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Normal Vibrations of a General Class of Conservative Oscillators

YU. V. MIKHLIN
Department of Applied Mathematics, Kharkov Polytechnic University, Frunze Str. 21, Kharkov 310002, Ukraine

Abstract. This paper considers normal vibrations with curvilinear trajectories in a configuration space of systems
which are close to systems permitting rectilinear normal modes of vibration. Analysis of trajectories of normal
vibrations in the configuration space is used.

Key words: Nonlinear systems, nonlinear normal modes of vibration, trajectories in configuration space, power
series, internal resonances.

1. Introduction

Lyapunov [1] examined nonlinear finite dimensional systems of the form

�y � Ay �N�y�� y � Rn� N : Rn
� Rn� N � Cr� r � 1� (1)

with an analytical first integral (where A is an �n� n� constant matrix); he assumed that the
linearized system, �y � AY , possesses periodic solutions with natural frequencies which are
not integrally related. Lyapunov proved that (1) possesses a one-parameter family of periodic
solutions. To arrive at a solution, he used two approaches. One involved a power series of the
amplitude of a variable, the series having coefficients periodic in time; the other was based
on phase trajectories of periodic solutions. What is shown here is the possibility of generating
the same tier of periodic solutions of Lyapunov systems by examining their trajectories in the
configuration space. These solutions possess all the properties of normal vibrations.

Nonlinear normal vibration modes (NNMs) are a generalization of the normal (principal)
vibrations of linear systems. In a normal mode a finite-dimensional system behaves like a
conservative one having a single degree of freedom. In this case all position coordinates can
be parametrized by any one of them as follows:

xi � pi�x� �x � x1� i � 2� 3� � � � � n�� (2)

pi�x� being analytical functions.
Kauderer [2] became a forerunner in developing quantitativemethods for analyzingNNMs.

The first formulation and development of the theory of NNMs can be attributed to Rosenberg
and his co-workers [3–5]. Rosenberg consideredn degrees of freedom conservative oscillators
and defined NNMs as ‘vibrations in unison’, i.e., synchronous periodic motions during which
all coordinates of the system vibrate equiperiodically, reaching their maximum and minimum
values at the same instant of time.

Rosenberg was the first to introduce a broad class of essentially nonlinear conservative
systems allowing normal vibrations with rectilinear trajectories in a configuration space of the
form:

xi � kixi �i � 2� 3� � � � � n�� (3)
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For example, ‘homogeneous systems’ whose potential is an even homogeneous function
of the variables belong to such a class. It is interesting to note that the number of modes
of normal vibrations in the nonlinear case can exceed the number of degrees of freedom of
the system. This remarkable property has no analogy in the linear (non-degenerate) case. In
general, one expects the trajectories of normal vibrations of nonlinear systems to be curved
instead of straight lines.

For some particular cases curvilinear trajectories were defined by Rosenberg and Kuo [6]
and by Rand [8]. In the paper by Manevich and Mikhlin [8] the power series method was
proposed for the construction of above mentioned trajectories.

Different results and new ideas concerningNNMs of conservative systemswere performed
by Vito [9], Mikhlin [10], Vedenova et al. [11], Vakakis [12], Vakakis and Rand [13], Shaw
and Pierre [14, 15], Nayfeh and Nayfeh [16], etc.

In [9] NNMs are approximated by harmonic functions. In [10] Padé approximations are
used for an analysis of the NNMs with large amplitudes. In [11] nonlinearmode localization is
studied in discrete nonlinear systemswith impact nonlinearities. In [12] asymptotic methodol-
ogy is used; for an oscillator with weak coupling stiffness in both localized and non-localized
modes are detected. In [13] the global dynamics of strongly nonlinear systems are analyzed
by means of Poincaré maps. In [14, 15] the authors reformulated the concept of NNMs for a
general class of nonlinear discrete oscillators without assuming the existence of an analytic
first integral of motion. Their analysis is based on the computation of invariant manifolds
of motion on which the NNM oscillations take place. In [16] a computationally efficient
extension of the invariant manifold methodology (complex invariant manifold formulation) is
proposed.

Here, a rigorous perturbation methodology for analyzing finite amplitude NNMs of broad
classes discrete nonlinear systems is presented and the effect of internal resonances is consid-
ered.

2. Normal Vibrations in Lyapunov Systems

Let us now consider an n degrees of freedom conservative system of the form

mi�xi ��xi
� 0

�
�xi �

dxi
dt

��z �
��

�z
� i � 1� 2� � � � � n

�
� (4)

� � ��x� being potential energy assumed to be a positively definite function and x �
�x1� x2� � � � � xn

T ; power series expansion for x begins with terms having a power of at
least 2. Without reducing the degree of generalization we assume that m

i

1, since this can
be always ensured by dilatation of coordinates.

The energy integral of the system (4) is given by

1
2

n

X

k �1
x

2
k

x 1 x 2 x

n

h (5)

where h is the fixed level of the total energy. Assume that within the region of the configuration
space, bounded by a closed maximum equipotential surface h , the only equilibrium
position is x

i

0 (i 1 2 n ).
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In order to determine the trajectories of normal vibrations (2), the following relationships
can be used [4, 8]:

2x��

i

h��

1�
Pn

k�2�x
�2
k �

� x�

i (��x) � ��xi
�i � 2� 3� � � � � n;X � X1�� (6)

where primes represent differentiation with respect to x.
These are obtained either as Euler equations for the variational principle in the Jacobi form

[17] or by elimination of time from the equations of motion (4) taking into account the energy
integral (5). Equations (6) are nonlinear and non-autonomous, and have removable singular
points: they are not simpler in the linear case. Nevertheless, these relationships are suitable
for the determination of nearly rectilinear trajectories of normal vibrations.

An analytical extension of the trajectories up to a maximum isoenergy surface � � h is
possible if the following conditions of orthogonality of a trajectory at � � h are satisfied [4]:

xi
���x�X�x2�X�� � � � � xn�X��

�
� ��xi

�X�x2�X�� � � � � xn�X��� (7)

�X�x2�X�� � � � � xn�X�� being the end points of the trajectory on � � h, where all velocities
are equal to zero. If a trajectory xi�x� is defined, the law of motion with respect to time can
be found using the relation:

�x��x�x� x2�x�� � � � � xn�x�� � 0�

This can be rewritten in the form

�x� V ��x� � 0�

The function x�t� now is the inversion of the quadrature

t� � �
1p
2

xZ

X

d�p
h� V ���

�

Without loss of generality, the phase here is so selected that the initial velocity equals zero.
The amplitude and the energy are related by h � V �x�. This equation is solvable with respect
to the amplitudes X at a given energy h, provided the conditions of the closeness of all
equipotential surfaces (at various values of h) holds and no equilibrium positions exist other
than xi � 0. This condition also assures that the function x�t� is periodic [18].

From the abovediscussion it is concluded that normal vibrations constitute a one-parameter
(in the energy h) family of periodic solutions with smooth trajectories in a configuration space.
A second arbitrary parameter, i.e. the phase �, may also be considered, but this requires that
the condition �x�0� � 0.

Let us select terms of the potential energy that are quadratic in xj and define a generating
linear system � � �2 � �N , where the expansion of �N in terms of xj begins with at least
a power of 3. The characteristic equation of the generating linear system has but purely
imaginary roots of the form �i�j (j � 1� 2� � � � � n), i2 � �1. A normal form of vibrations
corresponds to a pair of roots. Let us select one of these vibration forms by fixing the pair
�i� (� � �1).

A basic assumption made by Lyapunov in his construction of NNMs was that there are
no linearized normal modes with natural frequencies which are integrally related, i.e., which
satisfy relations of the form �i � p�k, p � 1� 2� 3� � � �
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Transforming the quadric �2 to a sum of squares (this transformation is equivalent to the
introduction of normal coordinates in a linear system described previously), one obtains:

� �
1
2
�2x2 �

1
2

nX
j�2

�2
jx

2
j �N�x� x2� � � � � xn� �x � x1�� (8)

It is well known that such a transformation does not change the form of the kinetic energy
K � �1�2�

Pn
j�1 x

2
j . A generating of normal forms of vibrations in a linear system is now

determined by equations xj � 0 (j � 2� 3� � � � � n), x � X cos��t � ��. By selecting the
time origin so that �x � �0�, one obtains � � 0. Following Lyapunov, let us assume that all
variables xj (j � 2� 3� � � � � n) are of the order of magnitude c, where c � x�0�, �x�0� � 0. On
having introduced c into the potential energy (8) by substituting xj � cxj it is seen that every
homogeneous constituent of � contains c to a power equal to the degree of homogeneity as a
factor. Thus we can write:

� �
c2

2

�
��2x2 �

nX
j�2

�2
jx

2
j

�
A�

�X
k�3

ckN �k��x� x2� � � � � xn�� (9)

where the functions N �k� represent the O�kxkk� terms of the potential energy. In the new
coordinates we have x�0� � X � 1. Later the symbol �k� will be indicated the same.

Let us now use equations (6) to find the normal oscillation trajectory of a nonlinear system
which, on its linear limit, becomes rectilinear, xj � 0 (j � 2� 3� � � � � n). The solutions of the
equations will be presented as

xj �
�X
��1

c�xj�� (10)

Since we are dealing with trajectories in a configurational space, the variables xj� should be
regarded as functions of x, rather than of time t.

Before proceeding to construct the solution it is worth noting that the singular points of
equations (6) are roots of the equation:

h � ��x� x2� � � � � xn�� (11)

As the order of approximation varies so does the estimate of the energy h, since the solution
xi�x�, i � 2� � � � � n, becomes more accurate through the inclusion of higher order terms.
Suppose that the energy h0 of the generating linear system does not coincide with the total
energy h of the nonlinear system. Let us assume

h � c2h0 � c3hi (12)

(h0 has an order of c2 while nonlinear terms are of greater order than c). In particular, having
estimated the functions xi�x�, i � 2� � � � � n, up to O��p�, for a given amplitude of vibration
x � X , the relation (11) leads to:

h � �

�
x�

pX
��1

c�x1�� � � � �
pX

��1
c�xn�

�
�

This relationship enables the finding of the energyh���; since the energy of the linear system
h0 is known, one obtains the estimate for the energy, h

�1�
1 to be used in the next approximation.
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Substituting the series (10) into (6) and collecting the lowest order terms in c, one obtains
the following equations:

2x��

i1

�
h0 �

1
2
�2x2

�
� x�

i1�
2x� �2

i xi1 �N �3�
xi
�x� 0� � � � � 0� � 0� (13)

where

N �3�
xi
�x� 0� � � � � 0� � �ix

2 �i � 2� 3� � � � � n��

At this point the boundary conditions (7) are used. These determine the orthogonality of the
trajectory to the maximum equipotential surface. The amplitude values of x � X related to
the energy h0 by

h0 �
1
2
�2X2

�
�X1�2 � �

s
2h0
�2

�
A �

Retaining the lowest order terms in c, one derives the following set of �n � i�O�c2�
boundary conditions:

�x�

i��X��2�X � �2
i xi��X� �N �3�

xi
�X� 0� � � � � 0� � 0 �i � 2� 3� � � � � n�� (14)

The homogeneous equations corresponding to (13) are hypergeometric equations (with two
regular singular points) whose solutions have been thoroughly studied in the literature. A
general solution of (13) exists in closed form. Alternatively, the analytical solution of (13)
can be represented in terms of the Taylor series about the origin of the configuration space,
which can then be analytically continued up to the maximum equipotential surface by satis-
fying boundary conditions (14). To perform this computation the approximations xi1�x� are
expressed as

xi1 �
�X
j�0

a
�1�
ij x

j � (15)

Substituting the series into (13), the following binomial recurrent relationships for the coeffi-
cients a�1�ik result:

4ha�1�i2 � �2
i a

�1�
i0 � 0�

12ha�1�i3 � �2
i a

�1�
i1 � �2

i a
�1�
i1 � 0�

24ha�1�i4 � 2�2a
�1�
i2 � 2a�1�i2 �

2 � �2
i a

�1�
i2 � �i � 0�

40ha�1�i5 � 6�2a
�1�
i3 � 3a�1�i3 �

2 � �2
i a

�1�
i3 � 0�

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2�j � 2��j � 1�ha�1�i�j�2 � j�j � 1��2a
�1�
ij � j�2a

�1�
ij � �2a

�1�
ij � 0

� � � � � � � � � (16)

(h � h0 in this approximation).
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The radius of convergence of (15) is found by examining the infinite recurrent set of
equations (16),

R � lim
j��

����
a
�1�
ij

a
�1�
i�j�2

���� � lim
j��

2�j � 2��j � 1�h
j�j � i��2

�
2h
�2

�

Note here that, as shown in [5], any solution of xj�x� converging in a domain bounded by
a surface ��x� x2� � � � � xn� � h, may be analytically continued up to this surface, provided
that the orthogonality conditions (7) hold, which in the first approximation are determined by
(14).

The recursive formulas (16) provide non-unique solutions for the coefficients of the series
(15). Uniqueness of the solution is obtained by imposing the �n � 1� boundary conditions
(14), i.e., by continuing the Taylor series expansions up to the maximum equipotential surface.
Using (16), one expresses the arbitrary coefficient a�1�ij in terms of coefficients a�1�i0 and a�1�i1 .
These last coefficients are computed by employing relations (14). On substituting (15) into
(14) (at x � �X , where X2 � 2h��2), one obtains the additional algebraic relations (at
x � �X , whereX2 � 2h��2):

��2x

�
� �X
j�1

ja
�1�
ij ��X�

j�1

�
�� �2i

�
� �X
j�1

aij��X�
j�1

�
�� �iX

2 � 0� (17)

Introducing at this point the quantities

K
�i�
j �

j2 � �2
i

�j � 2��j � 1�
� �i �

�i
�

�

the solutions to the recursive relations (16) are expressed as:

a
�i�
2k � K

�i�
2k�2K

�i�
2k�4 � � � K

�i�
4

�
�K�i�

2 K
�i�
0 � a

�i�
i0

�
�2

2h

�k

�

�
�2

2h

�k�1
�i

12�2

�
� �

a
�i�
2k�1 � K

�i�
2k�1K

�i�
2k�3 � � � K

�i�
3 K

�i�
0 � a

�i�
i0

�
�2

2h

�k

� (18)

Expressions (16) relate an arbitrary coefficient a�i�ij to the leading coefficients a�i�i0 and a�i�i1 .
These last coefficients are determined by substituting (18) into the boundary conditions (17),
resulting in the set of n non-homogeneous algebraic equations of the following form:

R
�i�
0 a

�i�
i0 �R

�i�
1 R

�1�
i1 � R

�i�
2 �i � 2� 3� � � � � n�� (19)

where the computation of coefficients R�i�
0 and R�i�

1 requires some algebraic manipulations:

R
�i�
0 � 2K�i�

0 � 4K�i�
0 K

�i�
2 � � � � � �2

i �1�K
�i�
0 �K

�i�
0 K

�i�
2 � � � ��

� ��2
i � �2� �2

i ��K
�i�
0 � �4� �2

i �K
�i�
0 K

�i�
2 � � � �

� ��2
i �

�X
m�1

�2m� �2
i �K

�i�
0 K

�i�
2 � � � K

�i�
2m�2
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� 2K�i�
0 �

�X
m�1

��2m�2m� 1� � �2m�2 � �2
i �K

�i�
0 K

�i�
2 � � � K

�i�
2m�2

� 2K�i�
0 �

�X
m�1

��2m�2m� 1� � �2m� 2��2m� 1�K�i�
2m�K

�i�
0 K

�i�
2 � � � K

�i�
2m�2

� K
�i�
0 K

�i�
2 � � � K

�i�
2m � � � �

R
�i�
1 � 1� 3K�i�

1 � 5K�i�
1 K

�i�
3 � � � � � �2

i �1�K
�i�
1 �K

�i�
1 K

�i�
3 � � � ��

� �1� �2
i � � �3� �2

i �K
�i�
1 � �5� �2

i �K
�i�
1 K

�i�
3 � � � �

� �1� �2
i � �

�X
j�1

�2j � �2
i �K

�i�
1 K

�i�
3 � � � K

�i�
2j�1

� 6K�i�
i �

�X
j�1

��2j�2j � 1� � �2j � 1�2 � �2
i �K

�i�
1 K

�i�
3 � � � K

�i�
2j�1

� 6K�i�
i �

�X
j�1

��2j�2j � 1� � �2j � 3��2j � 2�K�i�
2j�1�K

�i�
1 K

�i�
3 � � � K

�i�
2j�1

� K
�i�
1 K

�i�
3 � � � K

�i�
2j�1� (20)

In order to obtain unique and non-trivial solutions for the coefficients a�i�i0 and a
�i�
i1 , it is

necessary that the coefficients of the homogeneous parts of (19) satisfy the conditionsR�i�
0 �� 0,

and R�i�
1 �� 0, i � 2� � � � � n. Examining the analytical expressions (20), it is concluded that in

the critical case when R�i�
0 � R

�i�
1 � 0, a subset of coefficients

K
�i�
j �

j2 � �2
i

�j � 2��j � 1�

vanishes, or equivalently, that the linearized natural frequencies of the system satisfy a res-
onance relation of the form �i � j� for some positive integers j � 1� 2� � � � These were
precisely the cases which were eliminated from consideration in Lyapunov’s analysis [1].

Let us now consider the higher order approximations. Suppose that in the series (9) single-
valued solutions xik�x� are computed, where k � l � 1, which are analytical functions over
a closed domain bounded by the surface � � h. Considering O�c�� terms in (6) one obtains

2x��i�
�
h0 �

1
2
�2x2

�
� 2x��i���1h

���1�
1 � x�i��

2x� xi��
2
i

�
��1X
k�1

x��ikR
�1�
��k�i �

��1X
k�1

x�ikR
�2�
��k�i � �R

�3�
��1�i� � 0� (21)

where

R
�s�
pi �

pX
r�1

X
����

��P
�s�
ri �x� 0� � � � � 0�

�x�2r
2 �x

�3r
3 � � � �x�nrn

nY
j�2

rY
m�1

�xjm�
�pi
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(s � 1� 2� 3), and the second summation sign in the above expression is carried out over all
positive integer solutions of the equation

nX
j�2

��1j � 2�2j � � � �� r�rj� � r�

with
nX

m�1
�mj � �jr�

nX
j�2

�jr � �� ���� �
r!

�r
m�1��jm�!�m!��jr

�

Here

P
�1�
ri � �2��r��x� x2� � � � � xn��

P
�2�
ri �

�
�
��x�x� x2� � � � � xn�

�
�1� nX

j�2
�x�

j�
2

�
�
�
�
�r�

�

P
�3�
ri �

�
�
��xi�x� x2� � � � � xn�

�
�1� nX

j�2
�x�

j�
2

�
�
�
�
�r�

�

Equations (21) are complemented by the following set of O�c1� boundary orthogonality
conditions:�

x��

i1�
2x� xi1�

2
i �

��1X
k�1

x�ikR
�2�
��k�i �R

�3�
��1�i

������
x�Xj

� 0�

where x � Xj (j � 1� 2) are vibration amplitudes (one of these values,X1 � 1).
The equations (21) may be rearranged as follows:

2x��i�
	
h0 �

1
2
�2x2



� x�i��

2x� xi��
2
i � F

�1�
i �x� � 0� (22)

where the terms F ���
i �x� consist of already-computed functions of x. Expressing the solution

of (22) in the series form:

xi� �
�X
j�0

a
���
ij x

j�

one obtains, similarly to the first approximation case, a non-homogeneous recurrent set of lin-
ear equations governing the coefficients a���ij . The indefinite coefficients a

���
i0 , a

���
i1 are obtained

from the boundary conditions for this approximation (conditions of orthogonality). Next the
O�c�� approximation for the total energy, h��� is determined from (11), while the equation
h��� � c2h0 � c3h

���
1 is used to find the value of h���1 which appears in the calculations of the

next order of approximations.
Needless to say, an alternative series of calculations would be also acceptable, namely,

determining the maximum amplitudeX given a fixed level of total energy h.
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The conclusions concerning the convergence and unambiguous definitions of the coef-
ficients arrived at for the series in the first approximation hold for the series in the �-th
approximation as well.

Let us consider the convergence of the series (10). As shown, a series of the form (10)
represents a single-valued (providedK�i�

j �� 0 holds) formal solution of a boundary problem
(6), (7) with the coefficients analytical in x. In this case xj�0� � aj1, x�

j�0� � aj2, where aj1,
aj2 can be made sufficiently small by choosing a small value of the parameter c.

Over a domain � � h all functions involved in (5) are analytical in x. Therefore, it
follows from Poincaré’s theorem on the small parameter series expansion [19] that there is
a value of c0 � 0 such that, for all jcj � c0, the series of the form (10) converges in the
domain, represents a unique solution of (6) analytical in c and x, and satisfies the conditions
xj�0� � aj1, x�

j�0� � aj2; moreover, as c � 0 this solution becomes the trivial generating
solution xj0 � 0 (j � 2� 3� � � � � n). Since series of the form (10) also satisfy the conditions
(7), the solution can be analytically continued up to the domain boundary � � h.

On having obtained the smooth trajectory, the problem of finding a periodic solution
reduces to the integration of a conservative system with one degree of freedom.

Concluding this treatment of normal vibrations inLyapunov systems,we note the following.
Firstly, the trajectories xj�x� can be derived not only in terms of power series in x, but

also by the method of successive approximations. This method is described below for certain
cases of nonlinearity of the generating system.

Secondly, the requirement of the existence of an energy integral (5) is not essential. In
autonomous systems of the form

�xi � fi�x1� x2� � � � � xn�

the equations for obtaining the trajectories xi�x�, (x � x1) take the form

x��

i �x
2 � x�

if1�x� x2� � � � � xn� � fi�x� x2� � � � � xn�� (23)

If an analytical first integral H�x� �x� x2� �x2� � � � � xn� �xn� � 0 exists, all that is needed is to
obtain �x as a single-valued analytical function of x, x2, x�

2, � � � , xn, x�

n, and to substitute the
expression obtained into (23). Equations (23) can then be analyzed similarly as above.

Finally, it should be noted that an approach involving the examination of trajectories in
a configurational space is by no means more complicated than approaches employing series
with coefficients periodic in time or examining phase trajectories.

3. Normal Oscillations in Conservative Systems Close to Systems Admitting
Rectilinear Modes

Consider now a system of a more general class, namely one with a nonlinear generating
system. The smallness of disturbances will be evaluated using a small parameter .

The equations of motion are expressed in the form

q

i

F

0
q i

q 1 q 2 q

n

F

1
q i

q 1 q 2 q

n

0 i 1 2 n

where F

0
q i

F

1
q i
is the analytical potential energy, and the unperturbed systems ( 0)

possesses rectilinear modes of vibrations q

i

k

i

q (q q 1, i 2 3 n ).
Consider one of these solutions as a generating one. Rotating the coordinate axes, so that

the new x -axis is directed along the rectilinear trajectory, and the remaining coordinate axes
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are orthogonal to it. A generating solution in the new coordinates is represented as xi � 0
(i � 2� 3� � � � � n), x1 � x � x�t�.

In particular, for a system with two degrees of freedom

�qi � Fqi�q1� q2� � 0 �i � 1� 2��

allowing the solution q2 � kq1, the formulae for the axes rotations are of the form

x1 � q1 cos�� q2 sin�� x2 � �q1 sin�� q2 cos� �� � arctan k�� (24)

The equations of motion in the new coordinates take the following form:

�xi ��xi
�x1� x2� � 0 �i � 1� 2��

where

�x1 � Fq1 cos�� Fq2 sin�� �x2 � �Fq1 sin�� Fq2 cos��

Let us assume that in the general case (with n degrees of freedom) after the rotation of the
axes, the system

�xi ��0
xi
�x1� x2� � � � � xn� � ��1

xi
�x1� x2� � � � � xn� � 0 (25)

also admits a generating solution at xi � 0 at � � 0; but this means that

�0
xi
�x1� 0� � � � � 0� � 0 �i � 2� 3� � � � � n�� (26)

It is initially assumed that the unperturbed system is homogeneous, i.e., �0 is an even
homogeneous function of the power of r � 1 in all the variables (r may take the following
values r � 1, 3, 5, � � � ).

Note that, in similarity to the Lyapunov systems examined in the previous section, the
small parameter could be chosen, to scale the amplitude of vibration c � x�0�. Substituting
for xi � cxi, one then selects a generating homogeneous system containing the smallest
powers of the positional variables. This generating system may be nonlinear as well if r � 1.

In order to determine the trajectories of normal oscillations in the configurational space,
another transition is required, this time from (25) to (6) used in combination with the boundary
conditions (7).

A solution is sought in the form of a small parameter series:

xi �
�X

k�1
�kxik�x� �x � x1�� (27)

Although in this case the generating system is essentially nonlinear, all computations are
similar to those performed for the linearizable case.

Let us assume that the total energyh of the entire systemand the energyh0 of the generating
system are related as follows:

h � h0 � �h1�

Substituting (27) into (6), one isolates the �-th approximation equations in �:

2x��i�
h
h0 ��0�x� 0� � � � � 0�

i
� 2x��i���1

h
h
���1�
1 � x�i��

0
x�x� 0� � � � � 0�

i

�
nX

k�2
�0

xixk
�x� 0� � � � � 0�xk� �

��1X
j�1

x��ijR
�1�
��j�i �

��1X

k�1
x�ikR

�2�
��k�i �R

�3�
��1�i � 0� (28)
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where

R
�s�
mi �

X
����

��P
�s�
ri �x� 0� � � � � 0�

�x�2m
2 �x�3m

3 � � � �x�nmn

nY
j�2

mY
p�1

�xjp�
�pj �s � 1� 2� 3��

The
P

sign in the above expression is carried over all positive integer solutions of the equation
where

n�1X
j�1

��1j � 2�2j � � � � �m�mj� � m

with
mX
p�1

�pj � �jm�
n�1X
j�1

�jm � �� ���� �
m!

�m
p�1��jr�!�p!��jr

�

Here
P
�1�
ri � �2��r��x� x2� � � � � xn��

p
�2�
ri �

�
��x�x� x2� � � � � xn�

�
1�

nX
k�2

�x�k�
2
���r�

�

P
�3�
ri �

�
��xi�x� x2� � � � � xn�

�
1�

nX
k�2

�x�k�
2
���r�

�

The boundary conditions (conditions of orthogonality) corresponding to this approximation
assume the following form:�

�x�i��
0
x�x� 0� � � � � 0��

nX
k�2

�0
xixk

�x� 0� � � � � 0�xk�

�
��1X
k�1

x�ikR
�2�
��k�i �R

�3�
��1�i

������
x�Xj

� 0 �j � 1� 2�� (29)

with the amplitudesXj (j � 1� 2) and the energy h being computed by h � ��x� x2� � � � � xn�
where xk (k � 2� 3� � � � � n) should be expressed by the series (27) worked out to an order of
	��1.

Since the unperturbed system is homogeneous, the matrixB � �0
xixk

�x� 0� � � � � 0� may be
written as B � bikx

r�1. Note that, owing to the conservative nature of the system, bik � bki,
and a symmetric matrix bik is reduced to a diagonal form by an invertible linear transformation
of coordinates [20]. Therefore, without loss of generality, one can assume that in (28) and (29)
the function �0

xixk
�x� 0� � � � � 0� � 0 for i �� k. Hence, only the terms �0

xixi
�x� 0� � � � � 0�xi�

are retained in the expression
Pn

k�2�
0
xixk

�x� 0� � � � � 0�xk�, and the set (28), together with the
boundary conditions (29) is ‘split’ in the variables xi�.

Having substituted the series xi� �
P
�

j�0 a
���
ij x

� into (28), one finds that the coefficients
a
���
ij are interrelated by an infinite set of recurrent relationships

2h0�r � j � 2��r � j � 1�a���i�r�j�2 � j�j � 1�2�0�1� 0� � � � � 0�a���i�j�1

� �j � 1��0
x�1� 0� � � � � 0�a

���
i�j�1 ��0

xixi
�1� 0� � � � 0�a���i�j�1 � 


���
ij � (30)
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where ����ij denotes the terms that depend on the solutions of preceding approximations. The
recurrent relationships can be used to express all coefficients a���ij in terms of the leading
coefficients a���i0 and a

���
i1 (i � 2� 3� � � � � n). The convergence of the series is ascertained

precisely as it is done with Lyapunov systems over a domain ��x� x2� � � � � xn� � h. An
analytical continuation of the solution up to the ‘boundary’ ��x� x2� � � � � xn� � h may be
effected, provided that the boundary conditions are satisfied. Substituting the seriesxi��x� into
these boundary conditions (29), and in view of the recurrent relationships (30), one obtains
the equations governing a���i0 , a

���
i1 .

nX
i�2

�R0ia
���
i0 �R

���
1i a

���
i1 � � R

�1�
2i �i � 2� 3� � � � � n��

As in the case of Lyapunov systems, the determinants of coefficients may be represented
as products of an infinite number of factors

Kp � jqijj�

qij � �
j
i

h
p�p� 1�2�0�1� 0� � � � � 0� � p�0

x�1� 0� � � � � 0���0
xixi

�1� 0� � � � � 0�
i
� (31)

where �ji are the Kronecker’s delta, p � 0, 1, 2, 3, � � �
When the generating system is linear, the solvability conditions (31) can be shown to

degenerate to the conditions of absence of internal resonances. Hence, the conditionsKp �� 0
can be viewed as generalizations of the conditions of the absence of internal resonances derived
in the linearizable case, and ensure that the analytical, asymptotic solutions xj � xj�x� are
unique and single-valued.

The series x���j �
P�

k�1 �
kx�xjk� (j � 2� 3� � � � � n) may now be substituted into the

equation h � ��x� x2� � � � � xn�jx�X and a refined value of the total energy approximation
h��� may be obtained at a given amplitude x � X ( �x � 0). Hence, h���1 may be deduced from
h � h0 � �h1 to be employed in the next approximation in �.

The considerations concerning the convergence of the series (27) given in the preceding
section still hold.

Note that in the absence of the assumption of ‘splitting’ of the first approximation equations,
the conditions (31) for the generating of homogeneous systems become different. In the general
case they take the following form:

Kp � jqijj �� 0�

qij � �
j
i

h
p�p� 1�2�0�1� 0� � � � � 0� � p�0

x�1� 0� � � � � 0���0
xixj

�1� 0� � � � � 0�
i
�

�p � 0� 1� 2� 3� � � ��� (32)

It is worth noting that at r � 1 the conditions (32) become �i �� p� which for Lyapunov
systems meant that in this case inner resonances in the generating linear system are not
considered.

Proceeding to non-homogeneous generating systemswith the potential energy�0, we shall
confine the discussion with the first approximation in �:

2x��

i�

h
h��0�x� 0� � � � � 0�

i
� x��

i�

h
��0

x�x� 0� � � � � x�
i
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�

nX

k�2

0
x i x k

x� 0� � � � � 0 x
k

1
x i

x� 0� � � � � 0 0 i 2� 3� � � � � n � (33)

The homogeneous part of the set (33) contains variational equations for the generating
of normal vibrations. Let us assume that the variational equation set may be ‘split’ into n

independent equations by an invertible linear transformation with constant coefficients. The
possibility of such ‘splitting’ is discussed in more detail in [21, 22].

Here it will be shown that, for the case of two degrees of freedom, it is always possible to
effect the ‘splitting’ by rotating the axes (24). Indeed, introduce the transformation (24), and
expand the potential energy 0 x1� x2 into an x2 (x1 � x) power series:

0 x� x2
0 x� 0 0

x 2
x� 0 x2

1
2!

0
x 2 x 2

x� 0 x22
1
3!

0
x 2 x 2 x 2

x� 0 x32 � � �

The condition of existence of a normal vibration form x2 0 is given by 0
x 2

x� 0 0, and
the equations of motion take the form

x 0
x

x� 0
d
dx

0
x 2 x 2

x� 0
x22
2

O x32 0�

x 0
x 2 x 2

x� 0 x2
d
dx

0
x 2 x 2 x 2

x� 0
x22
2

O x32 0�

Here, the variational equations in u and v for the normal vibrations x x t , x2 0 are
as follows:

u
d
dx

0
x 2 x 2

x� 0 u 0�

v 0
x 2 x 2

x� 0 v 0� (34)

The set of equations is thus ‘split’.
Introducing a new independent variable x instead of t, one obtains, in the place of (34),

2v��

h

h� 0
x

x� 0
i

v�

h

� 0
x

x� 0
i

0
x 2 x 2

x� 0 v 0� (35)

This equation corresponds to (33) at n 2 when the latter retains only a homogeneous
constituent of the potential energy.

Since a rectilinear normal mode of vibration has only two cusps, the kinetic energy k

h� 0 x� 0 vanishes twice over one period. Therefore, equation (35) has two regular finite
singular points on the real axis.

There exist classes of potentials for which equation (35) has been studied so thoroughly
that it is possible to develop a system of solutions either in power series (with due regard to
singularities), in trigonometric series, or in the form of series in certain special functions. If
0 x1� x2 is a homogeneous even function, (35) may even be reduced to a hypergeometric

equation by the substitution xp z, where p is the degree of homogeneity [22]. If the
potential energy 0 x� x2 contains terms of second and fourth powers of x and x2, (35) is
the Lame equation [23]. Denote by fw1 x �w2 x g a fundamental set of solutions for (35),
and it becomes possible to construct a general solution of the first approximation equation in
� (33):

x21 C
1
1 w1 x C

1
2 w2 x w1 x

x

Z

X

1
x 2

x� 0 w2 dx� w2 x

x

Z

X

1
x 2

x� 0 w1 dx�
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where

� �
�
�
�
�

w1 w1

w�

1 w�

2

�
�
�
�
� const��

and w1, w2 are either hypergeometric or Lame functions.
The constants C�1�

1 , C�1�
2 should be determined from the regularity conditions for the

solution in any point of the interval �0�x� 0� � h. Suppose that the powers of the singular
points Xj (j � 1� 2) (zero kinetic energies) be equal to �0� �1� and �0� �2�, respectively. In
particular, for the Lame equation �1 � �2 � 1�2. Then, in the vicinity of these points the
general solution is decomposed as follows:

x21 � A1�C1� C2�f1�x� �A2�C1� C2�f2�x��x�X1�
�1 �

x21 � B1�C1� C2�g1�x� �B2�C1� C2�g2�x��x�X2�
�2 �

Evidently, the regularity conditions for this solution are of the form

A2�C1� C2� � B2�C1� C2� � 0�

A solution analytical in x is similarly derived in the next approximation in � obtained either
through the construction of vibration normal modes as � series or by the iteration method.

A generalization to the case of n degrees of freedom (n � 2) is evident, provided the set
of variational equations can be ‘split’.

Some applications of the asymptotic methodology for approximating the NNMs are pre-
sented in [12, 24]. In particular, in [12] the asymptotic methodology is implemented to analyze
the free vibrations of two unit masses connected by means of three strongly nonlinear stiff-
nesses with cubic nonlinearity. The zeroth order and O��� approximations to NNMs are
calculated.

The systems considered above can be obtained in calculations of nonlinear vibrations of
rods, strings, plates, shells and other elastic systems (using the Bubnov–Galerkin technique)
(see, for instance, [2, 25]). Some examples of the NNMs analysis in nonlinear elastic systems
using Bubnov–Galerkin discretization are presented in [26].

4. Conclusions

Normal modes of vibrations with curvilinear trajectories in the configuration space are con-
sidered. The corresponding boundary problem is formulated. It is shown that such normal
modes may be constructed for the Lyapunov systems and for a more general class of con-
servative systems, neighboring systems possessing NNMs with rectilinear trajectories. The
convergence of the power series obtained was considered. Under some conditions (that gen-
eralize the conditions of internal resonances in the quasilinear case) single-valued solutions
do not exist.
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