
Opuscula Math. 36, no. 4 (2016), 459–470
http://dx.doi.org/10.7494/OpMath.2016.36.4.459 Opuscula Mathematica

SOME STABILITY CONDITIONS
FOR SCALAR VOLTERRA DIFFERENCE EQUATIONS

Leonid Berezansky, Małgorzata Migda, and Ewa Schmeidel

Communicated by Marek Galewski

Abstract. New explicit stability results are obtained for the following scalar linear difference
equation

x(n + 1) − x(n) = −a(n)x(n) +
n∑

k=1

A(n, k)x(k) + f(n)

and for some nonlinear Volterra difference equations.
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1. INTRODUCTION

We consider a Volterra difference equation of the following form

x(n+ 1)− x(n) = −a(n)x(n) +
n∑
k=1

A(n, k)x(k) + f(n), n ≥ 1, (1.1)

where a, f : N→ R and A : N×N→ R with A(n, i) = 0 for all n < i are given functions,
and x : N→ R is an unknown sequence. This equation can be easily transformed into
the more familiar form

x(n+ 1) = b(n)x(n) +
n∑
k=1

A(n, k)x(k) + f(n) (1.2)

by the substitution a(n) = 1− b(n).
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Notice that Volterra difference equations appeared as a discretization of Volterra in-
tegral and integro-differential equations. In particular, equation (1.1) is a discretization
of the integro-differential equation

ẋ(t) = −a(t)x(t) +
t∫

t0

A(t, s)x(s)ds+ f(t),

and a discretization of the linear integral equation

x(t) = b(t)x(t) +
t∫

t0

A(t, s)x(s)ds+ f(t)

gives a Volterra difference equation (1.2).
Discrete Volterra equations also often occur during the mathematical modelling of

some real life situations. Therefore, the qualitative theory of these types of equations
is developed by many authors. For example, the boundedness of solutions of discrete
Volterra equations was studied in [2,5,10] or [13]–[18], the periodicity was investigated
in papers [6,8, 15,18]. A survey of the fundamental results on the stability of linear
Volterra difference equations, of both convolution and non–convolution type, can be
found in [7], see also [3, 4, 11, 12, 17] or [19]. In [3] and [4] the authors study the
exponential stability of equation

x(n+ 1) =
n∑
k=1

A(n, k)x(k). (1.3)

In particular, they obtained the following sufficient condition for the exponential
stability of (1.3)

sup
n≥1

∞∑
k=1
|A(n, k)|γk−n ≤ γ

for some 0 < γ < 1. The aim of this paper is to present new explicit boundedness and
stability results for equations (1.1) and (1.2), and also for some nonlinear Volterra
difference equations.

For the sake of convenience, throughout this paper, we use the convention∑k
j q(j) := 0 and

∏k
j q(j) := 1, whenever j > k.

2. PRELIMINARIES

Together with equation (1.1) we will also consider the following simple equation

x(n+ 1)− x(n) = −a(n)x(n) + f(n), n ≥ 1, (2.1)

where a, f : N→ R and a(n) 6≡ 1.
By the variation of constants formula, the solution of equation (2.1) with the initial
condition

x(1) = x0 (2.2)
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can be presented as

x(n) = X(n, 1)x0 +
n−1∑
k=1

X(n, k + 1)f(k), (2.3)

where

X(n, k) :=
n−1∏
j=k

(1− a(j)). (2.4)

Note that X(k, k) = 1. Obviously, if

0 ≤ a(n) ≤ 1 for any n ≥ k, (2.5)

then X(n, k) is nonnegative and bounded from above by 1.
Lemma 2.1. If condition (2.5) is satisfied, then

0 ≤
n−1∑
k=1

X(n, k + 1)a(k) ≤ 1, (2.6)

where X(n, k) is defined by (2.4).
Proof. Consider equation (2.1), where f(n) = a(n) and x0 = 1. Then x(n) ≡ 1 is a
solution of problem (2.1), (2.2). By the above and (2.3), we have

X(n, 1) +
n−1∑
k=1

X(n, k + 1)a(k) = 1.

Since assumption (2.5), by (2.4), we have that X(n, 1) is nonnegative for n ∈ N. Hence
inequality (2.6) holds.

Note, that the solution of equation (1.1) satisfies the following equation

x(n) = X(n, 1)x0 +
n−1∑
k=1

X(n, k + 1)
k∑
i=1

A(k, i)x(i) +
n−1∑
k=1

X(n, k + 1)f(k), (2.7)

where x(1) = x0 and X(n, k) is defined by (2.4).
Definition 2.2. Equation (1.1) is said to be exponentially stable if there exists
a positive constant M and λ ∈ (0, 1) such that for any solution of the corresponding
homogeneous equation with the initial condition (2.2) the following inequality holds:

|x(n)| ≤M |x0|λn.

The following lemma will be used in the sequel.
Lemma 2.3 ([1]). Assume that there exists a positive constant L and µ ∈ (0, 1) such
that

|A(n,m)| ≤ Lµ(n−m) for n ≥ m ≥ 1. (2.8)
If for any bounded function f the solution of problem (1.1), (2.2) is bounded, then
equation (1.1) is exponentially stable.



462 Leonid Berezansky, Małgorzata Migda, and Ewa Schmeidel

3. MAIN RESULTS

In this section we consider only equation (1.1). All results for equation (1.2) one can
obtain by a substitution b(n) = 1− a(n).

Theorem 3.1. Assume that there exist constants α0, α1 ∈ (0, 1) such that

a(n) ∈ [α0, 1], a(n) 6≡ 1 (3.1)

and
n∑
k=1
|A(n, k)| ≤ α1a(n) for n ∈ N. (3.2)

(i) If the function f is bounded, then all solutions of (1.1) are bounded.
(ii) If condition (2.8) holds, then equation (1.1) is exponentially stable.

Proof. Ad (i). Let X(n, k) be defined by (2.4). Set ‖f‖ = supn∈N |f(n)|. By (3.1), we
have 0 ≤ X(n, k) ≤ 1. Using (2.7), for solution of (1.1), we have

|x(n)| ≤ X(n, 1)|x0|+
n−1∑
k=1

X(n, k + 1)
k∑
i=1
|A(k, i)| |x(i)|+

n−1∑
k=1

X(n, k + 1)|f(k)|

≤ X(n, 1)|x0|+
n−1∑
k=1

X(n, k + 1)a(k)
∑k
i=1 |A(k, i)|
a(k) max

1≤i≤n
|x(i)|

+
n−1∑
k=1

X(n, k + 1)a(k) |f(k)|
a(k) .

Hence, by Lemma 2.1, (3.1) and (3.2), we obtain

|x(n)| ≤ |x0|+ α1 max
1≤i≤n

|x(i)|+ ‖f‖
α0

.

Thus
max

1≤i≤n
|x(i)| ≤ |x0|+ α1 max

1≤i≤n
|x(i)|+ ‖f‖

α0
.

Then
(1− α1) max

1≤i≤n
|x(i)| ≤ |x0|+

‖f‖
α0

.

Therefore,

|x(n)| ≤
|x0|+ ‖f‖

α0

1− α1
.

It means that all solutions of (1.1) are bounded.
Ad (ii). In the part (i) of this theorem it was proved that for any bounded function f

all solutions of (1.1) are bounded. Hence, by Lemma 2.3, equation (1.1) is exponentially
stable.
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Example 3.2. Let us consider the linear Volterra difference equation

x(n+ 1)− x(n) = −2n+ 1
3n x(n) +

n∑
k=1

k

n(n+ 1)x(k) + (−1)n, n ∈ N. (3.3)

Here
a(n) = 2n+ 1

3n , f(n) = (−1)n and A(n, k) = k

n(n+ 1) .

Let us take
α0 = 2

3 , α1 = 3
4 .

Then

a(n) = 2n+ 1
3n ∈ [α0, 1],

n∑
k=1

A(n, k) =
n∑
k=1

k

n(n+ 1) = 1
2 ≤

3
4

2n+ 1
3n =α0a(n).

So, by Theorem 3.1, all solutions of (3.3) are bounded.

Note, that for equation (3.3), Theorem 1 of [17] cannot be applied, since the
assumption

n−1∑
k=n0

n−1∏
j=k+1

|b(j)|
k∑

i=n0

|A(k, i)| ≤ α

is not satisfied.

Remark 3.3. If equation (1.1) is exponentially stable and limn→∞ |f(n)| = 0, then
for any solution of (1.1), (2.2) we also have limn→∞ |x(n)| = 0.

Another asymptotic stability condition we will obtain by applying the first part of
Theorem 3.1.

Corollary 3.4. Assume that there exist positive constants λ and α0, and β0 ∈ (0, 1),
α1 ∈ (0, 1) such that

α0 ≤ a(n) ≤ β0,

n∑
k=1

(
n+ 1
k

)λ
|A(n, k)| ≤ α1a(n) for n ∈ N. (3.4)

If the function nλf(n) is bounded, then for any solution of (1.1)

lim
n→∞

x(n) = 0.

Moreover,

|x(n)| ≤ M

nλ

for some M > 0.
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Proof. After a substitution x(n) = y(n)
nλ equation (1.1) takes the form

y(n+ 1)− y(n) = −
[(

n+ 1
n

)λ
(a(n)− 1) + 1

]
y(n)

+
n∑
k=1

(
n+ 1
n

)λ (n
k

)λ
A(n, k)y(k) + (n+ 1)λf(n).

(3.5)

Let us introduce the following notation:

a1(n) =
(
n+ 1
n

)λ
(a(n)− 1) + 1,

A1(n, k) =
(
n+ 1
k

)λ
A(n, k),

and
f1(n) = (n+ 1)λf(n).

Then equation (3.5) takes the form

y(n+ 1)− y(n) = −a1(n)y(n) +
n∑
k=1

A1(n, k)y(k) + f1(n). (3.6)

Theorem 3.1 is used for proving that all solutions of equation (3.6) are bounded.
We checked it out that, for any n ∈ N, assumptions of Theorem 3.1 are satisfied.
By (3.4), since β0 ∈ (0, 1), we get

a1(n) ≥ a(n)− 1 + 1 > α0 and a1(n) ≤
(
n+ 1
n

)λ
(β0 − 1) + 1 < 1.

Again by (3.4), we have

n∑
k=1
|A1(n, k)| =

n∑
k=1

(
n+ 1
k

)λ
|A(n, k)| ≤ α1a1(n).

The identity
f1(n)

(n+ 1)λf(n) ≡ 1

implies that the function f1 is bounded.
All assumptions of Theorem 3.1 are satisfied for equation (3.6). Hence solutions of

this equation are bounded and the theorem is proved.
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Finally, let us consider the nonlinear Volterra equation

x(n+ 1)− x(n) = −F (n, x(n)) +
n∑
k=1

H(n, k, x(k)) +G(n, x(n)), (3.7)

where F : N×R→ R+, G : N×R→ R, H : N×N×R→ R are given functions. From
Theorem 3.1 we get for the above equation the following result.

Corollary 3.5. If there exist constants α0, α1 ∈ (0, 1), functions A : N × N → R+,
c : N→ R+, and a bounded sequence g : N→ R+ such that for any u 6= 0

α0 ≤ c(n) ≤ F (n, u)
u

≤ 1,
∣∣∣∣H(n, k, u)

u

∣∣∣∣ ≤ A(n, k) (3.8)

and
n∑
k=1

A(n, k) ≤ α1c(n), |G(n, u)| ≤ g(n) for all n, k ∈ N, (3.9)

then all solutions of equation (3.7) are bounded. If, in addition, there exist positive
constants L and µ < 1 such that

A(n, k) ≤ Lµ(n−k) for n ≥ k ≥ 1

and limn→∞ g(n) = 0, then any solution of equation (3.7) tends to zero.

Proof. Suppose x̄ is a fixed solution of equation (3.7). Let us denote

a(n) =
{
F (n,x̄(n))
x̄(n) , x̄(n) 6= 0,

1, x̄(n) = 0,

A(n, k) =
{∣∣∣H(n,k,x̄(n)

x̄(n)

∣∣∣ , x̄(n) 6= 0,
0, x̄(n) = 0,

(3.10)

and

f(n) =
{
G(n, x̄(n)), x̄(n) 6= 0,
0, x̄(n) = 0.

Hence x̄ is a solution of the linear equation of the form (1.1). By (3.8), we have

0 < α0 ≤ c(n) ≤ F (n, x̄(n))
x̄(n) = a(n) ≤ 1. (3.11)

From the above and by (3.8), (3.9) and (3.10), we get

n∑
k=1

∣∣∣∣H(n, k, x̄(k))
x̄(k)

∣∣∣∣ =
n∑
k=1

A(n, k) ≤ α1c(n) ≤ α1a(n).
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Condition (3.9) implies that
|f(n)| ≤ g(n),

where g is bounded. Hence for linear equation (1.1) all conditions of Theorem 3.1 are
satisfied. Then all solutions of this equation are bounded. Therefore the solution x̄ of
equation (3.7) is also bounded.

The second part of this theorem follows from the second part of Theorem 3.1.

Example 3.6. Consider the equation

x(n+ 1)− x(n) = −
(

1
2 −

1
4 cosx(n)

)
x(n) +

n∑
k=1

1
k2x

2(k)e−λx(k)+ sin x(n) (3.12)

with initial condition x(1) = x0 ≥ 0, where λ ∈ R. Here

F (n, u) =
(

1
2 −

1
4 cosu

)
u, H(n, k, u) = 1

k2u
2e−λu = A(n, k), G(n, u) = sin u.

It is easy to see that for any n ∈ N we have x(n) ≥ 0, where x is the solution of
equation (3.12). Let us take

α0 = 1
4 , c(n) ≡ 1

4 , α1 = 2π2

3λe , A(n, k) = 1
λek2 and g(n) ≡ 1.

For u ≥ 1 we have

α0 = c(n) = 1
4 ≤

∣∣∣∣F (n, u)
u

∣∣∣∣ ≤ 3
4 < 1,

∣∣∣∣H(n, k, u)
u

∣∣∣∣ =
∣∣∣∣ 1
k2ue

−λu
∣∣∣∣ ≤ 1

λek2 = A(n, k),

|G(n, u)| ≤ 1,

and
n∑
k=1

A(n, k) ≤ 1
λe

∞∑
k=1

1
k2 = π2

6λe = α1c(n).

Note, that for

λ ≥ 2π2

3e ≈ 2.41

we have α1 < 1. Then all assumptions of Theorem 3.5 are satisfied and so all positive
solutions of equation (3.12) are bounded.
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4. FINAL REMARKS

In the Introduction we noted that there exists a close connection between the Volterra
difference equation (1.1) and the scalar linear integro-differential equation

ẋ(t) = −a(t)x(t) +
t∫

t0

A(t, s)x(s)ds+ f(t), t ≥ t0. (4.1)

The connection between the two classes of equations can be used in another way –
to apply the methods, approaches and ideas known for one class to obtain new results
for the second class of equations. There are several papers, where the authors applied
this connection. In particular, in [9] asymptotic stability conditions for the following
linear delay difference equation

x(n+ 1)− x(n) = −a(n) +
m∑
k=1

ak(n)x(hk(n)), hk(n) ≤ n,

were obtained by applications of the known stability conditions for linear delay
differential equations.

Similarly, using the idea of the proof of Theorem 3.1 we will get the following
statement. Assume that in equation (4.1) the functions a and f are continuous on
[t0,∞) and A(t, s) is continuous for t ≥ s ≥ t0.

Theorem 4.1. Assume that a(t) ≥ a0 for some positive number a0 and

lim sup
t→∞

1
a(t)

t∫
t0

|A(t, s)| ds < 1.

Then for any function f bounded on [t0,∞) all solutions of (4.1) are bounded. If in
addition function a is bounded on [t0,∞) and there exist M > 0, λ > 0 such that

|A(t, s)| ≤Me−λ(t−s), (4.2)

then equation (4.1) is exponentially stable.

Note that in this case assumptions are weaker than in the discrete case.

Example 4.2. Consider the equation

ẋ(t) = −x(t) + 1
t+ 1

t∫
0

sin(s)x(s)ds+ f(t), t ≥ 0. (4.3)

By simple calculations we have

lim sup
t→∞

1
t+ 1

t∫
0

| sin(s)|ds = 2
π
< 1.
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Hence, for any function f bounded on [0,∞) all solutions of equation (4.3) are bounded.
Consider the next equation

ẋ(t) = −x(t) + α

t∫
0

e−(t−s) sin(ts)x(s)ds+ f(t), t ≥ 0. (4.4)

For this equation condition (4.2) holds. Moreover, we have

lim sup
t→∞

|α|
t∫

0

e−(t−s)| sin(ts)|ds ≤ |α|.

Hence, if |α| < 1, then equation (4.4) is exponentially stable.
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