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Abstract

Named Entity Extraction (NER) consists in identifying specific textual expressions, which
represent various types of concepts: persons, locations, organizations, etc. It is an important part
of natural language processing, because it is often used when building more advanced text-based
tools, especially in the context of information extraction. Consequently, many NER tools are now
available, designed to handle various sorts of texts, languages and entity types. A recent study on
biographical texts showed the overall indices used to assess the performance of these tools hide
the fact they can behave rather differently depending on the textual context, and could actually
be complementary. In this work, we check this assumption by proposing two methods allowing to
combine several NER tools: one relies on a voting process and the other is SVM-based. Both
take advantage of a global text feature to guide the combination process. We extend an existing
corpus to provide enough data for training and testing. We implement an open source flexible
platform aiming at benchmarking NER tools. We apply our combination methods on a selection
of NER tools, including state-of-the-art ones, as well as our custom tool specifically designed to
process hyperlinked biographical texts. Our results show both proposed combination approaches
outmatch the individual performance of all the considered standalone NER tools. Of the two, the
SVM-based approach reaches the highest performance.

1 Introduction
Named entity recognition (NER) is generally considered as a subtask of information retrieval, consisting
in identifying specific parts of a text for their semantic relation with some concepts of interest. The
notion of named entity itself is ambiguous, in the sense it can be defined in several different ways
[28]. The recognition task involves not only determining the position of the entity in the text, but
also classifying it among several predefined entity types, such as Location, Organization or Person.
The difficulty with NER comes from the fact one concept can take several textual forms, and one
textual expression can be used to represent several different concepts.

NER is a an important and popular field, because it allows adding structure to textual data,
which in turns is a prerequisite to build higher level information processing services [28]. Our work is
directly related to this trait, since our long term goal is to take advantage of biographical articles to
extract implicit social networks. NER constitutes a first step in this process, and we aim at using it to
identify spatio-temporal events in this type of texts. More particularly, our focus is on the Wikipedia
encyclopaedia, mainly for three reasons. First, it describes a very large number of persons and covers
a wide spectrum of domains, which will allow us to explore different fields of activity (sports, arts,
politics...). Second, it is available in many different languages, and we plan to use this to increase
the quality of the extracted information. For instance, suppose we want to extract the network of
members of the European parliament. Each one of them has a page on the English version of the
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encyclopaedia, however it is very basic for most of them, with only a few lines. But the same article
written in the native language of the representative is likely to be much more detailed. Third, a set
of tools associated to Wikipedia, such as Freebase [8] or DBpedia [7], allow accessing a part of its
content in a structured way, and even enriching it.

As shown in recent works [10, 38], the performance of a NER tool observed on a certain domain
does not necessarily transpose well when applied to a different type of text. Most existing NER tools
were trained or designed to handle news-related texts [21, 33, 15], so there is no guarantee they will
be as good on biographical articles. This has been confirmed by our previous study comparing a
selection of state-of-the-art NER tools, applied to a corpus of Wikipedia articles [5]. Their overall
performances are lower than those obtained on classic corpora, and tend to be very similar from
one tool to the other. However, a more thorough analysis reveals their behaviours are consistently
different when considering separately various aspects of the performance. In particular, the entity
type and article category have a strong effect on the performance of certain NER tools. Here, the
category of an article corresponds to the area(s) of activity of the person it describes: arts, politics,
sports, etc. (cf. Section 3.1). Differences in the number of entities and the distribution of entity
types across categories partly explain the observed differences. But other factors intervene, such as
the presence of various forms of ambiguities. For instance, artist biographies contain many artwork
titles, which certain tools find difficult to handle. These findings are consistent with the explanations
presented in the literature to justify the variations of performances between texts of different domains
(newswires, emails, reports, etc.) [38].

Based on these observations, we make the assumption those NER tools can be considered as
complementary, and we propose to combine them in order to improve the NER results. Our approach
is based on the use of a Support Vector Machine (SVM), whose inputs are the outputs of standalone
NER tools, as well as the article category, a global text feature we add to help the classification
process. This approach is particularly relevant for us, because it is language independent, and it
allows easily integrating additional metadata. Previous works have relied on such a stacking method,
but we contribute further in the following ways. First, we use state-of-the-art existing NER tools as
inputs, instead of custom-trained classifiers. This allows increasing the diversity of the behaviours
to be combined by the SVM, and such diversity is considered to affect positively the performance
of ensemble methods [26]. Second, we use a SVM to perform the combination, which was never
done before in the context of NER, according to our knowledge. Existing combination-based methods
usually rely on manually defined voting systems (cf. Section 5.1), which we use as a baseline to
assess the performance of our own method. Third, we propose a new simple NER tool dedicated
to the processing of Wikipedia articles, and study how it affects the combination process. Fourth,
we significantly extend our corpus of annotated Wikipedia articles to evaluate all the mentioned
NER tools. Fifth, we provide the community with a flexible open source Java platform for NER
benchmarking, which can easily be extended to any NER tool or performance measure.

The rest of this article is organized as follows. In the next section, we review the standalone NER
tools used as a basis for our combination process, and the measures used to assess their performance.
In Section 3, we describe different variants of the proposed combination process, as well as our
Wikipedia-specific NER tool. In Section 2.2, we introduce our corpus and evaluation platform, before
presenting and commenting our results. Finally, Section 6 describes how our work could be extended,
and presents some general perspectives.

2 Named Entity Extraction
In this section, we present the NER tools used in the rest of our work, as well as the methods designed
to evaluate them. The latter point is of interest, because it is related to both the definition of our
combination method (cf. Section 3.1) and to the comparison of NER tool performances given in
Section 2.2.
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2.1 Selected Tools

Selecting an appropriate NER tool is a difficult task, because they are numerous, and can rely on very
different approaches. One can distinguish two families: rule-based approaches, which are based on
the formal expression of linguistic knowledge, and machine-learning approaches, which use statistics
to build models [27]. Note it is possible to combine both approaches, and most tools additionally
integrate lists of words and expressions under the form of dictionaries or gazetteers.

For comparison purposes, we decided to apply the same tools we already used in our previous
study [5]: Stanford Named Entity Recognizer [19], Illinois Named Entity Tagger [31], OpenCalais
Web Service [36] and Alias-i LingPipe [3]. These were selected according to the following criteria:
1) publicly and freely available; 2) widespread use in the NER community; 3) can detect Location,
Organization and Person entities; 4) able to process the English language. The first criterion is meant
to exclude works not backed by any concrete software. The second one allows focusing on supposedly
efficient tools. The third and fourth ones are related to the longer term objective of this work, which
is to extract spatio-temporal events from Wikipedia biographical texts. In the present work, we added
two other tools to this selection. First, Apache OpenNLP [4], because it fits these criteria. Second,
Subee, which is a custom NER tool described later, in Section 3.2.

In the rest of this section, we present the selected third-party tools in more details. All of them are
based on machine learning methods, possibly mixed with rules and/or dictionaries. Except OpenCalais,
they are provided with one or several models, pre-trained on various corpora. Note most of these
tools also allow training new models by using different corpora. We chose not to train them on our
own corpus, because we wanted to study how well the predefined models perform when applied to
texts of a different domain, and to test whether their combination improves the performance.

Stanford Named Entity Recognizer (SNER). This popular Java tool is based on linear chain
conditional random fields [19]. It is provided with three predefined models for the English language,
based on different corpora: CoNNL03 [33] for the first, MUC6 and MUC7 [21] for the second and all
of them as well as ACE [15] for the third model. All three of them are able to recognize the targeted
entity types (Location, Organization and Person) as well as others for the second model. Each of
these three models exists in a plain version and in an augmented version, which includes distributional
similarity features, i.e. additional data meant to improve performance. An additional option allows
enabling or disabling case sensitivity. It is possible to train new models, possibly by taking advantage
of existing dictionaries.

Illinois Named Entity Tagger (INET). This Java tool is based on several supervised learning
methods: hidden Markov models, multi-layered neural networks and other statistical methods [31]. It
also uses manually annotated dictionaries for lookup, and word clusters generated from unlabelled
text to improve performance. A few word clusters and dictionaries are distributed with the tool, and it
is possible to build new ones. Word clusters, models, output encoding schemes can be configured via
a specific file. The tool is provided with two models trained on English texts from the CoNLL03 [33]
and OntoNotes [23] corpora, respectively. Both can detect Location, Organization, Person entities,
as well as other types. INET additionally allows training new models.

OpenCalais Web Service (OCWS). This tool takes the unusual form of a Web service [36]. Its
use is free of charge, and a public API is available for developers. However, because it is a closed
source commercial product, the nature of the internal processing it performs is unknown to us, and
neither is the nature of the data used for its training. It can process English, French or Spanish raw or
structured (XML/HTML) text. It supports 39 different types of entities, some of which are subsumed
by the ones we target. For this reason, we associate several OCWS entity types to the same targeted
type. The Person type is treated as such. A Location can be one amongst City, Continent, Country,
ProvinceOrState and Region. An Organization can be of the OCWS types Company, MusicGroup or
Organization. Note OCWS is able to perform other NLP-related tasks besides NER.
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Alias-i LingPipe (AILP). Like OCWS, this software is commercial and can handle various other
NLP tasks besides NER [3]. But this Java tool is open source, and a free license is available for
academic use. It relies on n-gram character language models, trained through hidden Markov models
and conditional random field methods. Three different models are provided for the English language.
Two of them are dedicated to genetics-related texts, and are therefore of little interest to us. The
third is built on the MUC6 corpus [21] and can detect Organization, Location and Person entities.
Many aspects of the process, such as the chunking method, can be controlled via a configuration file.

Apache OpenNLP (APON). This Java open source tool developed by the Apache Foundation
can handle various NLP-related tasks, including NER [4]. Entity detection is performed through a
maximum entropy classifier, able to handle various features as inputs (n-gram, dictionary, etc.). Many
models are proposed, dealing with 7 European languages including English, and focusing on specific
entity types, including the ones we target (Location, Organization, Person). New models can be
trained, too, using various combination of predefined or custom features.

2.2 Evaluation Methods

For a given text, the output of a NER tool is a list of entities and their associated types, and the
ground truth takes the exact same form. In order to assess the tool performance, one basically wants
to compare both lists. The most widespread approaches are based on the classic Precision and Recall
measures. Let us first define the terms TP, FP and FN , corresponding to the numbers of True
Positives, False Positives and False Negatives, respectively. A TP is an entity which was correctly
detected. A FP corresponds to the case were the NER tool detects an entity where there is none.
A FN occurs when an entity is not detected by the tool. The Precision and Recall measures can
then be defined as Pre = TP/(TP + FP ) and Rec = TP/(TP + FN), respectively. The Precision
can be interpreted as the proportion of detected entities which are correct, whereas the Recall is the
proportion of real entities which were correctly detected. Some authors prefer to use a single score,
obtained by taking their harmonic mean, also called F -measure: F = 2(Pre · Rec)/(Pre + Rec).

However, different variants exist, depending on the goal and context of the NER task [29]. They
differ mainly on how they define what they consider to be a correct entity. Concretely, these differences
mainly concern two points: 1) how they handle the two aspects of entities (position and type) and 2)
how they penalize partial matches. First, the correctness of an estimated entity can be assessed both
spatially and typically. We consider it to be spatially correct if the NER tool managed to identify
its position in the text. We say it is typically correct if the entity type assigned by the NER tool
corresponds to the real one. Second, some evaluation approaches require to identify the exact position
of the entity in the text (exact spatial match), whereas others reward even partial matches, i.e. a
situation where the estimated entity spatially intersects with the actual one.

The simplest, and most widespread variant, is to consider an entity is a true positive if and only if
both its position and type are exact. This is the case, for example, of the method adopted for the
MUC conference series [21], which additionally considers only exact matches. It takes the form of a
single performance measure, combining both typical and spatial aspects at once. On the contrary,
in our previous work [5], we wanted to make a detailed comparative study of the performances of
NER tools on biographical texts, so we adopted the opposite approach. Not only did we consider
separately the spatial and typical aspects, but we also examined the Precision, Recall and F -measure
independently for each type, as well as for each article category.

Our context in this article is different, because of our longer-term objective, which is to identify
spatio-temporal events in a collection of texts. First, we are not interested in the precise limits of an
entity in the sentence containing it, but rather by its simple presence and approximate position. For
this reason, we consider partial spatial matches as very acceptable results. Second, when assessing the
performance of the tested NER tools, we do not need to consider independently each entity type and
article category anymore (this level of detail is superfluous). It is still interesting to consider separately
position and type, though: if an entity is correctly detected, but with a wrong type, some post-process
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might allow correcting the mistake. Note that, independently from performance assessment, we still
use some of the detailed measures from [5]: these are considered as weights in the context of various
voting processes described in Section 3.1.

In summary, when evaluating the NER tools in Section 4.2, we consider a detected entity to be
a true positive even if it only partially matches the actual entity. Moreover, we consider position
and type separately, in order to be able to clearly assess both these aspects of the NER performance.
As an example, let us consider the following sentence: Nelson Mandela was born into the
Madiba clan in Mvezo. Suppose the evaluated tool detects Mandela as a person and Mvezo
as a location. Then, Mvezo is both a spatial and a typical true positive. However, the type of the
estimated entity Mandela is correct, but its location only partially matches the actual entity, which
would be Nelson Mandela. Still, as stated before, we consider it to be both a spatial and a typical
match, too. Finally, the evaluated tool failed to identify Madiba clan at all, so this is both a
spatial and a typical false negative.

3 Proposed Approach
We propose to modify the NER process in two distinct ways, in order to improve its overall performance
when dealing with biographical texts. The first point consists in combining several standalone NER
tools; we describe two main methods to perform this combination, with several variants. The second
point is the definition of a new NER tool able to take advantage of the information encoded in Web
pages under the form of hyperlinks.

3.1 Combination Process

The idea of combining several standalone NER tools is based on the observations made in our previous
study [5], which highlight the fact some tools are better with certain entity types or article categories
than others. Hence our assumption that an appropriate combination of their outputs might lead to
an improved overall performance. We propose two ways of doing so: a naive method based on a
voting system, and an SVM-based approach we expect to be more efficient. In this section, we first
describe two pre-processing steps which are necessary for certain variants of both methods, and then
the methods themselves.

Entity Groups. For a given article, the first step is to apply separately each one of the standalone
NER tools, resulting in distinct sets of estimated entities. Each entity is described by its starting
and ending positions, expressed as character offsets relatively to the whole text, and by its type.
Comparing the types of the entities outputted by the various NER tools is straightforward, since they
are basically symbols. However, comparing their boundaries is much less direct, because entities can
contain several words, and partially overlap. The classic BIO approach consists in first segmenting the
text in chunks (words), and use an additional label to indicate if a chunk is at the Beginning, Inside
or Outside an entity. However, this requires performing sequential labelling, in order to preserve the
continuity of the entities. We propose an alternative approach, based on what we call entity groups.

We define an entity group as a set of entities detected by different NER tools, such that all
those entities match. As explained in Section 2.2, we accept partial matching, which means entities
belonging to the same group overlap at least, and match exactly at best. An entity group can be
considered as a consensual estimation of an actual entity, with partial disagreement between NER
tools regarding the exact position and/or the type. For instance, let us consider again our example
Nelson Mandela was born into the Madiba clan in Mvezo. Suppose we have 3 NER
tools, considering respectively Madiba, Madiba clan and the Madiba clan as entities. Then
this set of entities constitutes an entity group. The role of the combination methods is to treat each
group, in order to get a final result regarding the existence of the supposed entity, and its position
and type (if appropriate).
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Article Categories. Because of the previously mentioned heterogeneity observed in the behaviour
of the selected tools, it is necessary to take some context into account in order to get reasonably good
results. In [5], the article categories were identified manually, which was appropriate since the goal
was only to study how NER performance was influenced by this factor. But in the present work, the
category is directly used during the NER process, so it must be identified in a non-supervised way. For
this purpose, we defined a two-fold automatic method. It relies on 12 predefined categories, described
in Table 1. Note we use twice as many categories as in our previous work, in order to perform a finer
characterization of the articles. Moreover, categories are not mutually exclusive anymore, for the
same reason.

Table 1: Categories of Articles
Academia Architecture Art Business
Law Medicine Media Military
Politics Religion Sports Other

The first step in our process consists in analysing the first sentence of the considered article. In all
Wikipedia biographies, it takes the following form: <Firstname Lastname> (<Birth Date> –
<Death Date>) is/was a <Occupation>. We defined a mapping from textual expressions
describing occupations to our categories. An article is assigned to all the categories whose associated
occupations appear in its first sentence. Although rare, it is possible that no category can be found
at all, for instance because the concerned occupation is not in our map, or because the first sentence
is exceptionally structured differently. In this case, we switch to our second step, which consists
in looking up the considered Wikipedia page on Freebase [8]. Freebase is an online collaborative
database containing data gathered from various public sources. What interests us in Freebase, is that
each Wikipedia page is described in a structured way, including a set of normalized concepts. More
particularly, some of these concepts are related to occupations. We therefore defined a second map
aiming at converting a subset of Freebase concepts to our categories. If, for some reason, this second
step also fails, then the article is associated only to the category Others. Note this category can also
be assigned when the occupation could be identified during one of the two steps, but does not fit in
our article classification.

Vote-based Method. With this combination method, our goal was to define a simple process to
be used later as some kind of baseline, when assessing the performance of the SVM-based approach.
It is constituted of three successive votes aiming at deciding of a given entity existence, location and
type, respectively. Each entity group identified during the pre-processing step is processed iteratively.

During the first vote, each tool represented in the group is considered to vote for the existence of
the entity, whereas each tool not represented votes against. We say a tool is represented in a group
if one of the entities in this group was detected by this tool. If the vote leads to the conclusion the
entity does not exist, the process ends here for the considered group. Otherwise, it continues with
both other votes. The second vote aims at solving disagreements regarding the exact position of the
entity. Each represented tool votes for the starting and ending positions it detected. Similarly, in the
final vote, each represented tool votes for the type it detected. The majority positions and type are
considered as the most consensual ones, and are outputted by our combining algorithm.

The simplest voting approach, uniform voting, consists in giving the same importance to each
tool. We alternatively considered using different sets of weights during the voting process, in order
to reflect the relative quality of the tools. These weights are based on the performance measures
defined in [5] and presented in Section 2.2. We process them over our training set (cf. Section 4.1
for a description of our corpus). In the first vote (existence of the entity) we use the spatial Precision
to weight the for votes, because a high value means few false positives, so one can trust such a tool
when it detects an entity. On the contrary, we used the spatial Recall to weight the against votes,
since a high value means few false negatives, so one can trust such a tool when it does not detect an
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entity. We consider both partial and exact matches in both measures. For the second vote (entity
position), we used the same principle, but this time with the spatial Precision and Recall processed
using only exact matches. For the third vote (entity type), we used the typical Precision and Recall
(i.e. processed by comparing only types, and not positions).

The article category was introduced in our voting process by considering one distinct weight
for each category. Those are obtained by processing the previously mentioned Precision and Recall
variants not for the whole training set, but only for subsets of articles from the considered category.
Since we have 12 categories, 2 different possible weights for each vote (for or against) and 3 distinct
voting steps, this amounts to a total of 72 category-wise weights for each tool. For comparison
purposes, the results obtained with the three types of weights are commented in Section 4.2: uniform,
overall and category-wise weights.

SVM-based Method. The voting process described in the previous section can be seen as a raw
approximation of the optimal combination of NER tools. To get a better estimation, we alternatively
propose training a multiclass SVM to perform the same task. It is possible to encode the information
fetched to the SVM in various ways. We propose two partially different approaches, to be compared
later in Section 4.

The first approach is relatively close to the voting process, in the sense the data is considered
through the entity groups defined during the pre-processing step. For each NER tool, we use as many
binary inputs as there are different entity types, so 3 in the case of this work (Organization, Location,
Person). For a given entity, the input corresponding to the type estimated by the considered tool
is set to +1, whereas the other inputs take the value −1. Otherwise, if the tool did not detect the
entity at all, all inputs are set to −1. To encode article categories, we use as many inputs as there
are categories, i.e. 12 in our case. Each category associated to the considered article receives the
value +1, whereas the others are all −1. We combine 6 different NER tools if we count our own one
(cf. Section 3.2), so our SVM has 30 inputs in total. The output is an integer among 4 different
values, representing either the absence of any entity, or its type if an entity is deemed present. One
may notice this method allows estimating both the existence and type of an entity, but not its exact
position. For this matter, we proceed similarly to the voting-based approach: the NER tools vote for
a starting and an ending position, and the majority ones are kept.

The limitation of this approach is that the SVM determines only the presence and type of the
entities, but not their location. Therefore, we propose a second SVM approach which takes advantage
of the BIO method described in Section 3.1 to perform this additional task. This time, the text is first
segmented to get its constitutive chunks (word), which are then fetched to the SVM. To represent
the BIO labels, we need 2 supplementary inputs for each tool, in addition to those already defined for
the first approach. A word at the beginning or inside an entity is represented by the value +1 in one
of these additional inputs, whereas a word located outside corresponds to −1 for both inputs. Like in
the first approach, a specific value is used to output an absence of entity. To represent the fact a
word belongs to an entity, we use two distinct values for each entity type: one for Beginning and one
for Inside. So, we have a total of 7 possible output values. However, this process treats each word
separately, which could have an impact on performance. To solve this, we propose another variant of
this approach, in which the SVM is additionally fed the type and BIO label of the previous chunk.
This is meant to help the tool handling entities spanning multiple words.

3.2 Simple URL-based Entity Extractor

We propose a very simple NER tool, called Subee (Simple URL-based Entity Extractor), for two
reasons: to take advantage of a type of information ignored by traditional algorithms, and to highlight
the fact a NER tool which is not very efficient on its own can still bring some performance improvement
in the context of our combination process.

The particularity of the texts we process, besides the fact they are biographies, is that they are
Wikipedia articles, hence Web pages. We therefore have access not only to the text itself, but also
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to some additional information encoded using the HTML language. We are particularly interested
by the hyperlinks, especially those located in the article itself (by opposition to those often listed as
external references at the end of Wikipedia pages). These links have two characteristics which are
very relevant to us: first, they are manually defined by the authors or editors of the article, so they
can be considered as valuable manual annotations; second, they highlight objects of interest, which
most often include named entities.

Traditional NER tools are designed to process plain text, so by definition they ignore this useful
information. Our tool simply parse the HTML source code and analyses the existing hyperlinks.
We focus only on the internal URLs, i.e. those directed at other Wikipedia pages. Note almost all
hyperlinks found in an article body are internal. We then perform a first filtering, by discarding links
whose label (i.e. textual content) does not match some typographical criteria. This text must not be
purely numerical (to avoid dates) and must start with a capital letter (to focus on proper names).
The remaining labels are considered as potential entities, and an additional test allows confirming or
invalidating this status. For this matter, we first retrieve the URL pointed by the link, and fetch it to
Freebase (cf. Section 3.1 for a description of Freebase). Freebase uses specific concepts to indicate
the Wikipedia page corresponds to an organization, a location or a person (among others). It is
therefore possible to simultaneously check if the expression is an entity and to retrieve its type when
it is the case.

This process allows discarding most of the false positives, however it tends to be confused by
demonyms. A denomyn is an adjective relative to a place, or the name given to its inhabitants.
For instance, the demonyms of Spain are Spanish and Spaniard. In Wikipedia articles, most
demonyms are hyperlinks pointing at the concerned place, and for this reason, our method mistakes
them for location entities. To prevent this, we constituted a list of unambiguous demonyms and use
it to discard any matching label.

Another issue is the high number of false negatives: a lot of entities are not associated to
hyperlinks, and are missed by our method. However, one can remark that, when writing a Wikipedia
article, the convention is to define a hyperlink only for the first occurrence of the concerned object [2].
An easy way of solving the problem therefore consists in looking for the other occurrences of the same
expression in the rest of the text, and consider them as the same entity (if the original expression is
supposed to be an entity itself, obviously). We also take advantage of another Wikipedia convention
regarding the use of acronyms. The first time such an entity appears, its name is generally stated in
full, followed by the corresponding acronym in parenthesis [1]. We look for occurrences of both the
full name and acronym in the rest of the text. Finally, the last improvement concerns the name of
the person described by the article of interest. The name of the subject of a biography appears many
times, but never as a hyperlink, obviously (otherwise, the Web page would be pointing at itself).
Hopefully, the title of the article corresponds to this name, so we can still identify the associated
entities by searching for various combinations of last names and first names or initials in the text.

4 Experimental Evaluation
In this section, we first briefly present our platform and corpus. We then describe and comment the
results obtained with the selected NER tools used independently and combined through the various
proposed methods.

4.1 Corpus and Implementation

The corpora traditionally used to evaluate NER tools are mainly based on newswire texts: MUC6
[21], CoNLL [33], ACE [15], OntoNotes [23], etc. Several studies showed these are not reliable, in the
sense the performance NER tools obtain on these data does not hold on different datasets. This was
observed not only for datasets of different text types, such as emails or speech transcriptions [38], but
also for datasets of the exact same type [10, 38]. Note the same observation was made for languages
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other than English, such as Chinese [22]. Moreover, Balasuriya et al. showed standard NER tools
performance is lower on Wikipedia texts [6], which highlights the need for a specific corpus.

For these reasons, we decided to constitute our own corpus. We chose to define it manually, and
not to use an automatically method such as the one described in [30], in order to closely fit our
needs and control precisely the meaning of the annotated entities. The corpus was initially created by
randomly picking articles, but a bias was later introduced towards the categories constituting our
main interests in terms of future applications (social network extraction), as shown in Table 2. Note
one article can have several categories, since one person can be active in several domains during
his life. The selected articles were initially annotated by two different persons, then a second pass
was performed by a third member of our team, and a third pass was finally performed collectively.
This corpus was used in our previous work [5], but since then, we extended it from 247 to 408
articles (only Wikipedia biographies). This approximately amounts to 500, 000 words and 45, 000
Location, Organization and Person entities. The revised and completed corpus is freely available
online1, including the original Wikipedia pages.

Table 2: Distribution of Categories in the Corpus
Academia 98 Architecture 13
Art 79 Business 13
Law 53 Medicine 6
Media 43 Military 20
Politics 176 Religion 5
Sports 31 Other 10

In order to implement our propositions, we used Nerwip, the Java platform we created for our
previous work [5]. The original version already contained classes allowing to apply most of the selected
tools and assess their performances. We completed it with the ability to handle OpenNLP, process
the MUC performance measures, and implemented our Subee NER tool and our two combination
methods in a compatible way. For the SVM-based method, we used the widespread LIBSVM library
[9], with a RBF kernel. LIBSVM uses the one-against-one strategy for multiclass problems, i.e. one
SVM is trained to discriminate between each pair of classes. The different NER tools can be applied
in a parallel way, which means our platform is as fast as the slower tool: the combination process
itself is extremely fast, and the processing time it requires is negligible when compared to the NER
tools. The complete platform is open source and freely available online2. It is flexible enough to allow
integrating any other NER tool and performance measure, therefore it constitutes a good basis to
benchmark NER tools (be it on Wikipedia texts or not).

4.2 Results and Discussion

We first focus on the performances of the standalone tools, before considering the combination
methods. Two-thirds of the corpus were used for training the combination methods, the remaining
third was used for testing all tools. Note the third-party tools were not trained on those data. When
several models or parameters were available, we selected the one giving the best results obtained on
the training set, in terms of F -measure.

Standalone Tools. We start with the 5 third-party tools. Table 3 shows the Precision, Recall and
F -measure obtained on the testing set. As expected, the performances are significantly lower than
what can be observed in the literature when the same algorithms are applied on the corpora for which
they were trained. According to the F -measure, INET and SNER are the best tools, with OCWS as
a close third. AILP and APON are behind, especially in terms of typical performance.

1http://dx.doi.org/10.6084/m9.figshare.1289791
2https://github.com/CompNet/Nerwip
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Table 3: Performances of the third-party tools
Best Previous Model Nerwip Model

Position Type Position Type
Tool Pre Rec F Pre Rec F Pre Rec F Pre Rec F

AILP 0.78 0.86 0.82 0.52 0.57 0.54 0.88 0.82 0.85 0.79 0.73 0.76
APON 0.89 0.48 0.62 0.73 0.40 0.52 0.78 0.70 0.73 0.59 0.53 0.56
SNER 0.87 0.88 0.88 0.69 0.69 0.69 0.90 0.91 0.90 0.81 0.82 0.82
INET 0.88 0.88 0.88 0.75 0.74 0.75 0.94 0.89 0.91 0.87 0.83 0.85
OCWS 0.93 0.76 0.84 0.76 0.61 0.68 – – – – – –

Table 4 presents the performances obtained by Subee. We assessed its performance for all
combinations of the different features described in Section 3.2, but we present only the selection of
the obtained results, for space matters. The first row corresponds to the simplest variant, consisting
in using only hyperlinks. As expected, the Precision values are high, but the Recall values are low due
to the large number of false negatives: remember only the first occurrence of an entity is hyperlinked
in Wikipedia articles (cf. Section 3.2). In the second row, the search for additional occurrences is
enabled, allowing to decrease the number of false negatives while keeping a relatively high Precision.
In the third row, we add the processing of the article title, aiming at looking for entities corresponding
to the person which constitutes the topic of the article. This slightly increases the Precision, and the
increase in Recall is even higher. The fourth row displays the performances obtained when additionally
enabling the processing of acronyms, which has mainly a positive effect on type processing. Finally,
the last feature is the processing of demonyms, which slightly improves Precision for both location
and type. Subee displays the best performance in terms of spatial Precision, which confirms the
assumption that many hyperlinks correspond to entities. However, its overall performance is largely
decreased by its low Recall value, which means a large number of entities are not associated to
hyperlinks at all.

Table 4: Performances of Subee
Position Type

Occurrences Title Acronyms Demonyms Pre Rec F Pre Rec F

× × × × 0.95 0.26 0.41 0.76 0.21 0.33
X × × × 0.92 0.38 0.54 0.72 0.30 0.42
X X × × 0.94 0.58 0.72 0.80 0.49 0.61
X X X × 0.94 0.58 0.72 0.83 0.52 0.64
X X X X 0.96 0.58 0.72 0.84 0.52 0.64

Relatively to the other standalone (third-party) tools, Subee is clearly in the lower tier, just
above APON. It is worth noticing our goal with Subee was precisely to define a tool reaching a high
Precision, in order to see if a combination method was able to take advantage of this characteristic
by using such an input when appropriate and discarding it the rest of the time. So, the low Recall,
even if not desirable, was expected and does not constitute a problem in the context of our work.

Combination Methods. Let us now comment the results obtained when combining the NER tools.
Table 5 presents the performance obtained for the vote-based approach. The first column represents
the type of weights: uniform, overall (processed over the whole corpus) or category-wise. The second
column indicates whether Subee was used or not.

It is worth noticing that, independently from the type of combination, the obtained F -measure are
always higher than those of the best standalone tools. In terms of Precision, the vote-based approach
is second only to Subee, and in terms of Recall, it is just behind INET for locations and reaches the
best score for types. Another important observation is that the different variants of this approach all
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have very similar performances. The types of weights we tested do not have any observable effect on
any measure, while the use of Subee positively affects the performance, but only marginally.

Table 5: Overall Performances of the Vote-Based Approach
Best Previous Model Nerwip Model

Position Type Position Type
Weights Subee Pre Rec F Pre Rec F Pre Rec F Pre Rec F

Uniform × 0.94 0.84 0.89 0.80 0.72 0.76 0.94 0.91 0.93 0.86 0.84 0.85
Overall × 0.94 0.84 0.89 0.80 0.72 0.76 0.94 0.91 0.93 0.87 0.84 0.86
Category × 0.94 0.84 0.89 0.80 0.72 0.76 0.94 0.91 0.93 0.87 0.84 0.86
Uniform X 0.94 0.87 0.90 0.81 0.76 0.78 0.94 0.93 0.93 0.86 0.85 0.86
Overall X 0.94 0.87 0.90 0.81 0.75 0.78 0.94 0.92 0.93 0.87 0.85 0.86
Category X 0.94 0.87 0.90 0.81 0.75 0.78 0.94 0.92 0.93 0.87 0.85 0.86

Table 6 presents the results of the SVM-based approach. Again, we did not include all possible
combinations of features in the table, we instead focused on the most interesting results. The first
column (Position) corresponds to the method used to determine the position of the entities: entity
groups with uniform weights (Uniform), with overall weights (Overall), with category-wise weights
(Category), chunking and considering only the current word (Current), and finally chunking and
considering both current and previous words (Previous). The second column (Subee) indicates if
Subee was used, and the third one (Categories) shows whether or not article categories were used as
an additional input of the SVM.

The best version of our SVM-based approach equals or outperforms all the individual tools, for
all three measures (Precision, Recall and F -measure) in both performance aspects (entity position
and type). It also outperforms the best variant of our vote-based method, especially regarding type
detection. Like for the vote-based approach, we observe no effect from the type of weights used to
combine entity groups (three first rows of the table). Using the BIO approach instead does not bring
clearly better results (rows 4 and 5). When using only the current word, it is even slightly inferior,
whereas using both the current and previous words leads to results comparable to those obtained
with the entity group approach. However, the performance of the BIO method is improved when
using Subee (row 6), which is not the case when positions are decided based on entity groups. Finally,
including categories in the SVM inputs (row 7) allows slightly improving all measures, especially
Recall, which confirms the interest of using such a global feature.

Table 6: Overall Performances of the SVM-Based Approach
Best Previous Model Nerwip Model

Position Type Position Type
Position Subee Categories Pre Rec F Pre Rec F Pre Rec F Pre Rec F

Uniform × × 0.94 0.85 0.89 0.82 0.74 0.78 0.93 0.92 0.93 0.87 0.85 0.86
Overall × × 0.94 0.85 0.89 0.82 0.74 0.78 0.93 0.92 0.93 0.87 0.85 0.86
Category × × 0.94 0.85 0.89 0.82 0.74 0.78 0.93 0.92 0.92 0.87 0.85 0.86
Category X × 0.94 0.86 0.90 0.83 0.75 0.79 0.93 0.91 0.92 0.87 0.85 0.86
Category X X 0.94 0.87 0.90 0.83 0.77 0.80 0.93 0.92 0.92 0.87 0.85 0.86
Current × × 0.92 0.86 0.89 0.80 0.75 0.77 0.92 0.91 0.92 0.85 0.85 0.85
Previous × × 0.95 0.83 0.89 0.82 0.73 0.77 0.93 0.92 0.92 0.86 0.85 0.86
Previous X × 0.96 0.85 0.90 0.84 0.75 0.79 0.93 0.91 0.92 0.87 0.85 0.86
Previous X X 0.96 0.87 0.91 0.85 0.77 0.81 0.93 0.91 0.92 0.87 0.85 0.86

Instead of considering the performance at the level of the whole testing set, it is also possible
to study it by category or by type. In other words, one can process the same measures by focusing
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only on a certain category or type. In our previous study, we used this approach to show NER
tools do not behave similarly even if their overall performances were very close [5]. In other terms,
their performances are not homogeneous: some tools are better on certain types or categories. An
interesting effect of the combination of NER tools is that the performances observed at the level of
the types or categories are smoothed compared to those of the standalone NER tools. The overall
performance is increased because the combination allows to make it more homogeneous over entity
types and article categories.

5 Related Works
Our work is related to two topics of the NER community. First, the use of several classifiers to improve
NER performance, since we propose several methods to combine the outputs of multiple NER tools.
Second, works taking advantage of Wikipedia, because we focus on the analysis of Wikipedia articles,
use it directly to define our own NER tool Subee (Section 3.2) and take advantage of Freebase (which
is largely based on Wikipedia) to identify entity types.

5.1 NER Tools Combination

Combining several classifiers to improve the overall performance is a popular strategy used in the
machine learning domain. Since NER can be described as a classification problem, it is not surprising
to see the same approach was applied to solve this problem, in various ways.

In certain works, an additional classifier is used to post-process the output of a single NER-trained
classifier, and improve its results. For instance, in [11], Collins compares the use of a boosting and a
perceptron classifiers, when applied to the output of a single maximum-entropy tagger (as well as
additional features), in order to increase the spatial accuracy of entity detection. By comparison, we
also use an additional feature (article category), but our primary goal is to combine several NER tools.

Some works rely on ensemble methods to combine the outputs of multiple instances of the same
learner. In [34], Szarvas et al. apply boosting to the C4.5 decision tree learning algorithm. Five
different trees are trained on various sets of text features, and combined with a 3/5 qualified majority
vote. The method of Lucarelli et al. is a composite approach relying on 4 consecutive analyses of the
text. The two last ones are performed by two pairs of combined SVMs, whose training is performed
through active learning (the algorithm requires manual annotation for instances likely to improve its
performance). Among other points, our work differs mainly with these approaches in the fact our
objective is to combine very heterogeneous NER tools.

Other works study the combination of several different classifiers through various voting mecha-
nisms. Some approaches assign the same weight to all considered classifiers (uniform voting), and
keep the majority decision as in [25]. Other approaches proceed similarly, but use a qualified majority
instead [18]. In the approach proposed by Dimililer et al. [14], a classifier is not always allowed to
vote, depending on the entity type. This classifier selection is performed through a genetic algorithm
applied on the training data. In other cases, classifier importance can vary in the voting process. In
[35], Thao et al. use the Precision measure as a vote weight to combine the output of heterogeneous
classifiers. They consider the overall measure obtained on their training set, and they also propose
to modulate the weights depending on the detected entity type. Florian et al. focus on statistical
classifiers only [20]. This allows them taking advantage of the probability distributions they produce,
in order to estimate specific vote weights for each classifier and type. Some authors estimate those
weights through optimization methods, such as genetic algorithms [17] or simulated annealing [16].
By comparison, we also propose to use various voting mechanisms rather similar to those used in the
literature (cf. Section 3.1). One difference is the use of an additional feature (article category) to
modulate the vote weights. Moreover, we propose another approach fully based on SVM, which does
not rely on the votes (at least in the above sense), since SVMLIB uses the one-against-one strategy
to handle multiclass problems (cf. Section 4.1).
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Some authors rely on procedural approaches rather than weights. In [40], an ad hoc rule-based
procedure is designed to combine the outputs of several statistical classifiers trained on Chinese text,
leading to better results than with uniform voting. In [39], Vlachos trains two different classifiers to
recognize biomedical entities such as genes. He notices one classifier is better to detect new entities,
i.e. entities absent from the training set. Our own SVM-based method is related to these procedural
approaches. However, instead of designing rules manually, it is automatically trained from the data.
Vlachos’ idea of using additional information to improve the combination can also be related to the
use of categories in both our voting and SVM-based methods. However, the way this information is
integrated to the combining process is completely different.

Our method differ from all the cited works by other aspects. First, we mostly use already existing
NER tools, when all other approaches rely only on custom tools, taking the form of classifiers trained
for NER. This generally means those classifiers are all fetched the same features and are trained on
the exact same data. This is likely to decrease the diversity of their behaviour, which in turns tends
to lower the overall performance when applying ensemble approaches. On the contrary, the tools
we used are provided with various models obtained on various corpora (or combinations of corpora),
rely on various processing principles (both rule-based and machine learning), and use various text
features. Second, we include a global feature in the combination process (article category), when
existing approaches consider only the classifiers outputs.

5.2 Wikipedia-Based Approaches

There are strong links of various natures between NER and Wikipedia (WP). In [37], Toral & Munoz
consider this encyclopaedia as a source to automatically extract gazetteers and dictionaries to be
used during a NER task. For a given word or expression, they analyse the text of the corresponding
WP page, in order to determine if it is a named entity, as well as to identify its type. It is worth
noticing they particularly focus on the first sentence of the article, as we did to automatically derive
the category of an article (cf. Section 3.1).

Other works use WP to deliver additional features to classifiers trained for NER. When processing
the text of interest, candidate expressions are identified, corresponding to potential entities. Various
WP-based calculations are then performed to characterize these expressions and improve the NER
process. The method proposed by Kazama & Torisawa [24] focuses exclusively on the first sentence
of the article possibly associated to a candidate expression. In [12], Cucerzan uses not only the WP
article itself, but also metadata such as redirection pages and WP article groups. Interestingly, to
evaluate his method, he applies it to a set of WP pages, and adds WP hyperlinks to the detected
entities. He then compares the result with the actual hyperlinks of the original WP articles. The
assumption he implicitly makes is that manually defined hyperlinks appearing in WP articles can
highlight named entities. Our NER tool Subee (cf. Section 3.2) is based on the same principle.
However, its functioning is very different (and voluntarily much simpler), and its purpose as well,
since we process only WP articles. This work is extended by Dakka & Cucerzan [13], under the form
of a classifier able to determine the entity associated to a WP page.

Nothman et al. [30] propose to use WP to automatically constitute NER corpora for both training
and testing. They first define a classifier to associate a single entity to each one of the considered
WP pages, using again first sentences and article groups. Then, they take advantage of hyperlinks (as
we did in Subee) to associate entity types to text expressions. A rule-based method allows them to
identify subsequent occurrences of the same entity in the rest of the article (as mentioned in Section
3.2, hyperlinks are defined only for the first occurrence in WP articles). The main differences with
Subee are the goal (we aim at defining a NER tool, not a corpus) and the fact we use Freebase to
identify entity types.

A similar approach was designed by Richman & Schone [32] to generate multilingual corpora.
They first analyse a collection of English WP pages, in order to identify their entity types. They then
switch to another language, and proceed like Nothman et al., with an extra step: when a hyperlink is
detected in the processed text, they identify the targeted page and retrieve its English counterpart,
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in order to use its entity type. The transition between languages is performed primarily using WP
interwiki links, i.e. manually defined connections between WP articles in different languages, but
describing the same entity. This highlights the interest of using WP as a base for deriving NER tools
adapted to multilingual purposes. We plan extending our own NER tool Subee in a similar way.

6 Conclusion
In this work, we described a method to improve the performance of NER tools when applied to
biographic texts, and more particularly to Wikipedia articles. It consists in combining existing state-of-
the-art standalone NER tools, as well as a custom tool we designed specifically to process Wikipedia
articles (or more generally, text containing hyperlinks). We proposed two different combination
methods (plus some variants), and compared them experimentally on a corpus constituted by
ourselves. It turns out both methods obtain better results than the NER tools they are built upon,
when these are considered individually. Our most promising results are obtained with the SVM-based
approach, when it both takes advantage of the global feature we introduced and is used jointly with
our custom NER tool.

One of the main advantages of our approach is that it can be used to integrate heterogeneous
NER algorithms in a single tool, since it does not rely on any assumption regarding their functioning.
Moreover, it allows using tools one cannot train for practical reasons. This was noticeably the case,
in this work, of the OpenCalais Web Service, whose source code is closed. Another interesting point
is that the combination process itself is language- and domain-independent: our method could be
applied to process any type of text, provided the NER tools used as inputs are able to treat it.

However, some limitations remain. The first one concerns the training time of the SVM, which is
rather long (several hours on a standard workstation). This point could be improved by considering
faster classifiers, but it remains to be seen if the result of the combination would be better than
the results obtained with some standalone NER tool. Note the detection time, on the contrary,
depends only on how fast the considered NER tools are. Second, we were expecting the results of
the SVM-based approach to be more clearly better than those of the vote-based one. We plan to
introduce other features in the classification process, as we did with the category of the processed
article, to improve the SVM-based method further. In the longer term, we will be studying how
our tool performs in a multilingual context. In particular, we plan on taking advantage of the fact
Wikipedia pages exist in several linguistic versions one could use as complementary sources for NER.
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