure were identical to those used in Experiment 2a. 

Observer reliability for Experiments 2a and 2b was calculated from a sample of 18 

test trials of 9 randomly selected infants.  The intra-observer reliability between on-

line and off-line scores was high (Pearson’s r = 0.88). 

Results 

 Familiarisation trials 

All infants looked at the object for 10 seconds during each familiarisation trial.  

Thus, each looked at the object + light event for a total of 60 seconds during the 

familiarisation phase. On average it took the infants 138.3 seconds (SE = 12.9) to 

accumulate 60 seconds of looking within the familiarisation period.  Within 

familiarisation trial blocks 1, 2, and 3 the infants took 47.9 seconds (SE = 7.8), 47.0 

seconds (SE = 6.7), and 43.4 seconds (SE = 10.6) respectively to accumulate the 20 

seconds of looking required within each block.  We conducted a one-way repeated 
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measures ANOVA on the duration of the familiarization trials across the three 

familiarisation trial blocks.  This revealed no effect of Trial Block (F(2,14)=0.7, n.s.) 

Test trials 

All eight infants tested showed an overall preference for the object in which 

the familiar OCL was highlighted.  On average these infants directed 38.5% (SE = 

3.6) of their total object-directed looking towards the object in which the novel OCL 

was highlighted (see Table 3).  These data were subjected to a repeated-measures 

ANOVA with one within-subject variable (Test Trial: 1 or 2), and one covariate 

(familiarisation duration (seconds)).  There were no main effects of Test Trial 

(F(1,6)=3.1, n.s.) or familiarisation duration (F(1,6)=2.7, n.s.).  Neither did we find an 

interaction between these two factors (F(1,6)=2.6, n.s.).  We next conducted a one-

sample t-test in order to determine whether the infants’ percentage preferences for the 

novel OCL differed significantly from chance (50%).  As there was no effect of test 

trial, the infants’ total preference score across both trials was used in this analysis.  

The 38.5% score (a familiarity preference) was found to be significant (t(7)=3.2, 

p=.015). 

 To assess the effect of changing the orientation series used during 

familiarisation we ran a repeated-measures ANOVA on all of the infants’ test trial 

preferences across Experiments 2a and 2b.  The ANOVA included one within-

subjects factor (Test Trial: 1 or 2), one between subjects factor (Experiment: 2a or 

2b), and one covariate (familiarisation duration).  We found no main effect of Test 

Trial (F(1,12)=2.5, n.s.), Experiment (F(1,12)=2.4, n.s.), or familiarisation duration 

(F(1,12)=0.9, n.s.).  There were no significant interactions between any of these 

factors (the largest interaction effect was between test trial and experiment 

(F(1,12)=2.9, n.s.).  A one-sample t-test showed that the preference for the familiar 
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OCL (across both test trials) was significant in this combined analysis (t(15)=5.2, 

p<0.001). 

Discussion 

The 4-month-olds tested here showed a consistent preference for the stimulus 

in which the familiar OCL was lit up.  In this experiment, the novel and familiar 

OCLs were equated for their novelty with respect to environmental/egocentric 

landmark coordinates.  There were no significant differences in behaviour between 

Experiments 2a and 2b, and consequently we interpret the findings of both 

experiments as a preference for the familiar object-centred location. 

The familiarity preference indicates that the infants were able to make a 

perceptual discrimination between the test stimuli on the basis of their 

novelty/familiarity with respect to the familiarisation stimuli.  In the current context 

this ability indicates that 4-month-old infants are able to discriminate between two 

object-centred spatial locations, regardless of changes in the object’s orientation with 

respect to egocentric/environmental spatial coordinates.  Furthermore, the novel-

familiar OCL pairs presented in Experiments 2a and 2b were only differentiable by 

coordinated reference to two axes of the object-centred spatial frame of reference.  

We can conclude that 4-month-old infants can make this complex 2D object-centred 

spatial discrimination. 

General Discussion 

Following familiarisation to a single object-centred location presented in six 

different orientations of the object, the 8-month-olds tested in Experiment 1, and the 

4-month-old infants tested in Experiments 2a and 2b demonstrated a preference for 

the familiar object-centred spatial configuration over a novel one, despite both 

configurations being presented in novel orientations and locations with respect to the 
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infants’ egocentric axes.  This result confirms and extends Bremner et al’s (2006) 

finding that 4-month-old infants are able to notice changes in feature location relative 

to an object-centred frame of reference, independently of egocentric and allocentric 

frames of reference.  Moreover, this ability is also available at eight months of age. 

These findings have a crucial bearing on the nature of object recognition in 

infancy and adulthood. Recognition of objects on the basis of structural configuration 

alone is of course only one of the strategies available for recognising objects across 

changes in orientation.  Under ecological conditions there is generally much more 

featural information specifying the identity of parts, providing an adequate input to 

part-based recognition, without recourse to structural descriptions.  However, object 

categorisations at what has been termed the subordinate level (Biederman, 

Subramaniam, Bar, Kalocsai & Fiser, 1999) are much less rich in part identity 

distinctions, and can thus benefit more from structural (object-centred spatial) 

descriptions.  Indeed, there is general agreement among almost all theories of object 

recognition that some level of object-centred description is formed in nearly all acts of 

recognition (Mozer, 2002; Tarr & Pinker, 1990; Biederman, 1987). 

Evidence that infants are able to represent spatial layout relative to one axis of 

an object-centred framework strengthens the supposition that object-centred 

descriptions play an important part in human object-recognition.  Furthermore, the 

results here also show that 4- and 8-month-olds are also able to make discriminations 

of object-centred spatial configurations that require localisation with respect to two 

coordinated axes (or dimensions) of the object’s framework.  Tarr and Pinker (1989, 

1990) present evidence indicating that as adults we achieve these more complex 

discriminations by imagining the transformation of a mental image of the object in 

order to compare it against a stored egocentric object representation (Shepard & 
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Metzler, 1971; Tarr & Pinker, 1989; 1990)2.  So what are we to make of the infants’ 

abilities?  Are we to conclude that infants of 4 months, like adults, are able to rotate 

mental images of object shapes in order to match them to stored egocentric 

representations? 

Mental rotation in infancy 

Rochat & Hespos (1996; Hespos & Rochat, 1997) have proposed the existence 

of mental rotation abilities in infancy.  Using a ‘violation of expectation’ looking 

paradigm, they undertook a series of experiments in which 4- 6- and 8-month-old 

infants were tested at their ability to track and anticipate the final orientation of an 

object following dynamic displacements and rotations which were partly obscured.  In 

order to anticipate the correct resting orientation of the object infants had to use 

information about the rotatory and/or translatory movement of the object before it 

became obscured.  All age-groups demonstrated looked longer when the object was 

revealed to have come to rest in an orientation that was inconsistent with its prior 

trajectory3.  It is tempting to use Rochat and Hespos’s findings as a corroboration of 

our own, positing a mental rotation faculty in early infancy.  However, there are 

reasons to question whether their experimental procedure tests mental imagery.  It can 

be argued that the rich dynamic information provided before the occlusion of the 

object in their experiments could support a prediction of orientation through 

interpolation, side-stepping the need to invoke dynamic imagery.  There is certainly 

plenty of evidence to suggest that young infants are very capable of predicting the 

trajectories of moving objects across spatial and temporal gaps (Bower, Broughton 

and Moore, 1971; Johnson et al, 2003), and there seems no reason not to extend this 

ability to rotatory trajectories. 
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Indeed, is argued by some researchers that dynamic visual information is of 

primary importance in early object recognition (e.g. Kellman, 1984).  At the test 

phase in the experiments reported in the current paper, the objects were presented in a 

novel and stationary orientation.  It thus seems that even at 4 months infants were able 

to recognise the spatial configuration of our objects without this information being 

provided in the context of a dynamic perceptual event4. 

Most research into the development of mental rotation has suggested that the 

mental operations required for mental transformation of egocentric spatial 

configurations emerge in middle childhood, rather than early infancy (Huttenlocher & 

Presson, 1973; Harris & Bassett, 1976; Newcombe & Huttenlocher, 2000; Olson & 

Bialystok, 1986; Piaget & Inhelder, 1956; Scholnick, Fein & Campbell, 1990).  By 

way of illustration, Piaget and Inhelder’s (1948/1956) famous ‘Three Mountains’ task 

uncovered a sequence of development in which children become gradually more 

sophisticated at reasoning about the effect of viewpoint on the appearance of a visual 

scene.  When asked to choose a picture (from a variety of perspectives), which most 

accurately portrayed the view of the scene from the opposite side, 5-7 year olds 

typically managed some kind of transformation (front/back or left/right), but it was 

not until 8 years (at Piaget’s stage of concrete operations) that all children managed to 

correctly coordinate transformations of both of these dimensions to consistently 

identify the correct alternative viewpoint. 

Due to the uncertain representational basis for competence demonstrated in 

Rochat & Hespos’s studies, and the power of evidence in favour of the development 

of mental rotation abilites in later childhood it does not seem safe to assume that an 

early ability at mental rotation underlies the 2D object recognition skills demonstrated 

by the 4- and 8-month-olds in the series of experiments reported here.  However, 
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there are other ways of achieving this competence than through mental rotation.  It is 

possible that the precocious abilities demonstrated here arise as a result of a 

completely different approach to object encoding in early infancy. 

As already related, adults are able to remember the configuration of an object 

with respect to a single axis of the object-centred spatial framework.  However, they 

appear unable to use an object-centred code to distinguish spatial configurations 

which are only differentiated with respect to more than one axis of the object; in this 

case they use mental rotation in order to match such configurations against stored 

egocentric representations (Tarr & Pinker, 1990).  However it is not a 

computationally intractable problem to form an object-centred representation that 

defines a configuration relative to 2 axes.  An alternative interpretation of the early 

competence demonstrated by the 4- and 8-month-olds is that they may actually be 

able to form more complex externally referenced spatial representations than adults 

and young children.  This suggestion may not be as unreasonable as it at first seems; it 

may actually be more behaviourally adaptive for young infants to use external spatial 

reference.  We will unpack this line of reasoning below. 

Competence with external frames of reference in infancy 

By comparison to young children and adults, infants between four and eight 

months of age have much less need to attend to the egocentric frameworks required 

for establishing an active role in their environment.  At this stage they are only just 

beginning to develop object manipulation skills, and certainly very few are actively 

locomoting (Bayley, 1969; Bertenthal, Campos & Barrett, 1984; Campos, Anderson, 

Barbu-Roth, Hubbard, Hertenstein & Witherington, 2000; Hofsten & Fazel-Zandy, 

1984; Hofsten & Rönnqvist, 1988).  If we take into account that infants have less need 

to use egocentric reference in relation to action, and further acknowledge the inherent 
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unreliability of egocentric reference for encoding visual information in a constantly 

transforming environment, it no longer seems implausible that young infants might 

find it more efficient to represent visual location in relation to external, rather than 

egocentric, spatial frameworks.  The logical extension of this argument is that we may 

actually develop more towards egocentric spatial coding as we become older and take 

a more active involvement in our surroundings.  A very tentative suggestion may thus 

be that young infants may be able to encode relatively complex (2D) external spatial 

configurations, but become less prone to use this ability as they become more actively 

and egocentrically involved in their object representations later in development. 

 Infants’ visual preferences for novel and familiar 

It is also of interest to ask why the infants tested here showed predominant 

preferences for the familiar object-centred configuration at test.  Whilst the direction 

of infant preference is not of key relevance to our hypotheses concerning the presence 

of a discriminative or recognition ability, it is thought to reflect the quality of 

representation of the novel and familiar stimuli.  In their model of infant preference 

for novel or familiar, Hunter and Ames (1988) propose that infants demonstrate 

familiarity preference when they have still not completed encoding of the familiar 

stimulus to an acceptable level of certainty, given a specific discrimination.  Three 

factors are offered as affecting the demonstration of familiarity or novelty 

preferences: age (older children attain an acceptable representation more quickly), 

duration of familiarisation (longer familiarisation is more likely to cross the criterion 

of acceptability), and difficulty of discrimination (more difficult discriminations 

require a higher criterion of representational quality). 

There are two findings from the current experiments which seem important to 

discuss in relation to Hunter and Ames’s model of novelty/familiarity preference.   
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Firstly, in a previous experiment using these stimuli, we (Bremner, Bryant & 

Mareschal, 2006) found a significant preference for a novel object-centred location, 

given a 1D discrimination pair at 4 months.  Given this previous finding it is 

important to justify why we uncovered a familiarity for this same discrimination in 

experiment, in an older age-group.  Hunter and Ames’s model would predict a shift 

further towards novelty in an older age-group.  However, there is one important 

difference between the procedures of our experiments.  In the current experiments we 

paused for around 30 seconds between familiarisation and test phases in order to 

introduce, whereas Bremner et al moved straight into the test phase with no break.  It 

seems likely that the difference in preference is due to time-related deterioration of, 

and the interference of extraneous stimuli with, the representation of the familiar 

stimulus, making the task of comparing it with the novel stimulus more demanding. 

Secondly it is interesting to discuss the reasons for finding a relation between 

the 8-month-old individuals’ looking behaviour during the familiarisation phase and 

the strength/direction of their preference at test in Experiment 1.  The 8-month-olds 

who took longest to reach the familiarisation criterion (90 seconds of accumulated 

looking) (those who looked away most during the familiarisation phase), 

demonstrated preference score which were shifted more towards the novel than the 

infants who accumulated the criterion quickly (those who looked away least during 

familiarisation).  In accordance with Hunter and Ames’s (1988) model, this seems to 

indicate that there was a spread of individual differences in the amount of attention 

that infants required to familiarise sufficiently enough to show a novelty preference at 

the test phase. Colombo, Freeseman, Coldren and Frick (1995) have suggested that 

infants who look away more (those who show shorter look fixations) exhibit a more 

adult-like attentional profile, giving priority to global rather than local features of the 
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visual stimulus before its local features (Navon, 1977).  Indeed, Stoecker, Colombo, 

Frick and Ryther (1998) have found that infants who show shorter fixations are more 

likely to show a novelty preference when given a post-familiarisation discrimination 

between symmetrical and asymmetrical stimuli.  This would seem to suggest that in 

our experiments, infants who exhibited looking behaviour typical of more global 

attention were at an advantage for encoding the stimuli that we presented. 

The bestowal of an advantage on object processing by a more global pattern of 

attention may hint at the underlying representations that the infants formed of the 

familiarized stimulus.  In our discussion of the representations underlying the infants’ 

ability to make the 2D discrimination, we posited two explanations.  The first was that 

the infants (like adults) solved the problem using mental rotation, a solution based on 

egocentric representations of the stimuli.  The second was that the infants may have 

solved the problem by reference to the spatial layout of the external object-centred 

frame of reference.  It is likely that egocentric encoding is at an advantage when a 

limited spread of attention reduces variation of the stimulus with respect to retinal 

coordinates, whereas the object-centred frame of reference (which does not vary 

across eye-movements) may be emphasized by the variation produced by the eye-

movements involved in a more global attentional style.  This explanation would 

favour an interpretation of infant competence in terms of their ability to reference the 

external object-centred spatial framework  

Summary and conclusions 

We have shown that 4- and 8-month-old infants are able to make 

discriminations between object-centred spatial configurations that are only 

differentiated with respect to two axes of the object’s framework.  The style of 

attention demonstrated by the 8-month-olds who showed more efficient encoding of 
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the object indicates that the infants used external (not egocentric) spatial reference to 

make this discrimination.  These results and our interpretation stand in contrast with 

Piaget’s constructionist account of the development of spatial representation (Piaget, 

1937/1954; Piaget & Inhelder, 1956).  Piaget proposed that infants’ spatial 

representations were initially restricted to egocentric coordinates, with more 

independent spatial reference developing from active exploration of the environment.  

Nonetheless we are not alone in suggesting that young infants are able to use external 

spatial coding.  Research reported by Kaufman and colleagues (Kaufman, 1998; 

Kaufman & Needham, 1999) demonstrates that at four and six months of age, infants 

are able to represent the location of an object relative to environmental coordinates, 

despite variance in its relation to the egocentric spatial frame of reference.  Our 

evidence, and that of Kaufman and colleagues, presents a strong challenge to Piaget’s 

egocentrism hypothesis, and shows that even at only four months of age we can form 

an objective representation of visual space. 



 38 

References 

Bayley, N.  (1969).  Bayley Scales of Infant Development.  Psychological 

Corporation: New York, NY. 

Bertenthal, B. I., Campos, J. J., & Barrett, K. C.  (1984).  Self-produced locomotion: 

an organiser of emotional, cognitive and social development in infancy.  In R. 

Emde & R. Harnon (Eds.), Continuities and discontinuities in development. 

Plenum: New York, NY. 

Biederman, I.  (1987).  Recognition-by-components: a theory of human image 

understanding.  Psychological Review, 94, 115-147. 

Biederman, I., Subramaniam, S., Bar, M., Kalocsai, P., & Fiser, J.  (1999).  

Subordinate-level object classification re-examined.  Psychological Research, 

62, 131-153. 

Bower, T.G.R., Broughton, J., & Moore, M.K.  (1971).  Development of the object 

concept as manifested in changes in the tracking behaviour of infants between 

7 and 20 weeks of age.  Journal of Experimental Child Psychology, 13, 182-

193. 

Bremner, A.J., Bryant, P.E., & Mareschal, D.  (2006).  Object-centred spatial 

reference in 4-month-old infants.  Infant Behavior and Development, 29, 1-10.   

Campos, J. J., Anderson, D. I., Barbu-Roth, M. A., Hubbard, E. M., Hertenstein, M. 

J., & Witherington, D.  (2000).  Travel broadens the mind.  Infancy, 1, 149-

220. 

Cohen, L. B. (1969). Observing responses, visual preferences, and habituation to 

visual stimuli in infants. Journal of Experimental Child Psychology, 7, 419-

433. 



 39 

Colombo, J., Freeseman, L. J., Coldren, J. T., & Frick, J. E. (1995).  Individual 

differences in infant visual fixation:  Dominance of global and local stimulus 

properties.  Cognitive Development, 10, 271–285. 

Harris, P. L., & Bassett, E.  (1976).  Reconstruction from the mental image.  Journal 

of Experimental Child Psychology, 21, 514-523. 

Hespos, S. J., & Rochat, P.  (1997).  Dynamic mental representation in infancy.  

Cognition, 64, 153-188. 

Hofsten, C. von, & Fazel-Zandy, S.  (1984).  Development of visually guided hand 

orientation in reaching.  Journal of Experimental Child Psychology, 38, 208-

219. 

Hofsten, C. von, & Rönnqvist, L.  (1988).  Preparation for grasping an object: a 

developmental study.  Journal of Experimental Psychology: Human 

Perception and Performance, 14, 610-621. 

Hummel, J. E.  (2000).  Where view-based theories break down: the role of structure 

in human shape perception.  In E. Dietrich & A. B. Markman (Eds.), Cogntive 

Dynamics: Conceptual Change in Humans and Machines.  Erlbaum: Mahwah, 

NJ. 

Hummel, J.E. (2001).  Complementary solutions to the binding problem in vision: 

Implications for shape perception and object recognition.  Visual Cognition, 8, 

489-517. 

Hunter, M. A., & Ames, E. W.  (1988).  A multifactor model of infant preferneces for 

novel and familiar stimuli.  In C. Rovee-Collier and L. P. Lipsitt (Eds.), 

Advances in Infancy Research, Vol. 5.  Ablex Publishing: Westport, CT. 

Huttenlocher, J., & Presson, C. C.  (1973).  Mental rotation and  the perspective 

problem.  Cognitive Psychology, 4, 277-299. 



 40 

Johnson, M. H., & Gilmore, R. O.  (1998).  Object-centred attention in 8-month-old 

infants.  Developmental Science, 1, 221-225. 

Johnson, S. P., Bremner, J. G., Slater, A. M., Mason, U. C., Foster, K., & Cheshire, 

A.  (2003).  Infants’ perception of object trajectories.  Child Development, 74, 

94-108. 

Kaufman, J.  (1998).  The Development of Spatial Thinking and Action in Early 

Infancy.  Unpublished Doctoral Thesis, Duke University. 

Kaufman, J. and Needham, A.  (1999).  Objective spatial coding by 6.5-month-old 

infants in a visual dishabituation task.  Developmental Science, 2, 432-441. 

Kellman, P.J.  (1984).  Perception of three-dimensional form by human infants.  

Perception & Psychophysics, 36, 353-358. 

Marr, D.  (1980).  Vision.  Freeman: New York, NY. 

Marr, D., & Nishihara, H. K.  (1978).  Representation and recognition of the spatial 

organisation of three-dimensional structure.  Proceedings of the Royal Society 

of London, Series B (Biological Sciences), 200, 269-294. 

Mozer, M. C.  (2002).  Frames of reference in unilateral neglect and visual 

perception: a computational perspective.  Psychological Review, 109, 156-

185. 

Navon, D.  (1977).  Forest before trees: The precedence of global features in visual 

perception. Cognitive Psychology, 9, 353-383. 

Newcombe, N. S., Huttenlocher, J.  (2000).  Making Space: The development of 

spatial representation and reasoning.  MIT Press: Cambridge, MA. 

Olson, D. R., & Bialystok, E.  (1983).  Spatial Cognition: The structure and 

development of mental representations of spatial relations.  Lawrence 

Erlbaum Associates: Hilldale, NJ. 



 41 

Piaget, J.  (1954).  The Construction of Reality in the Child.  Routledge & Kegan-

Paul: London, UK..  (Originally published in French in 1937). 

Piaget, J., & Inhelder, B.  (1956).  The Understanding of Space in the Child. 

Routledge & Kegan-Paul: London, UK., (Originally published in French in 

1948). 

Pylyshyn, Z. W.  (1981).  The imagery debate: Analogue media versus tacit 

knowledge.  Psychological Review, 88, 16-45. 

Quinn, P. C., Slater, A. M., Brown, E., & Hayes, R. A.  (2001).  Developmental 

change in form categorisation in early infancy.  British Journal of 

Developmental Psychology, 19, 207-218. 

Rochat, P., & Hespos, S. J.  (1996).  Tracking and anticipation of invisible spatial 

transformations by 4- to 8-month-old infants.  Cognitive Development, 11, 3-

17. 

Scholnick, E. K., Fein, G. G., & Campbell, P. F.  (1990).  Changing predictors of map 

use in wayfinding.  Developmental Psychology, 26, 188-193. 

Shepard, R. N., & Metzler, J.  (1971).  Mental rotation of three-dimensional objects.  

Science, 171, 701-703. 

Sirois, S., & Mareschal, D. (2002). Computational approaches to infant habituation. 

Trends in Cognitive Sciences, 6, 293-298 

Slater, A. M.  (1995).  Visual perception and memory at birth.  In C. Rovee-Collier, 

and L. P. Lipsitt (Eds.), Advances in infancy research (Vol. 9).  Ablex: 

Norwood NJ. 

Slater, A. M., Mattock, A., & Brown, E.  (1990).  Size constancy at birth: newborn 

infants’ responses to retinal and real size.  Journal of Experimental Child 

Psychology, 49, 314-322. 



 42 

Slater, A. M., & Morison, V.  (1985).  Shape constancy and slant perception at birth.  

Perception, 14, 337-344. 

Stoecker, J. J, Colombo, J., & Frick, J. E. & Ryther, J. S. (1998).  Long– and short–

looking infants' recognition of symmetrical and asymmetrical visual forms. 

Journal of Experimental Child Psychology, 71, 63–78. 

Tarr, M. J.  (1999).  News on views: pandemonium revisited.  Nature Neuroscience, 

2, 932-935. 

Tarr, M. J., & Bulthoff, H. H. (1998). Image-based object recognition in man, 

monkey, and machine. In M. J. Tarr and H. H. Bulthoff (Eds.), Object 

recognition in man, monkey, and machine. MIT Press : Cambridge, MA 

Tarr, M. J., & Pinker, S.  (1990).  When does human object recognition use a viewer-

centred reference frame?  Psychological Science, 1, 253-256. 

Tarr, M. J., Williams, P., Hayward, W. G., & Gautier, I.  (1998).  Three-dimensional 

object recognition is viewpoint dependent.  Nature Neuroscience, 1, 275-277. 

Tipper, S. P., & Behrmann, M.  (1996).  Object-centred not scene-based visual 

neglect.  Journal of Experimental Psychology: Human Perception and 

Performance, 22, 1261-1278. 

Tipper, S. P., Driver, J., & Weaver, J.  (1991).  Object-centred inhibition of return in 

visual attention.  Quarterly Journal of Experimental Psychology, 43A, 289-

298. 

Vecera, S. P., Behrmann, M., & Filapek, J. C.  (2001).  Attending to the parts of a 

single object: part-based selection limitations.  Perception and Psychophysics, 

63, 308-321. 

Wetherford, M. J., & Cohen, L. B.  (1973).  Developmental changes in infant visual 

preferences for novelty and familiarity.  Child Development, 44, 416-424. 



 43 

Footnotes 

1. ‘Retinocentric’, ‘egocentric’, ‘allocentric’ & ‘object-centred’ refer to modes of 

spatial reference which define locations within respectively; the retina, the 

body, the environment, and an object.  It is the independence of these 

reference frames from one another which makes each type of spatial reference 

a specific and separate encoding problem. 

2. Like Shepard & Metzler (1971), Tarr and Pinker (1990) appeal to an 

‘analogue mental imagery’ account of object recognition.  Others (e.g. 

Hummel, 2001; Olson & Bialystok, 1983; Pylyshyn, 1981) have rejected this 

doctrine of the mental image, arguing that objects can be matched across 

differing orientations by the formation of spatial predicate representations of 

the degree of disorientation between particular common features of objects, 

and then comparing values of disorientations between feature pairs. This 

particular debate is beyond the scope of the current article.  However, we can 

note that both strategies for recognition deal with the formation of 

representations of object transformation relative to the egocentric array. 

3. Note that this work does not address the issue of object-centred spatial 

reference discussed in this manuscript, because Rochat & Hespos (1996) do 

not manipulate the location of features within the rotating object. 

4. Nonetheless, during the familiarisation phase, the object did undergo dynamic 

reorientation in full view of the infant participants. We thank an anonymous 

reviewer for highlighting the possibility that this dynamic presentation played 

a role in the infants’ encoding of the spatial layout of the object, supporting 

their later discrimination of novel and familiar object-centred configurations.  
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It would certainly be worthwhile in future research to determine whether such 

dynamic context is a prerequisite of the abilities demonstrated here. 
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Tables 

Table 1: Length of time taken for infants to accumulate the fixed looking time 

required in the familiarisation phase shown across three trial blocks. 

Table 2: Mean percentage novelty preference as a function of age-group and 

dimension group. 

Table 3:  Mean percentage novelty preferences shown at test in Experiments 2a and 

2b. 
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Figure Captions 

Figure 1:  The T-shaped object  

Figure 2:  Spatial representations needed for making 1D and 2D discriminations of 

location within the T-shaped object.  In the 1D discrimination, whichever object-

centred spatial axis is used to encode locations, the lit locations (in this example 

OCLs 1 and 3) hold distinctive spatial relations to other parts of the object within that 

axis.  On axis y, OCL 3 does not have a unique value, as unlit OCL 2 shares the same 

value.  However, OCL 1 has values on each of the axes x and y that are not shared by 

either of the other two locations, and so can be discriminated from OCLs 2 and 3 by 

reference to either axis y or x alone.  In the 2D discrimination, OCLs 2 and 3 need to 

be encoded by reference to both axes (x and y).  It is necessary to first note that the lit 

OCL is within the long bar, i.e. has a particular value on the y axis; it is then 

necessary to register its value on the x axis, defining which end of the bar it occupies. 

Figure 3:  The orientation series’ in the familiarisation phase of Experiment 1, and the 

corresponding test trial arrangements.  Participants presented with Series 1 during 

familiarisation were presented with Test Orientation 1, and participants presented 

with familiarisation Series 2 were given Test Orientation 2.  As well as showing the 

orientation series used in Experiment 1 this figure also provides a schematic example 

of where the OCLs might have been highlighted in a stimulus presentation across a 

single testing session.  In this case the Familiar OCL is 3, and the Novel OCL is 2 (in 

the 1D comparison) or 1 in the 2D comparison.  Only single test trials are presented 

here.  In all cases the novel stimulus is presented on the left.  However, in an 

experimental session novel appeared on both the left and right on subsequent test 

trials.  The order of left/right presentation was counterbalanced across infants.  
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Figure 4:  Relation between novelty preference and familiarisation duration.  Dotted 

lines represent the 95% confidence interval. 

Figure 5:  The possible sequences of orientations in the familiarisation phase of 

Experiment 2b.  As well as showing the orientation series used in Experiment 2b this 

figure also provides a schematic example of where the OCLs might have been 

highlighted in a stimulus presentation across a single testing session.  In this case the 

Familiar OCL is 3, and the Novel OCL is 1.  Only single test trials are presented here.  

In all cases the novel stimulus is presented on the left.  However, in an experimental 

session novel appeared on both the left and right on subsequent test trials.  The order 

of left/right presentation was counterbalanced across infants. 
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Table 1 

 

Age group  Familiarisation trial block 

   Trial block 1 Trial block 2 Trial block 3  Total 

4-month-olds (N=16) 44.9 (5.2) 48.3 (4.4) 59.9 (7.2)  153.1 (12.4) 

8-month-olds (N=16) 45.6 (2.3) 39.8 (2.5) 42.3 (2.5)  127.7 (6.1) 

Total (N=32) 45.3 (2.8) 44.0 (2.6) 51.1 (4.1)  140.4 (7.2) 

 

 

Note:  Figures in brackets represent SE of mean. 
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Table 2 

 

Age group  Dimension group 

   1   2    

4-month-olds  48.7 (4.0)  49.3 (2.9)   

8-month-olds  40.9 (4.2)  46.0 (2.2)   

 

 

Note:  Figures in brackets represent SE of mean 
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Table 3 

 

Experiment  Test trial 

   1  2   Total 

EXP 2a (N=8)  42.1 (5.7) 32.2 (3.3)  37.2 (3.3) 

EXP 2b (N=8)  33.6 (7.5) 43.4 (7.7)  38.5 (3.6) 

Total (N=16) 37.9 (4.7) 37.8 (4.6)  37.8 (2.3) 

 

 

Note:  Figures in brackets represent SE of mean. 
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Figure 1 
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Figure 2 

(A) 1D OCL discrimination 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(B) 2D OCL discrimination 
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Figure 3 

Familiarisation Series 1 

 

 

 

Familiarisation Series 2 
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Figure 4 

(A) 4-month-olds 

 

 

 

 

 

 

 

 

 

 

 

 

(B) 8-month-olds 
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Figure 5 
 
Starting orientation 1 
 
 

 

 

Starting orientation 2 

 

 

 

Test trial arrangements 
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