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Abstract. We reach beyond the celebrated theorems of Erdős-Ko-Rado and Hilton-Milner,
and a recent theorem of Han-Kohayakawa, and determine all maximal intersecting triples
systems. It turns out that for each n ≥ 7 there are exactly 15 pairwise non-isomorphic such
systems (and 13 for n = 6). We present our result in terms of a hierarchy of Turán numbers
ex(s)(n; M3

2 ), s ≥ 1, where M3
2 is a pair of disjoint triples. Moreover, owing to our unified

approach, we provide short proofs of the above mentioned results (for triple systems only).
The triangle C3 is defined as C3 = {{x1, y3, x2}, {x1, y2, x3}, {x2, y1, x3}}. Along the way we
show that the largest intersecting triple system H on n ≥ 6 vertices, which is not a star and
is triangle-free, consists of max{10, n} triples. This facilitates our main proof’s philosophy
which is to assume that H contains a copy of the triangle and analyze how the remaining
edges of H intersect that copy.
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1. INTRODUCTION

A hypergraph is a synonym for set system and in this context the sets are called
edges. The elements of all the sets are called vertices. We often identify the edge set
of a hypergraph H with the hypergraph itself but never forget about the underlying
vertex set V (H). A hypergraph is called intersecting if every two of its edges intersect.
A hypergraph is k-uniform, a k-graph, for short, if every edge has size k.

Although in this paper we prove results about triple systems, or 3-uniform hyper-
graphs, we begin with some definitions and results valid for all k-graphs, k ≥ 2.

The celebrated Erdös-Ko-Rado theorem [3] determines the maximum size of
a k-uniform intersecting family. Since we formulate this result in terms of the Turán
numbers, we need some more definitions and notation. Given a family of k-graphs G,
we call a k-graph H G-free if for all G ∈ G we have G * H.
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Definition 1.1. For a family of k-graphs G and an integer n ≥ 1, the Turán number
(of the 1st order) is defined as

ex(1)
k (n;G) := exk(n;G) = max{|E(H)| : |V (H)| = n and H is G-free}.

Every n-vertex G-free k-graph with exk(n;G) edges is called extremal (1-extremal)
for G. We denote by Exk(n;G) = Ex(1)

k (n;G) the family of all n-vertex k-graphs which
are extremal for G.

In [9] the authors introduced a hierarchy of Turán numbers, where in each generation
we consider only k-graphs which are not sub-k-graphs of extremal k-graphs from all
previous generations. The next definition is iterative.

Definition 1.2. For a family of k-graphs G and integers s, n ≥ 1, the Turán number
of the (s+ 1)-st order is defined as

ex(s+1)
k (n;G) = max{|E(H)| : |V (H)| = n, H is G-free, and
for all H ′ ∈ Ex(1)

k (n;G) ∪ . . . ∪ Ex(s)
k (n;G), H * H ′},

if such a k-graph H exists. An n-vertex G-free k-graph H is called (s+ 1)-extremal for
G if |E(H)| = ex(s+1)

k (n;G) and for any H ′ ∈ Ex(1)
k (n;G) ∪ . . . ∪ Ex(s)

k (n;G), H * H ′;
we denote by Ex(s+1)

k (n;G) the family of n-vertex k-graphs which are (s+ 1)-extremal
for G.

We will often write ex(s)
k (n;G) for ex(s)

k (n; {G}) and Ex(s)
k (n;G) for Ex(s)

k (n; {G}).
A star is a hypergraph with a vertex, called its center, contained in all the edges.

Obviously, a star is intersecting. An n-vertex, k-uniform star with
(

n−1
k−1

)
edges is called

full and denoted by Sk
n. Let Mk

2 be a k-graph consisting of two disjoint edges.

Theorem 1.3 ([3]). For n ≥ 2k,

exk(n;Mk
2 ) =

(
n− 1
k − 1

)
.

Moreover, for n ≥ 2k + 1, Exk(n;Mk
2 ) = {Sk

n}.
A historically first example of a Turán number of the 2nd order is due to Hilton

and Milner [8] (see [4] for a simple proof). They determined the maximum size of
an intersecting k-graph which is not a star.

Theorem 1.4 ([8]). For n ≥ 2k + 1,

ex(2)
k (n;Mk

2 ) =
(
n− 1
k − 1

)
−

(
n− k − 1
k − 1

)
+ 1.

Moreover, for k = 3, Ex(2)
3 (n;M3

2 ) = {H1(n), H2(n)}, while for k ≥ 4, Ex(2)
k (n;Mk

2 ) =
{Hk

1 (n)}.
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The two 2-extremal 3-graphs H1(n) and H2(n) appearing in Theorem 1.4 are
defined later in this section. For the definitions of Hk

1 (n) for arbitrary k ≥ 4, see [8].
Recently, the third order Turán number forMk

2 has been established for arbitrary k
by Han and Kohayakawa in [6].
Theorem 1.5 ([6]). For k ≥ 3 and n ≥ 2k + 1,

ex(3)
k (n;Mk

2 ) =
(
n− 1
k − 1

)
−

(
n− k − 1
k − 1

)
−

(
n− k − 2
k − 2

)
+ 2.

Han and Kohayakawa have also determined the 3-extremal k-graphs which are not
shown here. Below we define H3(n), the only 3-extremal 3-graph for M3

2 and n ≥ 7.
A natural question arises if this process terminates. In other words, is the number

of maximal intersecting k-graphs finite, that is, independent of n, the number of
vertices? This question has been answered positively already in [1] (see also [11]) but
no extremal hypergraphs were given.

In this paper we produce explicitly the entire spectrum of maximal, intersecting
3-graphs and arrange them by means of the ordered Turán numbers for the matching
M3

2 (Proposition 1.6 and Theorem 1.7 below). In particular, we find all, pairwise
non-isomorphic, maximal, intersecting 3-graphs on six vertices (Proposition 1.6).
Although, for n ≥ 7, the Turán numbers of the first, second, and third order are
already known (and are stated above), for the sake of unification, we include them
into our main result. In addition, we determine the complete Turán hierarchy for
non-intersecting 3-graphs which are triangle-free (Corollary 2.5 in Section 2.2). For
k = 3 we suppress the superscript 3 from the notation of 3-graphs, i.e., M3

2 = M2 and
S3

n = Sn.
Before stating our results, we need to define several specific 3-graphs which turn

out to be extremal. In our description, we will put an emphasis on the vertex covers.
A subset of vertices T of a hypergraph H is called a vertex cover if it has nonempty
intersection with every edge of H. We denote by τ(H) the size of the smallest vertex
cover of H. Clearly, every edge of an intersecting hypergraph is its vertex cover, so,
for an intersecting k-graph H we have 1 ≤ τ(H) ≤ k.

For a subset A ⊂ V , set

up(A) =
{
f ∈

(
V

k

)
: f ⊃ A

}
.

Observe that if T is a vertex cover of a maximal intersecting k-graph H, then
up(T ) ⊆ H.

Let x, y, z, v, w, u ∈ V be six different vertices of V , |V | = n. We define

H1(n) = up({x, y}) ∪ up({x, z}) ∪ up({x, v}) ∪ {{y, z, v}}

and
H2(n) = up({x, y}) ∪ up({x, z}) ∪ up({y, z}).

Note that for i = 1, 2, M2 6⊂ Hi(n) and |Hi(n)| = 3n− 8. Next, let

H3(n) = up({x, y}) ∪ up({x, z}) ∪ {{x, v, w}, {y, z, w}, {y, z, v}}.
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Note that M2 6⊂ H3(n) and |H3(n)| = 2n− 2. Further, let

H4(n) = up({x, y}) ∪ {{x, v, z}, {x,w, z}, {x, v, w}, {y, z, w}, {y, z, v}, {y, v, w}},

H5(n) = up({x, y}) ∪ {{x, v, z}, {x,w, u}, {x, v, w}, {y, z, w}, {y, u, v}, {y, v, w}},
and

H6(n) = up({x, y}) ∪ {{x, v, z}, {x,w, u}, {x, v, w}, {y, z, w}, {y, u, v}, {x, z, u}}.

Note that for i = 4, 5, 6, M2 6⊂ Hi(n) and |Hi(n)| = n+ 4.
Observe also that τ(Hi(n)) = 2 for i = 1, . . . , 6. The minimal vertex covers can be

easily identified, as they are exactly the 2-element sets which are the arguments of
the operator up(·) appearing in all 6 definitions above. For instance, H1(n) has three
minimal vertex covers, {x, y}, {x, z}, {x, v}, while H6(n) has just one, {x, y}.

Next, we define five more intersecting 3-graphs, Hi(n), i = 7, . . . , 11, all with just
10 edges and spanned on 6 vertices. As now τ(Hi(n)) = 3, the remaining n− 6 vertices
are isolated. Below we use notation H ∪ sK1 to designate the 3-graph obtained from
a 3-graph H by adding s isolated vertices. We find it convenient and in line with the
forthcoming proof to base their description on the notion of a triangle whose copy
they all contain. Let U = {x1, x2, x3, y1, y2, y3}. We call the cycle

C3 = {{xi, yj , xk} : {i, j, k} = {1, 2, 3}}

a triangle. Further, let

A1 = {{xi, yi, yj} : {i, j} ⊂ {1, 2, 3}},

A2 = {{xi, xj , yj} : {i, j} ⊂ {1, 2, 3}},
A3 = (A1 \ {x1, y1, y2}) ∪ {x2, x3, y3},

and
A4 = (A1 \ {{x1, y1, y2}, {x1, y1, y3}}) ∪ {{x2, x3, y3}, {x2, x3, y2}}.

Note that A4 = (A3 \ {x1, y1, y3}) ∪ {x2, x3, y2}.

We define the following 3-graphs on U :

H7(6) = C3 ∪ {{x1, x2, x3}} ∪A1,

and, for i = 8, 9, 10, 11,

Hi(6) = C3 ∪ {{y1, y2, y3}} ∪Ai−7.

Finally, for i = 7, . . . , 11, and n ≥ 7, set

Hi(n) = Hi(6) ∪ (n− 6)K1.
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Observe that the 3-graphs Sn and Hi(n), i = 1, . . . , 11, are all maximal with respect
to being intersecting, that is, adding a new edge always results in the appearance
of a copy of M2. Consequently, they are mutually not sub-3-graphs of each other.

We suppress the subscript 3 in all Turán related notation. It is already known
(see Theorem 1.3) that for each n ≥ 6, the full star Sn is a 1-extremal intersecting
3-graph for M2. We are now ready to identify all Turán numbers ex(s)(n;M2) together
with the sets of s-extremal 3-graphs Ex(s)(n;M2), s ≥ 1. Let us fix the vertex set V ,
|V | = n. For n ≤ 5 every 3-graph is intersecting and thus ex(1)(n;M2) =

(
n
3
)
, the only

1-extremal 3-graph is the clique Kn, and the higher order Turán numbers ex(s)(n;M2),
s ≥ 2, do not exist.

If n = 6, each triple in
(

V
3
)
intersects all other triples except its complement.

Therefore, we may arrange all 20 triples into 10 pairs (an edge and its comple-
ment) and from each such a pair choose arbitrarily one triple to get a maximal
intersecting 3-graph, consisting of 10 edges. This yields 210 3-graphs, among which we
found 13 pairwise non-isomorphic ones, as specified in Proposition 1.6 below.
Proposition 1.6. We have ex(1)(6;M2) = 10 and

Ex(1)(6;M2) = {S6,K5 ∪K1, Hi(6), i = 1, . . . , 11},
where the Hi(6)’s are defined above.

As every intersecting 3-graph on 6 vertices is a sub-3-graph of one of the above 13
extremal 3-graphs, there are no higher order Turán numbers for n = 6.

Things change dramatically for n ≥ 7. First notice that maximal intersecting
3-graphs on n ≥ 7 vertices can be obtained from any of the 13 6-vertex 3-graphs
appearing in Proposition 1.6 by adding all triples containing any of their vertex covers.
In this way we obtain 3-graphs Sn, K5 ∪ (n− 5)K1, and Hi(n), i = 1, . . . , 11. As it
turns out there are only two other maximal intersecting 3-graphs for n ≥ 7.

Let F7 be the Fano plane, that is a 3-graph on 7 vertices obtained from the
triangle C3 by adding one new vertex z and four new edges: {xi, z, yi}, i = 1, 2, 3, and
{y1, y2, y3}. Further, let F10 be a 3-graph obtained from the triangle C3 by adding
one more vertex z and 7 new edges: {x1, x2, x3}, {x1, x2, z}, {x1, z, x3}, {z, x2, x3}, and
{xi, yi, z}, i = 1, 2, 3.
Theorem 1.7. For n ≥ 7,
1. ex(1)(n;M2) =

(
n−1

2
)
and Ex(1)(n;M2) = {Sn},

2. ex(2)(n;M2) = 3n− 8 and Ex(2)(n;M2) = {H1(n), H2(n)},
3. ex(3)(n;M2) = 2n− 2 and Ex(3)(n;M2) = {H3(n)},
4. ex(4)(n;M2) = n+ 4 and Ex(4)(n;M2) = {H4(n), H5(n), H6(n)},
5. ex(5)(n;M2) = 10 and

Ex(5)(n;M2) = {K5 ∪ (n− 5)K1, F10 ∪ (n− 7)K1, Hi(n) : i = 7, . . . , 11},

6. ex(6)(n;M2) = 7 and Ex(6)(n;M2) = {F7 ∪ (n− 7)K1}.
The Turán numbers ex(s)(n;M2) do not exist for s ≥ 7.
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2. PROOFS

In this section we present all our proofs. We begin with some general simple obser-
vations about the structure of maximal intersecting hypergraphs. In Subsection 2.2
we determine all Turán numbers ex(s)(n; {M2, C3}), n ≥ 6, s ≥ 1, and accompanying
them s-extremal 3-graphs for the pair {M2, C3} (see Corollary 2.5). The remaining
two subsections contain the proofs of Proposition 1.6 and Theorem 1.7, respectively.

2.1. THE STRUCTURE OF MAXIMAL INTERSECTING HYPERGRAPHS

Recall that a subset of vertices T of a hypergraph H is called a vertex cover if it has
nonempty intersection with every edge of H and that τ(H) stands for the size of the
smallest vertex cover of H. For k ≥ 2 and n ≥ 2k, let H be an n-vertex, maximal
intersecting k-graph. Clearly, every edge of H is its vertex cover, so 1 ≤ τ(H) ≤ k.
We have already mentioned that if T is a vertex cover of H then, by maximality,
up(T ) ⊆ H. As an immediate consequence, we deduce the following useful observation.

Fact 2.1. For k ≥ 2 and n ≥ 2k, let H be an n-vertex, maximal intersecting k-graph.
Then the family of all vertex covers of H is intersecting itself.

Proof. Suppose T1 and T2 are two disjoint vertex covers of H. Then, since n ≥ 2k,
there are ei ∈ up(Ti) ⊆ H, i = 1, 2, such that ei ∩ e2 = ∅, a contradiction.

Our next observation will be of great help in the proof of the main theorem
in Subsection 2.4. We call a subset U ⊆ V (H) a heart of H if every two edges
of H intersect on U , that is, if for all e, f ∈ H, we have e ∩ f ∩ U 6= ∅. The
induced sub-k-graph H[U ] consists of all edges of H which are contained in U , that is,
H[U ] = {e ∈ H : e ⊂ U}. Trivially, for every U ⊆ V (H), H[U ] is intersecting as well.
It turns out that every reasonably large heart of H is also maximal.

Fact 2.2. For k ≥ 2 and n ≥ 2k, let H be an n-vertex, maximal intersecting k-graph.
If U is a heart of H, |U | ≥ 2k, then H[U ] is maximal intersecting k-graph itself.

Proof. Suppose not. Then there exists a k-element set T ⊂ U and an edge e ∈ H such
that T ∩ e = ∅ but H[U ] ∪ {T} is still intersecting, i.e. T is a vertex cover of H[U ].
Now, e \U is a vertex-cover of H, and so, up(e \U) ⊆ H. In particular, since |U | ≥ 2k,
there is an edge f ∈ up(e \ U) such that f ⊂ U , that is, ∈ H[U ], and f ∩ T = ∅. This
is, however, a contradiction with the assumption that T is a vertex cover of H[U ].

2.2. TRIANGLE-FREE INTERSECTING 3-GRAPHS

Recall that a triangle C3 consists of a vertex set U = {x1, x2, x3, y1, y2, y3} and the
edge set

C3 = {{xi, yj , xk} : {i, j, k} = {1, 2, 3}}.

Thus, the vertices x1, x2, x3 are of degree two in C3, while y1, y2, y3 are of degree one.
The Turán numbers for C3 were determined in [5] for n ≥ 75 and in [2] for all n.
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Theorem 2.3 ([2]). For n ≥ 6, ex(1)(n;C) =
(

n−1
2

)
. Moreover, for n ≥ 8,

Ex(1)(n;C3) = {Sn}, for n = 7, Ex(1)(7;C3) = {S7,up({u, v}) ∪
(

V \{u,v}
3

)
}, and

for n = 6, Ex(1)(6;C3) = {S6,K5 ∪K1}.

Define H0(n) as a 3-graph obtained from a copy of K4 on the set of vertices
{x, y, z, v}, by adding to it all the edges of the form {x, y, w} where w /∈ {x, y, z, v},
namely,

H0(n) = up({x, y}) ∪ {{x, z, v}, {y, z, v}}.

Note that |H0(n)| = n, H0(n) ⊂ Gi(n) for i = 1, . . . , 5, and H0(n) is {M2, C3}-free.
The next lemma plays an important role in the proof of Theorem 1.7.

Lemma 2.4. For n ≥ 6, if H is an n-vertex {M2, C3}-free 3-graph not contained
in the star Sn, then H ⊆ K5 ∪ (n− 5)K1 or H ⊂ H0(n).

Proof. Let H be a {M2, C3}-free 3-graph H on the set of vertices V , |V | = n, which
is not a star. We will show that H is a sub-3-graph of either K5 ∪ (n− 5)K1 or H0(n).

Let P2 denote a 3-graph consisting of two edges sharing exactly one vertex. We
may assume that P2 ⊂ H, because otherwise, every two edges of H would intersect
in exactly two vertices and, consequently, H ⊆ up({x, y}), for some two vertices
x, y ∈ V , or H ⊆ K4 ∪ (n− 4)K1, implying that H ⊆ H0(n). Let us set P2 = {e1, e2},
e1 ∩ e2 = {x}, U = V (P2), and W = V \ U , |W | = n − 5. If all the edges of H are
contained in U , then H ⊆ K5 ∪ (n− 5)K1. Therefore, in the rest of the proof we will
be assuming that there exists an edge f ∈ H with f ∩W 6= ∅.

As H is intersecting, every edge f ∈ H must, in particular, intersect e1 and e2.
Therefore, since C3 * H, every edge f ∈ H with f ∩W 6= ∅ contains vertex x. But
H * Sn and hence there exists an edge h ∈ H such that x /∈ h. As explained above,
h ⊂ U . Without loss of generality we may assume that |h ∩ ei| = i for i = 1, 2 and
let h ∩ e1 = {y}, h ∩ e2 = {z, v}. Then the edges h and e1 form another copy of P2
and using the same argument as above, every edge f ∈ H with f ∩W 6= ∅ must
contain vertex y. Consequently, all the edges of H satisfying f ∩W 6= ∅ are of the
form {x, y, w}, where w is an arbitrary vertex of W . One can check that adding to H
any triple e ∈

(
U
3
)
, except for {x, y, z} and {x, y, v}, creates, together with an edge

{x, y, w}, w ∈W , either a triangle or a pair of disjoint edges. Hence, H ⊆ H0(n).

An immediate corollary of Theorem 2.3 and Lemma 2.4 gives the Turán numbers
for the pair {M2, C3}. Note that the 3-graph up({u, v}) ∪

(
V \{u,v}

3
)
on 7 vertices

contains M2 and therefore is “disqualified” here.

Corollary 2.5. The complete Turán hierarchy for the pair {M2, C3} is as follows:

1. For n ≤ 5,

ex(1)(n; {M2, C3}) =
(
n

3

)
, Ex(1)(n; {M2, C3}) = {Kn},

and ex(s)(n; {M2, C3}) does not exist for s ≥ 2.
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2. For n = 6,

ex(1)(6; {M2, C3}) = 10, Ex(1)(6; {M2, C3}) = {S6,K5 ∪K1},

ex(2)(6; {M2, C3}) = 6, Ex(2)(6; {M2, C3}) = {H0(6)},
and ex(s)(6; {M2, C3}) does not exist for s ≥ 3.

3. For n ≥ 7,

ex(1)(n; {M2, C3}) =
(
n− 1

2

)
, Ex(1)(n; {M2, C3}) = {Sn}.

4. For n = 10,
Ex(2)(10; {M2, C3}) = {K5 ∪ 5K1, H0(10)}

and ex(s)(10; {M2, C3}) does not exist for s ≥ 3.
5. For n ≥ 7, n 6= 10,

ex(2)(n; {M2, C3}) = max{10, n}, ex(3)(n; {M2, C3}) = min{10, n},

Ex(2)(n; {M2, C3}) ∪ Ex(3)(n; {M2, C3}) = {K5 ∪ (n− 5)K1, H0(n)},
and ex(s)(n; {M2, C3}) does not exist for s ≥ 4.

2.3. PROOF OF PROPOSITION 1.6

To prove Proposition 1.6, we need to show that among all 1024 labeled intersecting
3-graphs on 6 vertices there are exactly 13 isomorphism types listed therein. We
already know from Theorem 2.3, that only two of these 3-graphs are C3-free, namely,
S6 and K5 ∪K1.

Not without a reason, we classify the remaining 3-graphs H, that is, those con-
taining C3, with respect to the number of vertex covers of size 2. Since every edge in
an intersecting 3-graph is its vertex cover, the minimum size of a vertex cover is either
2 or 3 (1 is impossible due to the presence of C3). Let us call a cover set of size 2,
simply a 2-cover.

Let C be a copy of C3 on vertex set U = {x1, x2, x3, y1, y2, y3} and with edge set
C = {{xi, yj , xk} : {i, j, k} = {1, 2, 3}}. Note that there are six different 2-covers of C:
Ti = {xi, yi}, i = 1, 2, 3, T4 = {x1, x2}, T5 = {x2, x3} and T6 = {x1, x3}. Thus, the
2-covers of H must be among these six. But, by Fact 2.1, there are no disjoint 2-covers
in H, so there are at most three 2-covers in H. Recall also that if a pair T is a 2-cover
in a maximal intersecting 3-graph H, then H ⊇ up(T ).
Case 1. there are three 2-covers inH. Up to isomorphism, there are only two possibilities:
either T4, T1, T6 are the 2-covers in H or T4, T5, T6 are the 2-covers in H. In each case,
there are exactly ten triples belonging to C or containing at least one of these 2-covers,
so there are no more triples in H. Then, it is easy to check that H is isomorphic to
H1(6) (in the first case) or H is isomorphic to H2(6) (the second case).
Case 2. there are exactly two 2-covers in H. Without loss of generality either T1 and
T4 or T4 and T6 are the unique 2-covers in H. In both cases H must contain all triples
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that contains at least one of these sets. Therefore, in the first case H contains the
following triples: T1 ∪ {v}, where v ∈ {x2, x3, y2, y3} and T4 ∪ {v} where v ∈ {x3, y2}.
Moreover, since T6 is not a 2-cover of H, there must be in H a triple disjoint from T6
but touching both, T1 and T4, and all the edges of C. There is only one such triple,
namely {x2, y1, y2}. We have |H| = 10 and H ∼= H3(6).

If T4, T6 are the unique 2-covers in H, then, as above, H contains all the triples
containing T4 or T6, namely T4 ∪ {v}, where v ∈ {x3, y1, y2}, and T6 ∪ {v}, where
v ∈ {y1, y3}. Again, since neither T1 nor T5 is a 2-cover in H, H must contain two
intersecting triples disjoint from T1 and T5, respectively, but touching both 2-sets, T4
and T6, and all the edges of C. Up to isomorphism there is only one possibility for this:
{x2, x3, y3} ∈ H and {x1, y1, y3} ∈ H. As before we have |H| = 10 and H ∼= H3(6).
Case 3. there is exactly one 2-cover in H. We claim that H is isomorphic to one of
H4(6), H5(6), and H6(6). Note that all three have a similar structure: there is one
2-cover {x, y}, and so each consists of all four edges containing it, plus the edges
adjacent to x but not y and vice versa. Let Li(x) be the set of pairs making an edge
with x but not with y in Hi(6), i = 4, 5, 6, and we define Li(y) analogously. Referring
to the definitions of Hi(6), i = 4, 5, 6, in Introduction, we see that L4(x) = L4(y) is
the (graph) triangle on z, v, w; L5(x) is the path zvwu, while L5(y) is the path zwvu,
so these two paths share the middle pair; finally, L6(x) is the (graph) 4-cycle zvwuz,
while L6(y) is a (graph) matching consisting of the two diagonals of that 4-cycle, zw
and uv.

Up to isomorphism there are only two subcases. Either T1 or T4 is the unique
2-cover of H. Assume first it is T1. Then we do not need to worry about T2, T3, and T5
as they are all disjoint from T1 (recall that up(T1) ⊂ H). To prevent T4 and T6 from
being also 2-covers of H, there must be an edge or edges in H disjoint from those two
pairs, but intersecting T1.

Assume first that {y1, y2, y3} ∈ H is such an edge. It takes care of both, T4 and T6.
As H is maximal, it must also contain two more edges, say {x1, x3, y3} and {x1, x2, y2}
(there are 3 more options here, in which either of these two edges is replaced by its
complement; we leave their analysis to the reader). So, there are 10 edges altogether.
We see that the pairs making an edge with x1, but not with y1, form the 4-cycle
x2y2x3y3x2, and there are only two pairs, x2x3 and y2y3 making an edge with y1, but
not with x1. Thus, H ∼= H6(6) (with x := x1 and y := y1).

If {y1, y2, y3} /∈ H, then its complement {x1, x2, x3} ∈ H. The only edges which
“exclude” T4 and T6 are {x3, y1, y3} and {x2, y1, y2}, respectively. So, again, we have 10
edges in H, but this time the pairs making an edge with x1, but not with y1, form the
path y3x2x3y2, while in the opposite case, it is the path y2x2x3y3. Thus, H ∼= H5(6).

Assume now that the unique 2-cover of H is T4. We need to “exclude” four other
2-covers of C, namely, T1, T2, T5, and T6, from being present in H. There are four
subcases. In the first one, let {x1, y1, y3} ∈ H and {x2, y2, y3} ∈ H (the remaining
3 cases come from negating one or both clauses in this conjunction). The first of
these two edges excludes T2 and T5, while the other does the same to T1 and T6. By
maximality there are two more edges in H, say {x1, y1, y2} and {x2, y2, y1} (again, we
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skip 3 more cases with involving the complements). A similar analysis of the graph
links of x := x1 and y := x2 leads to a conclusion that, again, H ∼= H5(6).

Consider now the subcase when {x1, y1, y3} /∈ H and {x2, y2, y3} /∈ H. Then, the
complements {x2, x3, y2} ∈ H and {x1, x3, y1} ∈ H exclude T1 and T2, respectively.
In addition, we must also have {x1, y1, y2} ∈ H and {x2, y1, y2} ∈ H which take care
of T5 and T6, respectively. A similar analysis reveals that H ∼= H4(6).

The remaining two subcases are symmetrical, so we consider only one of them. Let
{x2, x3, y2} ∈ H and {x2, y2, y3} ∈ H. These two edges, together with {x1, y1, y2} and
{x1, x3, y3}, exclude all four forbidden 2-covers, T1, T6, T5, and T2. A quick look at
the links of x1 and x2 shows that this time H ∼= H5(6).
Case 4. there is no 2-cover in H. This means that for each 2-cover of C, Ti, i = 1, . . . , 6,
there is an edge in H disjoint from it. A tedious case by case analysis of the 27

remaining choices between triples and their complements (we have already made three
choices by implanting the triangle C in H) leads always to one of the 3-graphs Hi(6),
i = 7, . . . , 11. We omit the details.

2.4. PROOF OF THEOREM 1.7

Let H be a maximal M2-free 3-graph with V (H) = V and |V | = n ≥ 7, not contained
in a star Sn and K5∪ (n−5)K1. Then by Lemma 2.4 we have C3 ⊂ H (note that since
H0(n) is not maximal, H * H0(n)). We say that a copy C of the triangle, C ⊂ H, is
a triangular heart of H if V (C) is a heart of H (see the definition of heart in Subsec-
tion 2.1). Let C ⊂ H be a copy of C3 inH. Set U = V (C) = {x1, x2, x3, y1, y2, y3} ⊂ V,
and, C = {{xi, yj , xk} : {i, j, k} = {1, 2, 3}}. Further, let W = V \ U , |W | = n − 6.
Since H is intersecting, every edge of H intersects U on at least 2 vertices.
Case 1. H has no triangular heart. Then there exist two edges h1, h2 ∈ H with
h1 ∩ h2 ∩ U = ∅. Without loss of generality let h1 = {x1, y1, w}, where w ∈ W . We
start with the case h2 = {x2, y2, w} (the case h2 = {x3, y3, w} is symmetrical). There
exists only one 2-cover of the edge set C ∪ {h1, h2}, namely T = {x1, x2}. Therefore,
all the edges h ∈ H such that h ∩ (W \ {w}) 6= ∅ contain T . There are only two
triples which are disjoint from T and intersect all the edges of C ∪ {h1, h2}, namely
h3 = {x3, y3, w} and h4 = {y1, y2, y3}.

If for i = 3, 4, hi /∈ H, then the triangle C ′ = {{x1, w, y1}, {y1, x2, x3}, {x3, y2, x1}}
is a triangular heart of H, a contradiction. Therefore at least one of the edges, h3 or
h4 belongs to H. If both h3 ∈ H and h4 ∈ H, then H[U ∪ {w}] is the Fano plane F7
which is a maximal intersecting family. Moreover, there are no 2-covers in F7, so there
are no other edges in H, and we conclude that H = F7 ∪ (n− 7)K1.

Next, let h3 ∈ H and h4 /∈ H. Then, sinceH is maximal, it contains four more edges,
{x1, x2, x3}, {x1, x2, w}, {x1, x3, w} and {x2, x3, w}, and so, H = F10 ∪ (n − 7)K1.
Otherwise h4 ∈ H and, since h3 /∈ H, there are four more edges in H, {x1, y1, y2},
{x1, y1, x2}, {x2, y2, y1} and {x2, y2, x1}. Again, H = F10 ∪ (n− 7)K1.

Now we move to the case when for i = 2, 3, {xi, yi, w} /∈ H. Then, sinceH is an inter-
secting family not containing a triangular heart, we must have h2 = {x2, x3, w} ∈ H.
This time there are two intersecting 2-covers of C ∪ {h1, h2}, T1 = {x1, x2} and
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T2 = {x1, x3}. Like above, since there is no triangular heart in H, there must be in H
two edges h3 and h4 such that h3 ∩ T1 = ∅ and h4 ∩ T2 = ∅. We have no other choice
but set h3 = {x3, y3, y1} and h4 = {x2, y2, y1}. So, there are only three more edges
in H, {x1, x2, x3}, {x1, x2, y1} and {x1, x3, y1}. Thus, H = F10 ∪ (n − 7)K1 again.
As |F7| = 7 and |F10| = 10, these two 3-graphs do not play any role in establishing
the first four Turán numbers for M2.
Case 2. all the edges of H intersect each other on U = V (C), that is, C is a triangular
heart of H. By Fact 2.2, the induced sub-3-graph H[U ] is maximal. As H[U ] ⊃ C, by
Proposition 1.6, H[U ] is isomorphic to one of the 3-graphs Hi(6), i = 1, . . . , 11.

Since H is maximal, it consists of all triples containing any 2-cover of H[U ] and
a vertex outside U . Hence, if H[U ] ∼= Hi(6), then Hi(n) ∼= Hi(n), i = 1, . . . , 11. This,
in view of Lemma 2.4 and the “heartless” case 1, proves all parts of Theorem 1.7.

3. CONCLUDING REMARKS

Upon completing this project, we realized that the maximal intersecting 3-graphs with
τ = 3, can be fished out from a huge family of so called 1-special 3-graphs described
in [7] (see Theorem 5 therein). However, the authors of [7] admitted that their family
contains several isomorphic 3-graphs and do not provide any proof. Also recently, we
noticed that independently of us, Kostochka and Mubayi [10] (see Theorem 8 therein)
determined all maximal intersecting 3-graphs with more than 10 edges.

Although, both these results together can be, in principle, used to derive the main
results of this paper, we feel that our streamlined and unified approach, as well as
the statement in terms of the hierarchy of Turán numbers might still be interesting.
Moreover, in [10] the authors attempted to describe all maximal, intersecting k-graphs
for k ≥ 4. Their result is, however, restricted to k-graphs with large number of vertices
and large number of edges. We believe that our approach has the potential to be
generalized to all k-graphs.
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