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Approaches to the cortical analysis of auditory objects 
Timothy D. Griffiths a,b,*, Sukhbinder Kumar, a, Jason D. Warren, b, Lauren Stewart,b, 
Klaas Enno Stephan, b, Karl J. Friston, b 
 
a Auditory Group, Medical School, Framlington Place, University of Newcastle, Newcastle upon Tyne NE2 4 
HH, United Kingdom 
b Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, 
London WC1N 6BT, United Kingdom 

Abstract 
We describe work that addresses the cortical basis for the analysis of auditory objects 
using ‘generic’ sounds that do not correspond to any particular events or sources (like 
vowels or voices) that have semantic association. The experiments involve the 
manipulation of synthetic sounds to produce systematic changes of stimulus features, 
such as spectral envelope. 
 
Conventional analyses of normal functional imaging data demonstrate that the analysis 
of spectral envelope and perceived timbral change involves a network consisting of 
planum temporale (PT) bilaterally and the right superior temporal sulcus (STS). Further 
analysis of imaging data using dynamic causal modelling (DCM) and Bayesian model 
selection was carried out in the right hemisphere areas to determine the effective 
connectivity between these auditory areas. Specifically, the objective was to determine if 
the analysis of spectral envelope in the network is done in a serial fashion (that is from 
HG to PT to STS) or parallel fashion (that is PT and STS receives input from HG 
simultaneously). Two families of models, serial and parallel (16 in total) that represent 
different hypotheses about the connectivity between HG, PT and STS were selected. 
The models within a family differ with respect to the pathway that is modulated by 
the analysis of spectral envelope. After the models are identified, Bayesian model 
selection procedure is then used to select the ‘optimal’ model from the specified models. 
The data strongly support a particular serial model containing modulation of the HG to 
PT effective connectivity during spectral envelope variation. 
 
Parallel work in neurological subjects addresses the effect of lesions to different parts of 
this network. We have recently studied in detail subjects with ‘dystimbria’: an alteration in 
the perceived quality of auditory objects distinct from pitch or loudness change. The 
subjects have lesions of the normal network described above with normal perception of 
pitch strength but abnormal perception of the analysis of spectral envelope change. 
 
Keywords: Auditory cortex; Functional imaging; Neurology; Lesion 



1. Introduction 
The concept of auditory object is controversial (Griffiths and Warren, 2004). The term 
can be applied to a sound source such as a voice, or an acoustic event generated by a 
source such as a vowel sound. In both cases there are features of the object that are 
independent of the detailed structure of the sound: we can recognise the same vowel, or 
voice, regardless of the pitch. In these examples the spectral envelope of the sound 
determines the particular vowel sound produced, and is one characteristic of the voice. 
Recognising the vowel or voice requires the ‘abstraction’ of spectral envelope. We are 
carrying out experiments that address how the auditory cortex might carry out 
such abstraction at a ‘generic’ level of processing (Griffiths et al., 2004b), before 
semantic analysis. Fig. 1 shows stimuli used in an imaging experiment (Warren et al., 
2005) to assess the abstraction of changing spectral envelope regardless of the 
continuously changing fine spectral structure. In this experiment the key contrast 
compared the brain activation during the perception of sounds with changing 
spectral envelope and brain activity during the perception of sounds with a fixed spectral 
envelope. In both conditions the individual sounds alternated between noise and 
harmonic stimuli, allowing an argument to be made that the difference between 
activation in the two conditions is due to the analysis of spectral envelope as opposed to 
the fine spectral structure. 
 
Spectral analysis has been identified as an important aspect of auditory object 
characterisation in behavioural experiments that use the technique of 
multidimensional scaling (MDS) to place objects in a Euclidian space in which the 
distance between objects corresponds to the perceptual dissimilarity between them 
(Grey, 1977; McAdams and Cunible, 1992). The technique has typically been applied to 
the analysis of sources such as musical instruments and instrument hybrids. The studies 
generally agree that at least two dimensions are needed to characterise the timbre 
space, where these broadly correspond to the spectral and temporal envelopes, but the 
exact nature of the third dimension is not clear: early studies suggested a role for 
spectral flux (defined as the rate of change of spectral centroid) whilst later studies 
(Caclin et al., 2005) suggest that a role for fine spectral structure in object 
characterisation. The current approach to spectral envelope analysis is distinct to the 
approach using MDS based on ‘real’ objects. The approach might be described as the 
investigation of ‘prototimbre’: the systematic manipulation of higher-order properties of 
synthetic stimuli to investigate plausible bases for object characterisation. 

2. Conventional mapping of cortical networks for the analysis of 
object properties 
Brain activity during the analysis of spectral envelope was estimated by the fMRI BOLD 
response using a sparse imaging paradigm described in Warren et al. (2005). In Fig. 2 
the critical contrast between changing and fixed spectral envelope, where the baseline 
fine spectral structure is continuously varying, reveals activity in a network of 
areas including planum temporale, PT (bilaterally), and superior temporal sulcus, STS 
(on the right). The STS activation occurs in a region that has been previously implicated 
in voice analysis (Belin et al., 2000), and can be interpreted in terms of a fundamental 
role in the abstraction of spectral envelope relevant to the analysis of a number of 
sources including voices. 
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The experimental manipulation of spectral envelope in the above experiment can be 
regarded as manipulation of higher order properties of the stimuli that are perceived by 
the subjects, despite continuously changing fine spectrotemporal structure. From first 
principles, the activation network that is demonstrated might correspond to 
computation of higher order stimulus properties or to a neural correlate of the perceptual 
changes produced. We have demonstrated very similar networks of activation in 
experiments where distinct dimensions of timbre were manipulated (unpublished 
observation). The demonstration of a similar mapping for very different types of stimulus 
change is indirect evidence that activity in the network is a neural correlate of the 
changing percept. The argument is logically similar to one that we have developed 
related to the functional imaging of pitch perception, where manipulation of the stimulus 
in either the time domain (Patterson et al., 2002) or frequency domain (Penagos et al., 
2004) produces similar changes in activity in lateral Heschl’s Gyrus (HG), providing 
indirect evidence for the existence of a perceptual ‘pitch centre’ in lateral HG. With 
respect to the current network of activation involving bilateral PT and right lateralised 
STS it should be borne in mind that it is possible that different elements of the 
network have different relationships to stimulus computation or perception. 
 
The lateralisation seen in the right temporal lobe in these experiments on normal 
subjects is congruent with data from the systematic study of patients with 
temporal lobectomy (reviewed in Stewart et al. (2006)) showing that right but not left 
temporal lobectomy affects the analysis of both spectral and temporal dimensions 
of timbre. 

3. Beyond conventional mapping: dynamic causal modelling and 
Bayesian model selection 
Conventional functional imaging analysis based on the general linear model is an 
exploratory approach that interrogates data from the whole brain to identify areas 
that show the specified relationship between activity and the stimulus manipulation or 
perceptual change. We have used dynamic causal modelling and Bayesian model 
selection approach to test different models that might account for the network of activity 
observed in the spectral envelope experiments. The aim of the approach is to address 
two fundamental biological questions. First we assess the general structure of the HG–
PT–STS network for object processing. In particular, we address the critical question 
of whether analysis in PT and STS occurs in a serial (hierarchical) fashion, based on 
connections from HG to PT and from PT to STS, or whether the analysis is based 
on parallel processing due to connections from HG to both PT and STS. Second, we 
address how connection strengths between elements of this cortical network are 
modulated during the spectral envelope processing. In order to test these hypotheses, 
two broad categories of models, serial and parallel were specified (Fig. 3). All the models 
specified were based on the (orthodox) assumption that there is a direct effect of the 
sound input on the activity within the primary auditory cortex within HG. In the serial 
models, auditory inputs entering HG reach STS via PT and thus processing in STS 
depends on inputs from PT. In contrast, in the parallel models, HG connects to both PT 
and STS enabling parallel processing in PT and STS. In total, 16 models (9 serial, 7 
parallel) were fitted to the data and compared using Bayesian model selection. It should 
be noted that the DCM approach developed below might yield a ‘best’ model that is not a 
‘true’ model if the set of models tested does not include the latter. It is important when 
setting up DCM analyses, therefore, to consider the possible models in a systematic and 
inclusive way. Even for a simple serial and parallel comparison for three areas as here, 
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there are a large number of models when all the possible forward and back projections 
and the possible sites of modulatory effect are taken into account. 

3.1. Dynamic causal modeling 
The basic idea behind dynamic casual modelling can be summarised as follows. A 
cognitive or motor task in brain is accomplished by interaction between a number of 
nodes. This interaction is at the level of neural activity and therefore takes place at the 
millisecond time scale. DCM models such interaction. In an ‘ideal’ imaging technique that 
could accurately define nodes and the time course of neural activity at the millisecond 
level DCM could be carried out directly on the time series of neural activity from 
different nodes. Such an approach would actually be possible with neurophysiological 
data acquired simultaneously from different functional areas, though we are not aware of 
any studies that have used this approach. In humans, DCM has been applied to EEG 
and MEG data (Kiebel et al., 2006) with millisecond time resolution, but its main 
application to date has been to functional MRI data sets. For these applications, DCM 
incorporates a biophysical model for the conversion of regional neural activity into the 
‘sluggish’ BOLD response that takes seconds to reach a peak in activation paradigms. 
Despite that fact that DCM is based on BOLD sampling rates that are more than three 
orders of magnitude slower than the temporal dynamics of the neural activity producing 
it, the incorporation of the biophysical model allows inference to be made from 
coarse resolution time series about events occurring at a much finer time scale. With 
respect to auditory functional MRI many experiments, including our experiment on 
spectralenvelope analysis above, are based on ‘sparse’ designs to avoid the effect of 
simultaneous scanner noise on the effects of interest. The current DCM analysis is the 
first to our knowledge that has been applied to such a data set. DCM allows inference 
about events occurring at the millisecond level based on BOLD time series acquired 
with sampling rates of less than 1 Hz. We will show in the analysis below that the 
additional loss of resolution due to sparse paradigms (where the sampling rate can 
approach 0.1 Hz) does not preclude the demonstration of plausible models of dynamic 
neural interaction using DCM. 
 
From the system theory point of view, the brain can be treated as a nonlinear input–
output dynamic system that can be excited by controlled stimuli and its 
response (hemodynamic response here) measured. The central idea behind dynamic 
causal modelling is to estimate and draw inference about the causal interaction between 
different regions of the brain by identifying a model for the system using input–output 
measurements. In general, any model will comprise variables (that may or may not be 
measurable) and parameters that are estimated from the measurements. The model 
used in DCM has three types of variables: input variables that are the same as those 
used in conventional GLM analysis and encode the experimental manipulation; output 
variables that are the regional hemodynamic responses from each of the region 
considered in the model and state variables. State variables can often not be measured 
directly, and represent the neural activity and biophysical variables that transform neural 
activity into hemodynamic response. 
 
In DCM, three different sets of parameters are used. The first set of parameters, known 
as intrinsic parameters, models the anatomical or hardwired connection 
strengths between the regions. These parameters represent the influence that one 
region has over the other in the absence of any external excitation of the system. The 
second set of parameters, known as modulatory parameters, models the change in 

 4



intrinsic connection strength that is induced by the external experimental input. These 
parameters are therefore input specific and are also referred to as ‘bilinear terms or 
parameters’. The third set of parameters models the direct influence of an external 
stimulus on a given region. The conventional GLM analysis is based on the assumption 
that any external stimulus has a direct influence on a region and therefore, it is the third 
set of parameters that form the primary focus of GLM analysis. DCM, therefore, can also 
be regarded as more general with GLM analysis being a specific situation where 
the interaction parameters (first and second set) are assumed be zero. 
 
Once the model is specified, it has to be estimated from the measurements. There are, 
however, some natural constraints on the model. For example, the neural activity of a 
region can not diverge to infinity. The model parameters, therefore, need to be estimated 
such that these constraints are complied with. One framework for estimating the 
parameters with prior constraints is Bayesian statistics. In Bayesian statistics, a 
parameter is assumed as a random variable and is therefore completely characterized 
by its probability density (distribution) function. The prior constraints about 
the parameters are specified in terms of (prior) density function. Bayesian estimation 
procedure estimates the parameters by computing its posterior density function. 
Under the assumption that the density function is Gaussian, the density function can be 
characterized by two parameters namely maximum a posterior (MAP) estimate (which is 
equal to the mean value of the posterior density function under Gaussian assumption) 
and a posterior covariance. Once the probability density function of the parameters is 
known, meaningful inferences about the parameters can be drawn. 
 
DCM has several advantages over other models of effective connectivity, e.g. structural 
equation modelling (SEM) (McIntosh and Gonzalez-Lima, 1994), multivariate 
autoregression (MAR) (Harrison et al., 2003) or Granger causality (Goebel et al., 2003) 
(see (Friston et al., 2003; Stephan, 2004) for further discussion). DCM takes into account 
temporal order (and autocorrelation of the fMRI time series). It further allows one to 
model the effects of experimentally controlled manipulations as either affecting regional 
activity directly (e.g. sensory inputs) or modulating the strengths of connections. Most 
importantly, however, DCM is currently the only model of effective connectivity that 
combines a neural population model with a biophysical hemodynamic forward model and 
is thus able to model how system dynamics at the (hidden) neuronal level translates into 
measured BOLD signals. These are the first data of which we are aware that apply the 
approach to sparse data sets from auditory experiments. 
 
Mathematically, DCM is based on a bilinear model of neural population dynamics that is 
combined with a hemodynamic model (Buxton et al., 1998; Friston et al., 
2000), describing the transformation of neural activity into predicted BOLD responses. 
The neural dynamics are modelled by the following bilinear differential equation 
 

(1) 
 
where z is the state vector (with one state variable per region), t is continuous time, and 
uj is the jth input to the modelled system (i.e. some experimentally 
controlled manipulation). This state equation represents the strength of connections 
between the modelled regions (the A matrix), the modulation of these connections as a 
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function of experimental manipulations (e.g. changes in task; the B(1) . . . B(m) matrices) 
and the strengths of direct inputs to the modelled system (e.g. sensory stimuli; the C 
matrix). These parameters correspond to the rate constants of the modelled 
neurophysiological processes. Combining the neural and hemodynamic model into a 
joint forward model, DCM uses a Bayesian estimation scheme to determine the posterior 
density of the parameters. Under Gaussian assumptions, this density can be 
characterised in terms of its maximum a posteriori (MAP) estimate and its 
posterior covariance. 
 
Overall, the parameters of the neural and hemodynamic model are fitted such that the 
modelled BOLD signals are as similar as possible to the observed BOLD 
responses. This allows one to understand and make statistical inferences about regional 
BOLD responses in terms of the connectivity at the underlying neural level. 

3.2. Selection of optimal model 
A general problem that arises in any modelling exercise is to decide, given a measured 
data set, which of several competing models is the optimal. A number of criteria (for 
selecting the optimal model) have been proposed in the modelling the literature 
(Burnham and Anderson, 2004). From a Bayesian perspective, an optimal criterion is the 
model evidence, i.e. the probability p(yjm) of obtaining the data y given a particular 
model m (Raftery, 1995). 
 
Critically, the model evidence not only takes into account the relative fit of competing 
models but also their relative complexity (i.e. the number of free parameters). This 
is important because there is a trade-off between the fit of a model and its 
generalizability, i.e. how well it explains different data sets generated from the same 
underlying process. 
 
As the number of free parameters is increased, model fit increases monotonically 
whereas beyond a certain point model generalizability decreases. The reason for this is 
‘‘overfitting’’: an increasingly complex model will, at some point, start to fit noise that is 
specific to one data set and thus become less generalizable across multiple 
realizations of the same underlying generative process. As the model evidence cannot 
always be derived analytically, two commonly used approximations to it are 
Akaike information criterion (AIC) and Bayesian information criterion (BIC) (Penny et al., 
2004). Application of these approximations for model selection, however, do not 
necessarily give identical results because BIC favours simpler model whereas AIC is 
biased towards more complex models. 
 
A general convention is that if two models (say m1 and m2) are to be compared, then a 
decision is made only when AIC and BIC concur. The relative evidence of one model 
as compared to another is determined using the so-called ‘Bayes factor’: 
 

(2) 
 
where BF12 is the Bayes factor of model 1 with respect to 2. Following the selection of a 
best model for each individual subject, the optimal model for a group of subjects can 
be determined by the group Bayes factor (GBF), which is equal to the geometric mean of 
the Bayes factors for each individual subject. 
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3.3. The optimal model for spectral analysis 
Fig. 4 shows the evidence for the models, determined separately using AIC and BIC, in 
one subject. Model 1 is the optimal model to explain the data. The parameters for this 
model specify a serial model with connectivity (HG ! PT ! STS) and modulation of 
connection from HG to PT during the analysis of spectral envelope. In addition to the 
individual inference, Table 1 shows the Bayes factor (minimum of the two values 
computed using AIC and BIC) for model 1 with respect to the other 15 models. All the 
values are greater than 150, except for models 8 and 13 for which Bayes factors are 85 
and 26, respectively. This corresponds to ‘strong’ evidence for serial model with respect 
to models 8 and 14 and ‘very strong’ evidence with respect to all other models (Raftery, 
1995). Estimates were derived for the intrinsic and modulatory connection strengths 
(Table 2) of the optimal model and the probabilities that the parameter estimates are 
greater than zero. The probabilities that the magnitudes of intrinsic connection strengths 
are greater than zero are significant Furthermore, the probability that the modulation 
of the strength of the connection from HG to PT is greater than is also significant. 
 
The intrinsic modulations in the model correspond to effective connectivity: the direct 
modulatory effect of the activity in one area on that in another mediated by 
an anatomical connection. In anatomical terms such connection could be direct, or occur 
via a relay but there must be a mechanism for connection. Data about 
anatomical connections between human auditory areas are lacking: there are data 
showing connection for HG to PT (Tardif and Clarke, 2001) but we are not aware of any 
data on the connection from PT to STS predicted by the model. The basis for the 
modulatory connection deserves comment: this does not predict a direct anatomical 
effect on a connection, but rather a change in the connection strength between HG and 
PT during envelope analysis. The model predicts a component of the effect of activity in 
HG on that in PT that occurs specifically during spectral envelope analysis. This 
prediction could be tested with other methods such as neurophysiological recording from 
HG and PT during manipulation of the spectral envelope of stimuli. 
 
The model has certain limitations and should not at this stage be regarded as a general 
synthesis of all aspects of object analysis in all subjects. Broadly, the existence of a 
serial model is in accord with the concept of a single pathway for auditory object 
analysis, and supports the concept of PT as a critical ‘computational hub’ (Griffiths and 
Warren, 2002) at the interface between the abstraction of auditory object properties and 
further analysis in distinct higher centres for object analysis that also carry out semantic 
level processing. Further work is required to asses the extent to which the model 
generalises to larger populations of subjects. It should also be emphasised that the 
approach taken here addresses the simplest level of perceptual analysis when the 
subject is required to attend to the sounds but does not carry out any relevant task or 
semantic level analysis. It will be of considerable future interest to examine the effects of 
task and semantic analysis on intrinsic connectivity patterns. A number of questions 
arise such as these levels of processing are associated with modulation at later stages 
of the system (the connection between PT and STS) or the existence of additional back 
connections that are predicted by models of visual cortical processing. 

4. A cognitive neuropsychological approach 
The approach developed here has the potential to allow a fuller understanding of human 
cortical disorders. First, disorders manifest at the level of ethological stimuli such as 
speech, environmental sounds and music can be considered in terms of more generic 
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auditory processing to assess ‘bottom-up’ contributions to the deficit. The approach 
is developed in detail for music in Stewart et al. (2006) Second, an approach based on 
the exact specification of normal models will allow greater understanding of the effects of 
lesions in terms of their effects on connectivity between nodes in networks as well as the 
effects on the nodes themselves. Network models of auditory analysis 
incorporating connectivity go back to models such as the 1885 Lichteim model for 
speech (Lichtheim, 1885), based on an analysis of the effect of stroke on the speech 
network: here abnormal function allows inference about normal function and the 
approach is still valid today (Peretz and Coltheart, 2003). We now have the ability to 
define the normal networks for auditory analysis with much more precision to allow 
prediction of the effect of lesions, so that knowledge of normal function can now allow 
inference about abnormal function. 
 
Fig. 5 shows the structural damage to the brain of a patient who presented at the age of 
42 with an unusual auditory deficit after a right-hemisphere stroke. Damage occurred to 
the lateral part of HG on the right, the right planum temporale and the posterior superior 
temporal gyrus and the adjacent posterior superior temporal sulcus. He presented with 
unusual symptoms that might be characterised as ‘dystimbria’: musical instruments 
appeared distorted to him, speech appeared distorted to him (human voices sounded 
‘unreal’ as if they were being played through poor quality speakers) and he sometimes 
misidentified environmental sounds such as birdsong. 
 
A problem with spectral envelope analysis in this patient would be predicted on the basis 
of model 1 in the analysis above. Fig. 6 shows the effect of the lesion on the 
spectral envelope system that would be predicted entirely on the basis of anatomy. The 
lesion in his case would affect both the PT node and the connection between PT and 
STS. Psychophysical assessment of the patient (Table 3) confirmed normal perception 
of complex pitch as assessed by the detection of the pitch of individual sounds. 
Testing the detection of pitch in regular-interval noise with continuously variable gain to 
change regularity and pitch strength (using two-interval-two-alternative forced choice 
psychophysics and the method of constant stimuli) as described in Griffiths et al. (2001) 
yielded normal thresholds: this would be predicted on the basis of the intact pitch 
centre in lateral HG in the left hemisphere. He also demonstrated normal performance 
for the detection of amplitude and frequency modulation of a narrowband carrier with 
rates of 2 Hz and 120 Hz. These thresholds are expressed in Table 3 as z-scores 
compared to a control age-matched population. 
 
In contrast his thresholds for the detection of changes in spectral shape were double that 
of normal controls (Table 3). He had similar deficits in the detection of the frequency shift 
of the spectral envelope of a harmonic carrier and in the detection of changes in attack 
rate. 

5. Conclusion 
We have developed an approach to the analysis of auditory object properties based on 
the precise definition of the underlying cortical systems in normal subjects. The approach 
suggests serial analysis of the property of spectral envelope in HG then PT and STS and 
predicts deficits in timbral analysis that we have identified in patients with right-
hemisphere lesions. 
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Figures 
 

 
 

Fig. 1. Stimuli for functional imaging of the brain basis for spectralenvelope analysis. 
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Fig. 2. Functional imaging of the brain basis for the analysis of spectral envelope. 

 

 
 

Fig. 3. Models for spectral envelope analysis in the right hemisphere. 
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Fig. 4. Evidence for the models in a single subject: Plots of probabilities p(yjm) for individual subjects for the 16 
models included in dynamic causal modelling. The probabilities have been normalised so that they sum to one. 
These represent the probability of the model, given the data, assuming each model is, a priori, equally likely. 

 

 
 

Fig. 5. Lesion in patient with dystimbria. 
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Fig. 6. Effect of lesion on the normal network for spectral envelope analysis. 
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Tables 

 

 

 
 
The data for complex pitch and modulation are based on the exact methods specified in Griffiths et al. 
(2001) using two-interval-two-alternative forced choice psychophysics and method of constant stimuli to 
yield 75% thresholds that are compared with those of 20 age matched controls to yield a z score. * Show 
tests for which log transformation of the data is required to allow parametric statistics. The data for spectral 
timbre are based on the detection of changes to the shape of am ‘M’ shaped spectral envelope applied to a 
harmonic series in positive Shroeder phase with fundamental frequency of 100 Hz. The stimulus was roved 
over 20 dB and subjects had to detect increased gain (more dip at central point) or attenuation (less dip). 
The reference stimulus had attenuations in the envelope of 50, 0, 15, 0, and 50 dB at 0.8, 1.6, 2.4, 3.2, and 
4 kHz, respectively. An AXB design was used where subjects had to detect changes in the first or second 
stimulus compared to the middle reference. Threshold was derived from three-down-one-up adaptive 
tracking and z scores based on comparison with control data.  
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