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Morphological processing of stereoscopic image

superimpositions for disparity map estimation

Jean-Charles Bricola, Michel Bilodeau and Serge Beucher

PSL Research University – MINES ParisTech
CMM – Centre de Morphologie Mathématique
35 rue St-Honoré 77300 Fontainebleau, France

Abstract. This paper deals with the problem of depth map computa-
tion from a pair of rectified stereo images and presents a novel solution
based on the morphological processing of disparity space volumes. The
reader is guided through the four steps composing the proposed method:
the segmentation of stereo images, the diffusion of superimposition costs
controlled by the segmentation, the resulting generation of a sparse dis-
parity map which finally drives the estimation of the dense disparity
map. An objective evaluation of the algorithm’s features and qualities
is provided and is accompanied by the results obtained on Middlebury’s
2014 stereo database.

Keywords: stereo vision, geodesic distances, 3D watershed, image seg-
mentation, sparse disparity measurements, dense estimation

1 Introduction

The problem of computing a depth map from a pair of rectified stereo images
is undoubtedly a classic one in computer vision. When a point of the scene
projects onto the two image planes, it does so with the same ordinates but with
different abscissa. The difference of abscissa corresponds to what is commonly
referred to as the disparity and is inversely proportional to the point’s depth
being sought for. Finding point correspondences between the left and right views
of the stereo pair is relatively easy across non-uniformly textured areas. However,
homogeneous regions are the source of matching ambiguities whilst the occlusion
phenomenon makes it impossible for some pixels to have a correspondence and
thus require their disparity to be estimated according to a suitable model.

In order to overcome these two difficulties, it is usual to devise algorithms
which ensure, on the one hand, that disparities evolve smoothly across the low-
textured areas of the image for which the depth map is estimated and, on the
other hand, that disparities remain consistent with the resulting warping of
stereo images. Depth discontinuities must be tolerated though in order to han-
dle the presence of different objects in the scene. Image gradients and prior
segmentations are, to this end, often used as pertinent cues on natural scenes.
Furthermore, occluded areas will never, despite correct disparities, yield a mean-
ingful superimposition with the other image of the stereo pair. Bad superimposi-
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tions for such areas should therefore not prevent the algorithm from giving them
the right disparities.

Methods able to satisfy the aforementioned specifications typically belong to
the category of global approaches. The general idea is to formulate an energy
function which, for a given disparity map, equals the sum of superimposition or
warping costs plus a regularisation term, penalising non-smooth disparity transi-
tions. Finding the disparity map minimising this energy may be achieved using
gradient descent algorithms [1] or, in the context of maximum-a-posteriori or
MAP inference, using 3D graph-cuts [2], alpha-expansion [3] and belief propa-
gation methods [4–6]. The work of [5] is a good example of how the occlusion
phenomenon is taken into account within the MAP inference.

Former methods perform a similar kind of optimisation on each horizontal
scanlines independently, so as to warp the corresponding image rows together [7].
Given the disparity space image, the warping is obtained by finding a shortest
path going through the corresponding array of accumulated costs, which turns
out to be nothing else than a particular type of geodesic distance function. Due to
the fact that backtracing, the component of dynamic programming responsible
for recovering the shortest path, is employed, the concept cannot easily extend
to 3D grids. The combination of scanline optimisations along different axes is
nevertheless the main constituent of the semi-global matching [8], which still
serves as an essential component in state-of-the-art methods such as [9].

In this article, we propose a novel approach to depth map computation,
based on the morphological processing of a disparity space volume, characteris-
ing the superimpositions of the considered stereo images for different disparities.
A disparity space volume, abbreviated as DSV, is in fact a stack of disparity
space images, piled according to an increasing order of disparities. We show how
geodesic distance functions computed across a DSV may be employed with the
watershed transformation controlled by markers [10], so as to obtain a separat-
ing hyperplane between the foreground and background voxels belonging to the
DSV. Furthermore, our method draws on the idea of [7] which is to integrate
ground control points in the process. As a matter of fact, an effort has been made
to systematically provide a sparse disparity map carrying a reasonable amount
of information, while minimising the number of invalid matches. To fulfil that
objective, we got inspired by the research of [11] and [12] in order to diffuse costs
inside the disparity space volumes while resorting to the image segmentation so
as to prevent incoherent cost aggregations.

The paper starts with four sections which sequentially go through each step of
the algorithm. Section 2 presents the morphological segmentation in general and
shows how images of the stereo pair are initially partitioned. These partitions
add a constraint on our diffusion mechanism presented in section 3, resulting in
the generation of sparse disparity maps described in section 4. Then, section 5
provides all the details on the dense disparity map estimation based on the 3D
watershed transformation. Finally, section 6 is devoted to the evaluation of the
proposed methods on the Middlebury 2014 database.
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2 Segmentation

This section explains how both images of the stereo pair are segmented. Our seg-
mentation scheme produces partitions which are slightly over-segmented across
textured regions, which preserve all contrasted objects even when they are thin
and which capture most of the remaining objects’ contours. This choice has been
made in the view of the constrained cost diffusion process presented in section
3. Section 2.1 recalls the fundamentals of the watershed transformation, as it is
used here in our segmentation procedure but also in sections 4 and 5. Section
2.2 goes into more details about the segmentation algorithm employed in this
approach.

2.1 The watershed transformation controlled by markers

Let S : N2 → N be a discrete elevation surface, mapping every point p of the
image domain to its altitude S[p]. We define the accompanying image of lakes
as L : N2 → N, mapping every point p to a label L[p]. We impose that a point
p belongs to a lake if and only if L[p] > 0.

The watershed transformation of S, controlled by an initial image of lakes
L0, is the result of an iterative process which assigns all pixels {p |L0[p] = 0} to
a lake existing in L0. The recurrence relationship between Lt and Lt−1 is defined
as follows:

1. Let St be the set of points reached at altitude t, i.e. St = {p | S[p] ≤ t}
2. The lakes of Lt−1 are propagated in an isotropic fashion to all points p ∈ St

having Lt−1[p] = 0 and belonging to a path leading to any lake of Lt−1.
3. The meeting points of lakes of different labels belong to the watershed.

When t reaches the highest altitude of S, say t∗, the iterative process stops and
the image of lakes Lt∗ is completely filled. Although the algorithm is presented
for two-dimensional elevation surfaces, it applies equally well to any higher di-
mension. The reader may find more details on the watershed transformation as
well as computationally efficient algorithms based on hierarchical queues in [10].

2.2 Image partitioning with little over-segmentation

In order for Lt∗ to constitute a relevant image partition, both the topographical
surface S and the markers L0 must be chosen appropriately. It is common to
define S as a colour gradient, for instance the supremum of the red, green and
blue channels’ gradients, when dealing with images of unknown nature. The
most trivial choice for the lake’s initialisation then consists of taking each of the
gradient’s minima as a marker with a distinctive label, but this typically leads
to a severe image over-segmentation, as shown in Figure 2. This is accounted
for by the fact that the gradient is, on natural images, composed of a multitude
of minima. Filtering the image or the gradient beforehand helps reducing the
amount of minima, but care must be taken not to deform the relevant contours.
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We propose to alter each level set of the gradient function by applying a
series of closings, which decrease exponentially in strength as the altitude of
the elevation surface increases. This is exactly the method proposed by [13] for
regularising watersheds by oil flooding. The resulting gradients have less min-
ima and their watershed transformation produces therefore less over-segmented
partitions as testifies Figure 2. Besides, since the closing has little strength at
high altitudes, it has little effect on the corresponding level sets and thus sharp
contours are not deformed.
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Fig. 1. Flowchart of the image segmentation procedure.

The partition frontiers obtained at this stage of the proceedings contains the
frontiers of the final partition Lfinal. Figure 1 schematises the full segmentation
algorithm. Let us briefly describe the operators involved in this system:

– AreaOpen(σ) is an area opening operator which removes any cell of the par-
tition having an area inferior or equal to σ pixels.

– Label is a labelling operator which, given a binary image as input, assigns
a unique label to every connected component. Pixels set to 0 in the binary
image are set to 0 in the labelled image.

– Merge is responsible for merging two images of markers while ensuring that
each of them receives a unique label in the output image.

– PartitionBuild takes two images of lakes Lmask and Lmarker as input. The out-
put Lout is an image of lakes of identical dimensions, defined by the following
relation:

Lout[p] =

{

Lmask[p] if ∃ p′ | Lmask[p
′] = Lmask[p] ∧ Lmarker[p

′] > 0

0 otherwise
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– Threshold(t0, t1) denotes the standard threshold operator mapping all pixels
of the input image in the range [t0, t1] to 1, the others to 0.

– W.T. is the watershed transformation described in section 2.1.

The algorithm’s input g is nothing else than the altered gradient we have pre-
viously described. The system represented in the top flowchart yields two inter-
mediate images of lakes, called M c and Mf . The first is meant to hold lakes
splitting on very sharp gradient areas while tolerating thin structures. The sec-
ond, on the contrary, is more sensitive to smaller contrast but imposes lakes of a
certain area. The contrast and area parameters must therefore be chosen, such
that tc > tf and σc < σf . The system in the bottom flowchart simply shows how
the thin structures in M c are appended to the image of lakes of Mf and how
this results in the final segmentation.

Fig. 2. Sample segmentations for Adirondack, Jadeplant and Motorcycle images from
Middlebury 2014 database. The top row shows the result of the watershed transforma-
tion of the colour gradient, despite the image pre-filtering, using the gradient’s minima
as markers. The middle row is the watershed transformation on the altered gradient g
using the gradient’s minima as markers. The bottom row is the output of the algorithm
presented in section 2.2.

Regarding the choice of the four parameters, we opted for a solution that is
dependant on the image characteristics. tc corresponds to the 45th percentile of
the intensity values observed in the initial colour gradient excluding 0, and tf
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corresponds to the 10th percentile. Furthermore, it is the ratio of the opening
parameter with respect to the full image area which is fixed. In our experiments,
this ratio has been set to 5 · 10−5 for σc and to ten times more for σf .

3 Costs diffusion

The left and right images of the stereo pair, denoted by I0 and I1 respectively, are
superimposed for different horizontal shifts corresponding to the disparities being
tested. The superimpositions are stored in a disparity space volume V : N3 → R.
The entry V[x, y, d] reflects how well the pixels of coordinates (x, y) in I0 and
(x− d, y) in I1 match. In this approach, V[x, y, d] corresponds to the Hamming
distance between the two pixel values in their corresponding Census transformed
images [14], encoding the rising edges of the standard gradient according to
different directions. This choice makes the superimposition costs insensitive to
illumination changes and has become a standard in many stereo applications.

The purpose of costs diffusion is to filter the disparity space volume V so
as to highlight the locations where the stereo images effectively superimpose. A
trivial choice would be to use a moving average filter which operates on each
disparity plane independently, which of course wouldn’t be a good solution. The
primary reason is that the moving average filter may obviously aggregate the
costs of pixels representing different objects in the scene. This is an issue if the
moving average window spans two or more objects with different depths because
their costs will be mixed together for the same disparity. In [11], a segmentation
of the left image was used to restrict the domain of the aggregation window to
the pixels which supposedly belong to the same object as the one of the window
centre. In our method, we resort to both the left and right segmentations of
the stereo pair, obtained by the algorithm presented in section 2. The domain
inside which the diffusion may freely operate, is constrained by the intersection
of the left segmentation with the right segmentation shifted according to the
considered disparity. This way of proceeding ensures that the costs obtained
across the portions of the left image being occluded in the right image do not
again mix with the costs obtained across non-occluded areas.

While the chosen segmentations facilitate the construction of quite large ag-
gregation supports across homogeneous areas and still consistent ones across
thin image structures, the fact that filtering is, at this stage, only applied to
each disparity plane independently constitutes a limitation with respect to the
processing of tilted and non-planar surfaces. This is why, we shall integrate a
basic warping technique to the diffusion scheme.

3.1 Erosions and distance functions

The proposed diffusion algorithm resorts to two morphological operators which,
for the sake of completeness, are briefly recalled in this section. Morphological
operators are typically controlled by structuring elements which, in the discreet
case, are described by sets of points. We will refer to B as an arbitrary structuring
element.
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Erosions The erosion operator ε under structuring element B transforms a vol-
ume V into another volume εB(V) according to equation 1.

εB(V)[p] = inf
p′∈B

V[p+ p′] (1)

If structuring element B is just composed of one point, such that B = {p′}, the
erosion turns into a simple translation in the direction of −p′. In the rest of this
article, such a translation will be represented by εp′ .

Distance functions The distance function DB(M) associated to a binary volume
M : N3 → {0, 1}, and controlled by structuring element B, is expressed by the
following recurrence relationship:

Dt = min {Dt−1, εB(Dt−1) + 1} (2)

setting D0[p] =

{

0 if M[p] = 0

+∞ otherwise

DB(M) = Dt∗ , for t
∗ satisfying Dt∗ = Dt∗+1. In fact, DB(M)[p] corresponds to

the minimum number of erosions being necessary for voxel p to get reached by
any deactivated voxel of mask M, using structuring element B.

3.2 Diffusion algorithm

Let Vs : N3 → N be the volume encoding the intersections of L(0) and L(1), i.e.
the partitions of I0 and I1 respectively, for different disparities. Each entry of
Vs is computed as:

Vs[x, y, d] = L
(0)[x, y] + L(1)[x− d, y] ·max

x,y
L(0)[x, y] (3)

Suppose that the costs were propagated along a particular direction −t, such
that the disparity space volume V would transform into 1

2 (V + εt(V)). The set
{p | Vs[p] 6= εt(Vs)[p]} determines all the voxels for which costs from different
regions would have been mixed. Let Mt stand for the binary mask attributing
the value 0 to such voxels and the value 1 to the others. Furthermore, consider
the following directions: tl = (−1, 0, 0), tr = (+1, 0, 0), tu = (0,−1, 0) and
td = (0,+1, 0).

Algorithm 1 describes the proposed diffusion mechanism. Similarly to [12],
the costs are first diffused along the horizontal axis, providing a new filtered
disparity space volume, of which the costs in turn are diffused along the vertical
axis. However, for each voxel, the aggregation of costs stops as soon as a frontier
between two different regions in Vs is crossed or when the maximum diffusion’s
scope n has been attained along a particular direction. This is what is enforced
by lines 6 and 7 in algorithm 1. As a result, the aggregations along two opposite
directions do not necessarily have the same weight and thus more importance
is given to the direction where a region border is the farthest away from the
considered voxel.
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The way algorithm 1 is presented suggests that the diffusion is still con-
tained inside each disparity plane. The extension to multiple disparity planes
is however quite straightforward and does not change the proposed template.
For a given direction t = (tx, ty, 0)

⊺, we define a new structuring element
Bt = {(tx, ty,+1)⊺, (tx, ty,−1)

⊺}. The cost update rule in line 5 transforms
into:

VUPD ← V +min {εt(VOUT), εBt
(VOUT) + ξ}

where the parameter ξ controls the regularity of the diffusion. To put it in a
nutshell, it is a partial scanline optimisation which is performed along the chosen
direction using the left and right image segmentations as a boundary constraint.

Algorithm 1 Diffusion of superimposition costs

1: function DirectionalDiffusion(V, t, n)
2: t← 0
3: VOUT ← V

4: while t < n do

5: VUPD ← V + εt(VOUT)
6: VSEL ← Binary volume highlighting Dt(Mt) > t

7: VOUT ← VUPD · VSEL + VOUT · (1− VSEL)
8: t← t+ 1
9: end while

10: return VOUT

11: end function

12: function DiffuseCosts(V, Vs, n)
13: VXL ← DirectionalDiffusion(V, tl, n)
14: VXR ← DirectionalDiffusion(V, tr, n)
15: VX ← (VXL + VXR)÷ (min(n,Dtl

(Mtl
)) + min(n,Dtr

(Mtr
)) + 2)

16: VYU ← DirectionalDiffusion(VX, tu, n)
17: VYD ← DirectionalDiffusion(VX, td, n)
18: VY ← (VYU + VYD)÷ (min(n,Dtu

(Mtu
)) + min(n,Dtd

(Mtd
)) + 2)

19: return VY
20: end function

4 Sparse disparity map generation

The initial disparity measures are recovered from the filtered disparity space
volume computed in section 3, by calculating the disparity that minimises the
superimposition cost at each pixel. In addition, cross-checking [15] is performed
to ensure that the disparity measures remain consistent between the left and the
right images of the stereo pair. The disparity measures which do not satisfy this
criterion are discarded. Figure 3 shows some of the resulting disparity maps on
the Middlebury 2014 dataset.
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Fig. 3. Sparse disparity maps obtained by the diffusion algorithm presented in section
3.2. n is set to 25 pixels. ξ is set to 20% of the maximum possible cost in the disparity
space volume V. Pixels appearing in black are those which did not satisfy the cross-
checking criterion [15]. Top row shows the disparity maps obtained for Adirondack,
Jadeplant, and Motorcycle stereo images. Bottom row shows the disparity maps ob-
tained for Pipes, PlaytableP, and Vintage stereo images.

4.1 Detection and pruning of bad measures

Despite their perceptual appeal, these initial disparity maps are subject to some
artefacts. It is preferable to detect and remove them if sparse disparity maps
were to be used as initialisers of the dense estimation algorithm. Firstly, we
observe that artefacts are not predominant in the initial disparity maps. This
means that clusters of smoothly evolving disparities should be preserved if they
span a significant area of the image. At the opposite extreme, peaky measure-
ments should be eliminated without further consideration. The cases in-between
demand some more investigation.

Clusters computation In order to find the clusters of smoothly evolving dis-
parities, the holes of the initial disparity map are filled in using the watershed
transformation presented in section 2.1. The available disparities play the role of
initial markers, and the image gradient plays the one of the topographical sur-
face controlling the flooding. The gradient of the filled disparity map indicates
where disparities do not smoothly evolve. We threshold this gradient between the
values 0 and 1 so as to highlight the connected components which uniquely iden-
tify the desired clusters. After the labelling, each pixel attributed to a disparity
measure receives the identifier of the cluster it belongs to.

Clusters selection The selection of clusters is primarily achieved by the area
opening operator introduced in section 2.2. According to the aforementioned
specifications, two area openings are performed. The strongest one keeps the
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largest clusters while the weakest one removes small impurities. Structures con-
served by the weak area opening but removed by the stronger area opening
typically correspond to thin image structures or erroneous measures. To tell
them apart, it suffices the look at the image gradient and observe that erroneous
measures mainly occur across homogeneous areas.

Occlusion artefact filtering Another source of error originates from the diffusion
of contour disparities to regions being both homogeneous and textureless. This
may be observed, for instance, on Jadeplant (Figure 3) between the top of the
elongated box and the background. Since the disparity measures are virtually the
same from either side of the frontier, the sole selection of clusters does not suffice
to prune the wrong measures, in that scenario. These wrong measures constitute
fattening artefacts. In order to detect and remove them, it is important to notice
that fattened disparity measures lie near region borders, and are usually not
consistent with the disparities found within the interior of the regions. Therefore,
we propose to perform the filtering of the fattening artefacts at a regional scale,
as follows: each cell of the partition corresponding to the image for which we aim
at computing its disparity map, is eroded using an isotropic structuring element
of size equal to the diffusion’s scope. The processing then concerns the cells of
the partition, which have not been completely destroyed by the erosion. For each
of these cells, only the pixels belonging to the cluster(s) covering some area of the
corresponding eroded cell, may be restored with their disparity measures. Since
the fattened disparities and the interior disparities should belong to different
clusters, and that the pixels attributed to the fattened disparities should not
belong to the eroded cells, then fattened disparities should not be reconstructed,
as desired.

5 Dense disparity map estimation

We aim at estimating the final disparity map by means of a 3D watershed trans-
formation. Similarly to any watershed transformation (cf. section 2.1), the suc-
cess of the procedure depends on the definition of the initial markers L0 : N3 → N

and the topographical surface being flooded, S : N3 → N. Since the disparity
map is in fact a representation of the hyperplane separating the disparity space
volume into the foreground and background voxels, only two markers designat-
ing the foreground and background regions are required. Therefore, the markers
are initialised so that L0[x, y, d] is equal to the background label ℓg > 0 if d = 0,
to a distinct foreground label ℓf > 0 if d equals the maximum disparity consid-
ered with respect to V, and to 0 elsewhere. The most demanding part of this 3D
segmentation will be the definition of the topographical surface S.

5.1 Interpolation and distance functions

The topographical volume S should be chosen so that the watershed passes by
the points {(xi, yi, di)} for any valid pixel (xi, yi) attributed to disparity di in



Morphological processing of stereoscopic image superimpositions 11

(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of the filtering stage. (a) Left view of AustraliaP, (b) An initial
disparity map containing many artefacts, (c) The large clusters of continuous dispari-
ties, (d) The union of both large clusters and smaller clusters spanning areas holding
sufficient gradient information, (e) Close-up showing the occasional fattening effect
on homogeneous areas, (f) Result of the occlusion artefact filtering deduced from the
segmentation of the left view.

the filtered sparse disparity map described in section 4. One way of proceeding
is to resort to the binary distance function defined by equation 2. In that case,
the accompanying mask of control points has to be exclusively set to 0 for all the
chosen {(xi, yi, di)} and B must correspond to an isotropic structuring element.
In order to drive the watershed transformation, S must therefore equal the in-
verted distance function. However, the binary distance function has one major
drawback: the fact that the disparity space volume computed in section 3 would
be totally ignored from the interpolation process. To overcome this limitation,
the geodesic distance controlled by the DSV V may be used instead. The latter
is described by equation 4.

Dt = min {Dt−1, εB(Dt−1) + V} (4)

In fact, this equation is a simple alteration of the binary distance update rule (cf.
equation 2), where V acts as a viscosity function, delaying the time it takes for a
voxel to get reached by one of its neighbours. Figure 5 illustrates the comparison
between the segmentations controlled by the additive inverses of the binary and
the geodesic distance functions.

5.2 Generation of the topographical volume S

Now, let us explain what the generation of the topographical volume S consists
of. At our disposal, we have the segmentation of the left view L(0), the disparity
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(a) (b) (c) (d)

Fig. 5. Distance functions and segmentation. (a) Viscosity function, (b) The experi-
ment’s settings: in black are shown the pixels from which the distance functions are
computed. The coloured rows represent the markers controlling the watershed segmen-
tation in conjunction with the inverted distance functions. (c) Binary distance function
and resulting watershed shown in yellow. (d) Geodesic distance function controlled by
the viscosity functions and resulting watershed segmentation.

space volume V with the aggregated superimposition costs, and a filtered sparse
disparity map D. Let D be a distance function, having the same dimensions as
V. D is initialised as follows:

D0[x, y, d] =

{

0 if D[x, y] = d ∨ ‖∇L(0)‖[x, y] > 0

+∞ otherwise

The points set to zero in this distance function are composed of the control points
originating from the sparse disparity map plus the segmentation boundaries of
L(0) added to every disparity plane. These boundaries not only guarantee that
the interpolation is applied independently on each cell of the partition but also
that the hyperplane will fold appropriately at such locations, so as to allow
discontinuities within the resulting disparity map.

Once initialised, the computation of the distance function is accomplished
using the update rule provided by equation 4. There is one alteration though:
similarly to the cost diffusion of section 3, we enforce some regularity by adding a
supplementary contribution ζ when accumulating distances across different dis-
parity planes. In order to do that, B has to be decomposed into two structuring
elements B1 and B2, the first holding the directions fronto-parallel to the image
plane, the second holding the tilted directions. The term εB(Dt−1) in equation
4 is then replaced by min{εB1

(Dt−1), εB2
(Dt−1) + ζ}.

Upon convergence at t = t∗, the topographical volume is finally given by
equation 5.

S = −Dt∗ + max
(x,y,d)

Dt∗ [x, y, d] (5)

6 Experiments and Results

Our method has been tested on the Middlebury 2014 dataset [16], using the
quarter resolution images. Both our sparse and dense results are compared to
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the ground truth disparity maps acquired using the method described in [17].
This section provides the reader with the parameters chosen to produce all the
disparity maps. Then the quality of the sparse disparity measures is evaluated,
while discussing the impact of the filtering stage described in section 4. Finally,
we analyse the results obtained on the dense disparity maps.

6.1 Parameters

The choices of the segmentation’s parameters are given and explained in section
2. In section 3, two parameters were introduced. ξ, the extra contribution added
to the costs aggregated from different disparity planes, is set to 20% of the
worst superimposition cost while n, the maximal scope of the diffusion along a
particular direction, is fixed to 25 pixels. It should be noted that reducing n is
likely to cause the disparity map to become sparser and to be subject to more
measurement errors. In section 4, large disparity clusters are supposed to cover
at least 0.5% of the image plane against 0.005% for the small clusters. Finally,
the regularisation term ζ presented in section 5 is fixed to 50% of the worst
superimposition cost.

6.2 Sparse disparity measures
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Fig. 6. Occupancy of valid and “bad” disparity measures for the training set of Mid-
dlebury 2014 database, before and after the filtering stage.

Some of the initial sparse disparity maps have been presented in Figure 3.
Based on the ground truth provided for the training set of the database, the
statistics regarding the density and the accuracy of these disparity maps as well
as the impact of the post filtering have been gathered in Figure 6. On average,
54% of the pixels covering the non-occluded areas of the image plane have been
attributed to a disparity measure. If we consider that erroneous measures are
those having a disparity error higher than 2 pixels, then the initial measures
have an average error percentage of 12.4%. The filtering stage reduces the latter
to 2.80%, while it preserves about 88% of the initial disparity measures which
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were correct. Note that the Playtable instance has been discarded from these
averages, since the matching errors are the result of severe vertical disparities
between the left and right images. The visual appeal of the disparity maps is
probably best explained by the fact that they remain consistent with respect
to the segmentations computed in section 2, that the absence of measures is
recurrent across occluded areas, and that the disparities of pixels being classified
as erroneous are still not too different from the ground truth. The root-mean-
square error reflects this perfectly well on the benchmark: considering the full
image plane, including occluded areas, this error evaluates to 2.2 pixels (quarter
resolution), which, at the time of writing, ranks our sparse disparity maps third
among those obtained using the other methods evaluated in the benchmark.

Adirondack Jadeplant Motorcycle

Pipes PlaytableP Vintage

AustraliaP Bicycle2 Classroom

Djembe Newkuba Livingroom

Fig. 7. Sparse disparity maps resulting from the diffusion algorithm, combined with
the filtering step presented in section 4.
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6.3 Dense disparity map estimation

Disparity maps resulting from the interpolation process (cf. section 5) are shown
in Figure 8. As desired, the disparity maps are consistent with the provided
segmentations, which is again reflected by the RMS error. However, disparities
are still subject to inaccuracies across homogeneous areas and the interpolated
disparity functions lack of smoothness. As part of a future work, it would in-
teresting to study the effect of the viscous watershed transformation [13] on the
topographical surface controlling the 3D watershed, since it exhibits interest-
ing regularisation properties. Furthermore, the costs obtained across occluded
areas should deserve a complementary treatment so that they do not perturb
the interpolation when decreasing the regularisation parameter ζ. Finally, the
interpolation process could benefit from disparity plane hypotheses, similarly to
[18], which could be made on a regional basis, thanks to the sparse disparity
measures.

Adirondack Motorcycle PlaytableP

Fig. 8. Disparity maps obtained using the interpolation algorithm presented in section
5, controlled by the corresponding sparse disparity maps.

7 Conclusion

In this study, we have investigated the use of morphological operators within
the analysis of stereo image superimpositions and deduced the corresponding
disparity maps. The watershed transformation plays a pivotal role in that re-
spect, since it is employed for the segmentation of the two images of the stereo
pair, the clustering of disparity measures required by the filtering stage, and
the interpolation mechanism leading to the dense disparity maps. An important
aspect of this work has been the use of the left and right segmentations, in order
to avoid irrelevant cost aggregations, perform the pruning of fattening artefacts
appearing in the initial sparse disparity maps, and constrain the computation of
distance functions used within the interpolation of the final disparity maps. The
proposed method yields very good results for the sparse disparity map genera-
tion. The dense estimation is the first of its kind to resort to a 3D watershed.
While the results are quite encouraging, future work should concentrate on the
regularisation of the interpolation process.
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