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ABSTRACT

In this paper, we present a new algebraic model for
music writing and programming. It is based on sepa-
rating music object contents: what music they defined,
and music object usage: how they can be combined.
These are two orthogonal aspects of music represen-
tation/programming that should be kept separate al-
though handled in a combined way.

From a mathematical point of view, music objects
are modeled by means of some notion of tiled music
graphs that can be combined by a single operator:
the tiled sum. This operator is neither sequential nor
parallel but both. The resulting algebraic structure is
well studied in algebra: it is an inverse monoid.

From a programming point of view, our approach
provides a high level domain specific language (DSL),
the T-calculus, that is both reactive, hierarchical and
modular. It is currently under implementation in the
functional programming language Haskell.

From a representation point of view, various mu-
sic examples are provided to show how notes, chords,
melodies, musical meters and various kind of interpre-
tation aspects can easily and robustly be modeled in
this new formalism.

1. INTRODUCTION

1.1 From music programming languages

In the field of computer music, several music program-
ming languages are available such as, to name but a
few, the functional programming languages Faust [1]
or Euterpea [2], the data flow programming languages
Max/MSP [3] or OpenMusic [4], or a more imperative
programming languages such as CSound [5] or Super-
Colider [6].

As a matter of fact, all these music programming lan-
guages are music representation formalisms. Indeed,
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every music program can be seen as sort of a mu-
sic score that describe the music that can be played.
Moreover, using music programing language necessar-
ily induces a mental representation of the music pieces
that can be defined and the way they can be defined.
This implicit representation does influence the per-
ception of the user [7]. Thus one may question the
adequacy of a given programming language as a rep-
resentation formalism.

More precisely, when seen as music representation
formalisms, music programming languages must be
abstract enough to allow the transcription of the com-
poser’s creative intentions. Music-oriented program
constructs must be available and implementation de-
tails must be made, as much as possible, implicit. For
instance, adequate user interface as in OpenMusic may
hide programming language syntax, replacing it by
higher level, graphic-based editors. However, repre-
senting the music that is encoded by a given program
is not, in general, an easy task.

Somehow on the contrary, when seen as program-
ming languages, these formalisms must be e�ective.
The written music must be playable. For such a pur-
pose, some implementation details need to be pro-
vided. Standard requirements of software engineering
must also be satisfied. For instance, every complex
program should result from the composition, duplica-
tion and transformation of simpler programs.

1.2 From music representations to programs

To some extent, every music representation formal-
ism can also be seen as music programming languages.
Classical western music notation is a perfect example
of such a fact. Numerous music editors allows to de-
fine music scores that, in turn, can be encoded into
computer objects that can be played.

However, even though musical objects are rather well
defined in music sheets, western notations do not pro-
vide a rich set of composition and transformation meth-
ods. Dedicated to written music, these notations suf-
fice to write music, but not necessarily to create it.
Even worse, the more or less adhoc functionalities of-
fered by music editors may be musically ill-defined.



For instance, the standard cut, paste and insert trans-
formations, essentially inherited from text editors, are
inadequate because they often break the global con-
sistency of the music. Indeed, inserting a sequence of
notes in a score necessarily pushes the rest of the score
regardless of the underlying musical meter.

Somehow paradoxically, music composition opera-
tors are well defined in music programming language.
However, in a programing language, relevant music
concepts may be lost in non musical technicalities.
Specialized technician may be required to bridge the
gap between composer ideas and their programming
realisation.

1.3 Model based approach

One way to handle both music representation neces-
sities and software engineering requirements is by de-
riving both of them from a unified model of musical
objects with well understood algebraic properties.

Indeed, every music programming language, every
music design software, as well as every music represen-
tation formalism induces a more or less implicit music
algebra that defines both the basic objects that can be
used and the combinators that allow to build complex
music objects from simple ones. In the absence of a
unified model, it is very likely that these algebras will
be incoherent. In a model based this cannot happen
as illustrated in Figure 1.

Model

(Algebra)

System

(Music)

Language

(Programming)

Interface

(Representation)

Semantics

correspondance

Figure 1: Model based approach.

Indeed, every functionality, be it defined at the pro-
graming level or at the representation level, necessar-
ily derives from the algebraic model. Any (mental or
explicit) representation induced by the usage of these
functions converges to a single and coherent represen-
tation of the elements of this algebra. A correspon-
dance between music programs and music representa-
tions becomes possible.

In the long term, this may even leads to the defi-
nition of a well founded graphic-based programming
interafce, henceforth o�ering an easier access to pro-
gramming techniques.

1.4 Known approaches

Technically, following such an approach leads to the
design of a Domain Specific Languages (DSL). These
languages are high-level programming languages ded-
icated to a specific application domain. They pro-
vide no more and no less than the necessary high-level

constructs relevant to the underlying application do-
main [8]. In music programming, languages such as
Faust [1] or Euterpea [2] are examples of DSLs.

In most of the proposed languages, musical objects
are mainly combined by means of two operators: a se-
quential composition that allows to play two musical
objects one after the other, and a parallel product that
allows to start in parallel two musical objects. Hudak’s
notion of polymorphic temporal media [9] makes this
algebra explicit. It allows to reason about programs
and provides a better understanding of program’s se-
mantics.

However, it has already been argued [10] that the
algebra induced by sequential and parallel operators,
though rather natural at the DSP level provided by a
language such as Faust, induces implementation ori-
ented point that may not be that convenient in the
case of high-level musical design.

Using the parallel (or rather fork) operator induces a
“forward vision” of music writing, from the past to the
future. It merely amounts to decide at any time what
comes next. Musical metrics, synchronization points,
visualized by bars in classical western music notations,
quite disappear under such a unidirectional view of
music writing [11]. As a matter of fact, typical music
constructs necessitates a “backward vision”, from the
future to the past, that allows to decide at a given
time what comes before.

Cadences such as II

m
/V

7
/I or II

m
/I

7
˘ /I are typical

exemples of such phenomena. Resolving on a first de-
gree constitutes a goal in the future. A cadence is a
way to reach such a goal. It is thus implicitly under-
stood as a construction from the future to the past.
Another exemple is the anacrusis. Aiming at intro-
ducing a given note on a strong beat, an anacrusis is
positioned in a backward way, depending on its length.
It can be argued that such a phenomenon cannot be
modeled properly with a forward point of view [10, 12].

1.5 Contribution and structure of the paper

Our goal is thus to define such a music algebra from
which we derive both a programming language and a
representation formalism.

For this purpose, aiming at relaxing the “forward”
point of view induced by the sequential/parallel music
algebra we have developed the notion of tiled model-
ing [13, 14] and tiled programming [15]. Both sequen-
tial and parallel composition operators are eventually
merged into a single one : the tiled composition oper-
ator [12, 11]. This o�ers a higher-level point of view
over the usual sequential/parallel music algebra.

In this paper, we present the latest development of
this new music algebra and we eventually provide var-
ious and explicit music modeling examples. Doing so,
aside the mathematical robustness of our approach
that is already detailed in former presentations, we
aim at illustrating the relevance of this approach for
music modeling.

In Section 2 we describe a modeling example that



essentially details what representation models we aim
at achieving. How these models can generated from
basic elements is detailed in the remaining sections.

In Section 3 we describe the formal model of tiled
music graphs that are equipped with a single opera-
tor: the tiled composition. Properties of the resulting
algebra that are relevant for music modeling are pre-
sented.

Then, in section 4, we show how these music graphs
can simply be generated by means of music graph
expressions. Music modeling examples are provided
throughout all sections.

2. A MODELING EXAMPLE

Before getting into a detailed description of tiled mod-
els and programs, we provide in this section a first
modeling example that illustrates most of the musi-
cal features we aim at capturing. The way such a
model may actually be built, step by step, is described
throughout the next sections.

2.1 Debussy’s first arabesque

Debussy’s first arabesque is a typical example of a
music structure which is di�cult to model by means
of tree-based (or syntactic) modeling approach [16].
Indeed, as illustrated in the 91th and 92th bars of De-
bussy’s first arabesque (see Figure 2), four voices, with
distinct rhythmic structures, are interleaved. They
induce rhythmic trees that have incompatible shapes
and thus cannot be shared properly [17].

Figure 2: Two bars of Debussy’s first arabesque.

Our modeling approach amounts to describe this piece
of music by means of a music graph: a directed la-
beled graph vertices modeling instants in time and
with edges modeling musical elements such as rests,
notes or chords.

More precisely, the first half of Debussy’s 91th bar
is depicted in Figure 3. The various features that are
appearing in this figure can be be detailled as follows :

• vertices: depicted by bullets (•); vertices are
modeling instant in time that are called synchro-
nization points,

• directed edges: depicted by arrows (• ≠æ •);
edges are modeling basic musical such as rests,
notes or chords that last for some duration : the
time that elapse between the two synchroniza-
tion points they relate,

• upper or left edge labels: depicted by (blue)
positive rational numbers that appear either on
the left or above the middle of each edge; these
edge labels are modeling durations,

• lower or right edge labels: depicted by (red)
strings that appear either on the right or be-
low the middle of each edge; these edge symbols
are giving the nature of rests, notes or chords.

• • • •

• •
3/2

E5

1/2 D≠
5

1/2 E5

1/2 F5

1

R

1

A4

• • • •

1/3 F3

1/3

A3

1/3 D≠
4

1/3 F4

1/3

D≠
4

1/3 A4

2

F3

Figure 3: A graph model of part of the 91th bar.

Observe that the first E5 is of duration 3/2 since the
initial eight note E5 is actually linked with a quarter
note in the 90th bar, much in the same way the first
A4 quarter note in the 93th bar is linked with the
quarter note A4 at the end of the 92th bar.

On this graph, R indicates no notes, that is, a rest.
One can also observe that all D have been written
D

≠. This models the fact that, as indicated in the
key signature, all these notes must be lowered by one
semitone, from D

˘ down to natural D.

A remarkable property of this graph model is that,
if one counts a positive duration when traversing an
edge forward and if one counts a negative duration
when traversing an edge backward, then, the result-
ing sum of durations along any cycle always equals
zero. Indeed, this follows from the fact that vertices
are modeling instants in time henceforth every cyclic
traversal amounts to go back and forth in time until
the initial point is eventually reached.

Remark. One may observe that some musical
elements are missing in this modeling. Indeed, nei-
ther the musical meter, nor the key, nor even the links
indicating musical phrases are described.

However, as opposed no note duration or names,
these attributes apply to groups of musical objects.
We thus need a way to specify these groups or, as an-
other way to say it, we need the algebraic tools that
allow to generate these groups.

It follows that the modeling of group attributes is
postponed to the last section when the music algebra
will be defined.

2.2 Alternative graph representations

Of course the graph depicted in Figure 3 is not eas-
ily readable by humans. Another visualisation, more
oriented towards human, is depicted in Figure 4.



In this figure, every vertex has been scattered along
a vertical dashed line. These lines have also been la-
beled by their distance, expressed in quarter note du-
rations, from the beginning of the bar. Clearly, such
an illustrative vertex labeling can easily be computed
from the duration labeling the edges, as soon as one
vertex is chosen as the origin.

-1 0 1/3 1/2 2/3 2 4/3 3/2 5/3 2

• • •
1

R

1

A4

• • •• •
3/2

E5

1/2

D≠
5

1/2

E5

1/2

F5

• • •• • • •
1/3

F3

1/3

A3

1/3

D≠
4

1/3

F4

1/3

D≠
4

1/3

A4

• •
2

F3

Figure 4: Scattered view of the same model.

Remark. Of course, other representations are possi-
ble such as, for instance, presentations based on cyclic
or spiral shaped timelines. The reader should not
make the confusion between the underlying mathe-
matical models that are graphs, possibly unreadable,
and their possible representations that may take var-
ious forms more readable.

3. TILED MUSIC GRAPHS

The models we aimed at building, music graphs, have
been depicted in the previous section. As such, they
almost form a music representation formalism 1 . The
question we adress from now and throughout the re-
maining sections is how to generate such representa-
tions.

The resulting algebra is presented in two step. The
first step is only concerned with generating timed graphs.
It is presented in this section.

Then, it can be shown that such a modeling can sim-
ply be extended to music graphs by associating values
to timed graph edges. As a result, we obtain an al-
gebraic language for defining musical objects. Such a
point of view is presented in the next section.

3.1 Timed graphs

We first aim are generating timed graphs, that is, a
directed acyclic graphs with labeled edges with vertices
representing synchronization points and edges labeled
by the duration representing yet unspecified musical
objects or rests. Examples of basic timed graph are
depicted in Figure 5. They can be detailled as follows.
In (5a), two musical objects of respective duration a

and b are launched in parallel starting at the same
time. In (5b), similar musical objects are played inde-
pendently. There is no temporal dependency between

1
up to the modeling of group attributes that we have post-

poned.

•
•

•

a
b

(a)

•

•

•

•

a

b

(b)

•
•

•

a
b

(c)

Figure 5: Basic timed graphs.

them. In (5c), two musical objects are finishing at the
same time. In all these figures, there is no knowledge
of the respective values of a and b that are presumably
distinct.

3.2 Local unambiguity

By assumption, vertices are synchronization points in
time. It follows that two musical objects with the same
durations that are launched at the same time eventu-
ally are reaching the same synchronization point. Bor-
rowing the vocabulary from automata theory, timed
graphs are both deterministic.

Symmetrically, two musical objects with the same
duration that end at the same time necessarily start
from the same syncrhonization point. Timed graphs
are also co-deterministic. In other words, timed graphs
are bi-deterministic graphs or, as another way to say
it [18], locally unambiguous.

•
•

•

•

•

a
a

b

c

• •
•

•

a b
c

(a)

•
•

•

•

•

a
a

b

c

••
•

•

a
b

c

(b)

Figure 6: From ambiguous to unambiguous timed
graphs.

It is shown in [18], there is a simple way to transform
arbitrary directed graphs into its greatest locally un-
ambiguous image. Indeed, it just amount to merge
every pair of edges with the same duration label that
share a common origin (see (6a)) or target (see (6b)).

Of course, this merging process needs to be repeated
until the resulting graph is locally non ambiguous.
Doing so, it may happend that acyclicity is lost; a
directed cycle may appear. In this case, the timed
graph is considered to be erroneous. In a derived pro-
gramming tool, a design error is raised.

3.3 Synchronization attributes

Timed graphs are extended by two synchronization
points: two distinguished vertices respectively called
the input and the output root of the timed graph.



Resulting graphs are simply called birooted graphs
or, to fit our application perspectives, birooted timed
graphs.

Examples of birooted timed graphs are depicted in
Figure 7 where input roots are depicted by ( ) and
output roots are depicted by ( ).

•

•

•

•

•
a a

b
a

b
• • •

•

•

•

a

b
b

• •

Figure 7: Two birooted timed graphs.

3.4 Tiled composition

These graphs can then be combined by means of the
tiled composition. More precisely, these specified in-
put and output roots allows to combine two musical
objects 2 by gluing the input root of the first one
with the input root of the second: this is the syn-
chronization step. The local ambiguity that may re-
sults from these gluing is then removed following the
bi-determinization process depicted above: this is the
fusion step. The input (resp. output) root of the first
object (resp. the second) is kept as the input root
(resp. the output root) of the second object.

The birooted graph resulting from the composition
of the two graphs depicted in Figure 7 is depicted in
Figure 8 below.

•

•

•

•

•
a a

b
a

b
• •

•

•

•

a

b
b

•

Figure 8: The result of a tiled composition.

It is know from inverse semigroup theory [19] that
the resulting composition is associative. Since the sin-
gle vertex graph with equal input and output root is
clearly a neutral element for this composition, the re-
sulting graph is known in algebra as a monoid. More-
over, it can also be shown that this monoid is an in-
verse monoid [20] (see also[18]).

From now on, such a composition is denoted addi-
tively, that is, the tiled composition of two tiled timed
graphs t1 and t2 is denoted by t1 + t2. The single
vertex graph with equal input is denoted by 0 and we
clearly have t + 0 = t = 0 + t for every tiled timed
graph t.

2
yet just birooted timed graphs, but the composition of gen-

eral musical objects defined later in the text just follows the

same rules,

3.5 Inverse, reset and coreset

The “inverse” arising from the underlying monoid is
also denoted additively. In other words, for every
tiled timed structure t, it is denoted by ≠t. It is just
obtained from t by permuting the input and output
roots, without changing the direction of the music.

This allows to define the di�erence t1 ≠ t2 between
two music graphs as the sum t1 + (≠t2). Then, we
define the reset of t by re(t) = t ≠ t and the coreset
of t by co(t) = ≠t + t. These remarkable elements are
depicted in Figure 9 below.

•

•

•

•

•
a a

b
a

b

(t)

• • •

•

•

•

•
a a

b
a

b
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• •

•

•

•

•

•
a a

b
a

b

(re(t))

•• •

•

•

•

•
a a

b
a

b

(co(t))

••

Figure 9: Resets and coresets.

Observe that, unless the music graph t is the graph
of the zero duration rest 0, none of these expressions
equals zero. However, as detailed in inverse semi-
group theory, the reset and coreset defines local ze-
ros as made explicit in the following equation that are
always satisfied:

t = re(t) + t and t = t + co(t)

3.6 Induced parallel composition

When building complex time structures (or later mu-
sical structures), a typical usage exemple of reset and
coreset primitives are parallel insertions.

Indeed, given three tiles t1, t2 and, resp., t3, simply
denoting single edges of duration a, b and, resp., c as
depicted in Figure 10.

• • •

•

a c
b

(t1 + re(t2) + t3)

• • • • •

•

a c

b

(t1 + co(t2) + t3)

• •

Figure 10: Parallel insertions.

A construction of the form t1 + re(t2) + t3 inserts a
copy of t2 between t1 and t3 without altering the syn-
chronization of t1 and t3. More precisely, it amounts



to start t2 at the end of t1 in parallel with t3, with all
possible overlaps and merges allowed by tiles.

Symmetrically, a construction of the form t1+co(t2)+
t3 still inserts a copy of t2 between t1 and t3. How-
ever, in this case, both t1 and t2 ends at the same
time, before t3 starts.

In both cases, synchronization between t1 and t3 are
just the same as they would be in the sum t1 + t3 so
both cases describe sort a parallel insertion.

These constructions o�ered by the reset and the core-
set primitives constrast with the standard, string-based,
insertion primitives that are available in most soft-
wares for graphical music editions; classical insertions
that would “push” appart t1 and t3.

3.7 Additional time equations

A carefull reading of the example depicted in Figure 8
above shows that more vertices gluing have been per-
formed than those that were strictly necessary. This
comes from the fact that we have additionally applied
the equation

a = bb

that says that the duration of two bs just equals the
duration of one a.

In other words, under the equation a = bb two suc-
cesive b-labeled edges starting from the same starting
synchronization point than an a-labeled edge even-
tually reach the same ending synchronization point.
With a view towards application in music, such a
feature allows to define standard timed graphs with
length measured in hole notes, half notes, quarter notes,
etc. . . , these relative lengths being easily defined by
such kind of equations.

Observe that the graph depicted in Figure 3 just fol-
lows these rules. The semantics of duration labels such
as 1, 1/2, 1/3, etc., . . . has implicitly been defined by
such a kind of equations. For instance, two succes-
sive edges of duration 1/2 eventually reach the same
synchronization point than a single edge of duration 1.

4. THE RESULTING MUSIC ALGEBRA

Tiled timed graphs are turned into musical graphs by
adding additional attributes to edges. In the proposed
frameworks, these edge attributes can be sets of notes,
possibly with some more attributes denoting instru-
ments, tracks, velocity, etc.. . . Additionally, global (or
group) attributes can also be defined over tiled musical
graphs in order to describe some expressive features
such as legato.

In this presentation, we restrict ourselves to the sim-
pler case edge attributes are sets that are simply com-
bined by union. Observe that such a set based mod-
eling of edge attributes is already implicitly used in
Figure 3 where rests are modeled by the attribute 0
that denotes the empty set of notes.

It can be shown that adding edge labels from a lattice
does preserve the inverse monoid structure. In view

of our modeling perpectives, we show in this section
how this theory can be put in practise.

The resulting labeled tiled timed are from now on
simply called music graphs.

4.1 Elementary music graphs

Elementary music graphs are either rests, denoted by
R or a single note, of the form X

e
i where X is a pitch

class (e.g. A, B, C, etc. . . ), i is an octave, and e is a
possible alteration. For instance C

˘
4 denotes C sharp

on the fourth octave.
By default, all notes or rests duration equals one

quarter. In other words, C

˘
4 as above actually denotes

a quarter note. However, every note or rest (and later
every score) can be stretch by some rational factor.
Such a stretch is denoted by a left multiplication. For
instance, the expressions 2 ú D

˜
5 denotes the half note

D flat on the fifth octave. Similarly, the expressions
1/2 ú E3 denotes the eight note E on the third octave.

Of course, choosing quarter notes as unit duration
is arbitrary. Our choice follows from the fact that,
quite often, quarter notes represents one beats. Fol-
lowing english duration naming rules, it would cer-
tainly makes sense to use the duration of whole notes
as duration unit. But this would just amounts to mul-
tiply all written melodies by 1/4 so this can be done
in the last moment. In other words, the naming of
duration can be left to the user.

By convention, single fractions are also seen as rests.
For instance, the notation 2 is equivalent to 2 ú R. As
a particular case, the notation 0 stands for the rest
of duration zero. This implies that d ú 0 = 0 for any
stretch factor d.

4.2 Synchronized sums of music graphs

The tiled composition arising from the underlying
monoid is written additively not to be confused with
the stretch. In other words, given two music graphs
t1 and t2, we denote by t1 + t2 the synchronization of
the first music graph t1 with the second one t2.

Somehow as expected, for every music graph t, we
have t + 0 = 0 + t = t.

For instance the following expressions denotes the
beginning of a little waltz.

1/2 ú (2 ú C4 + D4 + 2 ú E4 + G4 + 2 ú E4 + D4 + 3 ú E4)

when played in 3/8. The resulting graph is depicted
in Figure 11 below.

• •• • • • • • • •
1

C4

1/2

D4

1
E4

1/2

G4

1
E4

1/2

D4

3/2

E4

Figure 11: A little waltz.

Observe that the stretch operation distribute over
the sum. For instance, the expression 1/2ú(2úC4+D4)
may as well be denoted by the equivalent expression
(C4 + 1/2 ú D4).



4.3 Generalized product

The stretch of a music graph t by a factor d is thus
expressed as d ú t. Viewing d as a rest of length d,
this means we allow certain product of musical graphs.
This construction may be generalized. In fact, for
every music graph t1 and t2, we put

t1 ú t2 = re(|t2| ú t1) + |t1| ú t2

where, for every music graph t, we write |t| for the
elapsed time from the input root of t to the output
root of t.

Using such a generalized product, we can thus add a
bass line to our little waltz, by putting

C3 ú (2 ú C4 + D4) + G2 ú (2 ú E4 + G4) + . . .

The resulting music graph is depicted Figure 12.

• •• • • • • • • •
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D4

1
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D4
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• • • • •3/2

C3

3/2

G2

3/2

A2

3/2
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Figure 12: Adding a bass line.

4.4 Debussy example: the return

As an illustration of the tiled music algebra, we can
build step by steps the musical graphs depicted in Fig-
ure 3. As already detailed above, the basic elements
are notes with associated durations. Then these el-
ementary tiles can be combined via sums, stretches,
possibly taking inverses, resets or coresets.

For instance, the soprano voice of the 91th bar of the
arabesque can then be defined by

v1 = 1/2 ú (2 + co

!
3 ú E5 + D

≠
5 )

"
+ E5 + F5+

D

≠
5 + C5 + re

!
D

≠
5 + 3 ú C5

"
+ 2)

In this construction, a coreset (resp. a reset) is used
to model the initial E5 (resp. the final C5) that starts
before the beginning of the bar (resp after the end of
the bar).
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Figure 13: The soprano voice v1 of the 91th bar.

The resulting music graph is depicted Figure 13.
The second voice, an alternation of rests and quarter

notes, can simply be defined by v2 = 1 + A4 + 1 +
G4. Then, the two combined voices can be defined
by re(v1) + v2 or, equivalently, v1 + co(v2), among
many other equivalent expressions since the distance
between their input and output roots are both equal
to 4.

The result of the combined first and second voices
is depicted in Figure 14. Again, distances from the
input root are labeling the vertical lines.
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Figure 14: The combined first and second voices of
the 91th bar in scattered representation.

Clearly, the entire 91th bar can be modeled this way,
as well as the combination of all bars, till the complete
Arabesque is modeled.
Remark. Compared to the tree-shaped model ap-
proach proposed in [16], one may observed that the
terms defining voices are somehow similar : as terms
there are indeed tree shaped. However, our graph
based approach allows easily to combine time struc-
tures that have di�erent shapes. Moreover, the paral-
lel operators just follows from the inverse semigroup
structures that provide inverses, resets and coresets.

Somehow implicitly, the tree-shaped terms defining
birooted musical graphs are factorized by the rele-
vant notion of musical equivalence (aka two terms
are equivalent when they defined the same birooted
graphs). The fact this equivalence is a congruence,
that is, it remains stable under sum, is by no mean a
trivial property.

4.5 Group attributes

We are now ready to address the question of group
attributes. The main idea is that a group attribute
such as links or time signature can be seen as a spe-
cial edge attribute that is distributed over a group of
edge. Since edge attributes are sets of values, it makes
no di�culty to extend the possible values on edge by
any additionel set of marks. The resulting algebra is
essentially the same.

At the programmatic level it is convenient to specify
only once any group attribute. This is simply done by
adding another functions that add the attribute values
to all edges of its tile argument. Assume that such a
function is att(t, v). Then, given two musical tile t1
and t2, we may specify that t1 will be played with a
3/4 meter and, afterward, t2 will be played with 4/4
meter just by the sum att(t1, 3/4) + att(t2, 4/4).

At the representation level, a construction of the
form att(t, v) can be visualized by adding some back-
ground color on the underlying group of edges making
explicit the “region” that have been a�ected by the
group attribute value v.

Of course, in a sum of the form att(t1, v) + att(t2, v)
one may argue that the two underlying groups are
implicitly merged since they seem to share the same
group value. However, at the implementation level,



the syntactic distinction between the first and the sec-
ond group can simply be achieved by extending the
value v by a single id, automatically generated, that
refers uniquely to a given call to the function att. Such
an encoding, invisible to the user, prevents any possi-
ble confusion.
Remark. It can be the case that some group at-
tribute values cannot overlap. For instance, an edge
labeled by both a 3/4 and a 4/4 meters would make
no sense.

This amounts to say that we must forbid edge at-
tribute that contains two incompatible group attribute.
It occurs that such a property is stable under compo-
sition hence it forms a monoid ideal. At the algebraic
level, all these tile can be merged 3 into a forbidden
tile ‹. Forbidding music tile with cyclic underlying
graphs is just handled the same way since the tile
property “having a cycle” is also preserved by com-
position.

5. CONCLUSIONS

Starting from a fairly simple notion of music model,
defined by means of instants in (symbolic) time that
are related with elementary music objects, we have
shown that adding synchronization points leads to a
fairly robust algebra: an inverse monoid. This alge-
braic modeling provides, thanks to its richness, most
of the music construct a composer may need, either
as primitive constructs such as the tiled composition,
or as a derived constructs such as the reset and the
coreset functions.

All algebraic expressions and their corresponding
graphical views that appear throughout our presen-
tation proves that, based on the underling algebra, a
robust correspondance between music programs and
music representations can be developed. To some ex-
tent, the tasks of playing music or representing music
have many common features that are made explicit in
this approach.

The DSL induced by such an approach is currently
under developpement. Embedded into a high level
functional programming language such as Haskell and
the various libraries available such as Euterpea [2] and
UISF [21], it allows to inherit from its elegance and
expressive power [12, 11, 22]. Design mistakes can be
controlled both at the static level via the underlying
type system and, at the dynamic level, thanks to the
lazy evaluation mechanism of Haskell, via the evalua-
tion of time or shape constraints.

Of course, this project is still at an experimental
stage. Designing a new model and developing the re-
lated methods and tools necessarily take time [23], es-
pecially when we aim at revealing and exploiting the
robustness of the underlying mathematical framework
that may appear.

3
technically, this amounts the take the quotient of music tiles

by this ideal; such a quotient, well studied in semigroup theory,

is called a Rees’ quotient.
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