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Normal Modes for Piecewise Linear Vibratory Systems 

SHYH-LEH CHEN and STEVEN W. SHAW 
Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, U.S.A. 

Abstract. A method to construct the normal modes for a class of piecewise linear vibratory systems is developed 
in this study. The approach utilizes the concepts of Poincare maps and invariant manifolds from the theory of 
dynamical systems. In contrast to conventional methods for smooth systems, which expand normal modes in a 
series form around an equilibrium point of interest, the present method expands the normal modes in a series form 
of polar coordinates in a neighborhood of an in variant disk of the system. It is found thal the normal modes, modal 
dynamics and frequency-amplitude dependence relationship are all of piecewise type. A two degree of freedom 
example is used to demonstrate the method. 

Key words: Nonlinear normal modes, piecewise linear systems, invariant manifold, asymptotic expansion. 

1. Introduction 

In linear vibration theory, modal analysis is a powerful technique that provides a means 
of reducing the system dynamics to uncoupled individual oscillators. Through the mode 
shapes and corresponding modal dynamics, the behavior of a linear vibratory system can 
be completely understood. For this reason, researchers have tried to extend the concept of 
normal modes to nonlinear systems. Rosenberg took the first steps in this direction [22- 24]. 
Since then, many studies have appeared in the literature discussing the existence [5, 15, 19, 
40], stability [1, 7, 10, 17, 21], and construction [8, 18-20, 39] of nonlinear normal modes, 
and the possibility of some type of nonlinear modal analysis [1, 32, 35-38]. Other studies 
have included the investigation of nonlinear nonnal modes for continuous [2, 3, 12, 13, 16], 
nonconservative [6, 28], and internally resonant systems [14]. Shaw and Pierre introduced a 
constructive method for nonlinear normal modes using invariant manifolds [26, 28-30]. This 
approach is applied here to the case of piecewise linear systems. 

While the idea of nonlinear normal modes has drawn much attention, virtually all of 
the previous works deal with smooth systems. In contrast, nonsmooth systems, in particular 
piecewise linear (PWL) systems (see, e.g., [4, 9, 11, 25, 31]), received little attention in 
regards to normal modes. However, PWL vibratory systems are useful models for many 
practical vibratory systems. For example, conservative systems with clearance, backlash, or 
piecewise linear springs and dissipative systems with simple coulomb friction are all of PWL 
type. 

Recently, Zuo and Cumier reported a study on the modal motions of a class of PWL 
systems, where the switching hyperplane passes through the origin [41]. As one will see in 
the sequel, their class is a special case of the present class of PWL systems to be studied, 
where the switching hyperplane does not necessarily pass through the origin. In particular, 
the present systems may not satisfy the property of positive homogeneity defined in [41]. As 
a result, the modal frequency of the present systems depends on the amplitude, in contrast 
with the systems in [41] whose modal frequency is independent of the amplitude. Also, the 
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construction of the normal mode manifolds and their attendant dynamics were not pursued 
in [41]. However, they did include systems with gyroscopic terms, which are not considered 
here. 

The objective of this paper is to demonstrate a method for the construction of nonlinear 
normal modes and their attendant dynamics for a class of general conservative PWL systems 
with N (finite) degrees of freedom. To this end, we utilize the approach of invariant manifolds 
and asymptotic expansions. Here the invariant manifold, and hence the normal mode, is a 
one-parameter family of periodic orbits in the state space. The general procedure involves 
building a Poincare map with the switching hyperplane as the Poincare section in state 
space, determining the fixed points of the map, and finally constructing the normal mode 
by asymptotic expansions. Unlike the case for a smooth system, where the normal mode is 
expanded in a series form near an equilibrium point of the system, the normal mode for a 
PWL system is expanded in a series form using polar coordinates in a neighborhood of an 
invariant disk of the system. This invariant disk is precisely the corresponding normal mode 
manifold of the linear system for energies below those at which the switching takes place. 

The paper is organized as follows. We begin in Section 2 with a description of the class of 
PWL systems in which we are interested. The general system will then be transformed into a 
canonical form for easy formulation. Next, in Section 3, the Poincare map is obtained implic­
itly. The procedure of constructing the normal mode manifolds for PWL systems, including 
the determination of the fixed points of the Poincare map, using asymptotic expansion is 
described in Section 4. Their modal dynamics are established in Section 5. In Section 6, a two 
degrees of freedom example problem with clearance is given to show some of the calculations 
involved with using this method and a comparison is made with simulation. Some conclusions 
are drawn in Section 7. 

2. The Piecewise Linear System and Its Canonical Form 

Consider below an unforced, undamped N d.o.f. system 

for 

for 

hT z < d1 

hT Z > d' ' 
(I) 

where d' > 0 is a scalar constant, z, h, b E ~N, and M, K 1, K2 are real symmetric positive 
definite N x N matrices. This is a PWL system with two linear domains. { z E !RN : h T z = d'} 
is a hyperplane dividing ~N into two regions: the first region { z E ~N : hT z < d'} and 
the second one { z E ~N : hT z > d'}. Each region is governed by an N d.o.f. linear 
vibratory subsystem. Since M, K 1, and K 2 are real symmetric and positive definite, both 
linear subsystems have N natural modes. For small amplitude motions, when the motions 
never leave the first region, the system is nothing but the first linear subsystem and is well 
understood. As the motion amplitudes become large, solutions pass through the switching 
hyperplane and go into the second region, in which case both linear subsystems will be 
involved and the system behavior is no longer simple. Many complicated behaviors involved 
in PWL systems have been reported [4, 31, 34]. In this paper, we are not going to discuss the 
general behavior of such PWL systems, but only their normal mode motions. 

System (1) represents a large class of physical vibratory systems such as systems with 
clearance, impact, or piecewise linear springs. However, we must point out that it can only 
represent systems with one clearance, but not those with two or more clearances, which should 
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be modeled by PWL systems with more domains. Normal modes for PWL systems with more 
than two domains are not considered in the present paper. Also, systems with dry friction do 
not belong to the class of systems in equation (1) because they are nonconservative oscillators. 

Before proceeding to the next step, we make some assumptions about system (1). By 
premultiply,ing equation (1) with M-1, the system can be rewritten as 

.. { Atz z-
- A2z + b' 

for hT z < d' 

for hT z > d' ' 

where At= -M-1Kt, A2 = -M-1K2, and b' = M-1b. The assumptions are 
(i) Atz = A2z + b' when hT z = d'; 

(ii) N modes in both linear subsystems are distinct. 

(2) 

Assumption (i) says that the right-hand side of (2) is continuous, so that when written in state 
equation form, i.e., as a system of first order ODEs, the system will possess a continuous 
vector field. Although the vector field is not C 1 due to its PWL nature, it will satisfy a local 
Lipschitz condition. Hence, the existence and uniqueness of solutions of (2) are guaranteed. 
Assumption (ii) is for simplicity and can be removed easily. It is needed to insure that each 
mode of the linear subsystems is two dimensional in the state space. Without this assumption, 
we might have a four or more dimensional surface for a certain mode:.. Also, it can be shown 
that assumption (i) together with the negative definiteness of K and K imply that the origin 
is the only equilibrium point for system (6) (this can be proved but is not obvious). 

With these assumptions in hand, we transform system (2) into a simpler form. Let x = QT z, 
where Q = [q1 q2 ... qN] is anN x N matrix with q1 = ~th and J.t E ~is a suitable constant 
such that QQT = M. In other words, the switching hyperplane becomes { x E ~N : x 1 = d}, 
where d = J-Ld'. Such a transformation matrix Q does exist and can be obtained in the following 
way. Recalling that M is real, symmetric and positive definite, we write M = P D pT, where 
P is orthogonal and D is diagonal. Take another orthogonal matrix U with the property that 
u1 = J-LD-112 pTh, where Ut is the first column ofU. Hence J.t = 1/IID-112 pThll where 11· 11 

denotes the Euclidean 2-norm. Then it is easy to verify that Q = P D 112U is as required. 
After the transformation x = QT z, system (2) takes the form 

X- { ~: + QTbt ::: :: : ~ (3) 

where K = QT At(QT)-l and K = QT A2(QT)-1. By our choice ofQ, both K and K are 
real symmetric negative definite matrices. From the continuity of the vector field, we have 

(K- K)x + QTb' = 0 when Xt =d. (4) 

Let k = [kt k2 ... kN] and K = [kt k2 ... kN]. Then (4) reads 
~ ~ ~ T 

d(kt- kt) + X2(k2- k2) + .. · + XN(kN- kN) + Q b' = 0, 

which most hold Vxi E ~. i = 2, ... , N. Thus, we arrive at 
~ ~ 

k1 = k1 + k, ki = ki, i = 2, ... , N, 

where k = - ( 1/ d) QT b'. Therefore, (3) can be expressed as 

{ 
Kx 

x = K x + k ( x 1 - d) for Xt > d ' 

for 
(5) 
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or in a more compact form 

{
Kx 

x = K(x- Xe) 

for XI < d 

for XI > d ' 
(6) 

where Xe = dk-Ik. Moreover, by the symmetry of k, k must be of the form 

k=[x; 0 ... O]T. 

Either equation ( 5) or equation ( 6) can be considered as the canonical form of the PWL system 
(3) with x; as a parameter, and when x; = 0, they reduce to a purely linear system. Also, for 
d = 0, the system reduces to that discussed i!l [ 41]. 

It will be clear in Section 4 that as far as K is negative definite, x; is not restricted in size in 
our analysis. However, since the method of asymptotic expansion is used, the magnitude of x; 

might affect the region of validity of the expansions. This will be discussed in Section 6. 

3. The Poincare Map 

In this section, we derive the Poincare map for the PWL system in canonical form (6), 
which will be used to construct the nonlinear normal mode in the next section. The switching 
hyperplane provides a natural Poincare section. To this aim, we make use of the symmetry of 
K and k, and the linearity of the subsystems. Since both subsystems are linear, we can obtain 
their solutions in closed form which enables one to obtain an analytical, although implicit, 
expression for the Poincare map. 

Let us start with the derivation of the solutions of the linear subsystems. Let { -w[, vi }~I 
and { -w[, vi}~1 be the eigenpairs of K and k, respectively. Suppose that the eigenvectors 
are normalized in such a way that they have magnitude one and positive first entries, i.e., let 
vi = [vii v2i ... VNiJT and Vi = [v,i v2i ... VNi]r, then Vti > 0 and VIi > 0. Then the 
solution of the first linear subsystem is 

N 

x(t) = L Vi(ai cos wit+ bi sin wit)= V(C(t)a + S(t)b); (7) 
i=l 

N 

y(t) =: x(t) = LWiVi(-aisinwit + biCOSWit) = vn(-S(ta + C(t)b) , (8) 
i=l 

where V = [vi v2 ... VN] is orthogonal since K is real symmetric, C(t) = diag(cosw1t, 
COSwzt, ... , COS WNt), S(t) = diag(sinw1t, sin W2t, ... , sin WNt), n = diag(wl , w2, ... , WN ), 
and a = [at az . . . aNJT, b = [bt b2 . . . bn]T E i'RN are coefficients determined by the 
initial conditions. Setting t ::::: 0 in equations (7) and (8), we have 

x(O) = Va, 

which leads to 

y(O) = Vnb, 

a= v-1x(O) = vr x(O), 

Inserting (9) back into (7) and (8) one obtains 

x ( t) = v c ( t) vr x ( o) + v s ( t) n -I vr y ( o); 

y(t) = - VOS(t)VT x(O) + VOC(t)n- 1 vr y(O); 

(9) 
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or in an integrated form 

w(t) = T(t)w(O), (10) 

where w(t) = [x(t) y(t)]T and 

( ) 
_ [ V(C)(t)VT VS(t)n-tvT l 

T t - - VOS(t)VT VC(t)VT ' 

is a 2N x 2N matrix composed of four N x N matrices. Note that we have used the 
commutative property of two diagonal matrices to simplify the expression. Furthermore, we 
can put T(t) in the clearer form 

( ) = [ V 0] [ C(t) S(t)n-
1

] [ vr 0 l· 
T t 0 V -OS(t) C(t) 0 vr (11) 

It is not difficult to see that T( t) is invertible and that its inverse is given by 

T ( ) _1 = [ v o ] [ c ( t) - s ( t) n -1 
] [ vr o ]· 

t 0 V OS(t) C(t) 0 vr (12) 

For the solution of the second linear subsystem, a similar procedure gives 

w(t) =We+ T(t)(w(O)- we), (13) 

where we= [xe o]T and T(t) has a definition similar to T(t) and can be obtained from T (t) 
by replacing wi, Vi with Wi, fJi . Note that forK,= 0, T(t) = T(t) andxe = 0, and equation (13) 
reduces to equation (10). 

We are now in a position to construct the Poincare map. Define the surfaces of section 
(here, hyperplanes) 

2: = { w E ~2N : x 1 = d and Y1 > 0} 

and 

2:* = { w E ~2N : Xt = d and Yt < 0} · 

The Poincare map F : ~ --+ ~ is thus defined as 

(14) 

Vw E :E, where thi is the time required to take w to a point w* on~* and th2 is that required 
to return from w* back to :E. In general, both tht and th2 satisfy transcendental algebraic 
equations and only approximate solutions are possible (see [11, 27]). Note that although the 
system is piecewise linear, the corresponding Poincare map is smooth. 

4. Normal Modes for the PWL System 

4.1. CONSTRUCTION OF THE NORMAL MODES 

With the preliminary results developed in previous sections, the procedure of constructing 
normal modes for the PWL system (6) by the methods of invariant manifolds and asymptotic 

5



...---------,~Poincare section 

Linear normal mode 
/ 

Figure 1. The linear normal mode. 

expansions is provided in this section. Since the systems considered here are conservative, it 
is well known that each normal mode is a collection of periodic motions [28]. In other words, 
we are seeking invariant manifolds in state space that are composed of one-parameter families 
of periodic orbits. Therefore, when viewed in the Poincare map, the invariant manifold is a 
one-parameter family of fixed points. 

In the linear case, that is, when K = 0 in system (6), a normal mode is a two-dimensional 
plane in state space, which intersects the switching hyperplane along a straight line. This 
line constitutes the one-parameter family of fixed points for the Poincare map ( 14) for the 
corresponding normal mode. To fix the ideas, let us take the first mode as an example. Let the 
corresponding eigenvector be written as Vt = (v11/d)[d u2 ... UN]T, where ui = dvii/vn, 
i = 2, ... , N. Then the 2-D invariant plane for this mode is: 

{w = [x y]T E ~2N: x = avi,Y = f3vi,a,;3 E ~}, 

which is composed of a family of ellipses that are periodic solutions with different amplitudes 
but the same frequency Wt, as shown in Figure 1. Figure 2 shows the corresponding fixed 
point family for the Poincare map, given by 

{W = [x yf E 'R2
N: X=_!!:..._ Vt,Y = j3v1,j3 > 0}. 

VII 

ForK -/= 0, the 2-D invariant plane in state space as well as the one-parameter family of 
fixed points on the Poincare section will be distorted. The fixed point family is no longer a 
straight line as in the linear case, but a curve emanating from a point Wt = [( d/vt 1 )vi o]T (see 
Figure 2). Correspondingly, the invariant plane will become an invariant manifold consisting 
of two pieces. One piece is an elliptic disk near the origin which represents the small amplitude 
vibration and is tangent to the switching hyperplane at Wt. This piece is a portion of the linear 
normal mode of the first linear subsystem since near the origin the system is linear. The other 
piece represents large amplitude vibration and involves both linear subsystems. This piece 
again contains two parts, one in the region xI < d and the other in XJ > d. The two parts 
must match along the Poincare section in the sense that they meet at the curve of fixed points. 
Figure 3 is a qualitative sketch of such an invariant manifold. 

In order to obtain the normal mode, we only need to construct the large amplitude piece 
since the elliptic disk is already known. Because it is generally impossible to obtain the entire 
invariant manifold in closed form, we shall employ the method of asymptotic expansions 
which allows us to obtain an approximate invariant manifold in the neighborhood of the 
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/ 
yz 

Figure 2. The fixed point family of the Poincare map for the linear (dashed line) and PWL (solid line) systems. 

Xt>d 
Xt=d 

Xt<d 

Figure 3. Sketch of an invariant manifold for the PWL system. 

elliptic disk. For this purpose, it is natural to use polar coordinates, in contrast with the 
Cartesian coordinates used by Shaw and Pierre [28]. 

There are several steps involved in the procedure for constructing a normal mode for a 
PWL systems, and the procedure is exactly the same for each mode. First, an approximation 
to the curve of fixed points is determined. Next, using the curve obtained as a matching 
condition, the large amplitude piece of the invariant manifold, which is in the neighborhood 
of the elliptic disk and belongs to the region Xt < d, is obtained in a series form of polar 
coordinates. Finally, by matching the curve from the first step again, and by making use of 
another set of polar coordinates, the other portion of the invariant manifold belonging to 
the region x 1 > d is expanded in the neighborhood of Wt. Then, by gluing together these 
two pieces and the elliptic disk from the linear normal mode, we are able to construct an 
approximation of the entire nonlinear normal mode for the PWL system. In what follows, 
we will explain these steps in some detail. Again, we take the first mode as the illustrative 
example, where the extension to the other modes is straightforward. 

The fixed points of the Poincare map are those on ~ satisfying 

F(w) = w, (15) 

subject to 

(16) 

where {·}i represents the i-th element of{·}. In general, equation (15) together with equa­
tion (16) comprises a set of 2N + 1 transcendental algebraic equations in 2N + 1 variables, 
i.e., x2 , ... , XN, Yl, ... , YN, th1 and th2· 
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In order to determine the one-parameter family of fixed points corresponding to the first 
mode, we can assume a solution in a series in terms of the velocity of the first degree of 
freedom at the switching point, Yt, up to m-th order as the following 

Yl - 8· - ' 

M 

Xi = Ui + L f.Lij8j + O(m + 1), 
j=l 

m 

Yi L Vij8j + O(m + 1), 
j=l 

m 

th1 = 2:: Ttj8j + O(m + 1); 
j=l 

. 

(17) 

i =2, ... ,N; (18) 

i = 2, ... ,N; (19) 

(20) 

(21) 

where 0( m + 1) denotes the higher order terms and the f.Li/s, Vi/s, and Ti/s are unknown 
coefficients, depending on the parameter "'' which are to be determined. Recall that ui = 
dvit/vu and [d u2 . . . uN]T is an eigenvector associated with the first mode of the first 
linear subsystem. Note here that we have assumed vn -1- 0. In general, if vli = 0 for some 
1 < i < N, then the i-th nonnal mode of the PWL system is the same as that of the first 
linear subsystem, i.e., a 2-D plane. This is because on this mode, Xt - 0 and hence it will 
never exceed d. Note also that as a 8--+ 0 in equations (17) through (21), the assumed solution 
reduces to Wt, which is a fixed point for all values of K. 

Substituting equations (17)-(21) into equations (15) and (16), and matching the coefficients 
of the same order of 8, we obtain m(2N + 1) equations. In doing this, we need power series 

expansions ofT( th1) and T( th2) about 6 = 0 up to order m. Then the solution of the /-Lij 's, 
Vij 's, and Tij 's are obtained by solving these equations sequentially. This completes the first 
step in the process. Notice that there are m(2N + 1) equations and only 2mN unknowns, 
although some of the equations are redundant. 

Before moving to the next step, we transform the coordinates ( x1, y1) to a polar form ( r, e) 
defined by 

Xt = rcose, Yl = wrr sin e. (22) 

As a result, a periodic solution of the first mode of the first linear subsystem can be represented 
simply as r = constant when projected onto (x1, yt) plane. Then when r < d, the normal 
mode can be expressed as 

Ui 
Xi = d rcose, 2 < i < N; 

ui . e 
Yi = d WtTSlll ' 2 < i < N, 

which is the elliptic disk mentioned above. Generally, in terms of (r, 0), the normal mode for 
the PWL system takes the form 
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Yi r cos B d for r<d 

Xi= 7 r cos B +fit (r, B) for r>d and rcose < d (23) 

E;} r cos e + Ji2(r, B) for r cos B > d 

'!:jw1rsinB for r<d 

Yi = 7 Wt r sine + 9il ( r, B) for r>d and rcose < d (24) 

7 w1r sin B + 9i2(r, B) for rcose > d 

for 2 < i < N. Basically, our aim in this section is to find approximate solutions for fij(r, B) 
and gij(r, B). Clearly, these functions must satisfythe continuity condition on the boundaries. 

Next, consider the region r > d and r cos() < d, which is outside the elliptic disk but still 
governed by the first linear subsystem. Let P( 8) be a fixed point on 2] with y1 coordinate 
being 8 and others being given from the first step in equations (18) and (19). Then there must 
be a periodic trajectory passing through P. 1 Let Po ( 8) be a point on the trajectory in this 
region whose coordinates are 

Xt = T cos(), i=2, ... ,N; (25) 

m 

Yt = w1r sine, Yi = ~i w1r sine+~ /3ij8i + O(m + 1), i = 2, ... , N, (26) 
j=l 

where the O:ij 's and /3ij 's are functions of e to be determined, r is a function of 8 and () and is 
assumed to be 

m 

r = d+ "L.,rj8j +O(m+ 1), 
j=l 

(27) 

where the rj's are also functions of() to be determined. In other words, Po is a point on the 
normal mode. Reference to Figure 4, which is the state space projected onto the ( x 1, y1) plane, 
may clarify matters for the reader at this point. If 8 = 0 in equations (25)-(27), Pe becomes 
a point on the boundary of the elliptic disk and will reach the Poincare section L: at time 
t = B / WJ. Therefore, it is natural to express the hitting time th(} of Po to P as 

B m 
ih(} =- + L,tj8j + O(m + 1), 

Wt . l 
]= 

i =2, ... ,N, (28) 

where the tj 's are again functions of e to be determined. 
With Po as the initial point w(O) and substituting expressions (25)-(28) into equation (10), 

we obtain w(thB) = P or 

(29) 

By expanding T(the) with respect to 8 = 0 up to order m and matching coefficients of like 
order in 8 in equation (29), one can solve for the a ij 's, f3i j 's, r j 's and t j 's. Then, by inverting 

1 From now on, P instead of P(b) will be used for brevity, similarly for P8 (8) and P,p (8) in the sequel. 
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Figure 4. Polar coordinates for the region x 1 ~ d. 

Figure 5. Polar coordinates for the region x1 2: d. 

the power series of equation (27), 8 can be obtained as an approximate function of r and 
e. Entering the resulting 8(r, (}) into equations (25) and (26), and comparing the result with 
equations (23) and (24), we have 

m 

fit (r, (}) ~ L aij(0)8(r, (})j; (30) 
j=l 

m 

9it(r,B) ~ Lf3ij(B)8(r,O)j, (31) 
j=l 

which completes the second step. 
Finally, to build up the piece of invariant manifold in the region r cos(} > d, we need 

another polar coordinate set ( f, ¢) for ( x 1, Yt) as shown in Figure 5. Let P ¢ ( 8) be a point on 
the periodic orbit passing through P. In view of the fact that P¢ is in the neighborhood of Wt, 

the coordinates of P¢ are assumed to be 

m 

Xt=d+fcos¢, Xi=; Xt+L&ij8i+O(m+l), i=2, ... ,N; (32) 
j=l 
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Yt = w1f sin¢, 
m u· A 

Yi = d YI + Lf3ij8j + O(m + 1), 
j=l 

i = 2, ... ,N, (33) 

and expand f about Wt as follows 

m 

f = L:rj81 + O(m + 1). (34) 
j =l 

If 8 = 0 in equations (32) through (34), then f = 0, and both P¢H and P shrink to the same 
point, Wt· Again, the backward hitting time th¢> for P¢ to Pis expressed as a series in 8 as 
follows 

m 

th¢ = Li18j + O(m + 1). 
j=l 

(35) 

As in the procedure described above, the expansion coefficients Cxij 's, ~ij 's, f j 's and ij 's 
are unknown functions of ¢ determined by the matching condition 

(36) 

Transforming (f, ¢) back to (r, B), and from equation (34), we solve for 8 as a function of 
(r, B). Then, comparing equations (32) and (33) with equations (23) and (24), we obtain 

m 

!i2(r, B) ~ L Cxij(r, B)8(r, B)l; 
j=l 

m 

gi2(r, B) ~ L ~ij(r, B)8(r, B)j, 
j=l 

(37) 

(38) 

where one should note that 8(r, B) here is a different function from that given in equations (30) 
and (31) since they are in different regions of (r, B). This is the final step and it completes the 
procedure for generating the normal modes of the PWL system (6). 

This section is ended with some remarks on the order of approximation. Since we are 
expanding the invariant manifold around an invariant disk, solutions will be accurate close 
to the disk. Here the measurement of closeness is 8, the YI coordinate of a fixed point on 
the Poincare section ~. Throughout the paper, the order of approximation is in terms of 8. 
One may relate 8 to the energy level of the modal motion above and near the switching 
hyperplane. A larger 8 represents a higher energy level on the invariant manifold. However, 
their relationship cannot be obtained in closed form since a closed form expression for the 
invariant manifold is not available. 

4.2. THE EXISTENCE AND UNIQUENESS OF THE NORMAL MODES 

The problem of determining the existence and uniqueness of nonlinear normal modes has been 
the subject of many efforts since the concept of nonlinear normal modes was introduced [5, 
15, 19, 40]. For smooth nonlinear systems, the existence problem is well understood. As for 
uniqueness, the Lyapunov center theorem states that the number of nonlinear normal modes 
is the same as that of linear modes under nonresonant conditions [30]. In the case of internal 
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resonance, Nayfeh and Chin reported in [14] that the number of nonlinear normal modes 
may exceed the number of linear ones. For PWL systems, both the existence and uniqueness 
problems remain open. In [41], Zuo and Cumier numerically obtained the normal modes for 
a special class of PWL systems and discussed the bifurcation of these modes. However, they 
did not address the existence problem, nor did they investigate internally resonant cases. 

Although we do not have a definite answer to the problem of existence and uniqueness of 
normal modes for PWL systems either, some evidence (a necessary condition) to the existence 
of the normal modes has been determined. Specifically, the problem is related to the solution 
of the fixed point equations (15) and (16). If, for a given linear mode, there is a unique 
one parameter family of fixed points satisfying equations (15) and (16), then the nonlinear 
normal mode exists and is unique for the given mode. Suppose this is indeed the case. Then 
there must be exactly 2N independent equations in the set of 2N + 1 simultaneous equations 
(equations (15) and (16)), i.e., essentially, only one of the equations in (15) and (16) depends 
on the others. This is verified by the illustrative example following in Section 6. In other 
words, the Jacobian matrix of equations (15) and (16) at the given linear mode with K = 0 
and 8 = 0 should have rank equal to 2N.It is shown in Appendix A that this is generally true 
for nonresonant cases. In lieu of equations (15) and (16), a more convenient but equivalent 
form of fixed point equations is used in Appendix A. Under resonant conditions, the rank 
of the Jacobian matrix will be less than 2N, indicating the possibility of non unique normal 
modes for a given linear mode. Interestingly, one should note that the PWL system is linear 
locally and hence the normal mode is unique near the origin, whether resonant or not. Over 
the switching hyperplane, however, the normal mode can split into several pieces. 

5. Modal Dynamics for the PWL System 

With the normal modes in hand, the next step is to establish the dynamics of the normal modes. 
As expected, the modal dynamics are also of piecewise type. 

Again, the first mode is considered here. Its local coordinate system is taken to be the polar 
form (r, B) defined by equation (22). Hence 

· · e 1 · · e r = Xt cos + - Yt sm ; 
W} 

(39) 

e. 1 . . B 1. e = -- Xt sm + - YI cos . 
r WJT 

(40) 

From the state equations, ±1 and iJI are functions of x andy, which are related tor and() on 
the first mode in piecewise fashion by equations (22)-(24). From equation (5), ±1 and Yt are 
given in terms of r and e by 

X} = YI = WJ r sine; 

YI {
{Kx}t 
{Kx}I + K(XI- d) 

for XI < d 

for Xt > d 

{ 

{Kiitr cos B}t for r < d 
{K(ii1rcosB+ft(r,B))}t forr > dandrcosB < d 

{K(v1rcosB+h(r,8))}t +K(rcosB-d) forrcosB > d 

(41) 
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where VI = [1 ( uz/ d) . . . (UN/ d) ]Tis the eigenvector of K associated with eigenvalue -wi 
and fi(r, B) = [0 fzi(r, B) . .. !Ni(r, B)]T fori = 1 and 2 are as defined in equation (23) 
and their approximate solutions are given in equations (30) and (37). Also, the reader should 
recall that { ·} 1 stands for the first element of { ·}. Therefore, 

{KiitrcosB}I = { -wiv1rcosB}I = -wrrcosB, 

which yields 

-wrr cos e for r < d 

Yt = -wir cos()+ kf !I (r, B) for r > d and r cos () < d (42) 

-wyr cos e + kf f2(r, B)+ K,(r cos B- d) for r cos() > d 

where ki is the first column of K. Inserting expressions (41) and (42) into equations (39) and 
( 40), one obtains the dynamics of the first mode as 

0 forr < d 

r = s~/J [kffi(r,B)] forr > dandrcosB < d (43) 

s~/} [kf fz(r, 8) + K,(r cos()- d)] for r cos e > d 

for r < d 

B= -wt+:~: [kfft(r,B)] forr>dandrcosB<d. (44) 

-WI + ~~: [kf h(r, ()) + K,(r COS()- d)] for r COS() > d 

As expected, the modal dynamics are of piecewise type and can be regarded as a one degree 
of freedom nonlinear oscillator. Also, it is easy to see that the right-hand sides of ( 42)-( 44) are 
continuous. Note that the first piece (r < d) is for motions of the first linear subsystem, which 
govern for energy levels below that required to exceed the switching hyperplane, while the 
second and third pieces describe the motion in the two linear domains for higher energy levels. 
Due to the piecewise nature of the equations, however, conventional methods in determining 
the frequency-amplitude relationship of nonlinear oscillators fail to apply here. Conventional 
methods make use of perturbation techniques which require the system to be smooth, which 
is not the case here. Despite these difficulties, we can still determine the frequency-amplitude 
relationship of the modal dynamics from the analysis presented in Section 4, rather than deal 
with equations ( 43) and ( 44) directly. 

Consider the motion on the normal mode. When the amplitude is sufficiently small that 
the vibration stays in the disk region r < d, the system is linear with constant frequency w1. 

If the vibration is large enough, it will hit the switching hyperplane at a fixed point on the 
Poincare section ~. Each fixed point is parameterized by the y1 coordinate and is given by 
equations (17)-(19) in Section 4. For each Yt = 8, we have one such oscillation whose period 
is equal to tp = thi + thz, which is also parameterized by 8, as given in equations (20) and 
(21). Specifically, 

27r ~ . 
ip =- + ~ tpj81 + O(m + 1), 

WJ . I 
]= 
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~Xz 

m=1 
k=1 
d=1 

Figure 6. The mechanical model for the example. 

where tpj = Ttj + 72j. Thus, the frequency can be easily calculated from 

w1 = Zn = Wt + 'EWtjDj + O(m + 1). 
ip j==l 

(45) 

Equation ( 45) is the frequency-amplitude relationship of the first modal dynamics in terms 
of 6. We can also convert equation ( 45) to the usual form of relationship between w1 and A 1, 

the peak displacement of XJ. To do this, let iiJ = [x y]T be a fixed point on~ with y1 = 6. 
The peak displacement occurs when the velocity is zero, i.e., Yl = 0. With iJJ as the initial 
point, we thus seek the value of x1 at Yl = 0. First, the time tho bringing Yl = 8 to Yt = 0 is 
obtained in terms of a power series in 6 by solving 

approximately up to the m-th order of 6. Then the peak displacement of x1 is simply given by 

(46) 

which is also a series form of 6. Using equation (46), one can obtain 6 as a function of At in a 
series in terms of 8. The frequency-amplitude dependence in terms of A1 is then expressed as 

for At < d 

for At > d 

These ideas are now demonstrated by an example. 

6. Example: A Two Degrees of Freedom System with a Clearance 

(47) 

The system to be considered is shown in Figure 6, which is an undamped, two degrees of 
freedom system with a clearance. Except for the clearance, no other nonlinearities appear in 
the system. Following the procedure provided above, the normal modes for the system, the 
associated modal dynamics and the frequency-amplitude relationship will be given for both 
normal modes. Numerical simulations are also carried out to compare with the theoretical 
results. 

It is important to point out that most of the manipulations encountered here, such as power 
series expansions, inversion of power series, and solving for the unknown coefficients of the 
normal modes, can hardly be done without the aid of computer symbolic manipulators. Indeed, 
much of the work for this example was done by Mathematica ™ running on a Macintosh II 
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ex computer. All of the numerical simulations presented were carried out using MatLab on a 
Sun station. 

Assume that the springs are unstressed at the equilibrium position, where the displacements 
XI and x2 are zero. In addition, all the values for inertia, stiffnesses, and clearance magnitude 
are taken to be unity except the free spring whose stiffness is assumed to be /1,. The equations 
of motion are, therefore, 

for XI < 1 

for x 1 > 1 
(48) 

(49) 

In terms of the canonical form given in equation (6), the equations of motion are expressed 
with the following definitions: 

d = 1, 

Xe = ( 3~JK) l 

3+2K 

K= [ 
-2 1 l 
1 -2 ' 

K [ 
-2- K, 1 l· 

1 -2 

The eigenpairs of K are 

-wi = -1, "'=~c); 
-wi = -3, 

A 

and those for K are 

where 

)q = -K, + J4 + /1,2 

2 

Thus, we have 

v, = j 1 ~ A} ( ; 1 ) ; 

v2 = -Jr=i=~=A=~ UJ , 

V= ~[: ~~] , 
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" V= 

" fl= 

6.1. THE FIXED POINT FAMILY ON THE POINCARE SECTION 

Consider the first mode and note that Wt = 1, d = 1 and u2 = 1 for our example. We express 
the fixed point w = [x y]T on I: as 

Xt = 1, 

X2 = 1 + Jl2ID + Jl22D
2 + fl23D

3 + 0(4), 

YI = 8, 

Y2 = v218 + v228
2 + v238

4 + 0(4), 

and the hitting times as 

thl = 1"110 + Tt2D
2 + T13D

3 + 0(4); 

th2 = 27r + T2t0 + T220
2 + 1"330

3 + 0(4), 

(50) 

(51) 

(52) 

(53) 

where the approximations are done up to third order. The coefficients in equations (50)­
( 53) have to be chosen to satisfy the fixed point equations (15) and (16). Instead of solving 
equations (15) and (16) simultaneously, which requires some cumbersome calculations, we 
divide the job into several steps. First, th1 is solved (in terms of other unknowns) from 
equation (16). Next, the hitting point w* of w on :E* is obtained in terms of the unknowns. 
Finally, w* is put into equation (15) and solved. The resulting equations for thi are 

6 term 

which yield 

'Ttl = 2, 

'TJ2 = 2J.L21' 

1 
1- 2 1"11 = 0, 

Jl211"11 - 1"12 = 0, 

1 1 2 1 3 2 (fl22Tll + Jl21Tl2- T13) + 6 r 11 (v21- 2- K) + 
24 

(1 + K)r11 = 0, 

(54) 

(55) 

2 2 
T13 = 2f.J,22 + 2J.L21 + :J: (2V2I - 3- K). (56) 
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Then, by inserting iht into equation (13), w* can be expressed as 

* Yt 

1 + /1218 + (JL22- 2 + 2V2t)8
2 

+ (J123- 81121 + 2v22 + 2J121V21)8
3 + 0(4), 

-8 + ~ (v21 - 1)83 + 0(4), 

(v21 - 2)8 + (v22 - 6JL21)tl 

+ [v23- 6(1-'i! + l-'22- I)-~ (8v21- 1< + 1)]63 + 0(4). 

(57) 

(58) 

(59) 

Equations (57)-(59) are significantly more complicated if thl is not obtained first. From 
equation (58), one can see that Yi < 0 when o is sufficiently small and that w* is indeed on 
:E*. 

Substituting equations (57)-(59) into equation (15) results in the following 12 equations 
with 9 unknowns: 

8 term : 
1- c s 
-- /121 - - (v21 - 1) = 0 (60) 

2 2V3 ' 

Jl21 = Jl2l' (61) 

-1 - 721 = 1J21 (62) 

1J21 - 2 - 721 = 1, (63) 

1- c s 
(64) -- f.L22- J3 V22 = 0, 

2 2 3 

s 
(1 - c)J122- J3 v22 = 0, (65) 

V22 - 1"22 = 0, (66) 

V22- 1"22 = 0, (67) 

B SK, 
(68) -+722---=0 

2 3v'3 l 

B SK, 
(69) /J23 - 2 + 722 + 3v'3 = f.L23, 

(1 + c)11, vf3 sB 7It 7i1 
3 - 2(1- c)+ 2 + 6-723 = v23, (70) 

(1 +c)"" v'3 sB 7£1 7?1 _ _ 
0 3 + 2(1 -c) + 2 + 6 723 + v23 - ' 

(71) 

where c = cos2V3 1r, s = sin2v':3 1r, and B = (1- c)JL23- (s/V3)v23· Note that at 
each stage we have made use of the results from previous stages. For instance, the relations 
obtained from the equations of the 8 and 82 terms have been used to simplify the equations 
of the 83 term. Also note that some of the above 12 equations are dependent (or redundant), 
for example, equation (61) and equations (64)-(67). The solution to these equations is unique 
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and is given by 

/-l2l = o, /-l22 = 0, 

1, vzz = 0, 

121 = -2, 122 = 0, 

t-tz3 = 3J3 (1 - c) ' 

2+1'\; 
123 = 

3 

Then from equations (54)-(56), we also get 

2(1 + 11.) 
TJ 1 = 2, 112 = 0, 113 = - . 

3 

Consequently, the one parameter family of fixed points on ~ can be expressed in terms of Yl 
as 

YI 8, (72) 

SK, 3 
(73) X2 1 + V3 8 + 0(4), 

3 3 (1 -c) 

K 3 
(74) Y2 = 8--8 + 0(4). 

3 

The corresponding set of fixed points for the second mode, obtained in the same manner, is 
given by 

YI = 8, 

s' /'i, 
-1 + 83 + 0(4) 

270 (1 - c') ' 
K 

-8 - - 83 + 0(4) 
27 ' Y2 = 

where s' = sin(27r I J3) and c' = cos(27r I J3). 

6.2. THENORMALMODES 

Based on equations (72)-(74), the invariant manifold in the region x 1 < 1 can be constructed. 
First, let P denote a fixed point on :E with the coordinates described in equations (72)-(74). 
Since w1 == 1, the coordinate transformation in equation (22) becomes 

XI = r COS(), YJ = r sin 8. (75) 

Suppose that a point Po on the periodic orbit passing through P has coordinates 

x2 = rcose + az18 + a 2282 + a2383 + 0(4), (76) 

yz = r sine+ (3218 + f3zz82 + (32383 + 0(4) , (77) 

in addition to x 1 and y 1 given in equation (75). Here r is not arbitrary. Depending on 8 and e, 
it must be chosen so that Po lies on the periodic orbit. Hence we take 

(78) 
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The hitting time from Pe to P is assumed to be of the form 

th() = B + t1b + t2b2 + t3b3 + 0(4). (79) 

Substitution of equations (75)-(79) into equation (29) yields a set of 12 algebraic equations 
from which one can determine the 12 unknown coefficients in equations (76)-(79). The 
solution procedure is quite similar to that presented in Section 6.1 and is not repeated here. 
The resulting solution is 

Ct21 =0 
' !321 = 0, r 1 = 0, tr = -1, 

lX22 =0 ' !322 = 0, 
1 

r2 =-' 2 
t2 = 0 

lX23 = v'3 /'\, [scos~B+(l-c)sinv'3B], 
3 (1 -c) 

!323 = ( /'\, ) [ s sin J3 B - ( 1 - c) cos J3 B], 
3 1- c 

J3 K, {2s- (-/3 + 1)[(1- c) sin(-/3 -1)t9 + scos(J3- 1)8] 
12 (1 -c) 

+ (J3- 1)[(1- c) sin(J3 + l)B + scos(v'3 + 1)t9]} , 

2+ /'\, 1 . 
t3 = 

6 
- 2 ( a23 sm B - /323 cos B). 

Inversion of the series in equation (78) yields 

b(r,B) ~ j2(r -1)- 2r3(B)(r -1). 

Therefore, we finally have 

!2t(r,B) ~ o:23(t9)[V2(r -1)- 2r3(B)(r -1)]3, 

921(r, e) ~ i323(e)(V2(r -1)- 2r3(B)(r- t)f. 

For the region r cos B > 1, we set 

X 1 = 1 + f COS cp, 

YI = fsin¢, 

X2 = Xt + &21D + &22D2 + &23D3 + 0(4), 
A A 2 A 3 

Y2 = y 1 + fJ21 D + fJ22 b + /323 D + 0 ( 4) , 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

as the coordinates of a point P<P on the periodic trajectory through P (see Figure 5). Again, f 
is not arbitrary. Let f and the backward hitting time th<P of P<P toP be written as 

(86) 

(87) 
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Solving for the unknown coefficients in equations (84)-(87) from equation (36) (by repeating 
the solution scheme used above) yields 

~ 
sr;, 

0!21 =0 
' 

&22 = 0, 
a23 = 3v'3 (1 -c) ' 

~ ~ ~ 

!321 =0 ' !322 = 0, !323 = 0, 

ft =0 
' 

~ 1 ~ 0 
rl = 2 ¢ 'r3 = ' cos 

~ 

= 1 i2 = -0.5 tan¢, 
1+r;, 

tl t3 =-
' 3 

By equation (86) and transforming ( f, ¢) back into ( r, ()), we have 

8(r,B) ~ V2(rcosB -1). 

Thus, we finally have 

( ) 2y/2 sr;, ( () 1)3/2 
!22 r, () ~ J3 r cos - , 

3 3 (1 -c) 

922(r, e) ~ 0. 

The same procedure can be applied to the second mode, resulting in 

f~1 (r,()) ~ a~3(B)[V6(r -1) -18r~(())(r -l)f, 

g~1 (r,()) ~ f3~3 (())[\j6(r -1) -18r~(e)(r -1)]3
, 

1 2/6 s' r;, 3/2 
f22(r, ()) ~ 

9
(
1 

_ c') (r cos()- 1) , 

g~2 (r, B) ~ 0, 

where 

1 K [ 1 (} ( 1) • {) l a23 = - 27 ( 1 _ c') s cos y'3 + 1 - c sm y'3 , 

/'1, [ I , {) ( ') (} l 
27(1 _ c1) s sm J3- 1- c cos J3 , 

(88) 

(89) 

/'1, { r;:; r;:; [ A-1 V3-1 ] y3 2v 3 s - ( v 3 + 1) ( 1 - c') sin y3 () + s' cos V3 () 
108 ( 1 - c') 3 3 

[ 
. V3+1 V3+1 ]} - ( J3- 1) (1 - c1

) sm J3 () + s' cos J3 () . 

Recall that the parameter K, which is the stiffness of the free spring, accounts for the only 
nonlinearity in our system. In fact, it can be verified that all of the functions fij, 9ij, ffj, 
and gij are identically zero when r;, = 0. In this case, all of the modal subspaces are simply 
two-dimensional planes. 
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1 

Figure 7. The modal subspace of the first mode with "' = 3. 

Using equations (80)-(81) and (88)-(89), the modal subspaces of the first mode are plotted 
in Figure 7. Similarly, the modal subs paces of the second mode are shown in Figure 8. From 
the figures, one can see that the normal modes are of piecewise type with a flat disk at the 
center. 

6.3. MODAL DYNAMICS 

It follows directly from equations (43) and (44) that the dynamics of the first mode are 

0 for r < 1 

r= a23(8) sinB[y'2(r- 1)- 2r3(B)(r- 1)]3 for r > 1 and r cos B < 1 ; (90) 

~sinB[(rcosB- 1) + 3}3"&~c) (rcosB- l)J312 for rcose > 1 

-1 for r < 1 

-1 + o:23(eJcose [(y'2(r -1)- 2r3(B)(r -1)]3 for r > 1 and r cos e ~ 1 
B= (91) 

- 1 + /'L c~s (} [ ( r cos e - 1 ) ' 
+ 2hs (rcos0-1)3/2] for r cos e > 1 3v'3 (1-c) 

while those for the second mode are 

0 for r < 1 

r = o:;3 (~siniJ [J6(r- 1) -18r~(O)(r -1)]3 forT> 1 andrcosB < 1 

I'LsinB [(rcosB- 1)- 2..;6 81 (rcos0 -1)312) forrcos0 > 1 y'3 9(1-c') 
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Figure 8. The modal subspace of the second mode with"' = 3. 

for r < 1 

B = -V3 + o:b~~osO [(J6(r -1) -18r~(B)(r -1)]3 forr > 1 andrcosB < 1 

-V3 +"'cosO [(rcosB- 1) + 2y'6 
51 (rcosB -1)3/ 2) for TCOS8 > 1 ..j3 r 9(1-c') 

The frequency-amplitude relationships are obtained from equation ( 45). For the first mode 
in the region r > 1, it is 

The parameter 8 (= y1) is related to the peak displacement A1 of x 1 via equation (46) as 
follows 
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Hence we have 

8(Al) ~ V2(A1 - 1) 

and 

{ 

1 
WI,__, 

....., 1 + 1rK: (At- 1)312 

for A1 < 1 

for A1 > 1 

The corresponding relationship for the second mode is 

for At < 1 

for At > 1 

Again, observe that as "" = 0, the frequencies will be constant, corresponding to the limiting 
linear system. 

It is also interesting to note that the modal motion for this system is synchronous in the 
sense that both masses simultaneously reach their peaks. However, the displacements do not 
necessarily vanish simultaneously. Such a phenomenon has been verified in [ 41] through 
simulations for a special case of PWL systems. To see this, observe that !323 ( 1r) and (3~3 ( 1r) 

are zeros, which yield 921 (r, e) ~ 0 and g~l (r, e) ~ 0 when e = 7L Moreover, we already 
have g2z(r, ()) ~ 0 and g~2 (r, e) ~ 0. These imply that both YI and Y2 are necessarily zero 
when sine = 0 by equation (24), the equation for the normal mode. Hence, both modes are 
synchronous as described above. Thus, we can compute the ratio of peak amplitudes A2/ At 
for each mode, which are: 

Mode 1: 

Mode 2: 

A2 { 
1 

At ~ 1 - v'3 (1-Cj)K: (A - 1)312 
3../3 SJ t 

A2 { 1 
At ~ 1 + 2v'6 SK: (A - 1)3/2 

9(1-c) 1 

for 

for 

where c1 =cos v'3 1r and s1 = sin v'3 1r. 

for At < 1 

for A1 > 1 

6.4. SIMULATION RESULTS AND COMPARISON WITH THE RITZ METHOD 

In order to examine the accuracy and validity of the analysis, the exact modal solutions are 
needed. For a given mode and a given 8, a fixed point on the Poincare section L; is obtained by 
solving the fixed point equations (15) and (16) numerically using the fixed point approximation 
(72)-(74) as an initial guess. With this fixed point as an initial condition, one can then obtain 
the modal solution by integrating the equations of motion, equations (48) and (49). 

Although conventional perturbation techniques fail to apply to PWL systems as mentioned 
previously, some energy-based methods, like the Ritz method, are applicable here. As a 
comparison, the Ritz method will be employed to the example PWL system ( 48) and ( 49). 
Since the Ritz method can be found in many books (for example, [33]), only final results are 
presented here. The detailed calculations are shown in Appendix B. 

In what follows, we shall compare the present method with the Ritz method and the exact 
solutions obtained through numerical simulations. To guarantee that they belong to the same 
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Figure 9. Relationship of modal frequencies and 6 for different methods. 

energy level, the initial conditions for different approaches are chosen in the following way. 
For a given mode and a fixed 8, the fixed point approximation (equations (72)-(74)) is taken to 
be the initial condition for the present approach. The exact solution uses the exact fixed point 
under the same mode and 8. From this exact solution, one can get the maximum displacement 
of the first mass At. Then, the initial condition for the Ritz method is given by [At 0 A1 b2 0], 
where b2 can be found in Appendix B. 

In simulations it is observed that for small8, both the present method and the Ritz method 
have good estimates to the modal solution. However, as 8 increases, the Ritz method gives a 
better approximation than the present method for the periodic solutions. This is because the 
present method is based on asymptotic expansion which holds only for small 8, i.e., in the 
neighborhood of the invariant disk. 

The frequency and peak amplitudes relationships are given in Figures 9 and 10 for different 
combinations of r;, and modes. It is easy to see that good approximations are achieved for both 
methods for small 8 ( 8 < 0.4 ), while for large 8, the Ritz method is more accurate than the 
present method. Also, the effect of r;, can be clearly seen. 

7. Conclusions 

Based on the construction of a convenient Poincare map and making use of invariant manifold 
theory, a general procedure for constructing the normal modes of a class of piecewise linear 
(PWL) vibratory systems has been developed. The class of systems considered contains two 
linear subsystems separated by a switching hyperplane in state space. It is shown that such a 
PWL system possesses a canonical form upon which the proposed method applies. 

24



.... 
< 
C\i 
< 

.... 

(a) first mode and k=3. 
1.15 r----......---.----..---. 

: trUe curve. 

1 .1 ·..-.:- : -R1tz· method: · · · · · · · >: · · · · · · · · 

1.05 

0.98 

1.1 1.2 
A1 

1.3 

(c) second mode and k=3. 

..... 

' ' 
...... 

.... 
' .... 

' ..... 

1.4 

~ 
<( : true curve. ' 

0.96 .. -.. -. . ...... . .... . ..... ' .... · ...... :... . . .. . 
-.- : Ritz method. ' , 

--- : present method. ' 
0.94 '--------~-----~ 

1 1.05 1.1 
A1 

1.15 1.2 

(b) first mode and k=6. 
1.2 r----.------.---~ 

_ : true curve. 

-.-:Ritz: method. ~ _.. _.. 
/· 

,.... 1.1 ............. ·:·present·11Jeth · ... · ..., 
~ . . . ~ 

c;( 

1 

1.1 1.2 
A1 

(d) second mode and 1<=6 . 

0.95 ' 

.... 
: true curve. ' . 0.9 .-. . -... .. . . .. . :··-·· · ····:, . . :-

- .- : Ritz method. , 

--- : present method.: 

1.3 

0.85 '-----~-------'----' 
1 1.1 1.2 1.3 

A1 

Figure 10. Ratio of peak amplitudes for different methods. 

There are several steps in this constructive procedure. First, using the switching hyperplane 
as a Poincare section ~. a one parameter family of fixed points on :E is obtained for each mode. 
Then, using a form of polar coordinates, the state space is decomposed into three regions. 
The first one (r < d) is the region of small amplitude vibrations in which the usual linear 
modes hold. While both the second (r > d and r cos B < d) and third (r cos B > d) regions 
correspond to large amplitude motions, they are governed by two different linear subsystems. 
In the first region, the normal modes are invariant elliptic disks and are easily obtained. The 
normal modes in the other two regions are constructed by matching the fixed point family on 
the Poincare section. Each mode in the second region is expanded in a series form around a 
neighborhood of the invariant disk in the first region. In the last region, the normal mode is 
expanded in a series form near the point where the invariant disk in the first region and the 
switching hyperplane are tangent. 

From the expressions for the normal modes, the modal dynamics and corresponding 
frequency-amplitude dependence relationship on each mode are obtained. As expected, the 
normal modes, the modal dynamics, and the frequency-amplitude relationships are all of 
piecewise type (although not piecewise linear). 

An undamped, two degrees of freedom system with a clearance is demonstrated as an 
example to illustrate the procedure. The numerical results demonstrate the effectiveness of the 
procedure. It must be admitted that the Ritz method is far easier to apply and is more accurate 
in terms of estimating frequencies. The advantage of the present method is that it allows one 
to construct the differential equations that give the modal dynamics. 
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Appendix A. A Necessary Condition for the Existence of Normal Modes for PWL 
Systems 

The fixed point equations (15) and (16) are equivalent to the following equation: 

( W*) = ( 0 ) + [ " 0 T(th2)] ( W-*We) 
1 

W We T(tht) 0 W 

where w* = [x* y*JT E ~*. This can be written as 

G(~, K) = 0, 

where~= (tht, x2, ... , XN, YI, ... , YN; th2, x2., ... , x jy, Yi, ... , yjy ). 

(92) 

We know that when "' = 0, equation (92) possesses the following solution for the first 
mode: 

~0 = ( 0, U2, ... , UN, 0, ... , 0; ~: , U2, ... , UN, 0, ... , 0) , 

which is the linear solution. The Jacobian matrix of equation (92) at (~0 , 0) is given by (after 
some manipulations) 

J= 8G = [J1 T(:~)J2] 
~c ~=~o J J ' us K=O 2 1 

where the 2N x 2N matrices J1 and J2 are defined by 

[

0 .. ·0 l 
~ lzN-1 ' 

where a = dwiJvu, ON stands for theN-dimensional zero vector, and Im is the identity 
matrix of order m. If J is nonsingular, by the implicit function theorem, there exists only one 
fixed point for each "' near 0. Then it is impossible to have a one-parameter family of fixed 
passing through ( ~0 , 0). Thus, J must be singular in order for the normal mode to exist. It will 
be shown below that J is indeed not of full rank and exactly has rank equal to 4N- 1 if the 
system has no internal resonance. 

Let Jibe the i-th column of J. First, replace Jl and hN+l in J by 

. ' Jt = 

1 
0 

0 

-1 

0 

0 

T(~~) 

d ·/ 
an lzN+I = 1 

0 

0 

-1 

0 

0 
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to form a new 4N x 4N matrix 

J' = [ hN 
-hN 

-T(~~) l· 
hN 

u 
Let ( ) be a null vector of J'. Then 

v 

I ===} l2N - T - u = 0, u-T(~1r)v=0} ( (21r)) 
-u+v = 0 Wt 

where we compute 

where 

(21r) . ( W2 WN ) IN-C - = dtag 0,1- cos- 2n, .. . , 1- cos- 2n , 
W] W] W] 

(
27r) . ( . W2 . WN ) S - = dtag 0, Sill - 21r, ... , Sill - 27r . 
Wt W] W] 

Therefore, without internal resonance, we will have 

w· 
1 - cos _t 2n =I 0 and . Wi -1- 0 

Sill- 2n r 
WI Wl 

for each i = 2, ... , N . It follows that the null space dimension of hN- T(2n/wt) and 
therefore of J' is 2. 

Next, pull out j i and j~N + 1 from J'. The remaining matrix becomes 

J" = 

0 

hN-l 
0 

hN-1 

T(~:) ( h~-t) 
0 

hN-1 

which has 4N - 2 columns. It is obvious that j~ is independent of the columns of J". Also, it 
is not difficult to check thatj~N+l is dependent on j~ and the columns of J". Thus, we deduce 
that the rank of J" is 4N- 3. 

Finally, one can prove that adding j 1 and hN+l back to J" will increase the matrix rank 
by 2, which results in our claim that J has a rank equal to 4N - 1. 

If wdwt is an integer for some i =f 1, then hN - T(2n jwr) will have a null space of 
dimension more than 2, which implies the rank of J will be less than 4N- 1. 
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Appendix B. Detailed Calculations for the Ritz Method 

The Ritz method assumes a modal solution of the form: 

Xt(t) At coswt, 

x2( t) At b2 cos wt, 

where w is the modal frequency and b2 is the ratio of peak amplitudes to be determined. The 
system equation is rewritten as: 

i = 1,2. 

Then by minimizing the solution error in the sense 

271" I Ci(B) dB= 0, 
0 

i = 1,2, (93) 

where B = wt, w and b2 can be obtained in terms of At . For the example system given in 
equations (48) and (49), equation (93) reads 

-w2 + 2- b2 + g(AI) = 0, 

where 

g(AI) = { : [ -1 _1 - JAEi] 
27r cos A, A~ 

for At < 1 

for At > 1 

Thus we have 

b2 = g(At) ± Vg(At)2 + 1, 

w = Jz 1 

b2 ' 

where + corresponds to the first mode and - to the second mode. 
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