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MATCHING OF LOCAL EXPANSIONS IN THE
THEORY OF NON-LINEAR VIBRATIONS

Yu. V. Mikhlin

Dnepropetrovsk State University, 320050 Dnepropetrovsk, Ukraine

Normal vibrations in non-linear systems are a generalization of normal (principal)
vibrations of linear systems [1–3]. In this case all position co-ordinates can be defined well
from any one of them. R. M. Rosenberg is credited with being the first to introduce broad
classes of conservative systems allowing normal vibrations with rectilinear trajectories in
a configurational space. In systems of a more general type, trajectories of normal vibrations
are curvilinear. Assume that in a conservative system the potential energy is a positively
definite polynomial in the co-ordinates. At small amplitudes a linear system is to be selected
as the initial one, while at large amplitudes a homogeneous non-linear system allows normal
vibrations with rectilinear trajectories. In the vicinity of a linear system, trajectories of
normal vibrations can be determined as power series in the amplitude; while in the vicinity
of a homogeneous non-linear system, they can be determined as power series in the inverse
amplitude. In order to join together local expansions and to investigate the behavior of
normal vibration trajectories at arbitrary amplitude values, fractional rational diagonal
Padé approximants are used. Necessary conditions for the convergence of a succession of
Padé approximants have been obtained, and that allows one to establish relations between
quasi-linear and essentially non-linear expansions: that is, to decide which of them
correspond to the same solution and which to different ones. Additional modes of
vibrations exist only in a non-linear systems; as the amplitude decreases, they vanish at a
certain limiting point.

1. INTRODUCTION: NORMAL VIBRATIONS OF NON-LINEAR SYSTEMS

Normal vibrations in the non-linear case are a generalization of normal (principal)

vibrations of linear systems. In a normal mode a finite-dimensional system behaves like

a conservative one, having a single degree of freedom. In this case all position co-ordinates

can be defined well from any one of them by

xi = pi (x), x� x1, i=2, 3, . . . , n, (1)

pi (x) being analytical functions.

Rosenberg [1, 2] is credited as being the first to introduce broad classes of essentially

non-linear (not quasi-linear) conservative systems allowing normal vibrations with

rectilinear trajectories in a configurational space:

xi = kix1, i=2, 3, . . . , n. (2)

For instance, homogeneous systems the potential of which is an even homogeneous

function of the variables belong to such a class. It is interesting to note that the number

of modes of normal vibrations in the non-linear case can exceed the number of degrees

of freedom. This remarkable property has no analogy in the linear (non-degenerate)

case.
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In systems of a more general type, trajectories of normal vibrations are curvilinear.

Liapunov [4] showed that solutions of this kind exist in non-linear finite-dimensional

systems with an analytical first integral which are close to generating linear systems. New

results concerning normal vibrations with curvilinear trajectories in essentially non-linear

cases have been reported in references [3, 5].

Consider a conservative system

miẍi +�xi =0, ẋi =dxi /dt, �z = ��/�z, i=1, 2, . . . , n, (3)

�=�(x) being the potential energy, assumed to be a positive definite function, and

x=(x1, x2, . . . , xn )
T. The power series expansion for �(x) begins with terms having a

power of at least two. Without reducing the degree of generalization, assume that mi =1,

since this can be always ensured by dilatation of co-ordinates.

The energy integral for system (3) is

1
2 �

n

k=1

ẋ2
k +�(x1, x2, . . . , xn )= h, (4)

h being the system energy. Assume that within the configuration space, bounded by a

closed maximum equipotential surface �= h, the only equilibrium position is xi =0

(i=1, 2, . . . , n).

Introduce a new independent variable x instead of t here. Since

d

dt
=

d

dx
ẋ and

d2

dt2 =
d2

dx2 ẋ2 +
d

dx
ẍ,

and it follows from the integral of energy (4) that

ẋ2 =2(h−�)/�1+ �
n

(x'2k )�,
the sought-for equations defining the trajectories in the configurational space are obtained

to replace equations (3):

2x�i
h−�

1+ �
n

k=2

(x'k )
2

+ x'i (−�x )=−�xi , i=2, 3, . . . , n, x= xi . (5)

These could be obtained, as well as Euler equations for the variational principle in the

Jacobi form. Equations (5) are non-linear and non-autonomous, and have movable

singular points: they are no simpler in the linear case. Nevertheless, these relatioships are

suitable for the determination of nearly rectilinear trajectories of normal vibrations.

An analytical extension of the trajectories on a maximum isoenergy surface �= h is

possible if the boundary conditions (i.e., conditions of orthogonality of a trajectory to the

surface) are satisfied [2, 3]:

x'i [−�x (X, x2(X), . . . , xn (X))]=−�xi (X, x2(X), . . . , xn (X)). (6)

Here (X, x2(X), . . . , xn (X)) are the trajectory return points lying on the �= h surface

where all velocities are equal to zero. If a trajectory xi (x) is defined, the law of motion

with respect to time can be found by using

ẍ+�x (x, x2(x), . . . , xn (x))=0,

for which a periodic solution x(t) is obtained by inversion of the integral.
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Mikhlin et al. [3, 5] developed nearly rectilinear trajectories of normal vibrations in the

form of power series.

Assume, for example, that �=�0 + ��1, where � is a small parameter, and that the

undisturbed system permits solution (2). The co-ordinate axes can be rotated so that a

generating solution will be defined by xi =0 (i=2, 3, . . . , n).

The solution can be found in the form of a convergent series:

xi = �
�

k=1

�
�

j=0

�ka(k)
ij xj. (7)

Specifically, if the generating system is homogeneous, i.e., �0 is an homogeneous even

function of the power r+1 in all variables (r=1, 3, 5, . . .), the coefficients a(k)
ij will be well

defined from equation (5) and the boundary conditions (6) when the following

determinants are non zero: i.e.,

kp = �qij �� 0,

where

qij = �j
i [p(p−1)2�0(1, 0, . . . , 0)+ p�0x (1, 0, . . . , 0)−�0xixi (1, 0, . . . , 0)], (8)

and �j
i are the Kronecker symbols, p=0, 1, 2, 3, . . . .

At r=1 conditions (8) become �i ��j , which for Liapunov systems mean that the case

of inner resonance in the generating linear system is not considered.

2. TWO-POINT PADE� APPROXIMANTS FOR NORMAL VIBRATIONS

Now consider a problem of normal vibrational behavior in certain non-linear systems

when the amplitude (or energy) of the vibrations is varied from zero to an extremely large

value.

Assume that in a system

z̈i +�zi (z1, z2, . . . , zn )=0 (9)

the potential energy �(z1, z2, . . . , zn ) is a positive definite polynomial of z1, . . . , zn having

a minimum power of two and a maximum power of 2m. On choosing a co-ordinate, say

z1, substitute zi = cxi , where c= z1(0). Obviously, x1(0)=1. Furthermore, without loss of

generality, assume that ẋ1(0)=0. Equation (9) can be rewritten as

ẍi +Vxi (c, x1, x2, . . . , xn )=0, (10)

where

V= �
2m−2

k=0

ckV(k+ z)(x1, x2, . . . , xn ),

and V(r+1) contains terms of power (r +1) of the variables in the potential

V(c, x1, x2, . . . , xn )��(z1(x1), z2(x2), . . . , zn (xn )).

The energy integral here is

1
2c

2�ẋ2
1 + �

n

i= z

ẋ2
i �+V(c, x1, x2, . . . , xn )= h, (11)

h being the system energy. It is assumed below that the amplitude of vibration c= z1(0)

is the independent parameter, while the energy is defined by equation (11). Therefore it
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is expedient to represent the energy h as a sum of summands corresponding to

homogeneous components of the potential energy V:

h= �
2m

k=2

ckhk . (12)

In order to determine trajectories of the normal vibrations of the initial system,

equations (5) are used together with boundary conditions (6).

At small amplitudes an homogeneous linear system with a potential energy V(2) is

selected as the initial one while, at large amplitude, an homogeneous non-linear system

with a potential energy V(2m) is selected. Both linear and non-linear homogeneous systems

allow normal vibrations of the xi = kix1 type, where the constants ki are determined from

the algebraic equations

kiV(r)
x1

(1, k2, . . . , kn )=V(r)
xi
(1, k2, . . . , kn ).

(In the non-linear case the number of vibrations of this type can be greater than the number

of degrees of freedom.)

In the vicinity of a linear system at small values of c trajectories of normal vibrations

can be determined as power series of x and c (upon assuming that x1 � x),

x(1)
i = �

�

j=0

�(i)
j (x)cj � �

�

j=0

�
�

l=0

�(i)
jl xlcj, i=2, 3, . . . , n, (13)

while in the vicinity of a homogeneous non-linear system (at large values of c), as power

series of x and c−1.

x(2)
i = �

�

j=0

�(i)
j (x)c−j � �

�

j=0

�
�

l=0

�(i)
jl xlc−j, i=2, 3, . . . , n. (14)

The construction of series (13) and (14) is described above.

Note that functions �j (x) and �j (x) can be obtained in quadrature formulas as well, since

the variational equations for normal vibrations of homogeneous systems are reduced to

hypergeometric ones.

The amplitude values x=1, x(1)
i (1) and x(2)

i (1) (at ẋ= ẋi =0) define the normal

vibrations mode completely. Therefore, for the sake of simplicity, only expansions of

	(1)
i = x(1)

i (1) and 	(2)
i = xi (1) in terms of powers of c will be discussed below, which are

obtained from equations (13) and (14) at x=1 (denoted as �(i)
j = a(i)

j (1) and �(i)
j = �(i)

j (1)):

	(1)
i = �

�

j=0

�(i)
j c j, 	(2)

i = �
�

j=0

�(i)
j c−j. (15)

In order to join together local expansions (15) and to investigate the behavior of normal

vibration trajectories at arbitrary values of c, fractional rational diagonal Padé

approximants are used [5–7]:

P(i)
s = �

s

j=0

a(i)
j c j��

s

j=0

b(i)
j c j, s=1, 2, 3, . . . , i=2, 3, . . . , n. (16)

Along with the Padé approximants in terms of positive powers of c one can write those

in terms of powers of c−1:

P(i)
s = �

s

j=0

a(i)
j c j− s��

s

j=0

b(i)
j c j− s, s=1, 2, 3, . . . , i=2, 3, . . . , n. (17)
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Compare the expressions (16) and (17) with expansions (15):

�
�

j=0

�(i)
j c j � �

s

j=0

a(i)
j c j��

s

j=0

b(i)
j c j,

�
s

j=0

a(i)
j c j− s��

s

j=0

b(i)
j c j− s � �

�

j=0

�(i)
j c−j,

or

� �
�

j=0

�(i)
j c j�� �

s

j=0

b(i)
j c j�� �

s

j=0

a(i)
j c j,

� �
�

j=0

�(i)
j c−j�� �

s

j=0

b(i)
j c j− s�� �

s

j=0

a(i)
j c j− s. (18)

By preserving in equations (18) only the terms with an order of cr (−s� r� s) and

equating the coefficients of equal powers of c, n−1 systems of 2(s+1) linear algebraic

equations will be obtained for determination of a(i)
j , b(i)

j , j=0, 1, 2, . . . .

The determinants of these systems take the form of

s+1 s+1

��������� �������
−1 0 · · · 0 0 �0 0 · · · 0 0

0 −1 · · · 0 0 �1 �0 · · · 0 0

s+1�
	



· · · · · · · · · · · · · · · · · ·

0 0 · · · −1 0 �s−1 �s−2 · · · �0 0


(i)
s =

0 0 · · · 0 −1 �s �s−1 · · · �1 �0

−1 0 · · · 0 0 �0 �1 · · · �s−1 �s

0 −1 · · · 0 0 0 �0 · · · �s−2 �s−1

s+1
�
�

�

	



· · · · · · · · · · · · · · · · · ·

0 0 · · · −1 0 0 0 · · · �0 �1

0 0 · · · 0 −1 0 0 · · · 0 �0

= � I(−)
s+1

I(−)
s+1

D(�) s+1

DT
(�) s+1 �, (19)

where

−1 0 · · · 0 �0 0 · · · 0

I(−1)
s+1 =

0 −1 · · · 0
, D(�) s+1 =

�1 �0 · · · 0
,

· · · · · · · · · · · · · · · · · ·

0 0 · · · −1 �s �s−1 · · · �0

and s+1 is the order of the determinant.

Since the determinants are generally not equal to zero, the systems of algebraic equations

have a single exact solution, a(i)
j = b(i)

j =0.

Select a Padé approximant corresponding to the preserved terms in equation (15) having

non-zero coefficients a(1)
j and b(1)

j . Assume that b(i)
0 � 0, for otherwise at c�0, x(1)

i ��.

Without loss of generality, it can also be assumed that b(i)
0 =1. Now the systems of

algebraic equations for determination of a(i)
j and b(i)

j become overdetermined. All unknown

coefficients a(i)
0 , . . . , a(i)

n , b(i)
1 , . . . , b(i)

n , i=2, 3, . . . , n, are determined from 2s+1

5



equations, while the ‘‘error’’ of this approximate solution can be obtained by substitution

of all coefficients in the remaining equation. Obviously, the ‘‘error’’ is determined by the

value of 
(i)
s , since at 
(i)

s =0 non-zero solutions and, consequently, exact Padé approxi-

mants will be obtained for equation (18) in the given approximation in terms of c.
Hence the following is a necessary condition for convergence of a succession of Padé

approximants (16), at s��, to fractional rational functions,

P(i) = �
�

j=0

a(i)
j cj��

�

j=0

b(i)
j cj, b(i)

0 =1: (20)

namely,

lim
s��


(i)
s =0, i=2, 3, . . . , n. (21)

Indeed, if the conditions (21) are not satisfied, non-zero values of the coefficients a(i)
i and

b(i)
i in equation (20) will obviously not be obtained.

In addition, the limiting Padé approximants P(i) will be suited for the description of a

solution at any value of amplitude c if the functions P(i) have no poles.

Conditions (21) are necessary but not sufficient for the convergence of approximants (16)

to functions (20); nevertheless, the role of conditions (21) is determined by the following

considerations.

Since, in the general case, there are more than one quasi-linear local expansion (13) and

essentially non-linear local expansions (14) alike, the numbers of expansions of the

respective type being not necessarily equal, it is the convergence conditions (21) that allow

one toestablisha relationbetween thequasi-linearandessentiallynon-linear expansions: that

is, to decide which of them corresponds to the same solution and which to different ones.

3. EXAMPLES

3.1. example 1

As a first example of an analysis based on the above technique, consider a conservative

system with two degrees of freedom, the potential energy of which contains terms of the

second and fourth powers of the variables z1 and z2. Writing z1 = cx and z2 = cy, where

c= z1(0) (x(0)=1), one obtains

V= c2�d1

x2

2
+ d2

y2

2
+ d3xy�+ c4��1

x4

4
+ �2x3y+ �3

x2y2

2
+ �4xy3 + �5

y4

4�
� c2V(2) + c4V(4).

The equation for determining the trajectory y(x) is of the form

2y�(h−V)+ (1+ y'2)(−y'Vx +Vy )=0, (22)

while the boundary conditions (13) can be written as

(−y'Vx +Vy )�h− v =0.

On the surface h−V=0 (at ẋ= ẏ=0) one of the values of the variable x is x(0)=1.

The corresponding boundary condition is

(−y'Vx +Vy )�x=1 =0. (23)

In view of the system symmetry with respect to the origin of co-ordinates, the second

boundary condition (at x=−1) coincides with condition (23).
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Inasmuch as the trajectory will be represented in terms of c2 or c−2 power series,

introduce a parameter � (�= c2 in the quasi-linear case and �= c−2 in the essentially

non-linear case). Now the solutions of equation (22) can be found in the form of a series

in terms of the small parameter �:

y= �
�

j=0

yj (x)�j.

In equation (22) and in the boundary conditions (23), V=V0 + �V1 and h= h0 + �h1; also,

in the quasi-linear case, �= c2, V0 =V(2), V1 =V(4), h0 =V(2)�x=1 and h1 =V(4)�x=1; and in

the essentially non-linear case, �= c−2, V0 =V(4), V1 =V(2), h0 =V(4)�x=1 and h1 =V(2)�x=1.

In the zeroth approximation in �, both the linear and the non-linear homogeneous

systems admit normal vibrations in the form y= k0x. The constants k0 are determined

from an algebraic second (linear system) or fourth (non-linear system) degree equation

which is obtained from equation (22):

−k0V0x (1, k0)+V0y (1, k0)=0. (24)

For definiteness, let d1 = d2 =1+ �, d3 =−�, �1 =1, �2 =0, �3 =3, �4 =0·2091 and �5 = �.

Write the equations of motion for such a system:

ẍ+ x+ �(x− y)+ c2(x3 +3xy2 +0·2091y3)=0,

ÿ+ y+ �(y− x)+ c2(2y3 +3x2y+0·6273y2x)=0. (25)

In the linear limiting case (c=0) two rectilinear normal modes of vibrations, y= k0x,

k(1)
0 =1 and k(2)

0 =−1, are obtained by using equations (25), while a non-linear system

(equations of motion contain only third power terms with respect to x and y) admits four

such modes; k(3)
0 =1·496, k(4)

0 =0, k(5)
0 =−1·279 and k(6)

0 =−5.

In order to determine nearly rectilinear curvilinear trajectories of normal vibrations,

equation (22) is used along with the boundary conditions (23). In particular, the first

approximation in � gives the following expression for the trajectory:

2y�1 (h0 −V0)+ (1+ k2)[−y'1V0x + y1(V0yy − kV0xy )− kV1x +V1y ]=0.

Here, y= kx is substituted in all functions V0 and V1 and their derivatives. Equations in

the subsequent approximations in terms of � are obtained similarly. Such splitting by a

small parameter should be performed in the boundary conditions (23) as well.

As mentioned above, the solution is sought in the form of a power series in terms of

� and x (�= c2) in the quasi-linear case and �= c−2 in the essentially non-linear case). One

finds (the clumsy intermediate calculations are omitted) the following relationships for

	= 	(�) for various values of � and all types of vibrations (terms of the order �2 and x3

were retained):

�=2 �=0·5 �=0·2

(quasi-linear case, �= c2)

I 	(1)
1 =1−0·177�−0·435�2 	(1)

1 =1−2·6125�−4·721�2

	(1)
1 =1−1·013�−1·140�2

II 	(1)
2 =−1−0·112�+0·050�2 	(1)

2 =−1−1·103�+3·770�2

	(1)
2 =−1−0·445�+0·686�2

(essentially non-linear case, �= c−2)
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III 	(2)
3 =1·496+0·732�+0·710�2 	(2)

3 =1·496+0·073�−0·001�2

	(2)
3 =1·496+0·183�+0·029�2

IV 	(2)
4 =1.667�−2·871�2 	(2)

4 =0·133�+0·036�2

	(2)
4 =0·333�+0·098�2

V 	(2)
5 =−1·279+0·767�−2·273�2 	(2)

5 =−1·279+0·0537�−0·001�2

	(2)
5 =−1.279+0·192�−0·158�2

VI 	(2)
6 =−5−3·165�+1·863�2 	(2)

6 =−5−0·3165�+0·113�2

	(2)
6 =−5−0·791�+0·696�2. (26)

Matching with the use of Padé approximants of the type (20) shows that only for the

pairs of expansions (I), (IV) and (II), (V) is an increase of the number s accompanied by

a decrease in the determinant 
s ; i.e., condition (21) is satisfied. Therefore, each of the

couples corresponds to a periodic solution.

By matching of the local expansions the following Padé approximants (� is an error of

coefficient computation) are obtained:

�=2 �=0·5 �=0·2

I–IV 	=
1+1·20c2

1+1·61c2 +0·72c4 	=
1+1·70c2

1+3·96c2 +13·29c4

(�� 8%) (�� 13%)

	=
1+1·06c2

1+2·06c2 +3·20c4

(�� 1%)

II–V 	=
−1−1·11c2 −0·275c4

1+1·00c2 +0·215c4 	=
−1−6·41c2 −9·03c4

1+5·30c2 +7·02c4

(�� 4%) (�� 1%)

	=
−1−2·76c2 −1·36c4

1+2·31c2 +1·04c4

(�� 4%) (27)

The two additional modes of vibration, expansions (III) and (VI), exist only in a non-linear

system; as � increases (amplitude c decreases), they vanish at a certain limiting point.

For the analysis of these vibration modes, assume a new variable =(	−1·496)/

(	+5). Represent � in terms of a series of powers of  (expansion (III)) or −1 (expansion

(VI)). Restricting oneself to terms with a power less than or equal to three, one obtains

the following:

�=2 �=0·5 �=0·2

III �=8·874−67·5122 +1171·1103

�=35·497−164·1842 +1882·6483

�=88·986−197·4602 +570·3893
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IV �−2·052−1 −5·566−2 +21·111−3

�=8·212−67·556−1 +982·913−2

�=20·492−4 +170·182−2 +2506·770−3.

(28)

By using the variable  two expansions in terms of positive and negative powers have been

obtained; therefore, fractional rational representations can be introduced as above. By

comparing these expansions, the following Padé approximants are obtained:

�=2 �=0·5 �=0·2

�=
8·874+1·1262

1+4·300+2·8362 +0·5493

�=
35·497+5·1082

1+3·021−0·7942 +0·6223

�=
88·986+1·4702

1−0·143+3·7472 +0·0723 . (29)

Now produced to the determination of the limiting point. Obviously, it can be found

from ��/�=0. From equation (29), at �=2 the limiting point is �� 1·21, c� 0·91, at

�=0·5 it is �� 11·10, c� 0·30, and at �=0·2 it is �� 23·93, c� 0·20. Hence, as ��0

the limiting point is characterized by the amplitude c�0. Therefore, the two additional

vibration modes in a non-linear system can exist at rather small amplitudes of vibration.

Note that quasi-linear analysis does not allow one to find these solutions, even at small

amplitudes.

In the limit, when �=0, a linear system decomposes into two independent oscillators

having identical frequencies and admits any rectilinear modes of normal vibrations.

Obviously, a full system (25) at �=0 admits four modes of vibrations (in a non-linear case)

y2 = ky1, k=(1·496, 0, −1·279, −5).

Thus fractional rational Padé approximants allow judgement of non-local behavior of

normal vibrations in non-linear finite-dimensional systems. For systems (25) the evolution

of modes of normal vibrations is shown in Figure 1 by using parameters c and �=arctg 	

(the figure shows periodicity in �, the period being 2�). The analytical solutions ((27) and

(29) were employed) and numerical check computations (carried out by A. L. Zhupiev at

�=2) show good agreement. For solutions II–V, for instance, relationship (29) and the

numerical calculation gave, in the scale selected, the same curve (see Figure 1).

Note that the systems considered above (systems with cubic non-linearity) can be

obtained in calculations of non-linear vibrations of shells (when using the Bubnov–

Galerkin technique) as well as in other problems. For instance, consider a problem of the

vibrations of a load on resilient supports under a force having a constant direction (see

Figure 2). Assume that the restoring forces on the left and right supports respectively are

F1 = d1q1 + r1q3
1 and F2 = d2q2 + r2q3

2 , where q1 and q2 are vertical displacements of the

supports and Q= d3x1 + r3x3
1 is the constantly directed force. Let m be the load weight,

and let m	2 be the moment of inertia with respect to an axis going through the center of

mass.

The equations of motion for the system are

mẍ1 + d1(x1 + ax2)+ r1(x1 + ax2)
3 + d2(x1 − bx2)+ r2(x1 − bx2)

3 + d3x+ r3x3 =0,

	2mẍ2 + d1(x1 + ax2)a+ r1(x1 + ax2)
3a+ d2(x1 − bx2)b− r2(x1 − bx2)

3b=0.
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Figure 1. The evolution of normal vibration modes for system (25) in parameters c and �=arctg 	 (c and
	 are amplitudes of position co-ordinates). Local normal mode expansions are designated by I, II (quasi-linear
case) and III, IV, V and VI (essentially non-linear case).

At certain numerical values of coefficients m, 	, a, b, d1, r1, d2, r2, d3 and r3, equations

of motion in the form of equations (25) are obtained. The behavior of the vibrations for

system (25) is shown in Figure 1.

3.2. example 2

Johnson and Rand [8] gave results of numerical integration for a conservative system

with potential energy

V(x, y)= 1
2(a�2 + b�2)+ (3x4 + y4), (30)

Figure 2. A load on resilient supports under a force having a constant direction (two-degree-of-freedom
system).
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where �= �(x, y)= x cos �+ y sin � and �� �(x, y)=−x sin �+ y cos �, at various

values of parameters a, b, � and energy h. All calculations given here are classified into

three cases: (1) a=8, b=4, �= �/4, h=40, 70, 100; (2) a=8, b=4, �=0, h=10, 24;

(3) a=32, b=2, �= �/4, h=10. Plots representing trajectories on a configurational

plane (x, y) show that, as h increases, two normal vibration modes (two trajectories) are

superseded by four: i.e., bifurcation takes place.

Calculations (with E. V. Ladygina) carried out using Padé approximants allow one to

follow changes in the normal vibration modes as the energy increases from 0 to infinity

(at a fixed value of �) and, importantly, to gain an insight into the evolution of the normal

vibrations with the variation in parameter �.

The limiting linear system has two normal vibration modes y= k(1)x, k(1) varying with

�. The limiting non-linear homogeneous system, which is determined by the part of the

potential energy containing fourth power terms, also admits solutions in the form y= k(2)x,

where in all cases k(2) =−	3, +	3, 0, �.

The results obtained are given below for a situation with a=8 and b=4. The evolution

of normal vibration modes with vibration in energy (amplitude) from 0 to infinity and in

� is shown in Figure 3, where c= x(0), 	= y(0) and �=arctg 	. Digits refer to the

following cases: (1) �= �/4; (2) �=2�/9; (3) �= �/6; (4) �= �/9; (5) �= �/18; (6)�=0.

The fractional rotational representations of the in-phase and out-of-phase vibration modes

which exist in the system at any amplitude c, and are shown as (I) and (II) in Figure 3,

are as follows:

(I) (II)

�= �/4 	=
1

1+0·999c2 	=
−1−1·997c2

1+1·153c2

�=2�/9 	=
0·839

1+1·127c2 	=
−1·192−2·155c2

1+1·244c2

�= �/6 	=
0·577

1+ c2 	=−	3

Figure 3. The evolution of normal vibration modes for system (30) in parameters c and �=arctg 	 (c and
	 are amplitudes of position co-ordinates). Normal vibration modes are designated by I, II and III; � is the
limiting point (at �� 0), while � is a bifurcation point (at �=0).
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�= �/9 	=
0·364

1+0·849c2 	=
−2·747−4·050c2

1+2·338c2

�= �/18 	=
0·176

1+0·773c2 	=
−5·671−8·360c2

1+4·827c2

�=0 	=0 	=�.

(III) in Figure 3 refers to additional vibration modes (at �=0) which exist only at great

amplitudes and that vanish at a certain point as the amplitude decreases.

The calculated results show that at �� 0 vibration modes are changed and the limiting

point (� in the figure) is replaced by a bifurcation point �.
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