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Introduction

Let G be a connected reductive group over a field F . A twisted Levi subgroup G′ of G is a reductive
subgroup such that G′ ⊗F F is a Levi subgroup of G ⊗F F . Twisted Levi subgroups have been an
important tool in studying the structure theory of representations of p-adic groups. For example,
supercuspidal representations are built out of certain representations of twisted Levi subgroups ([20]),
and Hecke algebra isomorphisms are established with Hecke algebras on twisted Levi subgroups, which
suggests an inductive structure of representations (see [9] for example).

In this paper, we first classify rational conjugacy classes of twisted Levi sequences in a connected
reductive group over an arbitrary field via Galois cohomology. When F is a p-adic field, M. Reeder
([15]) gives a classification of maximal tamely ramified tori in G up to G(F )-conjugacy using Galois
cohomology and Kottwitz’s isomorphisms. We generalize this to classify twisted Levi sequences up to
rational conjugacy in p-adic groups.

In the second half of this paper, using the classification of twisted Levi sequences, when G = Sp4,
we explicate the structure of tame supercuspidal representations and types (in the sense of Bernstein,
Bushnell and Kutzko [1, 3]). While the general structure of tame supercuspidal representations are well
understood thanks to recent progress in the classification of supercuspidal representations ([20, 10, 4],
see also [11] and its references), more explicit and specific informations are lost in this generality.
However, often more fine structural information would be necessary in applications (e.g. explicit local
Langlands correspondence, construction of L-packets, explicit Plancherel formula etc). Here, we give
a list of generic G-data from which supercuspidal representations are constructed for G = Sp4. This
list is complete when F satisfies the hypotheses in [10]. When the residue characteristic is odd, we
also give a complete list of G-data for types on Sp4 (§3): starting from a cuspidal type σ on a Levi
subgroup of Sp4, we give a G-datum to construct a G-cover of σ. The construction of tame types in
[12] is reviewed in §2.

In a sequel of this paper, we use these explicit data of types in a crucial way to establish Hecke
algebra isomorphisms as in [2, 5].

Notation and Conventions. We use T, L,M,G etc to denote a connected reductive group over a
field F . If there is no confusion, we will use the same notation for the group of F -points. That is, we
may write G for G(F ). Therefore, we sometimes write F× for the algebraic group Gm, and E× for
the algebraic group RE/FGm for any finite separable extension E of F . When F is a nonarchimedean
local field of residue characteristic p, we will freely use most notation from [20], in particular, those
related to affine buildings B(G).

As usual, let Z, Q and R be the set of integers, rational numbers and real numbers respectively.
Let Z+ denote the set of strictly positive integers.
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1. Twisted Levi sequences

1.1. Classifying Levi Sequences.

In this subsection, we assume that G is a connected split reductive group over a field F . Let F be
the algebraic closure of F . By a twisted Levi subgroup of G, we mean a F -subgroup G′ of G such
that G′ ⊗F F is a Levi subgroup of G⊗F F .

1.1.1. Let BRDG = (X∗,∆, X∗,∆
∨) be the based root datum of G, defined as a projective limit

following Kottwitz ([13]). We call X∗ the weight lattice of G. Let Z be the center of G and put
Gad = G/Z.

There is a canonical split exact sequence

1→ Gad → Aut(G)→ Aut(BRDG)→ 1.

A splitting can be constructed from a pinning. Recall that Aut(BRDG) is the subgroup of Aut(X∗)
stabilizing the subset

{(a, a∨) : a ∈ ∆}

in X∗ ×X∗. We can associate to each a ∈ ∆ a simple reflection in Aut(X∗), and WG ⊂ Aut(X∗) is
generated by these simple reflections. Let AG be the subgroup of Aut(X∗) which stabilizes the subset

{(a, a∨) : a ∈ R},

where R = {w.a : w ∈ WG, a ∈ ∆} is the set of roots of G. Then AG normalizes WG and
Aut(BRDG) = StabAG

(∆).

Lemma 1.1.2. We have

AG = WG o StabAG
(∆) = WG o Aut(BRDG).

More generally, for any subgroup H such that WG ⊂ H ⊂ AG, we have

H = WG o StabH(∆).

Proof. It is well known that {w.∆ : w ∈ WG} is a principal homogeneous space of WG. Clearly H
acts on this set. It follows that every element of H is uniquely a product of an element of WG and
an element of StabH(∆).

It follows that if we choose a maximal split torus T , and a Borel subgroup B ⊃ T , then X∗

can be identified with X∗(T ) (this identification doesn’t depend on B). WG can be identified with
NGad

(Tad)/Tad, and AG with N/Tad, where N is the normalizer of Tad := T/Z in Aut(G).

1.1.3. Automorphisms of (G,L). Let L be a connected reductive subgroup of G containing a
maximal split torus T of G. Then we can identify the weight lattice of G with that of L, since both
are identified with X∗(T ). Write BRDL as (X∗,∆L, X∗,∆

∨
L). If L is a Levi subgroup, we may choose

a Borel subgroup B of G, use (G,B, T ) to form BRDG, and (L,B ∩L, T ) to form BRDL, then we get
an inclusion ∆L ⊂ ∆. However, this inclusion depends on our choice of (B, T ).

Let Aut(G,L) be the subgroup of Aut(G) stabilizing L. Clearly, L/Z is a subgroup of Gad ∩
Aut(G,L), and there is a group homomorphism Aut(G,L)→ Aut(L)→ Aut(BRDL).

Proposition 1.1.4. We have

AG ∩AL = NAG
(WL) = WL o StabAG

(∆L).

The image of the composition Aut(G,L) → Aut(L) → Aut(BRDL) is StabAG
(∆L) and the kernel is

L/Z. Therefore, we have a canonical exact sequence

1→ L/Z→ Aut(G,L)→ StabAG
(∆L)→ 1.
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Proof. It is clear AG ∩ AL ⊂ NAG
(WL). Let RL ⊂ X∗ be the set of roots of L. We have RL ⊂ R.

Consider w ∈ NAG
(WL) and a ∈ RL. Then (w.a, w.a∨) = (b, b∨) for some b ∈ R. We have wraw

−1 =
rb ∈ WL, so b = cb′ for some b′ ∈ RL, c ∈ Q×. But the root system R is reduced, so b = ±b′ ∈ RL.
This shows that w permutes RL and hence w ∈ AL. We have proved the first equality in the first
equation. The second equality follows from the preceding lemma.

Let N ′ be the inverse image of NAG
(WL) under N → AG. We observe that the diagram

N ′ //
� __�

StabAG
(∆L)
� _ _�

Aut(G,L) // Aut(BRDL)

is commutative, where the top arrow is defined by N ′ → NAG
(WL)→ StabAG

(∆L) using the semidi-
rect product decomposition we just proved. This shows that the image of Aut(G,L) → Aut(BRDL)
contains StabAG

(∆L).
Let g ∈ Aut(G,L). Then we can find a representative n in the coset g(L/Z) such that n acts on

L by a pinned automorphism (relative to (B ∩ L, T,X) for some X). In particular, n stabilizes T , so
n ∈ N . It is clear that n.∆L = ∆L. This shows that the image of Aut(G,L) → Aut(BRDL) lies in
StabAG

(∆L), and we have n ∈ N ′. The image of g under Aut(G,L) → Aut(BRDL) is the same as
that of n. If it is trivial, then n ∈ Tad and hence g ∈ L/Z. This completes the proof of the proposition.

Remark. The above sequence splits when L = G, but not in general: the case of L = T was analyzed
by Tits.

1.1.5. The automorphisms of a Levi sequence. Let ~G = (G0, G1, . . . , Gd) be a Levi sequence in

G. That is, Gi is a Levi subgroup of Gi+1 for i = 0, . . . , d− 1, and Gd = G. We define Aut(~G) to be
the subset of Aut(G) stabilizing each Gi, i = 0, . . . , d.

We choose a maximal split torus T in G0 and a Borel subgroup B ⊃ T of G. Using these, we can
identify the weight lattice of each Gi is with that of G. If we write BRDGi = (X∗,∆i, X∗,∆

∨
i ), then

each ∆i is a subset of ∆, and we have ∆0 ⊂ ∆1 ⊂ · · · ⊂ ∆d = ∆.

Obviously, G0/Z ⊂ Aut(~G) ⊂ Aut(G,G0), and hence Aut(~G)/(G0/Z) maps injectively to StabAG
(∆0).

Proposition 1.1.6. Let

A~G :=

d⋂
i=0

AGi =

d⋂
i=0

NAG
(WGi) =

d⋂
i=0

(
WGi o StabAG

(∆i)
)
.

There are canonical exact sequences

1→WG0 → A~G → StabA~G
(∆0)→ 1,

1→ G0/Z→ Aut(~G)→ StabA~G
(∆0)→ 1.

The first one is split.

This reduces to the preceding proposition when d = 1. The proof remains the same.

Remark. For each i = 0, . . . , d, there is a canonical commutative diagram

Aut(~G) //

��

StabA~G
(∆0)

��
Aut(Gi) // Aut(BRDGi),

where the vertical arrow on the right is the composition of

StabA~G
(∆0) ⊂ NAG

(WGi)→ StabAG
(∆i) ⊂ Aut(BRDGi

).
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Variant. Let N(~G) = {g ∈ G : gGig−1 = Gi, for i = 0, . . . , d} be the normalizer of ~G in G. Let

W~G :=

d⋂
i=0

NWG
(WGi) =

d⋂
i=0

(
WGi o StabWG

(∆i)
)
.

There are canonical exact sequences

1→WG0 →W~G → StabW~G
(∆0)→ 1,

1→ G0 → N(~G)→ StabW~G
(∆0)→ 1.

The first one is split.

Remark. If 1→ Tad → N → AG → 1 splits, then 1→ G0/Z→ Aut(~G)→ StabA~G
(∆0)→ 1 splits for

any ~G in G. Similarly, if 1→ T → NG(T )→W → 1 splits, then 1→ G0 → N(~G)→ StabW~G
(∆0)→

1 splits for any ~G.

Remark. Let ~G′ be another Levi sequence in G, corresponding to ∆′0 ⊂ ∆′1 ⊂ · · · ⊂ ∆′d′ . Then ~G′ is

conjugate to ~G by an element of Aut(G) (resp. of G) if and only if d = d′ and there exists w ∈ AG
(resp. w ∈WG) such that w.∆i = ∆′i for i = 0, . . . , d.

1.1.7. Example. Let G = Sp4. We have 3 Levi subgroups up to conjugacy. Choose a system of
simple roots consisting of a long root along and a short root ashort. Let M long (resp. M short) be the
centralizer of the kernel of along (resp. ashort). Then T , M long, M short represent the three classes of
Levi subgroups. Note that M long ' F× × SL2 and M short ' GL2.

We now enumerate the Levi sequences with d ≥ 1 (up to conjugacy) and the exact sequences for
their normalizer groups, as given in the preceding proposition.

(1) ~G = (T,G). We have 1→ T → N(~G)→W → 1.

(2) ~G = (M long, G). We have 1→M long → N(~G)→ Dlong⊥
1 → 1, where Dlong⊥

1 is the subgroup
generated by the reflection associated to the root 2ashort + along.

(3) ~G = (M short, G). We have 1 → M short → N(~G) → Dshort⊥
1 → 1, where Dshort⊥

1 is the
subgroup generated by the reflection associated to ashort + along.

(4) ~G = (T,M long, G). We have 1→ T → N(~G)→ Dlong
1 ×Dlong⊥

1 → 1.

(5) ~G = (T,M short, G). We have 1→ T → N(~G)→ Dshort
1 ×Dshort⊥

1 → 1.

1.2. Classifying Twisted Levi Sequences.

So far we have assumed that G and all the Levi subgroups in the preceding discussion are split.

We now drop that assumption. Hence G may be non-split and ~G is a twisted Levi sequence in G.
We would like to consider two problems:

• Classify all twisted Levi sequences ~G′ over F such that ~G′ ⊗F F̄ ' ~G ⊗F F̄ , up to F -

isomorphisms, i.e., to classify the F -forms of ~G. Here an isomorphism of a twisted Levi

sequence ~G in G to a twisted Levi sequence ~G′ in G′ means an isomorphism G→ G′ inducing

an isomorphism Gi → (G′)i for each i and that ~G and ~G′ have the same length. In particular

G′ is an F -form of G if ~G′ is an F -form of ~G.
• Classify all Levi sequences ~G′ in G, such that ~G′ is conjugate to ~G by an element of G(F̄ ),

up to G(F )-conjugation.

By a well-known principle in Galois cohomology, the first problem is to compute H1(F,Aut(~G)),

and the second problem is to compute ker(H1(F,N(~G))→ H1(F,G)). If G is an adjoint group such
that all automorphisms of G are inner, and H1(F,G) = 1 (e.g. if G is of type G2 and F is local
nonarchimedean), then the two problems are the same.

Galois cohomology of an algebraic group B is much better understood when the algebraic group is
connected. Here the main problem is to handle the disconnection. Let π0 = B/B0 be the component
group of B. Then we have a canonical map φ : H1(F,B)→ H1(F, π0). One can approach the problem
of computing H1(F,B) as follows:

• Identify the image of φ.
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• For each c in the image of φ, form a twist bB of B corresponding to b ∈ C1(F,B) such that
φ(b) = c. Then the fiber φ−1(c) can be identified with H1(F, bB

0)/(bπ0)(F ), where bπ0 is the
component group of bB and is a twist of π0 ([18], page 52, Corollary 2). If Γ = Gal(F̄ /F )
acts on π0 trivially, then (bπ0)(F ) is the just centralizer of c(Γ) in π0.

Remark. When F is locally compact non-archimedean, and B0 is a reductive group with root da-
tum (X∗,∆, X∗,∆

∨), Kottwitz showed that H1(F,B0) is isomorphic to the torsion subgroup of(
X∗/(

∑
a∨∈∆∨ Za∨)

)
Γ
.

Remark. The group (bπ0)(F ) naturally acts on the right of H1(F,B0) ([18], page 52), which is the
one used above. When B0 is abelian, there is also a left action of (bπ0)(F ) on H1(F,B0) ([18] page
53). The left action is compatible with the group structure of H1(F,B0) and easier to compute. If
B0 is a torus, π0 acts on X∗ = X∗(B

0), and hence Zπ0(c(Γ)) acts on (X∗)c(Γ). This agrees with

the left action of Zπ0(c(Γ)) on H1(F,B0) when we identify H1(F,B0) with (X∗)c(Γ) by Kottwitz’s
isomorphism (assuming F local nonarchimedean ([13])).

We continue to assume that B0 is abelian. The right action of (bπ0)(F ) on H1(F,B0) is related to
the left one by the connection homomorphism δ : (bπ0)(F ) → H1(F,B0) ([18], page 53, Proposition
40). When 1→ B0 → B → π0 → 1 is a split exact sequence with B0 abelian, we have δ = 0.

Remark. When 1→ B0 → B → π0 → 1 splits, φ is clearly surjective.

1.3. Classification of Tamely Ramified Maximal Tori in Sp4.

A special case of twisted Levi sequences is of the form (T,G) where T is a tamely ramified maximal
torus. Then, the results in the previous section specializes to a classification of embedded tori in G,
which is identical to that in [15]. Reeder found additional features of this case by exploring the fact

that Aut(~G)◦ is abelian. We summarize his results ([15, Section 6]), in view of what we established in
the previous section, as follows. Fix a maximal split torus T in G. Let N = NG(T ) and W = N/T .
Let φ : H1(F,N) → H1(F,W ) be the map induced by the projection N → W . We refer to [15,
Section 6] for the definition of stably classes of tori.

Proposition 1.3.1. Suppose H1(F,G) = 1. Then, the stable classes of maximal tori in G are in
bijection with H1(F,W ). Moreover, for a given class c ∈ H1(F,W ), the set of rational classes of
maximal tori in the stable class corresponding to c is in bijection with φ−1(c).

Hence, to classify embedded tori in G, it suffices to compute H1(F,W ), and for each c ∈ H1(F,W ),
to compute the fiber φ−1(c). Let U = c(Γ) and ZW (U) be the centralizer of U in W . Then, via Tate-
Nakayama duality φ−1(c) is in bijection with (X∗)U,tors/ZW (U), the ZW (U) orbits in the torsion
subgroup of U covariants of X∗. A subtlety is that the action of ZW (U) on (X∗)U,tors is what Reeder
called the “affine action”, which depends on choosing a cocycle b ∈ C1(F,N) lifting c (we refer to
[15, §6] for details; it is the right action mentioned in the second Remark of 1.2). However, the size
of φ−1(c) does not depend of the choice of b. See [15] for some explicit computation.

When G = Sp4, the following is Theorem 6.9-(2) in [15].

Theorem 1.3.2. The W -conjugacy classes of continuous homomorphisms c : Γ→W are in bijection
with the stable classes Tc of maximal tori in G. Denoting this correspondence by c → Tc, we have
the rational classes in Tc are in bijection with the orbits of ZW (U) in (X∗)U,tors under the affine
action obtained by twisting the coinvariant representation by a cocycle belonging to the class of ∆c in
H1(ZW (U), (X∗)U,tors).

In the rest of §1, let F be a nonarchimedean local field of odd residue characteristic and G denote
Sp4. Fix a maximal split torus T in G. We use T to denote a torus in G.

1.3.3. Subgroups of W and their coinvariants. We list subgroups U of W (Sp4) = D4 (dihedral
group of order 8) up to conjugacy, and give (X∗)U,tors, ZW (U), and NW (U).
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U D4 Dlong
2 Dshort

2 Dlong
1 Dshort

1 C4 C2 1

(X∗)U,tors Z/2Z (Z/2Z)2 Z/2Z Z/2Z 0 Z/2Z (Z/2Z)2 0

ZW (U) C2 Dlong
2 Dshort

2 Dlong
2 Dshort

2 C4 D4 D4

NW (U) D4 D4 D4 Dlong
2 Dshort

2 D4 D4 D4

Table 1.3.3.

Here, Cn is the subgroup of order n in the subgroup of rotations in W (Sp4) = D4, and Dlong
2

(resp. Dshort
2 ) is C2.D

long
1 (resp. C2.D

short
1 ).

1.3.4. The set H1(F,W ) and H1(F,N). Let I ⊂ Γ be the inertia subgroup. Suppose that c : Γ→W
is a homomorphism with image U . Then U0 := c(I) is a cyclic normal subgroup of U such that
U/U0 is cyclic. For each pair of (U,U0) (up to W -conjugacy) with these properties, we compute
H1
U,U0 = {c ∈ Hom(Γ,W ) : c(Γ) = U, c(I) = U0}/NW (U,U0), where NW (U,U0) = NW (U) ∩NW (U0).

Then H1(F,W ) is the disjoint union of these H1
U,U0

. For each c ∈ H1
U,U0

, the size of φ−1(c) is given
by Theorem 1.3.2.

Each b ∈ φ−1(c) corresponds to an embedded torus Tb ⊂ G. The torus Tb is elliptic ⇐⇒ X
c(Γ)
∗ = 0

⇐⇒ c(Γ) 6= 1, Dlong
1 , Dshort

1 . In that case, B(Tb) is a singleton {xb}, and xb ∈ B(G). We give the
Kac coordinates ([7]) of xb up to conjugacy. For a x ∈ B(G) with ashort(x) = y1 and along(x) = y2

with yi ∈ Q, one can find a strictly positive integer m ∈ Z+ such that m(1− 2y1− y2), my1, my2 are
relatively prime. Then, the Kac coordinates of x are given by (m(1− 2y1 − y2),my1,my2).

Label U ⊃ U0 #H1
U,U0

#φ−1(c) xb

T[1] D4 ⊃ C4

{
0 q ≡ 1 (mod 4)

2 q ≡ −1 (mod 4)
1 (1, 1, 1)

T[2] C4 ⊃ C4

{
4 q ≡ 1 (mod 4)

0 q ≡ −1 (mod 4)

{
2 q ≡ 1 (mod 8)

1 q ≡ 5 (mod 8)
(1, 1, 1)

T[3] C4 ⊃ C2 1 2 (1, 0, 1)
T[4] C4 ⊃ 1 1 2 (1, 0, 0), or (0, 0, 1)

T[5] Dlong
2 ⊃ C2 1

{
4 q ≡ 1 (mod 4)

1 q ≡ −1 (mod 4)
(1, 0, 1)

T[6] Dlong
2 ⊃ Dlong

1 2

{
4 q ≡ 1 (mod 4)

2 q ≡ −1 (mod 4)
(2, 1, 0), or (0, 1, 2)

T[7] C2 ⊃ C2 2

{
3 q ≡ 1 (mod 4)

1 q ≡ −1 (mod 4)
(1, 0, 1)

T[8] C2 ⊃ 1 1 3 (1, 0, 0), (0, 1, 0) or (0, 0, 1)
T[9] Dshort

2 ⊃ C2 1 2 (1, 0, 1)
T[10] Dshort

2 ⊃ Dshort
1 2 2 (1, 0, 1), or (0, 1, 0)

T[11] Dlong
1 ⊃ Dlong

1 2

{
2 q ≡ 1 (mod 4)

1 q ≡ −1 (mod 4)

T[12] Dlong
1 ⊃ 1 1 2

T[13] Dshort
1 ⊃ Dshort

1 2 1
T[14] Dshort

1 ⊃ 1 1 1
T[15] 1 ⊃ 1 1 1

Table 1.3.4.

We mention some facts underlying the calculation. There exists a surjection Γ → Cn such that
the image of inertia is of order e if and only if q ≡ 1 (mod e), in that case, the number of such
homomorphism is eϕ(e)ϕ(n/e). There exists a extension E/F with Galois group Dn, and ramification
index e = n, residue degree f = 2, exactly when q ≡ −1 (mod e). In that case the extension is unique.
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The number of isomorphisms Gal(E/F )
∼−−→ Dn sending the inertia subgroup to Cn is n · ϕ(n).

Finally, the action of NW (U,U0)/ZW (U) on {c ∈ Hom(Γ,W ) : c(Γ) = U, c(I) = U0} is faithful.

The most laborious part of the calculation is the determination of #φ−1(c). To carry out the
method outlined in Theorem 1.3.2, one may start with an explicit torus in each stable class. Such an
explicit torus is given in 1.3.5 and 1.3.6.

We conclude

#H1(F,W ) =

{
22 if q ≡ 1 (mod 4)

20 if q ≡ −1 (mod 4)
#H1(F,N) =


49 if q ≡ 1 (mod 8)

45 if q ≡ 5 (mod 8)

32 if q ≡ −1 (mod 4).

1.3.5. Compact tori. Although we have a classification of embedded tori in Sp4 up to rational
conjugacy as above in terms of Galois cohomology, using another description given in [8, 14], we can
give a more explicit description of each tori. Stating the result in loc.cit., let 〈 , 〉 be the symplectic
form on V = F 4 to realize Sp4.

Theorem. Let T be a tamely ramified compact maximal torus in Sp4(F ). Then, we have one of the
following:

(1) There is a tower F ⊂ E ⊂ E′ with (E′ : E) = (E : F ) = 2, a unitary form ( , ) on E′ over
E and an F -linear isomorphism j : E′ → F 4 so that

〈j(v), j(w)〉 = TrE′/F (α(v, w))

for a nonzero α ∈ ker(TrE′/E). Moreover, j induces an embedding from the unitary group of
( , ) on E′ onto T.

(2) There are quadratic extensions E1, E2 equipped with a Hermitian form ( , )i on Ei over F ,
and an F -linear isomorphism j : E1 ⊕ E2 → F 4 such that

〈j(v1, v2), j(w1, w2)〉 = TrE1/F (α1(v1, w1)1) + TrE2/F (α2(v2, w2)2)

for nonzero αi ∈ ker(TrEi/F ), i = 1, 2. Moreover, j induces an embedding of the unitary
group of ( , )1 ⊕ ( , )2 on E1 ⊕ E2 onto T.

Conversely, any unitary group in (1) and (2) embedds onto a maximal anisotropic torus in Sp4.

In the above cases, we will say that T is the “isometric image” of the unitary group U and write

T
i' U . From now on, we write F×/F×2 = {1, ε,$, ε$} where ε ∈ O×F is a nonsquare and $ is a

uniformizer in F .
Analyzing U and U0 in Table 1.3.4., we see that T[5], T[6], T[7], T[8] belong to cases (2) and we

can find E1, E2 in each case. To be more explicit, for a, b ∈ F×/F×2, let Ua,b be the unitary group of
one variable in F [

√
a] with respect to the unitary form (v, w) = bvw where w is the Galois conjugate

in F [
√
a] over F . We can list all possible unitary groups (up to isometry) in one variable as follows:

Uε,1, Uε,$, U$,1, U$,ε, Uε$,1, Uε$,ε.

These embed in SL2(F ). If q ≡ 1 (mod 4), they are not rationally conjugate. However, if q ≡ 3
(mod 4), U$,1 and U$,ε are rationally conjugate, and so are Uε$,1 and Uε$,ε (see §6.4 in [15]).
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E1, E2 T
i' parameters xb

T[5] F [
√
$], F [

√
ε$] U$,a × U$ε,b

(a, b) :
a, b ∈ {1, ε} (1, 0, 1)

T[6] F [
√
$′], F [

√
ε] U$′,a × Uε,b ($′, a, b) :

$′ ∈ {$, ε$}
a ∈ {1, ε}
b ∈ {1, $}

{
(2, 1, 0) if b = 1

(0, 1, 2) if b = $

T[7] F [
√
$′], F [

√
$′] U$′,a × U$′,b

($′, a, b) :
(a, b) ∈ {(1, 1), (1, ε), (ε, ε)}

$′ ∈ {$, ε$}
(1, 0, 1)

T[8] F [
√
ε], F [

√
ε] Uε,a × Uε,b

(a, b) ∈
{(1, 1), (1, $), ($,$)}


(1, 0, 0) if (a, b) = (1, 1)

(0, 1, 0) if (a, b) = (1, $)

(0, 0, 1) if (a, b) = ($,$)

Table 1.3.5-I.

The parameters in the above table will label rational conjugacy classes of embedded tori with same
U and U0 in Table 1.3.4. For example, T[5](a, b) labels the torus in T[5] which is an isometric image
of U$,a × U$ε,b.

Remark. If q ≡ 3 (mod 4), T[5](a, b) are all rationally conjugate to each other. Similarly,
T[7](ω′, a, b) are all rationally conjugate. Likewise, the labeling of T[6], T[1], T[2] and T[11] is re-
dundant (see Tables 1.3.5-II and 1.3.6). For a uniform description incorporating cases both cases
q ≡ 1 and q ≡ 3 (mod 4), we keep the redundant labeling. Moreover, this redundancy is necessary in

describing ~Gs[4] (see Table 1.4.4), since two rationally conjugate T[7](ω′, 1, 1) and T[7](ω′, 1, ε) give
rise to non conjugate twisted Levi sequences.

Comparing the above with Table 1.3.4., T[1], T[2], T[3], T[4] belong to case (1). In each case, E′

associated to the torus satisfies e(E′/E) = #(U0), f(E′/E) = #(U/U0). Moreover, E′ has a unique
subextension E of degree 2.

T[9] and T[10] also belong to case (1) with E′ = F [
√
ε,
√
$], the abelian extension of degree 4

which contains all quadratic extensions of F . In this cases, E′ contains three quadratic extensions
F [
√
a], a ∈ F×/F×2−{1} and each E′/F [

√
a] has two unitary forms (up to equivalence) of 1 variable,

which accounts for all 6 tori in T[9] and T[10]. For α ∈ E×
/
NE′/E(E′×) , let UE′/E(α) denote the

isometry class of the unitary group on E′ over E with respect to (v, w) = αvw. In the following table,
α runs over E×

/
NE′/E(E′×) .

Label E ⊂ E′ T
i' parameters xb

T[1], T[2] E = F [(cω)
1
2 ], E′ = F [(cω)

1
4 ] UE′/E(α)

(c, α) :
c ∈ F×q /F×4

q
(1,1,1)

T[3] E = F [
√
ε], E′ 6= F [

√
ε,
√
$] UE′/E(α) α (1, 0, 1)

T[4] f(E′/F ) = 4 UE′/E(α) α

{
(1, 0, 0) if α = 1

(0, 0, 1) if α 6= 1

T[9] E = F [
√
ε], E′ = F [

√
ε,
√
$] UE′/E(α) α (1, 0, 1)

T[10] E = F [
√
$′], E′ = F [

√
ε,
√
$] UE′/E(α)

($′, α) :
$′ ∈ {$, ε$}

{
(1, 0, 1) if α = 1

(0, 1, 0) if α 6= 1

Table 1.3.5-II.

1.3.6. Non compact tori The rest of the tori in T[11]–T[15] are non compact and they are either
embedded in M long ' F× × SL2(F ) or M short ' GL2(F ). Although the tori in SL2(F ) and GL2(F )
are well known, we will make a list here for completeness. In the following, let E denote the splitting
field of T .
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Label E T
i' parameters

T[11] F [
√
$′] F× × U$′,a

($′, a) :
$′ ∈ {$, ε$}
a ∈ {1, ε}

T[12] F [
√
ε] F× × Uε,a a ∈ {1, $}

T[13] F [
√
$′] E× $′ ∈ {$, ε$}

T[14] F [
√
ε] E×

T[15] F F× × F×

Table 1.3.6.

1.4. Classification of twisted Levi sequences in Sp4.

1.4.1. Classifying twists of M long. We compute H1(F,N(~G)), where ~G = (M long, G). Note that

we have M long = TSL2
× SL2(F ) ⊂ SL2(F ) × SL2(F ) ⊂ Sp4(F ) and N(~G) ' NSL2

(TSL2
) × SL2

where TSL2 is a maximal split torus in SL2. Hence, we have

H1(F,N(~G)) ' H1(F,NSL2
(TSL2

))×H1(F, SL2) ' H1(F,NSL2
(TSL2

)).

H1(F,NSL2(TSL2)) classifies the embdded twists of TSL2 in SL2 and it is known that #(H1(F,NSL2(TSL2))) =
7 if q ≡ 1 (mod 4) and 5 if q ≡ 3 (mod 4) (see §6.4 in [15]). Hence, we have 7 embedded twists of
M long. We can list them as follows:

M long, Uε,1 × SL2, Uε,$ × SL2, U$,1 × SL2,
U$,ε × SL2, Uε$,1 × SL2, Uε$,ε × SL2.

Similarly as in SL2 case, if q ≡ 3 (mod 4), U$,1 × SL2, and U$,ε × SL2 are rationally conjugate and
so are Uε$,1 × SL2 and Uε$,ε × SL2.

1.4.2. Classifying twists of M short. We now compute H1(F,N(~G)), where ~G = (M short, G). Since

1→M short → N(~G)→ Dshort⊥
1 → 1 splits, we have a surjection

H1(F,N(~G))→ H1(F,Dshort⊥
1 ) = F×/F×2.

The fiber at a ∈ F×/(F×)2 can be identified with H1(F,U2), where U2 is the quasi-split unitary
group in 2 variables for the quadratic extension F (

√
a)/F (which may be a split étale algebra). When

a = 1, H1(F,U2) = H1(F,GL2) = 1.

If a ∈ F× is not a square, Kottwitz’s formula gives #H1(F,U2) = 2. Hence, #H1(F,N(~G)) = 7
and there are at most 7 embedded twists of M short.

It is easy to see that every unitary group in 2 variable occurs as a twisted M short in Sp4. More
precisely, let E = F (

√
a) be a nontrivial quadratic extension of F . Let V = E ⊕ E be a E-vector

space equipped with a Hermitian form ( , )E with respect to the Galois involution on E. Let U2 be
the group of isometries of (V, ( , )E). Regarding V as a four dimensional F -vector space, define a
skew-symmetric form ( , )F on V as follows ([8]):

(v, w)F = TrE/F (
√
a(v, w)E).

Then, U2 preserves (v, w)F and it is embedded in the group of isometries of (V, ( , )F ), which is
isomorphic to Sp4(F ).

There are 6 such unitary groups up to isometry and each is unique up to G(F )-conjugacy. Together
with M short, we have 7 embedded twists of M short, up to G(F )-conjugacy.

For a ∈ F×/F×2, let Ua(1, 1) be the quasi split unitary group and Ua(2) be the compact unitary
group in two variables in F (

√
a). Writing as F×/F×2 = {1, ε,$, ε$} as before, we may list the twists

of M short as follows:

M short, Uε(1, 1), Uε(2), U$(1, 1), U$(2), Uε$(1, 1), Uε$(2).
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1.4.3. Classifying twists of ~G = (T,M long, G). The exact sequence for N(~G) is 1→ T → N(~G)→
Dlong

2 → 1. In particular, we have a homomorphism N(~G) → N = NG(T ). We can compute

H1(F,N(~G)) in the same way we compute H1(F,N).

U Dlong
2 C2 Dlong

1 Dlong⊥
1 1

(X∗)U,tors (Z/2Z)2 (Z/2Z)2 Z/2Z Z/2Z 0

ZDlong
2

(U) Dlong
2 Dlong

2 Dlong
2 Dlong

2 Dlong
2

NDlong
2

(U) Dlong
2 Dlong

2 Dlong
2 Dlong

2 Dlong
2

In the following the parameters run over those in Table 1.3.5-I and 1.3.6.

Label U ⊃ U0 #H1
U,U0

#φ−1(c) G0 G1

~G`[1] Dlong
2 ⊃ C2 2

{
4 q ≡ 1 (mod 4)

2 q ≡ −1 (mod 4)
T[5](a, b)

U$′,a′ × SL2

($′, a′) = ($, a) or (ε$, b)

~G`[2] Dlong
2 ⊃ Dlong

1 2

{
4 q ≡ 1 (mod 4)

2 q ≡ −1 (mod 4)
T[6]($′, a, b) Uε,b × SL2

~G`[3] Dlong
2 ⊃ Dlong⊥

1 2

{
4 q ≡ 1 (mod 4)

2 q ≡ −1 (mod 4)
T[6]($′, a, b) U$′,a × SL2

~G`[4] C2 ⊃ C2 2

{
4 q ≡ 1 (mod 4)

1 q ≡ −1 (mod 4)
T[7]($′, a, b)

U$′,a′ × SL2

a′ = a or b

~G`[5] C2 ⊃ 1 1 4 T[8](a, b)
Uε,a′ × SL2

a′ = a or b

~G`[6] Dlong
1 ⊃ Dlong

1 2

{
2 q ≡ 1 (mod 4)

1 q ≡ −1 (mod 4)
T[11]($′, a) M long

~G`[7] Dlong
1 ⊃ 1 1 2 T[12](a) M long

~G`[8] Dlong⊥
1 ⊃ Dlong⊥

1 2

{
2 q ≡ 1 (mod 4)

1 q ≡ −1 (mod 4)
T[11]($′, a) U$′,a × SL2

~G`[9] Dlong⊥
1 ⊃ 1 1 2 T[12](a) Uε,a × SL2

~G`[10] 1 ⊃ 1 1 1 T[15] M long

Table 1.4.3.

1.4.4. Classifying twists of ~G = (T,M short, G). The exact sequence for N(~G) is 1 → T →
N(~G)→ Dshort

2 → 1.

U Dshort
2 C2 Dshort

1 Dshort⊥
1 1

(X∗)U,tors Z/2Z (Z/2Z)2 0 0 0
ZDshort

2
(U) Dshort

2 Dshort
2 Dshort

2 Dshort
2 Dshort

2

NDshort
2

(U) Dshort
2 Dshort

2 Dshort
2 Dshort

2 Dshort
2
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Label U ⊃ U0 #H1
U,U0

#φ−1(c) G0 G1

~Gs[1] Dshort
2 ⊃ C2 2 2

T[9](1)
U$(2)

Uε$(1, 1)

T[9](α), α 6= 1
Uε$(2)
U$(1, 1)

~Gs[2] Dshort
2 ⊃ Dshort

1 2 2

T[10]($, 1) Uε$(1, 1)
T[10]($,α), α 6= 1 Uε$(2)

T[10](ε$, 1) U$(1, 1)
T[10](ε$, α), α 6= 1 U$(2)

~Gs[3] Dshort
2 ⊃ Dshort⊥

1 2 2

T[10]($, 1) Uε(2)
T[10]($,α), α 6= 1 Uε(1, 1)

T[10](ε$, 1) Uε(2)
T[10](ε$, α), α 6= 1 Uε(1, 1)

~Gs[4] C2 ⊃ C2 2

{
3 q ≡ 1 (mod 4)

2 q ≡ −1 (mod 4)

T[7]($′, a, b), a = b U$′(1, 1)

T[7]($′, a, b), a 6= b U$′(2)

~Gs[5] C2 ⊃ 1 1 3
T[8](a, b), a = b Uε(1, 1)
T[8](a, b), a 6= b Uε(2)

~Gs[6] Dshort
1 ⊃ Dshort

1 2 1 T[13]($′) M short

~Gs[7] Dshort
1 ⊃ 1 1 1 T[14] M short

~Gs[8] Dshort⊥
1 ⊃ Dshort⊥

1 2 1 T[13]($′) U$′(1, 1)
~Gs[9] Dshort⊥

1 ⊃ 1 1 1 T[14] Uε(1, 1)
~Gs[10] 1 ⊃ 1 1 1 T[15] M short

Table 1.4.4.

2. Review of construction of types

2.1. Notation and Conventions.

2.1.1. From now on, let F be a fixed non-archimedean local field with residue characteristic p. Let
G be a connected reductive group over F , split over a tamely ramified extension of F . We adopt all
notation and conventions from [20]. For simplicity, we assume that p is not a torsion prime for ψ(G)∨,
the root datum dual to the root datum ψ(G) of G⊗F F . See §7 in [20] for relevant notation. Then,
p is not a torsion prime for any twisted Levi subgroup G′ of G.

2.1.2. Let ~G = (G0, G1, · · · , Gd) be a tamely ramified twisted Levi sequence in G. Let M0 be a

Levi subgroup of G0 and Zs(M
0) be the maximal F -split torus of the center ZM0 of M0. To ~G, we

associate a sequence of Levi subgroup ~M = (M0, · · · ,Md) where M i is a Levi subgroup of Gi given
as the centralizer of Zs(M

0) in Gi.

2.2. Generic embeddings of buildings. Recall that if G′ is a twisted Levi subgroup of G, then
there exists a family of natural embeddings of buildings B(G′) ↪→ B(G), which is an affine space
under X∗(Zs(G

′))⊗ R.

Definition 2.2.1. Let M be a Levi subgroup of G, y ∈ B(M), and s ∈ R. We say that the embedding
ι : B(M) ↪→ B(G) is (y, s)-generic, or s-generic with respect to y, if Ua,ι(y),s = Ua,ι(y),s+ for all
a ∈ Φ(G,S, F ) r Φ(M,S, F ), where S is any maximal F -split torus of M such that y ∈ A(M,S, F )
and Φ(G,S, F ) and Φ(M,S, F ) are the corresponding root systems.

Here, Ua is the root subgroup of G associated to a, and we are referring to [17] for the filtration

{Ua,ι(y),r}r∈R on Ua. For r ≥ 0, we have Ua,ι(y),r = Ua ∩ Gι(y),r. Given a twisted Levi sequence ~G

and ~M as in (2.1.2), consider a commutative diagram of embeddings:
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{ι} :
B(G0) −→ B(G1) −→ · · · −→ B(Gd)
↑ ↑ ↑

B(M0) −→ B(M1) −→ · · · −→ B(Md)
.

Definition 2.2.2. Let ~s = (s0, · · · , sd) be a sequence of real numbers, and y ∈ B(M0). We say
that {ι} is ~s-generic (relative to y) if ι : B(M i) → B(Gi) is si-generic relative to i(y) ∈ B(M i) for
0 ≤ i ≤ d.

From [12], given ~G, ~s-generic commutative diagrams of embeddings exist.

2.3. G-datum and construction of types.

Definition 2.3.1. A depth-zero datum is a triple ((G,M), (y, ι), (KM , ρM )) such that

• G is a connected reductive group over F and M a Levi subgroup of G.
• y ∈ B(M) is such that My,0 is a maximal parahoric subgroup of M , and ι : B(M) ↪→ B(G) is

a 0-generic embedding relative to y.
• KM is a compact open subgroup of M containing My,0, and ρM is an irreducible smooth

representation of KM such that ρM |My,0 contains a cuspidal representation of My,0/My,0+ .

Definition 2.3.2. The G-datum Σ consists of a 5-tuple

((~G,M0), (y, ι), ~r, (KM0 , ρM0), ~φ)

satisfying the following:

D1. ~G = (G0, G1, · · · , Gd) is a tamely ramified twisted Levi sequence in G, and M0 a Levi sub-

group of G0. Let ~M be associated to ~G as in (2.1.2).
D2. y is a point in B(M0) and {ι} is a commutative diagram of ~s generic embeddings of buildings

relative to y, where ~s = (0, r0/2, · · · , rd−1/2).
D3. ~r = (r0, r1, · · · , rd) is a sequence of real numbers satisfying 0 < r0 < r1 < · · · < rd−1 ≤ rd if

d > 0, 0 ≤ r0 if d = 0.
D4. (KM0 , ρM0) is such that ((G0,M0), (y, ι : B(M0) ↪→ B(G)), (KM0 , ρM0)) is a depth zero

datum.
D5. ~φ = (φ0, φ1, · · · , φd) is a sequence of quasi-characters, where φi is a quasi-character of Gi such

that φi is Gi+1-generic of depth ri relative to x for all x ∈ B(Gi).

2.3.3. The construction. For a given G-datum Σ as above, let K0 = KM0G0
y,0+ and ρ the trivial

extension of ρM0 to K0. Following the recipe in [20], we can construct a pair of an open compact
subgroup

KΣ := Kd = K0G1
y,s0 · · ·G

d
y,sd−1

and the irreducible representation ρΣ := ρd of Kd.

Theorem 2.3.4. ([12]) Let Kd
M := KΣ ∩Md and ρdM := ρΣ|(KΣ ∩Md).

(1) (Kd
M , ρ

d
M ) is a supercuspidal type on Md.

(2) (KΣ, ρΣ) is a G-cover of (Kd
M , ρ

d
M ) and hence it is a type in the sense of Bushnell and Kutzko.

Remark. When ZG0/ZG is F -anisotropic, the condition on ι is empty and the above G-datum reduces
to a generic G-datum in [20]. In this case, our construction gives a supercuspidal type in [20].

3. Types on Sp4

3.1. Supercuspidal representations.

Yu’s construction of supercuspidal representations starts from a generic G-datum Σ = (~G, x,~r, ~φ, ρ)

(see [20] for details). Here, we give a list of all possible (~G, x,~r) to give a supercuspidal representations

via Yu’s construction. We define the length `(Σ) of Σ to be d where ~G = (G0, G1, · · · , Gd = G). In
our case G = Sp4, d is at most 2.

In the following, d(π)(= rd) denotes the depth of the supercuspidal representation constructed

from Σ with given (~G, x,~r).
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3.1.1. Case 1: d = 0.
These are depth zero supercuspidal representations. Then, ~r = (0), ~φ = (1) and the Kac coordi-

nates of x are (1, 0, 0), (0, 1, 0) or (0, 0, 1). If x = (0, 1, 0), ρ is inflated from a cuspidal representation
of SL2(Fq)× SL2(Fq). Otherwise, ρ is coming from a cuspidal representation of Sp4(Fq).

3.1.2. Case 2: d = 1.
The second column in the table indicates where ri should belong. To simplify writing, by r0 ∈ 1

4Z+,

we mean that r0 ∈ 1
4Z+ − 1

2Z, and r0 ∈ 1
2Z+ means r0 ∈ 1

2Z+ − Z. In each case, the parameters run
over those in Tables 1.3.5-I and II.

G0 r0 = r1

= d(π)
parameters x

T[1](c, α) 1
4Z+ (c, α) (1, 1, 1)

T[2](c, α) 1
4Z+ (c, α) (1, 1, 1)

T[3](α) 1
2Z+ α (1, 0, 1)

T[4](α) Z+ α
= 1 (1, 0, 0)
6= 1 (0, 0, 1)

T[5](a, b) 1
2Z+ (a, b) (1, 0, 1)

T[7]($′, a, b) 1
2Z+ ($′, a, b) (1, 0, 1)

T[8](a, b) Z+ (a, b) =
(1, 1) (1, 0, 0)
(1, $) (0, 1, 0)
($,$) (0, 0, 1)

Uε(2) Z+ (0, 1, 0)
U$′(2) 1

2Z+ $′ ∈ {$, ε$} (1, 0, 1)
Uε(1, 1) Z+ (1, 0, 0) or (0, 0, 1)
U$′(1, 1) 1

2Z+ $′ ∈ {$, ε$} (0,1,0)

U$′,a × SL2
1
2Z+ ($′, a)

a = 1 (2, 1, 0)
a = $ (0,1,2)

Uε,a × SL2 Z+ a =
1 (1, 0, 0) or (0, 1, 0)
$ (0, 1, 0) or (0, 0, 1)

Table 3.1.2.

3.1.3. Case 3: d = 2.
As before, the parameters in the table run over those in Tables 1.4.3 and 1.4.4.
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~G r0
r1 = r2

= d(π)
parameters x

~G`[1](a, b,$′)) 1
2Z+

1
2Z+ (a, b) (1, 0, 1)

~G`[2]($′, a, b) 1
2Z+ Z+ ($′, a, b)

b = 1 (2, 1, 0)
b = $ (0, 1, 2)

~G`[3]($′, a, b) Z+
1
2Z+ ($′, a, b)

b = 1 (2, 1, 0)
b = $ (0, 1, 2)

~G`[4]($′, a, b) 1
2Z+

1
2Z+ ($′, a, b) (1, 0, 1)

~G`[5](a, b, a′) Z+ Z+ (a, b, a′)
(1, 1, a′) (1, 0, 0)
(1, $, a′) (0, 1, 0)
($,$, a′) (0, 0, 1)

~Gs[1](α,$′) 1
2Z+

1
2Z+ (α,$′) (1, 0, 1)

~Gs[2]($′, α) Z+
1
2Z+ ($′, α)

α = 1 (0, 1, 0)
α 6= 1 (1, 0, 1)

~Gs[3]($′, α) 1
2Z+ Z+ ($′, α)

α = 1 (0, 1, 0)
α 6= 1 (1, 0, 1)

~Gs[4]($′, a, b) 1
2Z+

1
2Z+ ($′, a, b) (1, 0, 1)

~Gs[5](a, b) Z+ Z+ (a, b)
(1, 1) (1, 0, 0)
(1, $) (0, 1, 0)
($,$) (0, 0, 1)

Table 3.1.3.

Remark. The above G-datums give inequivalent supercuspidal representations ([4]).

In the rest of the paper, we construct non supercuspidal types of Sp4. Let M be a Levi subgroup
of Sp4. Suppose (KΣM

, ρΣM
) is a supercuspidal type constructed from a generic M -datum ΣM . The

classification of supercuspidal representations (hence supercuspidal types) of all proper Levi subgroups
in Sp4 is well known. For each supercuspidal type onM with a genericM -datum ΣM , we can construct
a G-cover. In the rest of the paper, we give a G-datum for a G-cover in each case. The choice of ι is
not unique. We will give one choice of ι satisfying genericity in each case. Once a G-datum is given,
one can follow §2 or [12] to construct the G-cover.

In the following, we define the depth of a supercuspidal type as the depth of the supercuspidal
representation with the same generic G-datum.

3.2. Supercuspidal types on M long and G-covers.

To simplify notation in this section, we will write M for M long if there is no confusion. Since
M ' F× × SL2, we can write ρΣM

= φ⊗ ρ′ΣM
for a character φ of F× and a supercuspidal type ρ′ΣM

of SL2. Note that we can extend φ trivially to a character of M . We will still use φ for the extended
character.

3.2.1. Depth zero case.

Suppose ρ′ΣM
is a depth zero supercuspidal type on SL2. Then, ΣM is of the form (M,y, φ, r, ρM )

where My,0 is a maximal compact subgroup of F× × SL2 and r = depth(φ) is an integer. Moreover,
we have (KΣM

, ρΣM
) = (My,0, φ⊗ ρM )

Note that My,0, y ∈ B(M) is determined by along(y). In this case, we may assume that along(y) = 0
or 1. Moreover, ι is uniquely determined by ι(y). We choose ι as follows:

y ι(y)

along(y) = 0

{
(1, 0, 0) if r is odd

(2, 1, 0) if r is even

along(y) = 1

{
(0, 0, 1) if r is odd

(−2, 1, 4) if r is even
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Then, we can choose Σ as follows to construct a G-cover of (My,0, φ⊗ ρM ).

Cases: ΣM ι(y) Σ
r y

r = 0
along(y) = 0 (2, 1, 0)

((G,M), (y, ι), (My,0, φ⊗ ρM ))
along(y) = 1 (−2, 1, 4)

r 6= 0, even
along(y) = 0 (2, 1, 0)

(((M long, G),M long), (y, ι), (φ⊗ 1, 1), (r, 0), (My,0, ρM ))
along(y) = 1 (−2, 1, 4)

r odd
along(y) = 0 (1, 0, 0)
along(y) = 1 (0, 0, 1)

Table 3.2.1.

3.2.2. Positive depth cases.

Suppose ρ′ΣM
is a supercuspidal type of positive depth on SL2. Write ΣM = ( ~M, y, ~r, ~φ, ρM0).

Then, we have the following:

• `(ΣM ) = 1 and ~M = (M0,M) where M0 is either T[11]($′, a′) or T[12](a) with $′ ∈ {$, ε$},
a′ ∈ {1, ε} and a ∈ {1, $} (see Table 1.3.6).

• Without loss of generality, one may assume that

along(y) =


1
2 if M0 =T[11]($′, a′)

0 if M0 =T[12](1)

1 if M0 =T[12]($).

• Writing ~φ = (φ0, φ1), φ1 is a character which is trivial on SL2. Without loss of generality, we
may assume that either φ1 is trivial or nontrivial of depth r1.

In all cases, specifying ~G and ι as in the table below,

Σ = ((~G,M0), (y, ι), (φ0, φ1, 1), (r0, r1, r1), (M0
y,0, ρM0))

gives a G-cover of (KΣM
, ρΣM

).

Cases: ΣM ~G ι(y)
M0, y φ1 r0, r1

T[11]($′, a′)
along(y) = 1

2

φ1 = 1 r0 = r1 ∈ 1
2Z ~G`[8]($′, a′) (1, 0, 1)

φ1 6= 1
r1 even ~G`[6]($′, a′) (2, 1, 4)

r1 odd ~G`[6]($′, a′) (0, 1, 2)

T[12](1)
along(y) = 0

φ1 = 1
r0 = r1 even ~G`[9](1) (2, 1, 0)

r0 = r1 odd ~G`[9](1) (1, 0, 0)

φ1 6= 1
r1 even ~G`[7](1) (2, 1, 0)

r1 odd ~G`[7](1) (1, 0, 0)

T[12]($)
along(y) = 1

φ1 = 1
r0 = r1 even ~G`[9]($) (−2, 1, 4)

r0 = r1 odd ~G`[9]($) (0, 0, 1)

φ1 6= 1
r1 even ~G`[7]($) (−2, 1, 4)

r1 odd ~G`[7]($) (0, 0, 1)

Table 3.2.2.

3.3. Supercuspidal types on M short and G-covers.

In this section , to simplify the notation, write M for M short if there is no confusion.

3.3.1. Essentially depth zero cases.
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Suppose ρΣM
is an essentially depth zero supercuspidal type on M , that is, it is a supercuspidal

type up to twisting by a character of M . Then, ΣM is of the form (M,y, φ, r, ρM ) where KΣM
= My,0

is a maximal compact subgroup of GL2 and r = depth(ρΣM
) is an integer. If r = 0, we may assume

φ = 1 without loss of generality.
Note that My,0, y ∈ B(M) is determined by ashort(y). In this case, we may assume that ashort(y) =

0. Moreover, ι is completely determined by ι(y). Then, we can choose ι and Σ as follows to construct
a G-cover.

r ι(y) Σ

r = 0 (1, 0, 1) ((G,M), (y, ι), (My,0, ρM ))
r 6= 0 even (1, 0, 1)

(((M,G),M), (y, ι), (r, 0), (φ, 1), (My,0, ρM ))
r odd (1, 0, 0)

Table 3.3.1.

3.3.2. Positive depth cases.

Write ΣM = ( ~M, y, ~r, ~φ, ρM0) as before. Then, we have the following:

• `(ΣM ) = 1 and ~M = (M0,M) where M0 is either T[13]($′), $′ ∈ {$, ε$}, or T[14] (see
Table 1.3.6).

• Without loss of generality, one may assume that ashort(y) is 1
2 if M0 =T[13]($′, a′), and 0 if

M0 =T[14].

• Write ~r = (r0, r1) and ~φ = (φ0, φ1). If r0 = r1, we may assume that φ1 is the trivial character.
• Let Z◦M be the maximal compact subgroup of the center of M . If φ0|Z◦M are trivial, φ0 can

be extended to a unitary group U containing M0. That is, φ0 can be extended to a character
of U$′(1, 1) if M0 =T[13]($′), and to a character of Uε(1, 1) if M0 =T[14]. We use the same
notation φ0 for the extended character.

In all cases, for a given ΣM as above, we take Σ = ((~G,M0), (y, ι), ~r, ~φ, (M0
y,0, ρM0)) as in the

following table:

Cases Σ

M0 φ0|Z◦M φ1 r0, r1 ι(y) ~G ~r ~φ

T[13]($′)
= 1 = 1 r0 = r1 (1, 1,−1) (U$′(1, 1), G) (r0, r0) (φ0, 1)
6= 1 = 1 r0 = r1 (0, 1, 0) (M0, G) (r0, r0) (φ0, 1)

6= 1 r0 < r1 (1, 2,−1)
~Gs[6]($′)

= (M0,M,G)
(r0, r1, r1) (φ0, φ1, 1)

T[14]

= 1 = 1 r0 = r1
r1 odd (1, 0, 0)

(Uε(1, 1), G) (r0, r0) (φ0, 1)
r1 even (1, 0, 1)

6= 1 = 1 r0 = r1
r1 odd (1, 0, 0)

(M0, G) (r0, r0) (φ0, 1)
r1 even (1, 0, 1)

6= 1 r0 < r1
r1 odd (1, 0, 0) ~Gs[7]

= (M0,M,G)
(r0, r1, r1) (φ0, φ1, 1)

r1 even (1, 0, 1)

Table 3.3.2.

3.4. G-covers of principal series.

The types for principal series are constructed in [16]. We will merely restate the result in loc. cit.
in terms of the language in this paper. The supercuspidal representations of M = T ' F× × F×
are of the form χ1 ⊗ χ2 for characters χ1 and χ2 of F× . Without loss of generality, we may assume
that d(χ1) ≥ d(χ2). and ΣM = (T, y, χ1 ⊗ χ2, d(χ1), 1) for any y ∈ B(T ). Let r′ = d(χ1χ

−1
2 ) and

r1 = d(χ1). Fix ι so that

ι(y) =


[−1, 1, 1] if r′, r1 ∈ 2Z
[1, 0, 0] if r′, r1 ∈ 2Z + 1
[1, 0, 1] if r′ ∈ 2Z + 1, r1 ∈ 2Z
[0, 1, 0] if r′ ∈ 2Z, r1 ∈ 2Z + 1
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In each case, Σ = ((~G, T ), (y, ι), ~φ, ~r, (T0, 1T0
)) with (~G, ι, ~φ, ~r) in the table gives rise to a cover of

(T0, (χ1 ⊗ χ2)|T0).

cases ~G ~φ ~r ι(y)

r′ = r1
~G`[10] (1F× ⊗ χ2, χ1 ⊗ 1SL2

, 1) (d(χ2), r1, r1)


[−1, 1, 1] if r′, r1 ∈ 2Z
[1, 0, 0] if r′, r1 ∈ 2Z + 1

[1, 0, 1] if r′ ∈ 2Z + 1, r1 ∈ 2Z
[0, 1, 0] if r′ ∈ 2Z, r1 ∈ 2Z + 1

r′ < r1
~Gs[10] (1⊗ χ−1

1 χ2, χ1 ◦ det, 1) (r′, r1, r1)

Table 3.4.1.
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