TWISTED LEVI SEQUENCES AND EXPLICIT TYPES ON $S p_{4}$

JU-LEE KIM AND JIU-KANG YU

Introduction

Let G be a connected reductive group over a field F. A twisted Levi subgroup G^{\prime} of G is a reductive subgroup such that $G^{\prime} \otimes_{F} \bar{F}$ is a Levi subgroup of $G \otimes_{F} \bar{F}$. Twisted Levi subgroups have been an important tool in studying the structure theory of representations of p-adic groups. For example, supercuspidal representations are built out of certain representations of twisted Levi subgroups ([20]), and Hecke algebra isomorphisms are established with Hecke algebras on twisted Levi subgroups, which suggests an inductive structure of representations (see [9] for example).

In this paper, we first classify rational conjugacy classes of twisted Levi sequences in a connected reductive group over an arbitrary field via Galois cohomology. When F is a p-adic field, M. Reeder ([15]) gives a classification of maximal tamely ramified tori in G up to $G(F)$-conjugacy using Galois cohomology and Kottwitz's isomorphisms. We generalize this to classify twisted Levi sequences up to rational conjugacy in p-adic groups.

In the second half of this paper, using the classification of twisted Levi sequences, when $G=S p_{4}$, we explicate the structure of tame supercuspidal representations and types (in the sense of Bernstein, Bushnell and Kutzko [1, 3]). While the general structure of tame supercuspidal representations are well understood thanks to recent progress in the classification of supercuspidal representations ([20, 10, 4], see also [11] and its references), more explicit and specific informations are lost in this generality. However, often more fine structural information would be necessary in applications (e.g. explicit local Langlands correspondence, construction of L-packets, explicit Plancherel formula etc). Here, we give a list of generic G-data from which supercuspidal representations are constructed for $G=S p_{4}$. This list is complete when F satisfies the hypotheses in [10]. When the residue characteristic is odd, we also give a complete list of G-data for types on $S p_{4}(\S 3)$: starting from a cuspidal type σ on a Levi subgroup of $S p_{4}$, we give a G-datum to construct a G-cover of σ. The construction of tame types in [12] is reviewed in $\S 2$.

In a sequel of this paper, we use these explicit data of types in a crucial way to establish Hecke algebra isomorphisms as in $[2,5]$.

Notation and Conventions. We use T, L, M, G etc to denote a connected reductive group over a field F. If there is no confusion, we will use the same notation for the group of F-points. That is, we may write G for $G(F)$. Therefore, we sometimes write F^{\times}for the algebraic group \mathbb{G}_{m}, and E^{\times}for the algebraic group $R_{E / F} \mathbb{G}_{\mathrm{m}}$ for any finite separable extension E of F. When F is a nonarchimedean local field of residue characteristic p, we will freely use most notation from [20], in particular, those related to affine buildings $\mathcal{B}(G)$.

As usual, let \mathbb{Z}, \mathbb{Q} and \mathbb{R} be the set of integers, rational numbers and real numbers respectively. Let \mathbb{Z}_{+}denote the set of strictly positive integers.

Acknowledgment. We thank M. Reeder for having his note ([15]) available to us. The first author would like to thank R. Howe and P. Sally for helpful discussions and their interest in this work.

[^0]
1. Twisted Levi sequences

1.1. Classifying Levi Sequences.

In this subsection, we assume that G is a connected split reductive group over a field F. Let \bar{F} be the algebraic closure of F. By a twisted Levi subgroup of G, we mean a F-subgroup G^{\prime} of G such that $G^{\prime} \otimes_{F} \bar{F}$ is a Levi subgroup of $G \otimes_{F} \bar{F}$.
1.1.1. Let $\mathrm{BRD}_{G}=\left(X^{*}, \Delta, X_{*}, \Delta^{\vee}\right)$ be the based root datum of G, defined as a projective limit following Kottwitz ([13]). We call X^{*} the weight lattice of G. Let Z be the center of G and put $G_{\text {ad }}=G / \mathcal{Z}$.

There is a canonical split exact sequence

$$
1 \rightarrow G_{\mathrm{ad}} \rightarrow \operatorname{Aut}(G) \rightarrow \operatorname{Aut}\left(\mathrm{BRD}_{G}\right) \rightarrow 1
$$

A splitting can be constructed from a pinning. Recall that $\operatorname{Aut}\left(\mathrm{BRD}_{G}\right)$ is the subgroup of $\operatorname{Aut}\left(X^{*}\right)$ stabilizing the subset

$$
\left\{\left(a, a^{\vee}\right): a \in \Delta\right\}
$$

in $X^{*} \times X_{*}$. We can associate to each $a \in \Delta$ a simple reflection in $\operatorname{Aut}\left(X^{*}\right)$, and $W_{G} \subset \operatorname{Aut}\left(X^{*}\right)$ is generated by these simple reflections. Let A_{G} be the subgroup of $\operatorname{Aut}\left(X^{*}\right)$ which stabilizes the subset

$$
\left\{\left(a, a^{\vee}\right): a \in R\right\}
$$

where $R=\left\{w . a: w \in W_{G}, a \in \Delta\right\}$ is the set of roots of G. Then A_{G} normalizes W_{G} and $\operatorname{Aut}\left(\mathrm{BRD}_{G}\right)=\operatorname{Stab}_{A_{G}}(\Delta)$.

Lemma 1.1.2. We have

$$
A_{G}=W_{G} \rtimes \operatorname{Stab}_{A_{G}}(\Delta)=W_{G} \rtimes \operatorname{Aut}\left(\mathrm{BRD}_{G}\right)
$$

More generally, for any subgroup H such that $W_{G} \subset H \subset A_{G}$, we have

$$
H=W_{G} \rtimes \operatorname{Stab}_{H}(\Delta)
$$

Proof. It is well known that $\left\{w . \Delta: w \in W_{G}\right\}$ is a principal homogeneous space of W_{G}. Clearly H acts on this set. It follows that every element of H is uniquely a product of an element of W_{G} and an element of $\operatorname{Stab}_{H}(\Delta)$.

It follows that if we choose a maximal split torus T, and a Borel subgroup $B \supset T$, then X^{*} can be identified with $X^{*}(T)$ (this identification doesn't depend on B). W_{G} can be identified with $N_{G_{\text {ad }}}\left(T_{\text {ad }}\right) / T_{\text {ad }}$, and A_{G} with $N / T_{\text {ad }}$, where N is the normalizer of $T_{\text {ad }}:=T / \mathcal{Z}$ in $\operatorname{Aut}(G)$.
1.1.3. Automorphisms of (G, L). Let L be a connected reductive subgroup of G containing a maximal split torus T of G. Then we can identify the weight lattice of G with that of L, since both are identified with $X^{*}(T)$. Write BRD_{L} as $\left(X^{*}, \Delta_{L}, X_{*}, \Delta_{L}^{\vee}\right)$. If L is a Levi subgroup, we may choose a Borel subgroup B of G, use (G, B, T) to form BRD_{G}, and $(L, B \cap L, T)$ to form BRD_{L}, then we get an inclusion $\Delta_{L} \subset \Delta$. However, this inclusion depends on our choice of (B, T).

Let $\operatorname{Aut}(G, L)$ be the subgroup of $\operatorname{Aut}(G)$ stabilizing L. Clearly, L / Z is a subgroup of $G_{\text {ad }} \cap$ $\operatorname{Aut}(G, L)$, and there is a group homomorphism $\operatorname{Aut}(G, L) \rightarrow \operatorname{Aut}(L) \rightarrow \operatorname{Aut}\left(\mathrm{BRD}_{L}\right)$.

Proposition 1.1.4. We have

$$
A_{G} \cap A_{L}=N_{A_{G}}\left(W_{L}\right)=W_{L} \rtimes \operatorname{Stab}_{A_{G}}\left(\Delta_{L}\right)
$$

The image of the composition $\operatorname{Aut}(G, L) \rightarrow \operatorname{Aut}(L) \rightarrow \operatorname{Aut}\left(\mathrm{BRD}_{L}\right)$ is $\operatorname{Stab}_{A_{G}}\left(\Delta_{L}\right)$ and the kernel is L / \mathcal{Z}. Therefore, we have a canonical exact sequence

$$
1 \rightarrow L / Z \rightarrow \operatorname{Aut}(G, L) \rightarrow \operatorname{Stab}_{A_{G}}\left(\Delta_{L}\right) \rightarrow 1
$$

Proof. It is clear $A_{G} \cap A_{L} \subset N_{A_{G}}\left(W_{L}\right)$. Let $R_{L} \subset X^{*}$ be the set of roots of L. We have $R_{L} \subset R$. Consider $w \in N_{A_{G}}\left(W_{L}\right)$ and $a \in R_{L}$. Then (w.a, w. $\left.a^{\vee}\right)=\left(b, b^{\vee}\right)$ for some $b \in R$. We have $w r_{a} w^{-1}=$ $r_{b} \in W_{L}$, so $b=c b^{\prime}$ for some $b^{\prime} \in R_{L}, c \in \mathbb{Q}^{\times}$. But the root system R is reduced, so $b= \pm b^{\prime} \in R_{L}$. This shows that w permutes R_{L} and hence $w \in A_{L}$. We have proved the first equality in the first equation. The second equality follows from the preceding lemma.

Let N^{\prime} be the inverse image of $N_{A_{G}}\left(W_{L}\right)$ under $N \rightarrow A_{G}$. We observe that the diagram

is commutative, where the top arrow is defined by $N^{\prime} \rightarrow N_{A_{G}}\left(W_{L}\right) \rightarrow \operatorname{Stab}_{A_{G}}\left(\Delta_{L}\right)$ using the semidirect product decomposition we just proved. This shows that the image of $\operatorname{Aut}(G, L) \rightarrow \operatorname{Aut}\left(\mathrm{BRD}_{L}\right)$ contains $\operatorname{Stab}_{A_{G}}\left(\Delta_{L}\right)$.

Let $g \in \operatorname{Aut}(G, L)$. Then we can find a representative n in the coset $g(L / Z)$ such that n acts on L by a pinned automorphism (relative to $(B \cap L, T, X)$ for some X). In particular, n stabilizes T, so $n \in N$. It is clear that $n . \Delta_{L}=\Delta_{L}$. This shows that the image of $\operatorname{Aut}(G, L) \rightarrow \operatorname{Aut}\left(\mathrm{BRD}_{L}\right)$ lies in $\operatorname{Stab}_{A_{G}}\left(\Delta_{L}\right)$, and we have $n \in N^{\prime}$. The image of g under $\operatorname{Aut}(G, L) \rightarrow \operatorname{Aut}\left(\mathrm{BRD}_{L}\right)$ is the same as that of n. If it is trivial, then $n \in T_{\text {ad }}$ and hence $g \in L / Z$. This completes the proof of the proposition.

Remark. The above sequence splits when $L=G$, but not in general: the case of $L=T$ was analyzed by Tits.
1.1.5. The automorphisms of a Levi sequence. Let $\vec{G}=\left(G^{0}, G^{1}, \ldots, G^{d}\right)$ be a Levi sequence in G. That is, G^{i} is a Levi subgroup of G^{i+1} for $i=0, \ldots, d-1$, and $G^{d}=G$. We define $\operatorname{Aut}(\vec{G})$ to be the subset of $\operatorname{Aut}(G)$ stabilizing each $G^{i}, i=0, \ldots, d$.

We choose a maximal split torus T in G^{0} and a Borel subgroup $B \supset T$ of G. Using these, we can identify the weight lattice of each G^{i} is with that of G. If we write $\mathrm{BRD}_{G^{i}}=\left(X^{*}, \Delta_{i}, X_{*}, \Delta_{i}^{\vee}\right)$, then each Δ_{i} is a subset of Δ, and we have $\Delta_{0} \subset \Delta_{1} \subset \cdots \subset \Delta_{d}=\Delta$.

Obviously, $G^{0} / \mathcal{Z} \subset \operatorname{Aut}(\vec{G}) \subset \operatorname{Aut}\left(G, G^{0}\right)$, and hence Aut $(\vec{G}) /\left(G^{0} / \mathcal{Z}\right)$ maps injectively to $\operatorname{Stab}_{A_{G}}\left(\Delta_{0}\right)$.
Proposition 1.1.6. Let

$$
A_{\vec{G}}:=\bigcap_{i=0}^{d} A_{G^{i}}=\bigcap_{i=0}^{d} N_{A_{G}}\left(W_{G^{i}}\right)=\bigcap_{i=0}^{d}\left(W_{G^{i}} \rtimes \operatorname{Stab}_{A_{G}}\left(\Delta_{i}\right)\right) .
$$

There are canonical exact sequences

$$
\begin{gathered}
1 \rightarrow W_{G^{0}} \rightarrow A_{\vec{G}} \rightarrow \operatorname{Stab}_{A_{\vec{G}}}\left(\Delta_{0}\right) \rightarrow 1 \\
1 \rightarrow G^{0} / Z \rightarrow \operatorname{Aut}(\vec{G}) \rightarrow \operatorname{Stab}_{A_{\vec{G}}}\left(\Delta_{0}\right) \rightarrow 1
\end{gathered}
$$

The first one is split.
This reduces to the preceding proposition when $d=1$. The proof remains the same.
Remark. For each $i=0, \ldots, d$, there is a canonical commutative diagram

where the vertical arrow on the right is the composition of

$$
\operatorname{Stab}_{A_{\vec{G}}}\left(\Delta_{0}\right) \subset N_{A_{G}}\left(W_{G^{i}}\right) \rightarrow \operatorname{Stab}_{A_{G}}\left(\Delta_{i}\right) \subset \operatorname{Aut}\left(\mathrm{BRD}_{G_{i}}\right)
$$

Variant. Let $N(\vec{G})=\left\{g \in G: g G^{i} g^{-1}=G^{i}\right.$, for $\left.i=0, \ldots, d\right\}$ be the normalizer of \vec{G} in G. Let

$$
W_{\vec{G}}:=\bigcap_{i=0}^{d} N_{W_{G}}\left(W_{G^{i}}\right)=\bigcap_{i=0}^{d}\left(W_{G^{i}} \rtimes \operatorname{Stab}_{W_{G}}\left(\Delta_{i}\right)\right) .
$$

There are canonical exact sequences

$$
\begin{aligned}
& 1 \rightarrow W_{G^{0}} \rightarrow W_{\vec{G}} \rightarrow \operatorname{Stab}_{W_{\vec{G}}}\left(\Delta_{0}\right) \rightarrow 1 \\
& 1 \rightarrow G^{0} \rightarrow N(\vec{G}) \rightarrow \operatorname{Stab}_{W_{\vec{G}}}\left(\Delta_{0}\right) \rightarrow 1
\end{aligned}
$$

The first one is split.
Remark. If $1 \rightarrow T_{\text {ad }} \rightarrow N \rightarrow A_{G} \rightarrow 1$ splits, then $1 \rightarrow G^{0} / \mathcal{Z} \rightarrow \operatorname{Aut}(\vec{G}) \rightarrow \operatorname{Stab}_{A_{\vec{G}}}\left(\Delta_{0}\right) \rightarrow 1$ splits for any \vec{G} in G. Similarly, if $1 \rightarrow T \rightarrow N_{G}(T) \rightarrow W \rightarrow 1$ splits, then $1 \rightarrow G^{0} \rightarrow N(\vec{G}) \rightarrow \operatorname{Stab}_{W_{\vec{G}}}\left(\Delta_{0}\right) \rightarrow$ 1 splits for any \vec{G}.
Remark. Let \vec{G}^{\prime} be another Levi sequence in G, corresponding to $\Delta_{0}^{\prime} \subset \Delta_{1}^{\prime} \subset \cdots \subset \Delta_{d^{\prime}}^{\prime}$. Then \vec{G}^{\prime} is conjugate to \vec{G} by an element of $\operatorname{Aut}(G)$ (resp. of G) if and only if $d=d^{\prime}$ and there exists $w \in A_{G}$ (resp. $w \in W_{G}$) such that $w . \Delta_{i}=\Delta_{i}^{\prime}$ for $i=0, \ldots, d$.
1.1.7. Example. Let $G=S p_{4}$. We have 3 Levi subgroups up to conjugacy. Choose a system of simple roots consisting of a long root $a_{\text {long }}$ and a short root $a_{\text {short }}$. Let $M^{\text {long }}$ (resp. $M^{\text {short }}$) be the centralizer of the kernel of $a_{\text {long }}$ (resp. $a_{\text {short }}$). Then $T, M^{\text {long }}, M^{\text {short }}$ represent the three classes of Levi subgroups. Note that $M^{\text {long }} \simeq F^{\times} \times S L_{2}$ and $M^{\text {short }} \simeq G L_{2}$.

We now enumerate the Levi sequences with $d \geq 1$ (up to conjugacy) and the exact sequences for their normalizer groups, as given in the preceding proposition.
(1) $\vec{G}=(T, G)$. We have $1 \rightarrow T \rightarrow N(\vec{G}) \rightarrow W \rightarrow 1$.
(2) $\vec{G}=\left(M^{\text {long }}, G\right)$. We have $1 \rightarrow M^{\text {long }} \rightarrow N(\vec{G}) \rightarrow D_{1}^{\text {long } \perp} \rightarrow 1$, where $D_{1}^{\text {long } \perp}$ is the subgroup generated by the reflection associated to the root $2 a_{\text {short }}+a_{\text {long }}$.
(3) $\vec{G}=\left(M^{\text {short }}, G\right)$. We have $1 \rightarrow M^{\text {short }} \rightarrow N(\vec{G}) \rightarrow D_{1}^{\text {short } \perp} \rightarrow 1$, where $D_{1}^{\text {short } \perp}$ is the subgroup generated by the reflection associated to $a_{\text {short }}+a_{\text {long }}$.
(4) $\vec{G}=\left(T, M^{\text {long }}, G\right)$. We have $1 \rightarrow T \rightarrow N(\vec{G}) \rightarrow D_{1}^{\text {long }} \times D_{1}^{\text {long } \perp} \rightarrow 1$.
(5) $\vec{G}=\left(T, M^{\text {short }}, G\right)$. We have $1 \rightarrow T \rightarrow N(\vec{G}) \rightarrow D_{1}^{\text {short }} \times D_{1}^{\text {short } \perp} \rightarrow 1$.

1.2. Classifying Twisted Levi Sequences.

So far we have assumed that G and all the Levi subgroups in the preceding discussion are split. We now drop that assumption. Hence G may be non-split and \vec{G} is a twisted Levi sequence in G.

We would like to consider two problems:

- Classify all twisted Levi sequences \vec{G}^{\prime} over F such that $\vec{G}^{\prime} \otimes_{F} \bar{F} \simeq \vec{G} \otimes_{F} \bar{F}$, up to F isomorphisms, i.e., to classify the F-forms of \vec{G}. Here an isomorphism of a twisted Levi sequence \vec{G} in G to a twisted Levi sequence \vec{G}^{\prime} in G^{\prime} means an isomorphism $G \rightarrow G^{\prime}$ inducing an isomorphism $G^{i} \rightarrow\left(G^{\prime}\right)^{i}$ for each i and that \vec{G} and \vec{G}^{\prime} have the same length. In particular G^{\prime} is an F-form of G if \vec{G}^{\prime} is an F-form of \vec{G}.
- Classify all Levi sequences \vec{G}^{\prime} in G, such that \vec{G}^{\prime} is conjugate to \vec{G} by an element of $G(\bar{F})$, up to $G(F)$-conjugation.
By a well-known principle in Galois cohomology, the first problem is to compute $H^{1}(F, \operatorname{Aut}(\vec{G}))$, and the second problem is to compute $\operatorname{ker}\left(H^{1}(F, N(\vec{G})) \rightarrow H^{1}(F, G)\right)$. If G is an adjoint group such that all automorphisms of G are inner, and $H^{1}(F, G)=1$ (e.g. if G is of type G_{2} and F is local nonarchimedean), then the two problems are the same.

Galois cohomology of an algebraic group B is much better understood when the algebraic group is connected. Here the main problem is to handle the disconnection. Let $\pi_{0}=B / B^{0}$ be the component group of B. Then we have a canonical map $\phi: H^{1}(F, B) \rightarrow H^{1}\left(F, \pi_{0}\right)$. One can approach the problem of computing $H^{1}(F, B)$ as follows:

- Identify the image of ϕ.
- For each c in the image of ϕ, form a twist ${ }_{b} B$ of B corresponding to $b \in C^{1}(F, B)$ such that $\phi(b)=c$. Then the fiber $\phi^{-1}(c)$ can be identified with $H^{1}\left(F,{ }_{b} B^{0}\right) /\left({ }_{b} \pi_{0}\right)(F)$, where ${ }_{b} \pi_{0}$ is the component group of ${ }_{b} B$ and is a twist of π_{0} ([18], page 52 , Corollary 2). If $\Gamma=\operatorname{Gal}(\bar{F} / F)$ acts on π_{0} trivially, then $\left({ }_{b} \pi_{0}\right)(F)$ is the just centralizer of $c(\Gamma)$ in π_{0}.

Remark. When F is locally compact non-archimedean, and B^{0} is a reductive group with root datum $\left(X^{*}, \Delta, X_{*}, \Delta^{\vee}\right)$, Kottwitz showed that $H^{1}\left(F, B^{0}\right)$ is isomorphic to the torsion subgroup of $\left(X_{*} /\left(\sum_{a^{\vee} \in \Delta^{\vee}} \mathbb{Z} a^{\vee}\right)\right)_{\Gamma}$.

Remark. The group $\left({ }_{b} \pi_{0}\right)(F)$ naturally acts on the right of $H^{1}\left(F, B^{0}\right)$ ([18], page 52), which is the one used above. When B^{0} is abelian, there is also a left action of $\left({ }_{b} \pi_{0}\right)(F)$ on $H^{1}\left(F, B^{0}\right)$ ([18] page $53)$. The left action is compatible with the group structure of $H^{1}\left(F, B^{0}\right)$ and easier to compute. If B^{0} is a torus, π_{0} acts on $X_{*}=X_{*}\left(B^{0}\right)$, and hence $Z_{\pi_{0}}(c(\Gamma))$ acts on $\left(X_{*}\right)_{c(\Gamma)}$. This agrees with the left action of $Z_{\pi_{0}}(c(\Gamma))$ on $H^{1}\left(F, B^{0}\right)$ when we identify $H^{1}\left(F, B^{0}\right)$ with $\left(X_{*}\right)_{c(\Gamma)}$ by Kottwitz's isomorphism (assuming F local nonarchimedean ([13])).

We continue to assume that B^{0} is abelian. The right action of $\left({ }_{b} \pi_{0}\right)(F)$ on $H^{1}\left(F, B^{0}\right)$ is related to the left one by the connection homomorphism $\delta:\left({ }_{b} \pi_{0}\right)(F) \rightarrow H^{1}\left(F, B^{0}\right)$ ([18], page 53, Proposition 40). When $1 \rightarrow B^{0} \rightarrow B \rightarrow \pi_{0} \rightarrow 1$ is a split exact sequence with B^{0} abelian, we have $\delta=0$.

Remark. When $1 \rightarrow B^{0} \rightarrow B \rightarrow \pi_{0} \rightarrow 1$ splits, ϕ is clearly surjective.

1.3. Classification of Tamely Ramified Maximal Tori in $S p_{4}$.

A special case of twisted Levi sequences is of the form (T, G) where T is a tamely ramified maximal torus. Then, the results in the previous section specializes to a classification of embedded tori in G, which is identical to that in [15]. Reeder found additional features of this case by exploring the fact that $\operatorname{Aut}(\vec{G})^{\circ}$ is abelian. We summarize his results ($[15$, Section 6$]$), in view of what we established in the previous section, as follows. Fix a maximal split torus T in G. Let $N=N_{G}(T)$ and $W=N / T$. Let $\phi: H^{1}(F, N) \rightarrow H^{1}(F, W)$ be the map induced by the projection $N \rightarrow W$. We refer to [15, Section 6] for the definition of stably classes of tori.

Proposition 1.3.1. Suppose $H^{1}(F, G)=1$. Then, the stable classes of maximal tori in G are in bijection with $H^{1}(F, W)$. Moreover, for a given class $c \in H^{1}(F, W)$, the set of rational classes of maximal tori in the stable class corresponding to c is in bijection with $\phi^{-1}(c)$.

Hence, to classify embedded tori in G, it suffices to compute $H^{1}(F, W)$, and for each $c \in H^{1}(F, W)$, to compute the fiber $\phi^{-1}(c)$. Let $U=c(\Gamma)$ and $Z_{W}(U)$ be the centralizer of U in W. Then, via TateNakayama duality $\phi^{-1}(c)$ is in bijection with $\left(X_{*}\right)_{U \text {,tors }} / Z_{W}(U)$, the $Z_{W}(U)$ orbits in the torsion subgroup of U covariants of X_{*}. A subtlety is that the action of $Z_{W}(U)$ on $\left(X_{*}\right)_{U, \text { tors }}$ is what Reeder called the "affine action", which depends on choosing a cocycle $b \in C^{1}(F, N)$ lifting c (we refer to $[15, \S 6]$ for details; it is the right action mentioned in the second Remark of 1.2). However, the size of $\phi^{-1}(c)$ does not depend of the choice of b. See [15] for some explicit computation.

When $G=S p_{4}$, the following is Theorem 6.9-(2) in [15].
Theorem 1.3.2. The W-conjugacy classes of continuous homomorphisms $c: \Gamma \rightarrow W$ are in bijection with the stable classes \mathcal{T}_{c} of maximal tori in G. Denoting this correspondence by $c \rightarrow \mathcal{T}_{c}$, we have the rational classes in \mathcal{T}_{c} are in bijection with the orbits of $Z_{W}(U)$ in $\left(X_{*}\right)_{U, \text { tors }}$ under the affine action obtained by twisting the coinvariant representation by a cocycle belonging to the class of Δ_{c} in $H^{1}\left(Z_{W}(U),\left(X_{*}\right)_{U, \text { tors }}\right)$.

In the rest of $\S 1$, let F be a nonarchimedean local field of odd residue characteristic and G denote $S p_{4}$. Fix a maximal split torus T in G. We use T to denote a torus in G.
1.3.3. Subgroups of W and their coinvariants. We list subgroups U of $W\left(S p_{4}\right)=D_{4}$ (dihedral group of order 8) up to conjugacy, and give $\left(X_{*}\right)_{U, \text { tors }}, Z_{W}(U)$, and $N_{W}(U)$.

U	D_{4}	$D_{2}^{\text {long }}$	$D_{2}^{\text {short }}$	$D_{1}^{\text {long }}$	$D_{1}^{\text {short }}$	C_{4}	C_{2}	1
$\left(X_{*}\right)_{U, \text { tors }}$	$\mathbb{Z} / 2 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	0	$\mathbb{Z} / 2 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	0
$Z_{W}(U)$	C_{2}	$D_{2}^{\text {long }}$	$D_{2}^{\text {short }}$	$D_{2}^{\text {long }}$	$D_{2}^{\text {short }}$	C_{4}	D_{4}	D_{4}
$N_{W}(U)$	D_{4}	D_{4}	D_{4}	$D_{2}^{\text {long }}$	$D_{2}^{\text {short }}$	D_{4}	D_{4}	D_{4}

Table 1.3.3.
Here, C_{n} is the subgroup of order n in the subgroup of rotations in $W\left(S p_{4}\right)=D_{4}$, and $D_{2}^{\text {long }}$ (resp. $D_{2}^{\text {short }}$) is $C_{2} \cdot D_{1}^{\text {long }}$ (resp. $C_{2} \cdot D_{1}^{\text {short }}$).
1.3.4. The set $H^{1}(F, W)$ and $H^{1}(F, N)$. Let $I \subset \Gamma$ be the inertia subgroup. Suppose that $c: \Gamma \rightarrow W$ is a homomorphism with image U. Then $U_{0}:=c(I)$ is a cyclic normal subgroup of U such that U / U_{0} is cyclic. For each pair of $\left(U, U_{0}\right)$ (up to W-conjugacy) with these properties, we compute $H_{U, U^{0}}^{1}=\left\{c \in \operatorname{Hom}(\Gamma, W): c(\Gamma)=U, c(I)=U_{0}\right\} / N_{W}\left(U, U_{0}\right)$, where $N_{W}\left(U, U_{0}\right)=N_{W}(U) \cap N_{W}\left(U_{0}\right)$. Then $H^{1}(F, W)$ is the disjoint union of these $H_{U, U_{0}}^{1}$. For each $c \in H_{U, U_{0}}^{1}$, the size of $\phi^{-1}(c)$ is given by Theorem 1.3.2.

Each $b \in \phi^{-1}(c)$ corresponds to an embedded torus $T_{b} \subset G$. The torus T_{b} is elliptic $\Longleftrightarrow X_{*}^{c(\Gamma)}=0$ $\Longleftrightarrow c(\Gamma) \neq 1, D_{1}^{\text {long }}, D_{1}^{\text {short }}$. In that case, $\mathcal{B}\left(T_{b}\right)$ is a singleton $\left\{x_{b}\right\}$, and $x_{b} \in \mathcal{B}(G)$. We give the Kac coordinates ([7]) of x_{b} up to conjugacy. For a $x \in \mathcal{B}(G)$ with $a_{\text {short }}(x)=y_{1}$ and $a_{\text {long }}(x)=y_{2}$ with $y_{i} \in \mathbb{Q}$, one can find a strictly positive integer $m \in \mathbb{Z}_{+}$such that $m\left(1-2 y_{1}-y_{2}\right), m y_{1}, m y_{2}$ are relatively prime. Then, the Kac coordinates of x are given by $\left(m\left(1-2 y_{1}-y_{2}\right), m y_{1}, m y_{2}\right)$.

Label	$U \supset U_{0}$	$\# H_{U, U_{0}}^{1}$	$\# \phi^{-1}(c)$	x_{b}
T[1]	$D_{4} \supset C_{4}$	$\begin{cases}0 & q \equiv 1(\bmod 4) \\ 2 & q \equiv-1(\bmod 4)\end{cases}$	1	$(1,1,1)$
T[2]	$C_{4} \supset C_{4}$	$\begin{cases}4 & q \equiv 1(\bmod 4) \\ 0 & q \equiv-1(\bmod 4)\end{cases}$	$\begin{cases}2 & q \equiv 1(\bmod 8) \\ 1 & q \equiv 5(\bmod 8)\end{cases}$	$(1,1,1)$
$\mathrm{T}[3]$	$C_{4} \supset C_{2}$	1	2	$(1,0,1)$
T[4]	$C_{4} \supset 1$	1	2	$(1,0,0)$, or $(0,0,1)$
$\mathrm{T}[5]$	$D_{2}^{\text {long }} \supset C_{2}$	1	$\begin{cases}4 & q \equiv 1(\bmod 4) \\ 1 & q \equiv-1(\bmod 4)\end{cases}$	$(1,0,1)$
$\mathrm{T}[6]$	$D_{2}^{\text {long }} \supset D_{1}^{\text {long }}$	2	$\begin{cases}4 & q \equiv 1(\bmod 4) \\ 2 & q \equiv-1(\bmod 4)\end{cases}$	$(2,1,0)$, or $(0,1,2)$
$\mathrm{T}[7]$	$C_{2} \supset C_{2}$	2	$\begin{cases}3 & q \equiv 1(\bmod 4) \\ 1 & q \equiv-1(\bmod 4)\end{cases}$	$(1,0,1)$
$\mathrm{T}[8]$	$C_{2} \supset 1$	1	3	$(1,0,0),(0,1,0)$ or $(0,0,1)$
T[9]	$D_{2}^{\text {short }} \supset C_{2}$	1	2	$(1,0,1)$
T[10]	$D_{2}^{\text {short }} \supset D_{1}^{\text {short }}$	2	2	$(1,0,1)$, or $(0,1,0)$
$\mathrm{T}[11]$	$D_{1}^{\text {long }} \supset D_{1}^{\text {long }}$	2	$\begin{cases}2 & q \equiv 1(\bmod 4) \\ 1 & q \equiv-1(\bmod 4)\end{cases}$	
T[12]	$D_{1}^{\text {long }} \supset 1$	1	2	
T[13]	$D_{1}^{\text {short }} \supset D_{1}^{\text {short }}$	2	1	
T[14]	$D_{1}^{\text {short }} \supset 1$	1	1	
T[15]	$1 \supset 1$	1	1	

Table 1.3.4.
We mention some facts underlying the calculation. There exists a surjection $\Gamma \rightarrow C_{n}$ such that the image of inertia is of order e if and only if $q \equiv 1(\bmod e)$, in that case, the number of such homomorphism is $e \varphi(e) \varphi(n / e)$. There exists a extension E / F with Galois group D_{n}, and ramification index $e=n$, residue degree $f=2$, exactly when $q \equiv-1(\bmod e)$. In that case the extension is unique.

The number of isomorphisms $\operatorname{Gal}(E / F) \xrightarrow{\sim} D_{n}$ sending the inertia subgroup to C_{n} is $n \cdot \varphi(n)$. Finally, the action of $N_{W}\left(U, U_{0}\right) / Z_{W}(U)$ on $\left\{c \in \operatorname{Hom}(\Gamma, W): c(\Gamma)=U, c(I)=U^{0}\right\}$ is faithful.

The most laborious part of the calculation is the determination of $\# \phi^{-1}(c)$. To carry out the method outlined in Theorem 1.3.2, one may start with an explicit torus in each stable class. Such an explicit torus is given in 1.3.5 and 1.3.6.

We conclude

$$
\# H^{1}(F, W)=\left\{\begin{array}{ll}
22 & \text { if } q \equiv 1 \quad(\bmod 4) \\
20 & \text { if } q \equiv-1 \quad(\bmod 4)
\end{array} \quad \# H^{1}(F, N)=\left\{\begin{array}{lll}
49 & \text { if } q \equiv 1 \quad(\bmod 8) \\
45 & \text { if } q \equiv 5 \quad(\bmod 8) \\
32 & \text { if } q \equiv-1 \quad(\bmod 4)
\end{array}\right.\right.
$$

1.3.5. Compact tori. Although we have a classification of embedded tori in $S p_{4}$ up to rational conjugacy as above in terms of Galois cohomology, using another description given in [8, 14], we can give a more explicit description of each tori. Stating the result in loc.cit., let \langle,$\rangle be the symplectic$ form on $V=F^{4}$ to realize $S p_{4}$.

Theorem. Let T be a tamely ramified compact maximal torus in $S p_{4}(F)$. Then, we have one of the following:
(1) There is a tower $F \subset E \subset E^{\prime}$ with $\left(E^{\prime}: E\right)=(E: F)=2$, a unitary form (,) on E^{\prime} over E and an F-linear isomorphism $j: E^{\prime} \rightarrow F^{4}$ so that

$$
\langle j(v), j(w)\rangle=\operatorname{Tr}_{E^{\prime} / F}(\alpha(v, w))
$$

for a nonzero $\alpha \in \operatorname{ker}\left(\operatorname{Tr}_{E^{\prime} / E}\right)$. Moreover, j induces an embedding from the unitary group of (,) on E^{\prime} onto T .
(2) There are quadratic extensions E_{1}, E_{2} equipped with a $\operatorname{Hermitian}$ form $(,)_{i}$ on E_{i} over F, and an F-linear isomorphism $j: E_{1} \oplus E_{2} \rightarrow F^{4}$ such that

$$
\left\langle j\left(v_{1}, v_{2}\right), j\left(w_{1}, w_{2}\right)\right\rangle=\operatorname{Tr}_{E_{1} / F}\left(\alpha_{1}\left(v_{1}, w_{1}\right)_{1}\right)+\operatorname{Tr}_{E_{2} / F}\left(\alpha_{2}\left(v_{2}, w_{2}\right)_{2}\right)
$$

for nonzero $\alpha_{i} \in \operatorname{ker}\left(\operatorname{Tr}_{E_{i} / F}\right)$, $i=1,2$. Moreover, j induces an embedding of the unitary group of $(,)_{1} \oplus(,)_{2}$ on $E_{1} \oplus E_{2}$ onto T .

Conversely, any unitary group in (1) and (2) embedds onto a maximal anisotropic torus in $S p_{4}$.
In the above cases, we will say that T is the "isometric image" of the unitary group U and write $\mathrm{T} \stackrel{i}{\sim} U$. From now on, we write $F^{\times} / F^{\times 2}=\{1, \varepsilon, \varpi, \varepsilon \varpi\}$ where $\varepsilon \in \mathcal{O}_{F}^{\times}$is a nonsquare and ϖ is a uniformizer in F.

Analyzing U and U_{0} in TABLE 1.3.4., we see that $\mathrm{T}[5], \mathrm{T}[6], \mathrm{T}[7], \mathrm{T}[8]$ belong to cases (2) and we can find E_{1}, E_{2} in each case. To be more explicit, for $a, b \in F^{\times} / F^{\times 2}$, let $U_{a, b}$ be the unitary group of one variable in $F[\sqrt{a}]$ with respect to the unitary form $(v, w)=b v \bar{w}$ where \bar{w} is the Galois conjugate in $F[\sqrt{a}]$ over F. We can list all possible unitary groups (up to isometry) in one variable as follows:

$$
U_{\varepsilon, 1}, U_{\varepsilon, \varpi}, U_{\varpi, 1}, U_{\varpi, \varepsilon}, U_{\varepsilon \varpi, 1}, U_{\varepsilon \varpi, \varepsilon}
$$

These embed in $S L_{2}(F)$. If $q \equiv 1(\bmod 4)$, they are not rationally conjugate. However, if $q \equiv 3$ $(\bmod 4), U_{\varpi, 1}$ and $U_{\varpi, \varepsilon}$ are rationally conjugate, and so are $U_{\varepsilon \varpi, 1}$ and $U_{\varepsilon \varpi, \varepsilon}($ see $\S 6.4$ in [15]).

	E_{1}, E_{2}	$\mathrm{~T} \stackrel{i}{\simeq}$	parameters	x_{b}
$\mathrm{~T}[5]$	$F[\sqrt{\varpi}], F[\sqrt{\varepsilon \varpi]}$	$U_{\varpi, a} \times U_{\varpi \varepsilon, b}$	$(a, b):$ $a, b \in\{1, \varepsilon\}$	$(1,0,1)$
$\mathrm{T}[6]$	$F\left[\sqrt{\varpi^{\prime}}\right], F[\sqrt{\varepsilon}]$	$U_{\varpi^{\prime}, a} \times U_{\varepsilon, b}$	$\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$ $\left(\varpi^{\prime}, a, b\right):$$a$ $\in\{1, \varepsilon\}$ b $\in\{1, \varpi\}$	$\left\{\begin{array}{cc}(2,1,0) & \text { if } b=1 \\ (0,1,2) & \text { if } b=\varpi\end{array}\right.$
$\mathrm{T}[7]$	$F\left[\sqrt{\varpi^{\prime}}\right], F\left[\sqrt{\left.\varpi^{\prime}\right]}\right.$	$U_{\varpi^{\prime}, a} \times U_{\varpi^{\prime}, b}$	$\left(\varpi^{\prime}, a, b\right):$ $(a, b) \in\{(1,1),(1, \varepsilon),(\varepsilon, \varepsilon)\}$ $\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$	$(1,0,1)$
$\mathrm{T}[8]$	$F[\sqrt{\varepsilon}], F[\sqrt{\varepsilon}]$	$U_{\varepsilon, a} \times U_{\varepsilon, b}$	$(a, b) \in$ $\{(1,1),(1, \varpi),(\varpi, \varpi)\}$	$(1,0,0)$ if $(a, b)=(1,1)$ $(0,1,0)$ if $(a, b)=(1, \varpi)$ $(0,0,1)$ if $(a, b)=(\varpi, \varpi)$

Table 1.3.5-I.

The parameters in the above table will label rational conjugacy classes of embedded tori with same U and U_{0} in TABLE 1.3.4. For example, $\mathrm{T}[5](a, b)$ labels the torus in $\mathrm{T}[5]$ which is an isometric image of $U_{\varpi, a} \times U_{\varpi \varepsilon, b}$.

Remark. If $q \equiv 3(\bmod 4), \mathrm{T}[5](a, b)$ are all rationally conjugate to each other. Similarly, $\mathrm{T}[7]\left(\omega^{\prime}, a, b\right)$ are all rationally conjugate. Likewise, the labeling of $\mathrm{T}[6], \mathrm{T}[1], \mathrm{T}[2]$ and $\mathrm{T}[11]$ is redundant (see Tables 1.3.5-II and 1.3.6). For a uniform description incorporating cases both cases $q \equiv 1$ and $q \equiv 3(\bmod 4)$, we keep the redundant labeling. Moreover, this redundancy is necessary in describing $\vec{G}^{s}[4]$ (see TABLE 1.4.4), since two rationally conjugate $\mathrm{T}[7]\left(\omega^{\prime}, 1,1\right)$ and $\mathrm{T}[7]\left(\omega^{\prime}, 1, \varepsilon\right)$ give rise to non conjugate twisted Levi sequences.

Comparing the above with Table 1.3.4., $\mathrm{T}[1], \mathrm{T}[2], \mathrm{T}[3], \mathrm{T}[4]$ belong to case (1). In each case, E^{\prime} associated to the torus satisfies $e\left(E^{\prime} / E\right)=\#\left(U_{0}\right), f\left(E^{\prime} / E\right)=\#\left(U / U_{0}\right)$. Moreover, E^{\prime} has a unique subextension E of degree 2 .
$\mathrm{T}[9]$ and $\mathrm{T}[10]$ also belong to case (1) with $E^{\prime}=F[\sqrt{\varepsilon}, \sqrt{\varpi}$, the abelian extension of degree 4 which contains all quadratic extensions of F. In this cases, E^{\prime} contains three quadratic extensions $F[\sqrt{a}], a \in F^{\times} / F^{\times 2}-\{1\}$ and each $E^{\prime} / F[\sqrt{a}]$ has two unitary forms (up to equivalence) of 1 variable, which accounts for all 6 tori in $\mathrm{T}[9]$ and $\mathrm{T}[10]$. For $\alpha \in E^{\times} / N_{E^{\prime} / E}\left(E^{\prime \times}\right)$, let $U_{E^{\prime} / E}(\alpha)$ denote the isometry class of the unitary group on E^{\prime} over E with respect to $(v, w)=\alpha v \bar{w}$. In the following table, α runs over $E^{\times} / N_{E^{\prime} / E}\left(E^{\prime \times}\right)$.

Label	$E \subset E^{\prime}$	$\mathrm{T} \stackrel{i}{\simeq}$	parameters	x_{b}
$\mathrm{~T}[1], \mathrm{T}[2]$	$E=F\left[(c \omega)^{\frac{1}{2}}\right], E^{\prime}=F\left[(c \omega)^{\frac{1}{4}}\right]$	$U_{E^{\prime} / E}(\alpha)$	$(c, \alpha):$ $c \in \mathbb{F}_{q}^{\times} / \mathbb{F}_{q}^{\times 4}$	$(1,1,1)$
$\mathrm{T}[3]$	$E=F[\sqrt{\varepsilon}], E^{\prime} \neq F[\sqrt{\varepsilon}, \sqrt{\varpi}]$	$U_{E^{\prime} / E}(\alpha)$	α	$(1,0,1)$
$\mathrm{T}[4]$	$f\left(E^{\prime} / F\right)=4$	$U_{E^{\prime} / E}(\alpha)$	α	$\left\{\begin{array}{cc}(1,0,0) & \text { if } \alpha=1 \\ (0,0,1) & \text { if } \alpha \neq 1\end{array}\right.$
$\mathrm{T}[9]$	$E=F[\sqrt{\varepsilon}], E^{\prime}=F[\sqrt{\varepsilon}, \sqrt{\varpi}]$	$U_{E^{\prime} / E}(\alpha)$	α	$(1,0,1)$
$\mathrm{T}[10]$	$E=F\left[\sqrt{\varpi^{\prime}}\right], E^{\prime}=F[\sqrt{\varepsilon}, \sqrt{\varpi}]$	$U_{E^{\prime} / E}(\alpha)$	$\left(\varpi^{\prime}, \alpha\right):$ $\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$	$\left\{\begin{array}{c}(1,0,1) \text { if } \alpha=1 \\ (0,1,0) \\ \text { if } \alpha \neq 1\end{array}\right.$

TABLE 1.3.5-II.
1.3.6. Non compact tori The rest of the tori in $\mathrm{T}[11]-\mathrm{T}[15]$ are non compact and they are either embedded in $M^{\text {long }} \simeq F^{\times} \times S L_{2}(F)$ or $M^{\text {short }} \simeq G L_{2}(F)$. Although the tori in $S L_{2}(F)$ and $G L_{2}(F)$ are well known, we will make a list here for completeness. In the following, let E denote the splitting field of T.

Label	E	$\mathrm{~T} \stackrel{i}{\sim}$	parameters
$\mathrm{T}[11]$	$F\left[\sqrt{\varpi^{\prime}}\right]$	$F^{\times} \times U_{\varpi^{\prime}, a}$	$\left(\varpi^{\prime}, a\right):$ $\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$ $a \in\{1, \varepsilon\}$
$\mathrm{T}[12]$	$F[\sqrt{\varepsilon}]$	$F^{\times} \times U_{\varepsilon, a}$	$a \in\{1, \varpi\}$
$\mathrm{T}[13]$	$F\left[\sqrt{\varpi^{\prime}}\right]$	E^{\times}	$\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$
$\mathrm{T}[14]$	$F[\sqrt{\varepsilon}]$	E^{\times}	
$\mathrm{T}[15]$	F	$F^{\times} \times F^{\times}$	

TABLE 1.3.6.

1.4. Classification of twisted Levi sequences in $S p_{4}$.

1.4.1. Classifying twists of $M^{\text {long }}$. We compute $H^{1}(F, N(\vec{G}))$, where $\vec{G}=\left(M^{\text {long }}, G\right)$. Note that we have $M^{\text {long }}=T_{S L_{2}} \times S L_{2}(F) \subset S L_{2}(F) \times S L_{2}(F) \subset S p_{4}(F)$ and $N(\vec{G}) \simeq N_{S L_{2}}\left(T_{S L_{2}}\right) \times S L_{2}$ where $T_{S L_{2}}$ is a maximal split torus in $S L_{2}$. Hence, we have

$$
H^{1}(F, N(\vec{G})) \simeq H^{1}\left(F, N_{S L_{2}}\left(T_{S L_{2}}\right)\right) \times H^{1}\left(F, S L_{2}\right) \simeq H^{1}\left(F, N_{S L_{2}}\left(T_{S L_{2}}\right)\right)
$$

$H^{1}\left(F, N_{S L_{2}}\left(T_{S L_{2}}\right)\right)$ classifies the embdded twists of $T_{S L_{2}}$ in $S L_{2}$ and it is known that $\#\left(H^{1}\left(F, N_{S L_{2}}\left(T_{S L_{2}}\right)\right)\right)=$ 7 if $q \equiv 1(\bmod 4)$ and 5 if $q \equiv 3(\bmod 4)($ see $\S 6.4$ in $[15])$. Hence, we have 7 embedded twists of $M^{\text {long }}$. We can list them as follows:

$$
\begin{gathered}
M^{\text {long }}, U_{\varepsilon, 1} \times S L_{2}, U_{\varepsilon, \varpi} \times S L_{2}, U_{\varpi, 1} \times S L_{2}, \\
U_{\varpi, \varepsilon} \times S L_{2}, U_{\varepsilon \varpi, 1} \times S L_{2}, U_{\varepsilon \varpi, \varepsilon} \times S L_{2} .
\end{gathered}
$$

Similarly as in $S L_{2}$ case, if $q \equiv 3(\bmod 4), U_{\varpi, 1} \times S L_{2}$, and $U_{\varpi, \varepsilon} \times S L_{2}$ are rationally conjugate and so are $U_{\varepsilon \varpi, 1} \times S L_{2}$ and $U_{\varepsilon \varpi, \varepsilon} \times S L_{2}$.
1.4.2. Classifying twists of $M^{\text {short }}$. We now compute $H^{1}(F, N(\vec{G}))$, where $\vec{G}=\left(M^{\text {short }}, G\right)$. Since $1 \rightarrow M^{\text {short }} \rightarrow N(\vec{G}) \rightarrow D_{1}^{\text {short } \perp} \rightarrow 1$ splits, we have a surjection

$$
H^{1}(F, N(\vec{G})) \rightarrow H^{1}\left(F, D_{1}^{\text {short } \perp}\right)=F^{\times} / F^{\times 2}
$$

The fiber at $a \in F^{\times} /\left(F^{\times}\right)^{2}$ can be identified with $H^{1}\left(F, U_{2}\right)$, where U_{2} is the quasi-split unitary group in 2 variables for the quadratic extension $F(\sqrt{a}) / F$ (which may be a split étale algebra). When $a=1, H^{1}\left(F, U_{2}\right)=H^{1}\left(F, G L_{2}\right)=1$.

If $a \in F^{\times}$is not a square, Kottwitz's formula gives $\# H^{1}\left(F, U_{2}\right)=2$. Hence, $\# H^{1}(F, N(\vec{G}))=7$ and there are at most 7 embedded twists of $M^{\text {short }}$.

It is easy to see that every unitary group in 2 variable occurs as a twisted $M^{\text {short }}$ in $S p_{4}$. More precisely, let $E=F(\sqrt{a})$ be a nontrivial quadratic extension of F. Let $V=E \oplus E$ be a E-vector space equipped with a Hermitian form $(,)_{E}$ with respect to the Galois involution on E. Let U_{2} be the group of isometries of $\left(V,(,)_{E}\right)$. Regarding V as a four dimensional F-vector space, define a skew-symmetric form $(,)_{F}$ on V as follows ([8]):

$$
(v, w)_{F}=\operatorname{Tr}_{E / F}\left(\sqrt{a}(v, w)_{E}\right)
$$

Then, U_{2} preserves $(v, w)_{F}$ and it is embedded in the group of isometries of $\left(V,(,)_{F}\right)$, which is isomorphic to $S p_{4}(F)$.

There are 6 such unitary groups up to isometry and each is unique up to $G(F)$-conjugacy. Together with $M^{\text {short }}$, we have 7 embedded twists of $M^{\text {short }}$, up to $G(F)$-conjugacy.

For $a \in F^{\times} / F^{\times 2}$, let $U_{a}(1,1)$ be the quasi split unitary group and $U_{a}(2)$ be the compact unitary group in two variables in $F(\sqrt{a})$. Writing as $F^{\times} / F^{\times 2}=\{1, \varepsilon, \varpi, \varepsilon \varpi\}$ as before, we may list the twists of $M^{\text {short }}$ as follows:

$$
M^{\text {short }}, U_{\varepsilon}(1,1), U_{\varepsilon}(2), U_{\varpi}(1,1), U_{\varpi}(2), U_{\varepsilon \varpi}(1,1), U_{\varepsilon \varpi}(2)
$$

1.4.3. Classifying twists of $\vec{G}=\left(T, M^{\text {long }}, G\right)$. The exact sequence for $N(\vec{G})$ is $1 \rightarrow T \rightarrow N(\vec{G}) \rightarrow$ $D_{2}^{\text {long }} \rightarrow 1$. In particular, we have a homomorphism $N(\vec{G}) \rightarrow N=N_{G}(T)$. We can compute $H^{1}(F, N(\vec{G}))$ in the same way we compute $H^{1}(F, N)$.

U	$D_{2}^{\text {long }}$	C_{2}	$D_{1}^{\text {long }}$	$D_{1}^{\text {long } \perp}$	1
$\left(X_{*}\right)_{U, \text { tors }}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 2 \mathbb{Z}$	0
$Z_{D_{2}^{\text {long }}}(U)$	$D_{2}^{\text {long }}$				
$N_{D_{2}^{\text {long }}}(U)$	$D_{2}^{\text {long }}$				

In the following the parameters run over those in TABLE 1.3.5-I and 1.3.6.

Label	$U \supset U_{0}$	$\# H_{U, U_{0}}^{1}$	$\# \phi^{-1}(c)$	G^{0}	G^{1}
$\vec{G}^{\ell}[1]$	$D_{2}^{\text {long }} \supset C_{2}$	2	$\begin{cases}4 & q \equiv 1(\bmod 4) \\ 2 & q \equiv-1(\bmod 4)\end{cases}$	$\mathrm{T}[5](a, b)$	$\begin{gathered} U_{\varpi^{\prime}, a^{\prime}} \times S L_{2} \\ \left(\varpi^{\prime}, a^{\prime}\right)=(\varpi, a) \text { or }(\varepsilon \varpi, b) \end{gathered}$
$\vec{G}^{\ell}[2]$	$D_{2}^{\text {long }} \supset D_{1}^{\text {long }}$	2	$\begin{cases}4 & q \equiv 1(\bmod 4) \\ 2 & q \equiv-1(\bmod 4)\end{cases}$	$\mathrm{T}[6]\left(\varpi^{\prime}, a, b\right)$	$U_{\varepsilon, b} \times S L_{2}$
$\vec{G}^{\ell}[3]$	$D_{2}^{\text {long }} \supset D_{1}^{\text {long } \perp}$	2	$\begin{cases}4 & q \equiv 1(\bmod 4) \\ 2 & q \equiv-1(\bmod 4)\end{cases}$	$\mathrm{T}[6]\left(\varpi^{\prime}, a, b\right)$	$U_{\varpi^{\prime}, a} \times S L_{2}$
$\vec{G}^{\ell}[4]$	$C_{2} \supset C_{2}$	2	$\begin{cases}4 & q \equiv 1(\bmod 4) \\ 1 & q \equiv-1(\bmod 4)\end{cases}$	$\mathrm{T}[7]\left(\varpi^{\prime}, a, b\right)$	$\begin{gathered} U_{\varpi^{\prime}, a^{\prime}} \times S L_{2} \\ a^{\prime}=a \text { or } b \end{gathered}$
$\vec{G}^{\ell}[5]$	$C_{2} \supset 1$	1	4	$\mathrm{T}[8](a, b)$	$\begin{gathered} U_{\varepsilon, a^{\prime}} \times S L_{2} \\ a^{\prime}=a \text { or } b \end{gathered}$
$\vec{G}^{\ell}[6]$	$D_{1}^{\text {long }} \supset D_{1}^{\text {long }}$	2	$\begin{cases}2 & q \equiv 1(\bmod 4) \\ 1 & q \equiv-1(\bmod 4)\end{cases}$	$\mathrm{T}[11]\left(\varpi^{\prime}, a\right)$	$M^{\text {long }}$
$\vec{G}^{\ell}[7]$	$D_{1}^{\text {Iong }} \supset 1$	1	2	$\mathrm{T}[12](a)$	$M^{\text {long }}$
$\vec{G}^{\ell}[8]$	$D_{1}^{\text {long } \perp} \supset D_{1}^{\text {long } \perp}$	2	$\begin{cases}2 & q \equiv 1(\bmod 4) \\ 1 & q \equiv-1(\bmod 4)\end{cases}$	$\mathrm{T}[11]\left(\varpi^{\prime}, a\right)$	$U_{\varpi^{\prime}, a} \times S L_{2}$
$\vec{G}^{\ell}[9]$	$D_{1}^{\text {long } \perp} \supset 1$	1	2	$\mathrm{T}[12](a)$	$U_{\varepsilon, a} \times S L_{2}$
$\vec{G}^{\ell}[10]$	$1 \supset 1$	1	1	T [15]	$M^{\text {long }}$

Table 1.4.3.
1.4.4. Classifying twists of $\vec{G}=\left(T, M^{\text {short }}, G\right)$. The exact sequence for $N(\vec{G})$ is $1 \rightarrow T \rightarrow$ $N(\vec{G}) \rightarrow D_{2}^{\text {short }} \rightarrow 1$.

U	$D_{2}^{\text {short }}$	C_{2}	$D_{1}^{\text {short }}$	$D_{1}^{\text {short } ~} \perp$	1
$\left(X_{*}\right)_{U, \text { tors }}$	$\mathbb{Z} / 2 \mathbb{Z}$	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	0	0	0
$Z_{D_{2}^{\text {short }}}(U)$	$D_{2}^{\text {short }}$				
$N_{D_{2}^{\text {short }}}(U)$	$D_{2}^{\text {short }}$				

Label	$U \supset U_{0}$	$\# H_{U, U_{0}}^{1}$	$\# \phi^{-1}(c)$	G^{0}	G^{1}
$\vec{G}^{s}[1]$	$D_{2}^{\text {short }} \supset C_{2}$	2	2	T[9](1)	$U_{\varpi}(2)$
					$U_{\varepsilon \varpi}(1,1)$
				$\mathrm{T}[9](\alpha), \alpha \neq 1$	$U_{\varepsilon \varpi}(2)$
					$U_{\varpi}(1,1)$
$\vec{G}^{s}[2]$	$D_{2}^{\text {short }} \supset D_{1}^{\text {short }}$	2	2	$\mathrm{T}[10](\varpi, 1)$	$U_{\varepsilon \varpi}(1,1)$
				$\mathrm{T}[10](\varpi, \alpha), \alpha \neq 1$	$U_{\text {¢Ш }}(2)$
				$\mathrm{T}[10](\varepsilon \varpi, 1)$	$U_{\varpi}(1,1)$
				$\mathrm{T}[10](\varepsilon \varpi, \alpha), \alpha \neq 1$	$U_{\varpi}(2)$
$\overrightarrow{G^{s}}[3]$	$D_{2}^{\text {short }} \supset D_{1}^{\text {short } \perp}$	2	2	$\mathrm{T}[10](\varpi, 1)$	$U_{\varepsilon}(2)$
				$\mathrm{T}[10](\varpi, \alpha), \alpha \neq 1$	$U_{\varepsilon}(1,1)$
				$\mathrm{T}[10](\varepsilon \varpi \sim 1)$	$U_{\varepsilon}(2)$
				$\mathrm{T}[10](\varepsilon \varpi, \alpha), \alpha \neq 1$	$U_{\varepsilon}(1,1)$
$\vec{G}^{s}[4]$	$C_{2} \supset C_{2}$	2	$\begin{cases}3 & q \equiv 1(\bmod 4) \\ 2 & q \equiv-1(\bmod 4)\end{cases}$	$\mathrm{T}[7]\left(\varpi^{\prime}, a, b\right), a=b$	$U_{\varpi^{\prime}}(1,1)$
				$\mathrm{T}[7]\left(\varpi^{\prime}, a, b\right), a \neq b$	$U_{\varpi^{\prime}}(2)$
$\vec{G}^{s}[5]$	$C_{2} \supset 1$	1	3	$\mathrm{T}[8](a, b), a=b$	$U_{\varepsilon}(1,1)$
				$\mathrm{T}[8](a, b), a \neq b$	$U_{\varepsilon}(2)$
$\vec{G}^{s}[6]$	$D_{1}^{\text {short }} \supset D_{1}^{\text {short }}$	2	1	$\mathrm{T}[13]\left(\varpi^{\prime}\right)$	$M^{\text {short }}$
$\vec{G}^{s}[7]$	$D_{1}^{\text {short }} \supset 1$	1	1	T[14]	$M^{\text {short }}$
$\vec{G}^{s}[8]$	$D_{1}^{\text {short } \perp} \supset D_{1}^{\text {short } \perp}$	2	1	$\mathrm{T}[13]\left(\varpi^{\prime}\right)$	$U_{\varpi^{\prime}}(1,1)$
$\vec{G}^{s}[9]$	$D_{1}^{\text {short } \perp} \supset 1$	1	1	T[14]	$U_{\varepsilon}(1,1)$
$\vec{G}^{s}[10]$	$1 \supset 1$	1	1	$\mathrm{T}[15]$	$M^{\text {short }}$

Table 1.4.4.

2. Review of construction of types

2.1. Notation and Conventions.

2.1.1. From now on, let F be a fixed non-archimedean local field with residue characteristic p. Let G be a connected reductive group over F, split over a tamely ramified extension of F. We adopt all notation and conventions from [20]. For simplicity, we assume that p is not a torsion prime for $\psi(G)^{\vee}$, the root datum dual to the root datum $\psi(G)$ of $G \otimes_{F} \bar{F}$. See $\S 7$ in [20] for relevant notation. Then, p is not a torsion prime for any twisted Levi subgroup G^{\prime} of G.
2.1.2. Let $\vec{G}=\left(G^{0}, G^{1}, \cdots, G^{d}\right)$ be a tamely ramified twisted Levi sequence in G. Let M^{0} be a Levi subgroup of G^{0} and $z_{s}\left(M^{0}\right)$ be the maximal F-split torus of the center $Z_{M^{0}}$ of M^{0}. To \vec{G}, we associate a sequence of Levi subgroup $\vec{M}=\left(M^{0}, \cdots, M^{d}\right)$ where M^{i} is a Levi subgroup of G^{i} given as the centralizer of $\mathcal{Z}_{s}\left(M^{0}\right)$ in G^{i}.
2.2. Generic embeddings of buildings. Recall that if G^{\prime} is a twisted Levi subgroup of G, then there exists a family of natural embeddings of buildings $\mathcal{B}\left(G^{\prime}\right) \hookrightarrow \mathcal{B}(G)$, which is an affine space under $X_{*}\left(\mathcal{Z}_{s}\left(G^{\prime}\right)\right) \otimes \mathbb{R}$.

Definition 2.2.1. Let M be a Levi subgroup of $G, y \in \mathcal{B}(M)$, and $s \in \mathbb{R}$. We say that the embedding $\iota: \mathcal{B}(M) \hookrightarrow \mathcal{B}(G)$ is (y, s)-generic, or s-generic with respect to y, if $U_{a, \iota(y), s}=U_{a, \iota(y), s+}$ for all $a \in \Phi(G, S, F) \backslash \Phi(M, S, F)$, where S is any maximal F-split torus of M such that $y \in A(M, S, F)$ and $\Phi(G, S, F)$ and $\Phi(M, S, F)$ are the corresponding root systems.

Here, U_{a} is the root subgroup of G associated to a, and we are referring to [17] for the filtration $\left\{U_{a, \iota(y), r}\right\}_{r \in \mathbb{R}}$ on U_{a}. For $r \geq 0$, we have $U_{a, \iota(y), r}=U_{a} \cap G_{\iota(y), r}$. Given a twisted Levi sequence \vec{G} and \vec{M} as in (2.1.2), consider a commutative diagram of embeddings:
$\{\iota\}:$

$$
\begin{array}{cccllll}
\mathcal{B}\left(G^{0}\right) & \longrightarrow & \mathcal{B}\left(G^{1}\right) & \longrightarrow & \cdots & \longrightarrow & \mathcal{B}\left(G^{d}\right) \\
\uparrow & & \uparrow & & & & \uparrow \\
\mathcal{B}\left(M^{0}\right) & \longrightarrow & \mathcal{B}\left(M^{1}\right) & \longrightarrow & \cdots & & \longrightarrow \\
\mathcal{B}\left(M^{d}\right)
\end{array} .
$$

Definition 2.2.2. Let $\vec{s}=\left(s_{0}, \cdots, s_{d}\right)$ be a sequence of real numbers, and $y \in \mathcal{B}\left(M^{0}\right)$. We say that $\{\iota\}$ is \vec{s}-generic (relative to y) if $\iota: \mathcal{B}\left(M^{i}\right) \rightarrow \mathcal{B}\left(G^{i}\right)$ is s_{i}-generic relative to $i(y) \in \mathcal{B}\left(M^{i}\right)$ for $0 \leq i \leq d$.

From [12], given \vec{G}, \vec{s}-generic commutative diagrams of embeddings exist.

2.3. G-datum and construction of types.

Definition 2.3.1. A depth-zero datum is a triple $\left((G, M),(y, \iota),\left(K_{M}, \rho_{M}\right)\right)$ such that

- G is a connected reductive group over F and M a Levi subgroup of G.
- $y \in \mathcal{B}(M)$ is such that $M_{y, 0}$ is a maximal parahoric subgroup of M, and $\iota: \mathcal{B}(M) \hookrightarrow \mathcal{B}(G)$ is a 0 -generic embedding relative to y.
- K_{M} is a compact open subgroup of M containing $M_{y, 0}$, and ρ_{M} is an irreducible smooth representation of K_{M} such that $\rho_{M} \mid M_{y, 0}$ contains a cuspidal representation of $M_{y, 0} / M_{y, 0^{+}}$.

Definition 2.3.2. The G-datum Σ consists of a 5 -tuple

$$
\left(\left(\vec{G}, M^{0}\right),(y, \iota), \vec{r},\left(K_{M^{0}}, \rho_{M^{0}}\right), \vec{\phi}\right)
$$

satisfying the following:
D1. $\vec{G}=\left(G^{0}, G^{1}, \cdots, G^{d}\right)$ is a tamely ramified twisted Levi sequence in G, and M^{0} a Levi subgroup of G^{0}. Let \vec{M} be associated to \vec{G} as in (2.1.2).
D2. y is a point in $\mathcal{B}\left(M^{0}\right)$ and $\{\iota\}$ is a commutative diagram of \vec{s} generic embeddings of buildings relative to y, where $\vec{s}=\left(0, r_{0} / 2, \cdots, r_{d-1} / 2\right)$.
D3. $\vec{r}=\left(r_{0}, r_{1}, \cdots, r_{d}\right)$ is a sequence of real numbers satisfying $0<r_{0}<r_{1}<\cdots<r_{d-1} \leq r_{d}$ if $d>0,0 \leq r_{0}$ if $d=0$.
D4. $\left(K_{M^{0}}, \rho_{M^{0}}\right)$ is such that $\left(\left(G^{0}, M^{0}\right),\left(y, \iota: \mathcal{B}\left(M^{0}\right) \hookrightarrow \mathcal{B}(G)\right),\left(K_{M^{0}}, \rho_{M^{0}}\right)\right)$ is a depth zero datum.
D5. $\vec{\phi}=\left(\phi_{0}, \phi_{1}, \cdots, \phi_{d}\right)$ is a sequence of quasi-characters, where ϕ_{i} is a quasi-character of G^{i} such

2.3.3. The construction. For a given G-datum Σ as above, let $K^{0}=K_{M^{0}} G_{y, 0^{+}}^{0}$ and ρ the trivial extension of $\rho_{M^{0}}$ to K^{0}. Following the recipe in [20], we can construct a pair of an open compact subgroup

$$
K_{\Sigma}:=K^{d}=K^{0} G_{y, s_{0}}^{1} \cdots G_{y, s_{d-1}}^{d}
$$

and the irreducible representation $\rho_{\Sigma}:=\rho^{d}$ of K^{d}.
Theorem 2.3.4. ([12]) Let $K_{M}^{d}:=K_{\Sigma} \cap M^{d}$ and $\rho_{M}^{d}:=\rho_{\Sigma} \mid\left(K_{\Sigma} \cap M^{d}\right)$.
(1) $\left(K_{M}^{d}, \rho_{M}^{d}\right)$ is a supercuspidal type on M^{d}.
(2) $\left(K_{\Sigma}, \rho_{\Sigma}\right)$ is a G-cover of $\left(K_{M}^{d}, \rho_{M}^{d}\right)$ and hence it is a type in the sense of Bushnell and Kutzko.

Remark. When $\mathcal{Z}_{G^{0}} / \mathcal{Z}_{G}$ is F-anisotropic, the condition on ι is empty and the above G-datum reduces to a generic G-datum in [20]. In this case, our construction gives a supercuspidal type in [20].

3. Types on $S p_{4}$

3.1. Supercuspidal representations.

Yu's construction of supercuspidal representations starts from a generic G-datum $\Sigma=(\vec{G}, x, \vec{r}, \vec{\phi}, \rho)$ (see [20] for details). Here, we give a list of all possible (\vec{G}, x, \vec{r}) to give a supercuspidal representations via Yu's construction. We define the length $\ell(\Sigma)$ of Σ to be d where $\vec{G}=\left(G^{0}, G^{1}, \cdots, G^{d}=G\right)$. In our case $G=S p_{4}, d$ is at most 2 .

In the following, $d(\pi)\left(=r_{d}\right)$ denotes the depth of the supercuspidal representation constructed from Σ with given (\vec{G}, x, \vec{r}).
3.1.1. Case 1: $d=0$.

These are depth zero supercuspidal representations. Then, $\vec{r}=(0), \vec{\phi}=(1)$ and the Kac coordinates of x are $(1,0,0),(0,1,0)$ or $(0,0,1)$. If $x=(0,1,0), \rho$ is inflated from a cuspidal representation of $S L_{2}\left(\mathbb{F}_{q}\right) \times S L_{2}\left(\mathbb{F}_{q}\right)$. Otherwise, ρ is coming from a cuspidal representation of $S p_{4}\left(\mathbb{F}_{q}\right)$.

3.1.2. Case 2: $d=1$.

The second column in the table indicates where r_{i} should belong. To simplify writing, by $r_{0} \in \frac{1}{4} \mathbb{Z}_{+}$, we mean that $r_{0} \in \frac{1}{4} \mathbb{Z}_{+}-\frac{1}{2} \mathbb{Z}$, and $r_{0} \in \frac{1}{2} \mathbb{Z}_{+}$means $r_{0} \in \frac{1}{2} \mathbb{Z}_{+}-\mathbb{Z}$. In each case, the parameters run over those in Tables 1.3.5-I and II.

G^{0}	$\begin{aligned} & r_{0}=r_{1} \\ & =d(\pi) \end{aligned}$	parameters		x
$\mathrm{T}[1](c, \alpha)$	$\frac{1}{4} \mathbb{Z}_{+}$	(c, α)		$(1,1,1)$
$\mathrm{T}[2](c, \alpha)$	$\frac{1}{4} \mathbb{Z}_{+}$	(c, α)		$(1,1,1)$
$\mathrm{T}[3](\alpha)$	$\frac{1}{2} \mathbb{Z}_{+}$	α		$(1,0,1)$
$\mathrm{T}[4](\alpha)$	\mathbb{Z}_{+}	α	$=1$	$(1,0,0)$
			$\neq 1$	(0, 0, 1)
$\mathrm{T}[5](a, b)$	$\frac{1}{2} \mathbb{Z}_{+}$	(a, b)		$(1,0,1)$
$\mathrm{T}[7]\left(\varpi^{\prime}, a, b\right)$	$\frac{1}{2} \mathbb{Z}_{+}$	$\left(\varpi^{\prime}, a, b\right)$		$(1,0,1)$
$\mathrm{T}[8](a, b)$	\mathbb{Z}_{+}	$(a, b)=$	$(1,1)$	$(1,0,0)$
			$(1, \varpi)$	$(0,1,0)$
			(ϖ, ϖ)	$(0,0,1)$
$U_{\varepsilon}(2)$	\mathbb{Z}_{+}			(0, 1, 0)
$U_{\varpi^{\prime}}(2)$	$\frac{1}{2} \mathbb{Z}_{+}$	$\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$		$(1,0,1)$
$U_{\varepsilon}(1,1)$	\mathbb{Z}_{+}			$(1,0,0)$ or $(0,0,1)$
$U_{\varpi}(1,1)$	$\frac{1}{2} \mathbb{Z}_{+}$	$\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$		(0,1,0)
$U_{\varpi^{\prime}, a} \times S L_{2}$	$\frac{1}{2} \mathbb{Z}_{+}$	$\left(\varpi^{\prime}, a\right)$	$a=1$	$(2,1,0)$
			$a=\varpi$	(0,1,2)
$U_{\varepsilon, a} \times S L_{2}$	\mathbb{Z}_{+}	$a=$	1	$(1,0,0)$ or $(0,1,0)$
			ϖ	$(0,1,0)$ or $(0,0,1)$

TABLE 3.1.2.
3.1.3. Case 3: $d=2$.

As before, the parameters in the table run over those in Tables 1.4.3 and 1.4.4.

\vec{G}	r_{0}	$\begin{aligned} & r_{1}=r_{2} \\ & =d(\pi) \end{aligned}$	parameters		x
$\left.\vec{G}^{\ell}[1]\left(a, b, \varpi^{\prime}\right)\right)$	$\frac{1}{2} \mathbb{Z}_{+}$	$\frac{1}{2} \mathbb{Z}_{+}$	(a, b)		$(1,0,1)$
$\vec{G}^{\ell}[2]\left(\varpi^{\prime}, a, b\right)$	$\frac{1}{2} \mathbb{Z}_{+}$	\mathbb{Z}_{+}	$\left(\varpi^{\prime}, a, b\right)$	$b=1$	$(2,1,0)$
				$b=\varpi$	$(0,1,2)$
$\vec{G}^{\ell}[3]\left(\varpi^{\prime}, a, b\right)$	\mathbb{Z}_{+}	$\frac{1}{2} \mathbb{Z}_{+}$	$\left(\varpi^{\prime}, a, b\right)$	$b=1$	$(2,1,0)$
				$b=\varpi$	$(0,1,2)$
$\vec{G}^{\ell}[4]\left(\varpi^{\prime}, a, b\right)$	$\frac{1}{2} \mathbb{Z}_{+}$	$\frac{1}{2} \mathbb{Z}_{+}$	$\left(\varpi^{\prime}, a, b\right)$		$(1,0,1)$
$\vec{G}^{\ell}[5]\left(a, b, a^{\prime}\right)$	\mathbb{Z}_{+}	\mathbb{Z}_{+}	$\left(a, b, a^{\prime}\right)$	$\left(1,1, a^{\prime}\right)$	$(1,0,0)$
				$\left(1, \varpi, a^{\prime}\right)$	(0, 1, 0)
				$\left(\varpi, \varpi, a^{\prime}\right)$	(0,0,1)
$\vec{G}^{s}[1]\left(\alpha, \varpi^{\prime}\right)$	$\frac{1}{2} \mathbb{Z}_{+}$	$\frac{1}{2} \mathbb{Z}_{+}$			$(1,0,1)$
$\vec{G}^{s}[2]\left(\varpi^{\prime}, \alpha\right)$	\mathbb{Z}_{+}	$\frac{1}{2} \mathbb{Z}_{+}$	$\left(\varpi^{\prime}, \alpha\right)$	$\alpha=1$	$(0,1,0)$
				$\alpha \neq 1$	$(1,0,1)$
$\vec{G}^{s}[3]\left(\varpi^{\prime}, \alpha\right)$	$\frac{1}{2} \mathbb{Z}_{+}$	\mathbb{Z}_{+}	$\left(\varpi^{\prime}, \alpha\right)$	$\alpha=1$	$(0,1,0)$
				$\alpha \neq 1$	$(1,0,1)$
$\vec{G}^{s}[4]\left(\varpi^{\prime}, a, b\right)$	$\frac{1}{2} \mathbb{Z}_{+}$	$\frac{1}{2} \mathbb{Z}_{+}$	($\left.\varpi^{\prime}, a, b\right)$		$(1,0,1)$
$\vec{G}^{s}[5](a, b)$	\mathbb{Z}_{+}	\mathbb{Z}_{+}	(a, b)	$(1,1)$	$(1,0,0)$
				$(1, \varpi)$	$(0,1,0)$
				(ϖ, ϖ)	$(0,0,1)$

Table 3.1.3.
Remark. The above G-datums give inequivalent supercuspidal representations ([4]).

In the rest of the paper, we construct non supercuspidal types of $S p_{4}$. Let M be a Levi subgroup of $S p_{4}$. Suppose ($K_{\Sigma_{M}}, \rho_{\Sigma_{M}}$) is a supercuspidal type constructed from a generic M-datum Σ_{M}. The classification of supercuspidal representations (hence supercuspidal types) of all proper Levi subgroups in $S p_{4}$ is well known. For each supercuspidal type on M with a generic M-datum Σ_{M}, we can construct a G-cover. In the rest of the paper, we give a G-datum for a G-cover in each case. The choice of ι is not unique. We will give one choice of ι satisfying genericity in each case. Once a G-datum is given, one can follow $\S 2$ or [12] to construct the G-cover.

In the following, we define the depth of a supercuspidal type as the depth of the supercuspidal representation with the same generic G-datum.

3.2. Supercuspidal types on $M^{\text {long }}$ and G-covers.

To simplify notation in this section, we will write M for $M^{\text {long }}$ if there is no confusion. Since $M \simeq F^{\times} \times S L_{2}$, we can write $\rho_{\Sigma_{M}}=\phi \otimes \rho_{\Sigma_{M}}^{\prime}$ for a character ϕ of F^{\times}and a supercuspidal type $\rho_{\Sigma_{M}}^{\prime}$ of $S L_{2}$. Note that we can extend ϕ trivially to a character of M. We will still use ϕ for the extended character.

3.2.1. Depth zero case.

Suppose $\rho_{\Sigma_{M}}^{\prime}$ is a depth zero supercuspidal type on $S L_{2}$. Then, Σ_{M} is of the form $\left(M, y, \phi, r, \rho_{M}\right)$ where $M_{y, 0}$ is a maximal compact subgroup of $F^{\times} \times S L_{2}$ and $r=\operatorname{depth}(\phi)$ is an integer. Moreover, we have $\left(K_{\Sigma_{M}}, \rho_{\Sigma_{M}}\right)=\left(M_{y, 0}, \phi \otimes \rho_{M}\right)$

Note that $M_{y, 0}, y \in \mathcal{B}(M)$ is determined by $a_{\text {long }}(y)$. In this case, we may assume that $a_{\text {long }}(y)=0$ or 1 . Moreover, ι is uniquely determined by $\iota(y)$. We choose ι as follows:

y	$\iota(y)$
$a_{\text {long }}(y)=0$	$\left\{\begin{array}{ll\|}(1,0,0) & \text { if } r \text { is odd } \\ (2,1,0) & \text { if } r \text { is even }\end{array}\right.$
$a_{\text {long }}(y)=1$	$\begin{cases}(0,0,1) & \text { if } r \text { is odd } \\ (-2,1,4) & \text { if } r \text { is even }\end{cases}$

Then, we can choose Σ as follows to construct a G-cover of $\left(M_{y, 0}, \phi \otimes \rho_{M}\right)$.

Cases: Σ_{M}		$\iota(y)$		
r	y			
$r=0$	$a_{\text {long }}(y)=0$	$(2,1,0)$	$\left((G, M),(y, \iota),\left(M_{y, 0}, \phi \otimes \rho_{M}\right)\right)$	
	$a_{\text {long }}(y)=1$	$(-2,1,4)$		
$r \neq 0$, even	$a_{\text {long }}(y)=0$	$(2,1,0)$	$\left.\left(\left(M^{\text {long }}, G\right), M^{\text {long }}\right),(y, \iota),(\phi \otimes 1,1),(r, 0),\left(M_{y, 0}, \rho_{M}\right)\right)$	
	$a_{\text {long }}(y)=1$	$(-2,1,4)$		
r odd	$a_{\text {long }}(y)=0$	$(1,0,0)$		
	$a_{\text {long }}(y)=1$	$(0,0,1)$		

TABLE 3.2.1.

3.2.2. Positive depth cases.

Suppose $\rho_{\Sigma_{M}}^{\prime}$ is a supercuspidal type of positive depth on $S L_{2}$. Write $\Sigma_{M}=\left(\vec{M}, y, \vec{r}, \vec{\phi}, \rho_{M^{0}}\right)$. Then, we have the following:

- $\ell\left(\Sigma_{M}\right)=1$ and $\vec{M}=\left(M^{0}, M\right)$ where M^{0} is either $\mathrm{T}[11]\left(\varpi^{\prime}, a^{\prime}\right)$ or $\mathrm{T}[12](a)$ with $\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$, $a^{\prime} \in\{1, \varepsilon\}$ and $a \in\{1, \varpi\}$ (see TABLE 1.3.6).
- Without loss of generality, one may assume that

$$
a_{\text {long }}(y)= \begin{cases}\frac{1}{2} & \text { if } M^{0}=\mathrm{T}[11]\left(\varpi^{\prime}, a^{\prime}\right) \\ 0 & \text { if } M^{0}=\mathrm{T}[12](1) \\ 1 & \text { if } M^{0}=\mathrm{T}[12](\varpi)\end{cases}
$$

- Writing $\vec{\phi}=\left(\phi_{0}, \phi_{1}\right), \phi_{1}$ is a character which is trivial on $S L_{2}$. Without loss of generality, we may assume that either ϕ_{1} is trivial or nontrivial of depth r_{1}.
In all cases, specifying \vec{G} and ι as in the table below,

$$
\Sigma=\left(\left(\vec{G}, M^{0}\right),(y, \iota),\left(\phi_{0}, \phi_{1}, 1\right),\left(r_{0}, r_{1}, r_{1}\right),\left(M_{y, 0}^{0}, \rho_{M^{0}}\right)\right)
$$

gives a G-cover of $\left(K_{\Sigma_{M}}, \rho_{\Sigma_{M}}\right)$.

Cases: Σ_{M}			\vec{G}	$\iota(y)$
M^{0}, y	ϕ_{1}	r_{0}, r_{1}		
$\begin{aligned} & \mathrm{T}[11]\left(\varpi^{\prime}, a^{\prime}\right) \\ & a_{\text {long }}(y)=\frac{1}{2} \end{aligned}$	$\phi_{1}=1$	$r_{0}=r_{1} \in \frac{1}{2} \mathbb{Z}$	$\vec{G}^{\ell}[8]\left(\varpi^{\prime}, a^{\prime}\right)$	(1, 0, 1)
	$\phi_{1} \neq 1$	r_{1} even	$\vec{G}^{\ell}[6]\left(\varpi^{\prime}, a^{\prime}\right)$	$(2,1,4)$
		r_{1} odd	$\vec{G}^{\ell}[6]\left(\varpi^{\prime}, a^{\prime}\right)$	$(0,1,2)$
$\begin{gathered} \mathrm{T}[12](1) \\ a_{\text {long }}(y)=0 \end{gathered}$	$\phi_{1}=1$	$r_{0}=r_{1}$ even	$\vec{G}^{\ell}[9](1)$	$(2,1,0)$
		$r_{0}=r_{1}$ odd	$\vec{G}^{\ell}[9](1)$	$(1,0,0)$
	$\phi_{1} \neq 1$	r_{1} even	$\vec{G}^{\ell}[7](1)$	$(2,1,0)$
		r_{1} odd	$\vec{G}^{\ell}[7](1)$	$(1,0,0)$
$\begin{gathered} \mathrm{T}[12](\varpi) \\ a_{\text {long }}(y)=1 \end{gathered}$	$\phi_{1}=1$	$r_{0}=r_{1}$ even	$\vec{G}^{\ell}[9](\varpi)$	$(-2,1,4)$
		$r_{0}=r_{1}$ odd	$\vec{G}^{\ell}[9](\varpi)$	$(0,0,1)$
	$\phi_{1} \neq 1$	r_{1} even	$\vec{G}^{\ell}[7](\varpi)$	$(-2,1,4)$
		r_{1} odd	$\vec{G}^{\ell}[7](\varpi)$	$(0,0,1)$

TABLE 3.2.2.
3.3. Supercuspidal types on $M^{\text {short }}$ and G-covers.

In this section, to simplify the notation, write M for $M^{\text {short }}$ if there is no confusion.

3.3.1. Essentially depth zero cases.

Suppose $\rho_{\Sigma_{M}}$ is an essentially depth zero supercuspidal type on M, that is, it is a supercuspidal type up to twisting by a character of M. Then, Σ_{M} is of the form $\left(M, y, \phi, r, \rho_{M}\right)$ where $K_{\Sigma_{M}}=M_{y, 0}$ is a maximal compact subgroup of $G L_{2}$ and $r=\operatorname{depth}\left(\rho_{\Sigma_{M}}\right)$ is an integer. If $r=0$, we may assume $\phi=1$ without loss of generality.

Note that $M_{y, 0}, y \in \mathcal{B}(M)$ is determined by $a_{\text {short }}(y)$. In this case, we may assume that $a_{\text {short }}(y)=$ 0 . Moreover, ι is completely determined by $\iota(y)$. Then, we can choose ι and Σ as follows to construct a G-cover.

r	$\iota(y)$	Σ
$r=0$	$(1,0,1)$	$\left((G, M),(y, \iota),\left(M_{y, 0}, \rho_{M}\right)\right)$
$r \neq 0$ even	$(1,0,1)$	$\left(((M, G), M),(y, \iota),(r, 0),(\phi, 1),\left(M_{y, 0}, \rho_{M}\right)\right)$
r odd	$(1,0,0)$	

Table 3.3.1.

3.3.2. Positive depth cases.

Write $\Sigma_{M}=\left(\vec{M}, y, \vec{r}, \vec{\phi}, \rho_{M^{0}}\right)$ as before. Then, we have the following:

- $\ell\left(\Sigma_{M}\right)=1$ and $\vec{M}=\left(M^{0}, M\right)$ where M^{0} is either $\mathrm{T}[13]\left(\varpi^{\prime}\right)$, $\varpi^{\prime} \in\{\varpi, \varepsilon \varpi\}$, or $\mathrm{T}[14]$ (see Table 1.3.6).
- Without loss of generality, one may assume that $a_{\text {short }}(y)$ is $\frac{1}{2}$ if $M^{0}=\mathrm{T}[13]\left(\varpi^{\prime}, a^{\prime}\right)$, and 0 if $M^{0}=\mathrm{T}[14]$.
- Write $\vec{r}=\left(r_{0}, r_{1}\right)$ and $\vec{\phi}=\left(\phi_{0}, \phi_{1}\right)$. If $r_{0}=r_{1}$, we may assume that ϕ_{1} is the trivial character.
- Let \mathcal{Z}_{M}° be the maximal compact subgroup of the center of M. If $\phi_{0} \mid \mathcal{Z}_{M}^{\circ}$ are trivial, ϕ_{0} can be extended to a unitary group U containing M^{0}. That is, ϕ_{0} can be extended to a character of $U_{\varpi^{\prime}}(1,1)$ if $M^{0}=\mathrm{T}[13]\left(\varpi^{\prime}\right)$, and to a character of $U_{\varepsilon}(1,1)$ if $M^{0}=\mathrm{T}[14]$. We use the same notation ϕ_{0} for the extended character.
In all cases, for a given Σ_{M} as above, we take $\Sigma=\left(\left(\vec{G}, M^{0}\right),(y, \iota), \vec{r}, \vec{\phi},\left(M_{y, 0}^{0}, \rho_{M^{0}}\right)\right)$ as in the following table:

Cases					Σ			
M^{0}	$\phi_{0} \mid \mathcal{Z}_{M}^{\circ}$	ϕ_{1}	r_{0}, r_{1}		$\iota(y)$	\vec{G}	\vec{r}	$\vec{\phi}$
$\mathrm{T}[13]\left(\varpi^{\prime}\right)$	$=1$	$=1$	$r_{0}=r_{1}$		(1, 1, -1)	$\left(U_{\varpi^{\prime}}(1,1), G\right)$	$\left(r_{0}, r_{0}\right)$	$\left(\phi_{0}, 1\right)$
	$\neq 1$	$=1$	$r_{0}=r_{1}$		$(0,1,0)$	$\left(M^{0}, G\right)$	$\left(r_{0}, r_{0}\right)$	$\left(\phi_{0}, 1\right)$
		$\neq 1$	$r_{0}<r_{1}$		$(1,2,-1)$	$\begin{aligned} & \vec{G}^{s}[6]\left(\varpi^{\prime}\right) \\ = & \left(M^{0}, M, G\right) \end{aligned}$	$\left(r_{0}, r_{1}, r_{1}\right)$	$\left(\phi_{0}, \phi_{1}, 1\right)$
$\mathrm{T}[14]$	$=1$	$=1$	$r_{0}=r_{1}$	r_{1} odd	$(1,0,0)$	$\left(U_{\varepsilon}(1,1), G\right)$	$\left(r_{0}, r_{0}\right)$	$\left(\phi_{0}, 1\right)$
				r_{1} even	$(1,0,1)$			
	$\neq 1$	$=1$	$r_{0}=r_{1}$	r_{1} odd	(1,0,0)	$\left(M^{0}, G\right)$	$\left(r_{0}, r_{0}\right)$	$\left(\phi_{0}, 1\right)$
				r_{1} even	$(1,0,1)$			
		$\neq 1$	$r_{0}<r_{1}$	r_{1} odd	$(1,0,0)$	$\begin{gathered} \bar{G}^{s}[7] \\ =\left(M^{0}, M, G\right) \end{gathered}$	$\left(r_{0}, r_{1}, r_{1}\right)$	$\left(\phi_{0}, \phi_{1}, 1\right)$
				r_{1} even	$(1,0,1)$			

Table 3.3.2.

3.4. G-covers of principal series.

The types for principal series are constructed in [16]. We will merely restate the result in loc. cit. in terms of the language in this paper. The supercuspidal representations of $M=T \simeq F^{\times} \times F^{\times}$ are of the form $\chi_{1} \otimes \chi_{2}$ for characters χ_{1} and χ_{2} of F^{\times}. Without loss of generality, we may assume that $d\left(\chi_{1}\right) \geq d\left(\chi_{2}\right)$. and $\Sigma_{M}=\left(T, y, \chi_{1} \otimes \chi_{2}, d\left(\chi_{1}\right), 1\right)$ for any $y \in \mathcal{B}(T)$. Let $r^{\prime}=d\left(\chi_{1} \chi_{2}^{-1}\right)$ and $r_{1}=d\left(\chi_{1}\right)$. Fix ι so that

$$
\iota(y)= \begin{cases}{[-1,1,1]} & \text { if } r^{\prime}, r_{1} \in 2 \mathbb{Z} \\ {[1,0,0]} & \text { if } r^{\prime}, r_{1} \in 2 \mathbb{Z}+1 \\ {[1,0,1]} & \text { if } r^{\prime} \in 2 \mathbb{Z}+1, r_{1} \in 2 \mathbb{Z} \\ {[0,1,0]} & \text { if } r^{\prime} \in 2 \mathbb{Z}, r_{1} \in 2 \mathbb{Z}+1\end{cases}
$$

In each case, $\Sigma=\left((\vec{G}, T),(y, \iota), \vec{\phi}, \vec{r},\left(T_{0}, 1_{T_{0}}\right)\right)$ with $(\vec{G}, \iota, \vec{\phi}, \vec{r})$ in the table gives rise to a cover of $\left(T_{0},\left(\chi_{1} \otimes \chi_{2}\right) \mid T_{0}\right)$.

cases	\vec{G}	$\vec{\phi}$	\vec{r}	$\iota(y)$
$r^{\prime}=r_{1}$	$\vec{G}^{\ell}[10]$	$\left(1_{F^{\times}} \otimes \chi_{2}, \chi_{1} \otimes 1_{S L_{2}}, 1\right)$	$\left(d\left(\chi_{2}\right), r_{1}, r_{1}\right)$	$\left\{\begin{array}{ll}{[-1,1,1]} & \text { if } r^{\prime}, r_{1} \in 2 \mathbb{Z} \\ {[1,0,0]} & \text { if } r^{\prime}, r_{1} \in 2 \mathbb{Z}+1 \\ r^{\prime}<r_{1} & \vec{G}^{s}[10]\end{array}\left(1 \otimes \chi_{1}^{-1} \chi_{2}, \chi_{1} \circ \operatorname{det}, 1\right)\right.$
$1,0,1]$	if $r^{\prime} \in 2 \mathbb{Z}+1, r_{1} \in 2 \mathbb{Z}$			
$[0,1,0]$	if $r^{\prime} \in 2 \mathbb{Z}, r_{1} \in 2 \mathbb{Z}+1$			

TABLE 3.4.1.

References

[1] J. Bernstein, Representations of p-adic groups, Lecture note, Fall 1992 Harvard.
[2] C. Bushnell and P. Kutzko, The admissible dual of $G L(N)$ via compact open subgroups, 129, Annals of Math Studeis, Princeton Univ. Press, 1993.
[3] , Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. 77 (1998), no.3, 582-634.
[4] J. Hakim, F. Murnaghan, Distinguished tame supercuspidal representations, IMRP, to appear.
[5] R. Howe and A. Moy, Hecke algebra isomorphisms for $G L(n)$ over a p-adic field, J. Algebra 131 (1990), $388-424$.
[6] V. Kac Some remarks on nilpotent orbits, J. Algebra, 64 (1980), no. 1, 190-213.
[7] J. Dadok, V. Kac, Poloar representations, J. Algebra, 92 (1985), 504-524.
[8] J. L. Kim, Hecke algebras of classical groups over p-adic fields and supercuspidal representations, Amer. J. Math. 121 (1999), 967-1029.
[9] _, Hecke algebras of classical groups over p-adic fields II, Compositio Math. 127 (2001), 117-167.
[10] , Supercuspidal representations: an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), 273-320.
[11] , Supercuspidal representations: construction and exhaustion, Ottawa lectures on admissible representations of p-adic groups, Fields Monographs, 26, AMS 2009, 79-99.
[12] J. L. Kim, J. K. Yu, Construction of tame types, in preparation.
[13] R. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J., 51, (1984) 611-650.
[14] L. Morris, Some tamely ramified supercuspidal representations of symplectic groups, Proc. London Math. Soc., 63, (1991), 519-551.
[15] M. Reeder, Elliptic centralizers in Weyl groups and their coinvariant representations, to appear in Representation theory
[16] A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. E.N.S. (4) 31 (1998), no. 3, 361-413.
[17] P. Schneider, U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, IHES. Publ. Math. 85 (1997), 97-191.
[18] J.-P. Serre, Galois cohomology, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002.
[19] S. Stevens, The supercuspidal representations of p-adic classical groups, Invent. Math. 172 (2008), 289-352.
[20] J. K. Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), no. 3, 579-622.

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
E-mail address: julee@math.mit.edu
Department of Mathematics, Purdue University, West Lafayette, IN 47907
E-mail address: jyu@math.purdue.edu

[^0]: Date: January 8, 2011.
 1991 Mathematics Subject Classification. Primary 22E50; Secondary 22E35, 20G25.
 Both authors are partially supported by NSF-FRG grants.

