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Type C parking functions and a zeta map

Robin Sulzgruber† and Marko Thiel‡

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

Abstract We introduce type C parking functions, encoded as vertically labelled lattice paths and endowed with a
statistic dinv’. We define a bijection from type C parking functions to regions of the Shi arrangement of type C,
encoded as diagonally labelled ballot paths and endowed with a natural statistic area’. This bijection is a natural
analogue of the zeta map of Haglund and Loehr and maps dinv’ to area’. We give three different descriptions of it.

Résumé Nous introduisons les fonctions de stationnement de type C, encodées par des chemins étiquetés verticale-
ment et munies d’une statistique dinv’. Nous définissons une bijection entre les fonctions de stationnement de type C
et les régions de l’arrangement de Shi de type C, encodées par des chemins étiquetés diagonalement et munies d’une
statistique naturelle area’. Cette bijection est un analogue naturel à la fonction zeta de Haglund et Loehr, et envoie
dinv’ sur area’. Nous donnons trois différentes descriptions de celle-ci.

Keywords: parking functions, Shi arrangement, zeta map, dinv statistic

1 Introduction and Motivation
One of the most well-studied objects in algebraic combinatorics is the space of diagonal harmonics of the
symmetric group Sn. Its Hilbert series has two (conjectural) combinatorial interpretations:

DH(n; q, t) =
∑

P∈Parkn

qdinv’(P )tarea(P ) =
∑

R∈Diagn

qarea’(R)tbounce(R),

where Parkn is the set of parking functions of length n, viewed as vertically labelled Dyck paths, and
Diagn is the set of diagonally labelled Dyck paths with 2n steps. There is a bijection ζ due to Haglund
and Loehr (2005) that maps Parkn to Diagn and sends the bistatistic (dinv’, area) to (area’,bounce),
demonstrating the second equality.

The combinatorial objects Parkn and Diagn may be viewed as the type An−1 cases of more gen-
eral objects associated to any crystallographic root system Φ. These are, respectively, the finite torus
Q̌/(h+ 1)Q̌ and the set of regions of the Shi arrangement of Φ. Here Q̌ is the coroot lattice and h is the
Coxeter number of Φ. Both of these objects have the same cardinality (h + 1)r, where r is the rank of
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Φ, so there should be a uniform “zeta map” giving a bijection between them. This map does in fact exist,
and will be described in future work.

In the present extended abstract we focus on the root system of type Cn. In Section 2 we present the
necessary background on Weyl groups and the Shi arrangement. In Section 3 we introduce combinatorial
models for the finite torus of type C in terms of vertically labelled lattice paths and for the set of regions
of the Shi arrangement of type C in terms of diagonally labelled ballot paths. We also introduce a statistic
dinv’ on vertically labelled lattice paths and a statistic area’ on diagonally labelled ballot paths. These
statistics are natural analogues of the corresponding statistics in type A.

In Section 4 we describe a map between these two combinatorial models that we call the type C zeta
map. We give three descriptions of this map, all similar in style to different descriptions of the classical
zeta map. The first description in terms of area vectors follows Haglund and Loehr (2005). The second
description in terms of ascents and valleys resembles that of (Armstrong et al., 2014a, Section 5.2). The
third description as a sweep map is in the spirit of Armstrong et al. (2014b). Our main result (Theorem 4.2)
is that the zeta map of type C is a bijection that sends the dinv’ statistic to the area’ statistic.

We prioritise examples and prefer to include an adequate presentation of the known combinatorial
objects of type A rather than presenting proofs. A full version of this extended abstract containing all
proofs is in preparation.

2 Definitions and Preliminaries
2.1 Weyl groups
Let Φ be an irreducible crystallographic root system of rank r, with simple system ∆ = {α1, α2, . . . , αr},
positive system Φ+ and ambient space V . For background on root systems and reflection groups see
Humphreys (1990). For α ∈ Φ, let sα be the reflection in the hyperplane

Hα = {x ∈ V : 〈x, α〉 = 0}.

Then the Weyl group W of Φ is the group of automorphisms of V generated by all the sα with α ∈ Φ.
Define the Coxeter arrangement of Φ as the central hyperplane arrangement in V given by all the hyper-
planes Hα for α ∈ Φ. The connected components of the complement of the union of these hyperplanes
are called chambers. The Weyl group W acts simply transitively on the chambers, so if we define the
dominant chamber as

C = {x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆},

we may write every chamber as wC for a unique w ∈W .
For α ∈ Φ and d ∈ Z, let sdα be the reflection in the affine hyperplane

Hd
α = {x ∈ V : 〈x, α〉 = d}.

Then the affine Weyl group W̃ of Φ is the group of affine transformations of V generated by all the sdα
for α ∈ Φ and d ∈ Z. Define the affine Coxeter arrangement as the affine hyperplane arrangement in V
given by all the Hd

α for α ∈ Φ and d ∈ Z. The connected components of the complement of the union of
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these hyperplanes are called alcoves. The affine Weyl group W̃ acts simply transitively on the alcoves, so
if we write α̃ for the highest root of Φ and define the fundamental alcove as

A◦ = {x ∈ V : 〈x, α〉 > 0 for all α ∈ ∆ and 〈x, α̃〉 < 1},

we may write every alcove as waA◦ for a unique wa ∈ W̃ . The affine Weyl group W̃ acts on the coroot
lattice Q̌, and if we identify Q̌ with its translation group we may write W̃ = W n Q̌ as a semidirect
product.

If α ∈ Φ+ and wa ∈ W̃ , there is a unique integer k such that k < 〈x, α〉 < k + 1 for all x ∈ waA◦.
We denote this integer by k(wa, α).

2.2 The Shi arrangement
Define the Shi arrangement as the hyperplane arrangement given by the hyperplanes Hd

α for α ∈ Φ+ and
d = 0, 1. Then the complement of the union of these hyperplanes falls apart into connected components,
which are called the regions of the arrangement. The hyperplanes that support facets of a region R are
called the walls of R. Those walls of R that do not contain the origin and separate R from the origin are
called the floors ofR. Define the walls and floors of an alcove similarly. Notice that every wall of a region
is a hyperplane of the Shi arrangement, but the walls of an alcove need not be. We call a region or alcove
dominant if it is contained in the dominant chamber.

Theorem 2.1 (Shi, 1987, Prop 7.1) Every region R of the Shi arrangement has a unique minimal alcove
wRA◦ ⊆ R, which is the alcove in R closest to the origin. That is, for any α ∈ Φ+ and wa ∈ W̃ such
that waA◦ ⊆ R, we have |k(wR, α)| ≤ |k(wa, α)|.

We define WShi = {wR : R is a Shi region}. The corresponding alcoves wRA◦ we call Shi alcoves.
That is, we call an alcove a Shi alcove if it is the minimal alcove of the Shi region containing it.

Theorem 2.2 (Shi, 1987, Prop 7.3) The alcove waA◦ is a Shi alcove if and only if all floors of waA◦ are
hyperplanes of the Shi arrangement.

The following theorem is already known for dominant regions (Athanasiadis, 2005, Prop 3.11).

Theorem 2.3 The floors of the minimal alcove wRA◦ of a Shi region R are exactly the floors of R.

The following lemma describes what the Shi arrangement looks like in each chamber.

Lemma 2.4 (Armstrong et al., 2012, Lemma 10.2) For w ∈ W , the hyperplanes of the Shi arrangement
that intersect the chamber wC are exactly those of the form H1

w(α) where α ∈ Φ+ and w(α) ∈ Φ+.

Thus if wRA◦ is a Shi alcove contained in the Weyl chamber wC, then by Theorem 2.2 and Lemma 2.4
all its floors are of the form H1

w(α) where α ∈ Φ+ and w(α) ∈ Φ+. So w−1wRA◦ is a dominant alcove
and its floors are of the form w−1(H1

w(α)) = H1
α with α ∈ Φ+. It is thus a Shi alcove by Theorem 2.2.

Conversely, if wRA◦ is a dominant Shi alcove and w ∈ W , then wwRA◦ is a Shi alcove if and only if
w(α) ∈ Φ+ whenever H1

α is a floor of wRA◦. Thus the map

Θ : wR 7→ (w−1wR, w)

where wRA◦ ⊆ wC, is a bijection from WShi to the set of pairs (wR, w) such that wRA◦ is a dominant
Shi alcove, w ∈W and w(α) ∈ Φ+ whenever H1

α is a floor of wRA◦.
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Fig. 1: A ballot path β ∈ B3 (left) with one valley (1, 2) and two rises 2, 3, and a Dyck path π ∈ D6 (right) with
valleys (2, 5), (3, 6) and rises 1, 2, 3. We have Aβ = {e3 − e2, 2e2} and Aπ = {e2 − e5, e3 − e6}

Define a partial order on Φ+ by α ≤ β if and only if β − α can be written as a linear combination of
simple roots with nonnegative integer coefficients. The set of positive roots Φ+ with this partial order is
called the root poset. It turns out that the map

FL : R 7→ {α ∈ Φ+ : H1
α is a floor of R}

is a bijection from the set of dominant Shi regions of Φ to the set of antichains in the root poset of Φ. See
Shi (1997). Putting R 7→ wR, Θ and FL together and using Theorem 2.3 we get that the map

R 7→ (A,w),

whereR ⊆ wC andA = w−1(FL(R)), is a bijection from the set of Shi regions to the set of pairs (A,w)
such that A is an antichain in the root poset, w ∈ W and w(A) ⊆ Φ+. A similar bijection using ceilings
instead of floors is given in (Armstrong et al., 2012, Prop 10.3).

2.3 Types A and C
If Φ is of type An−1, we take V = {(x1, x2, . . . , xn) ∈ Rn :

∑n
i=1 xi = 0}, Φ = {ei − ej : i 6= j} and

Φ+ = {ei − ej : i < j}. The Weyl group W is the symmetric group Sn that acts on V by permuting
coordinates, Q̌ = {(x1, x2, . . . , xn) ∈ Zn :

∑n
i=1 xi = 0}, r = n− 1 and h = n.

If Φ is of type Cn, we choose V = Rn, Φ = {ei ± ej : i 6= j} ∪ {±2ei : i ∈ [n]} and Φ+ = {ei ± ej :
i > j}∪{2ei : i ∈ [n]}. The Weyl groupW is the hyperoctahedral group Hn that acts on V by permuting
coordinates and changing signs, Q̌ = Zn, r = n and h = 2n.

2.4 Lattice paths
Denote by Lm,n the set of lattice paths from (0, 0) to (m,n) consisting of n North steps N = (0, 1) and
m East steps E = (1, 0). Let Dn denote the set of Dyck paths, that is the subset of Ln,n consisting of the
paths that never go below the main diagonal x = y. Let Bn denote the set of ballot paths, that is the set of
lattice paths starting at (0, 0), consisting of 2n North and/or East steps, and never going below the main
diagonal.

A pattern of the form NN is called rise. A pattern EN is called valley. More precisely, let π be any
lattice path with steps si ∈ {N,E}. We say i is a rise of π if the i-th North step is followed by a North
step. We say (i, j) is a valley of π if the i-th East step is followed by the j-th North step. See Figure 1.
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If π ∈ Dn and Φ is of type An−1, define Aπ ⊆ Φ+ by ei − ej ∈ Aπ if and only if (i, j) is a valley of
π. Then the map π 7→ Aπ is a bijection from Dn to the set of antichains in the root poset of Φ.

If β ∈ Bn and Φ is of type Cn, define Aβ ⊆ Φ+ by

Aβ = {ei − ej : i > j and (n+ 1− i, n+ 1− j) is a valley of β}
∪ {ei + ej : i > j and (n+ 1− i, j + n) is a valley of β}
∪ {2ei : the last step of β is its (n+ 1− i)-th east step}.

Then the map β 7→ Aβ is a bijection from Bn to the set of antichains in the root poset of Φ.

3 Shi regions and parking functions
3.1 Shi regions as diagonally labelled paths
A diagonally Sn-labelled Dyck path is a pair (π, σ) of a Dyck path π ∈ Dn and a permutation σ ∈ Sn

such that for each valley (i, j) of π we have σi < σj . See Figure 2. From the considerations at the end of
Section 2.2, recall that regions of the Shi arrangement of type An−1 may be indexed by pairs (A, σ) with
A an antichain in the root poset, σ ∈W = Sn and σ(A) ⊆ Φ+.

Proposition 3.1 The map (π, σ) 7→ (Aπ, σ) is a bijection between diagonally labelled Dyck paths of
length n and regions of the Shi arrangement of type An−1.

We provide an interpretation of type C Shi regions as diagonally labelled ballot paths. For any signed
permutation σ ∈ Hn we define wσ to be the word of length 2n given by wσi = σ(n+ 1− i) if 1 ≤ i ≤ n
and wσi = σ(n− i) if n+ 1 ≤ i ≤ 2n. For example if n = 3 then wid = 3211̄2̄3̄.

A diagonally Hn-labelled ballot path is a pair (β,wσ) of a ballot path β ∈ Bn and a word wσ corre-
sponding to a signed permutation σ such that for each valley (i, j) of β we have wσi > wσj , and such that
0 < wσi if the final step of β is its i-th East step. Hence, if we place the labels wσ in the diagonal then for
each valley the label to its right will be smaller than the label below it. Moreover, if the path ends with an
East step then the label below will be positive. See Figure 3.

Proposition 3.2 The map (β,wσ) 7→ (Aβ , σ) is a bijection between diagonally Hn-labelled ballot paths
the regions of the Shi arrangement of type Cn.

3.2 The area’ statistic
The area of a Dyck path is defined as the number of boxes strictly between the path and the main diagonal.
For example the Dyck path in Figure 2 has area(π) = 5. Haglund and Loehr (2005) defined a related
statistic area’ for diagonally labelled Dyck paths as follows. Consider a box strictly between the diagonal
and the path π in column i and row j. This box contributes to area’(π, σ) if and only if the label to its
right is larger than the label below it, that is if and only if σi < σj . For example the labelled Dyck path
in Figure 2 has area’(π, σ) = 4 because the nonshaded box in the fifth row and fourth column does not
contribute: σ4 = 5 > σ5 = 4.

The area of a ballot path is defined as the number of boxes “below” the path (see Figure 4). We now
define a type C area’ statistic on diagonally labelled ballot paths. Let (β,wσ) be such a path and consider
a box below β in column i and row j. This box contributes to area’(β,wσ) if and only if the label to
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Fig. 2: A diagonally labelled Dyck path (π, σ),
where σ1 = 1 < σ2 = 2 and σ2 = 2 < σ5 = 4. We
have area(π) = 5 and area’(π, σ) = 4.

−1
2
−3

3
−2

1
◦

•

Fig. 3: A diagonally labelled ballot path (β,wσ),
where w1 = σ4−1 = −1 > w3 = σ4−3 = −3 and
0 < w2 = σ4−2 = 2. We have area(β) = 4 and
area’(β,wσ) = 1.

Fig. 4: All ballot paths of length two and their area squares shaded gray.

its right is smaller than the label below it, that is if and only if wσi > wσj . The labelled ballot path in
Figure 3 has area’(β,wσ) = 1 since the shaded box in the third row and second column is the only one
contributing: wσ2 = 2 > wσ3 = −3. For example the box in the fourth row and second column does not
contribute because wσ2 = 2 < wσ4 = σ3−4 = 3.

Note that these statistics are the type A and C cases of the following uniform statistic. Define the
coheight statistic on regions of the Shi arrangement of any irreducible root system Φ by

coheight(R) = |Φ+| −# hyperplanes of the Shi arrangement separating R from the origin.

Then the area’ statistics correspond to the coheight statistic under the bijections in Section 3.1.

3.3 Parking functions

A vector f = (f1, . . . , fn) with nonnegative integer entries is called a (classical) parking function of
length n if there exists a permutation σ ∈ Sn such that fσ(i) ≤ i− 1 for 1 ≤ i ≤ n. Equivalently, f is a
parking function if #{j : fj ≤ i− 1} ≥ i for all 1 ≤ i ≤ n.

There is a natural Sn-isomorphism between the set of parking functions of length n and the finite torus
Q̌/(h+ 1)Q̌ of the root system of type An−1. Thus classical parking functions may be seen as objects of
type A.

We define a type C parking function of length n to be an integer vector f = (f1, . . . , fn) where
−n ≤ fi ≤ n for all 1 ≤ i ≤ n. Thus type C parking functions of length n are a natural set of
representatives for the finite torus Q̌/(h+ 1)Q̌ = Zn/(2n+ 1)Zn of the root system of type Cn.
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Fig. 5: All six paths in L2,2 and the conditions on their labellings.

2 −3 1
−4

2
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−4
1

2
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Fig. 6: Constructing an H4-labelled path from the parking function f = (4, 0,−1,−4).

3.4 Vertically labelled paths

Type A parking functions are commonly represented as Dyck paths with labelled North steps (Haglund,
2008, Chap. 5). An Sn-labelled Dyck path is a pair (π, σ) of a Dyck path π ∈ Dn and a permutation
σ ∈ Sn such that σi < σi+1 whenever i is a rise of π. Thus, if the label σi is placed in the box to the right
of the i-th North step then labels increase along columns from bottom to top. For example in Figure 7 we
have σ1 = 1 < σ2 = 2 < σ3 = 4.

We show how type C parking functions can be regarded as labelled lattice paths in a similar fashion.
An Hn-labelled path (π, σ) is a pair of a lattice path π ∈ Ln,n and a signed permutation σ ∈ Hn such
that σi < σi+1 whenever i is a rise of π and such that 0 < σ1 if π begins with a North step. Thus, if we
place the label σi to the left of the i-th North step then the labels increase along columns from bottom to
top, and all labels in the zeroth column (that is left of the starting point) are positive. See Figure 5.

Given a parking function f = (f1, . . . , fn) we obtain a labelled path as follows. For all 1 ≤ i ≤ n if fi
is non-negative, place the label i in the fi-th column. If fi is negative, place the label −i in column −fi.
Rearrange the labels in each column in increasing order and draw a path as in Figure 6.

Conversely, let (π, σ) be a labelled path. We define a parking function g as follows. If a positive label
i occurs in the j-th column then set gi = j. If a negative label i occurs in the j-th column instead set
g−i = −j. In summary we have the following result.

Proposition 3.3 The above correspondence defines a bijection between typeC parking functions of length
n and vertically Hn-labelled lattice paths.

3.5 The dinv’ statistic

The dinv statistic was first defined by Haiman to provide an (at the time conjectural) combinatorial model
for the q, t-Catalan numbers (Haglund, 2008, Chap. 3). For each Dyck path π ∈ Dn define the area
vector (a1, a2, . . . , an) by letting ai be the number of boxes in the i-th row, strictly between π and the
main diagonal. For example the Dyck path in Figure 7 has area vector (0, 1, 2, 1, 1). The dinv statistic is
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1
2
4

3
5

Fig. 7: A vertically labelled Dyck path (π, σ) with
area vector (0, 1, 2, 1, 1) and dinv(π) = 5 and
dinv’(π, σ) = 4.

1
−5
−4
2
3
6

Fig. 8: A vertically labelled path (β, σ) with area
vector (1,−2,−1, 0, 1, 2) and dinv(β) = 9 and
dinv’(π, σ) = 6.

Fig. 9: Paths with type C area vectors (0, 0, 0, 0), (1, 1,−1, 0) and (−2,−1, 0, 1).

defined as

dinv(π) = #
{

(i, j) : i < j, ai = aj
}

+ #
{

(i, j) : i < j, ai = aj + 1
}
.

A pair (i, j) contributing to dinv is called a diagonal inversion. Haglund and Loehr (2005) defined a
generalised statistic dinv’ on vertically Sn-labelled Dyck paths. A pair (i, j) with ai = aj contributes if
and only if σi < σj . On the other hand, a pair (i, j) with ai = aj + 1 contributes if and only if σi > σj .
Compare with Figure 7.

We define an area vector and a dinv statistic of type C for lattice paths π ∈ Ln,n. The area vector
(a1, a2, . . . , an) is given by ai = i − bi where bi is the number of boxes in the i-th row left of π. See
Figures 8 and 9. Moreover, we define

dinv(π) = #
{

(i, j) : i < j, ai = aj
}

+ #
{

(i, j) : i < j, ai = aj + 1
}

+ #
{

(i, j) : i < j, ai = −aj
}

+ #
{

(i, j) : i < j, ai = −aj + 1
}

+ #
{
i : ai = 0

}
.

Next, we define a dinv’ statistic for vertically Hn-labelled lattice path (π, σ). As in typeA above, a pair
(i, j) of candidate rows contributes if and only if the labels σi and σj satisfy a certain inequality. More
precisely,

dinv’(π, σ) = #
{

(i, j) : i < j, ai = aj , σi < σj
}

+ #
{

(i, j) : i < j, ai = aj + 1, σi > σj
}

+ #
{

(i, j) : i < j, ai = −aj , σi < −σj
}

+ #
{

(i, j) : i < j, ai = −aj + 1, σi > −σj
}

+ #
{
i : ai = 0, σi < 0

}
.
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a = (0, 1, 2, 1, 1)

1
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4

3

5

0i = 0
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1

1

i = 1

1

1 1

2i = 2

2i = 3
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2

3

5
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•

•

Fig. 10: The classical zeta map: A vertically labelled Dyck path (π, σ) (left), the construction of ζ(π) (middle), and
ζ(π, σ) (right).

Note that the two definitions of dinv(π) agree if π is a Dyck path.
Consider the H6-labelled path (π, σ) in Figure 8. Its area vector is given by (1,−2,−1, 0, 1, 2). There

is one diagonal inversion of type ai = aj , namely (1, 5), one diagonal inversion of type ai = aj + 1,
namely (1, 4), three diagonal inversions of type ai = −aj , namely (1, 3), (2, 6) and (3, 5), three diagonal
inversions of type ai = −aj + 1, namely (1, 4), (3, 6) and (4, 5), and one row of length zero, namely
i = 4. In total we have 9 diagonal inversions, so dinv(π) = 9. Note that the inversion (1, 4) is counted
twice!

If we wish to take labels into account we find that σ4 = 2 > 0, so the row of length zero does not
contribute. Moreover σ1 = 1 < σ4 = 2, thus (1, 4) is not a d’-inversion of type ai = aj + 1, and
σ2 = −5 > −σ6 = −6, thus (2, 6) is not a d’-inversion of type ai = −aj . The labels of all other
diagonal inversions fit our requirements, so dinv’(π, σ) = 6.

4 The zeta map
The original zeta map is a bijection ζ : Dn → Dn on Dyck paths and appears in a paper of Andrews et al.
(2002). A more explicit treatment including the compatibility with the statistics on Dyck paths defined in
the previous sections can be found in (Haglund, 2008, Thrm. 3.15). Let us start by recalling the definition
of the zeta map.

Given a Dyck path π ∈ Dn with area vector (a1, a2, . . . , an), set i = 0 and place your pen at (0, 0).
Now read the area vector from left to right drawing an East step for each i− 1 you encounter and a North
step for each i. Replace i by i+ 1 and repeat until you reach the point (n, n). See Figure 10.

We describe a bijection ζC : Ln,n → Bn which is an analogue of the classical zeta map.
Given a path π ∈ Ln,n with type C area vector (a1, a2, . . . , an), set i = n and start with your pen at

(0, 0). Read the area vector from left to right drawing an East step for each −i − 1 you encounter and a
North step for each −i. Then read the area vector from right to left drawing an East step for each i + 1
you encounter and a North step for each i. Now replace i by i − 1 and repeat the process until 2n steps
are drawn. See Figure 11.

It is clear from the construction that ζC(π) never goes below the main diagonal. Moreover when π is a
Dyck path, then ζC(π) is just the reverse path of ζ(π). In particular ζC sends Dyck paths to Dyck paths.

The following is our first main result.
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Fig. 11: The type C zeta map: A vertically labelled lattice path (π, σ) (left), the construction of ζC(π) (middle), and
ζ(π, σ) (right). Note that dinv’(π, σ) = 6 = area’(ζ(π, σ)).

Theorem 4.1 The map ζC : Ln,n → Bn is a bijection such that dinvC(π) = area(ζC(π)).

The zeta map can be inverted using the bounce path of a ballot path. A detailed proof will appear in the
full version.

4.1 The Haglund–Loehr zeta map
Haglund and Loehr (2005) extended the classical zeta map to a bijection from vertically labelled Dyck
paths to diagonally labelled Dyck paths that sends the dinv’ statistic to the area’ statistic. We start out
by recalling their definition. If (π, σ) is a vertically Sn-labelled path, then ζ(π, σ) is simply the diagonal
labelling of ζ(π) obtained as follows. For i = 0, 1, . . . , n read the labels of rows with area equal to i from
bottom to top and insert them in the diagonal. Compare with Figure 10.

Similarly, in typeC we start with a vertically Hn-labelled path (π, σ) and construct a diagonally labelled
ballot path ζ(π, σ) = (β,w). The ballot path is given by β = ζC(π). The labelling is obtained as follows.
For i = n, n − 1, . . . , 1 read the labels of the rows with area i from top to bottom and insert them in
the diagonal, then read the labels of rows with area equal to −i + 1 from bottom to top and insert their
negatives in the diagonal. In the end complement the n labels by adding their negatives in reverse order.
See Figures 11, 12 and 13.

The theorem below is the main result of this paper.

Theorem 4.2 The type C zeta map is a bijection from vertically Hn-labelled paths to diagonally Hn-
labelled ballot paths that sends the dinv’ statistic to the area’ statistic.

Combining Theorem 4.2 with Propositions 3.2 and 3.3 we obtain a new proof of the well known result
that the Shi arrangement of type Cn has (2n+ 1)n regions.

4.2 The zeta maps via valleys
The Haglund–Loehr zeta map has another simple description given in Armstrong et al. (2014a). Let us fix
the following convention. If (π, σ) is a vertically Sn-labelled Dyck path with rise i then we say the rise
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Fig. 12: The area vector of π is (1, 0, 1). The diagonal
inversions are (1, 2), (1, 2), (1, 3), (2, 3), i = 2, and
dinv’(π, σ) = 5 = area’(β,w).
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Fig. 13: The area vector of π is (1,−1, 0). The diag-
onal inversions are (1, 2), (1, 3), (1, 3), i = 3 but only
(1, 3) (as inversion of type ai = −aj + 1) contributes
to dinv’(π, σ) = 1.

has label (σi, σi+1). If (π, σ) is a diagonally labelled Dyck path with valley (i, j) then we say the valley
has label (σi, σj).

The image ζ(π, σ) of a vertically labelled Dyck path under the zeta map can now be defined as follows.
First insert the diagonal labelling as described in the previous section. The Dyck path is the unique path
which has a valley labelled (a, b) if and only if (π, σ) has a rise labelled (a, b). See Figure 10.

There is a similar description of the zeta map in type C provided by the following proposition. If
(π, σ) is a vertically Hn-labelled path with rise i then we say the rise has label (σi, σi+1). If (β,w) is a
diagonally labelled ballot path with valley (i, j) then we say the valley has label (wi, wj).

Proposition 4.3 Let (π, σ) be a vertically Hn-labelled lattice path. Then ζ(π, σ) has valley labelled (a, b)
if and only if (π, σ) has a rise labelled (b, a) or (−a,−b). Moreover, ζ(π, σ) ends with an East step in
the same column as label a if and only if (π, σ) begins with a North step labelled a.

Compare with Figures 11, 12 and 13.
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Fig. 14: The labelling of the steps of a path π (left), the set X of labelled steps (middle), and the path sw(π) of steps
in increasing order (right).
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4.3 The sweep map
A generalisation of the zeta map to rational Dyck paths called the sweep map was defined by Armstrong
et al. (2014b). The concept of the sweep map is as follows. Given a path one assigns to each step a label,
the labels being distinct integers. To obtain the image of a path under the sweep map, one rearranges the
steps such that the labels are in increasing order.

We now give a description of the zeta map of type C similar to the sweep map on Dyck paths. Given a
path π = s1s2, . . . , s2n ∈ Ln,n assign a label to each step by setting `(s1) = 0, `(si+1) = `(si) + 2n+ 1
if si = N , and `(si+1) = `(si)− 2n if si = E. Now define a collection X of labelled steps as follows. If
`(si) < 0 then add (si, `(si)). If `(si) > 0 then add (si−1,−`(si)). Finally, for the step s1 which is the
only step labelled 0, add (s2n,−n). Thus, X contains 2n labelled steps.

Finally, draw a path as follows. Choose (s, `) ∈ X such that ` is the minimal label among all pairs in
X . Draw the step s and remove (s, `) from X . Repeat until X is empty. We denote the path obtained in
this way by sw(π). See Figure 14. We conclude with the following theorem.

Theorem 4.4 For each lattice path π ∈ Ln,n we have sw(π) = ζC(π). In particular, the sweep map
sw : Ln,n → Bn is a bijection.
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