
ar
X

iv
:0

90
8.

32
55

v2
  [

m
at

h.
A

P]
  8

 O
ct

 2
00

9

STRICHARTZ ESTIMATES FOR

THE WATER-WAVE PROBLEM WITH SURFACE TENSION

HANS CHRISTIANSON, VERA MIKYOUNG HUR, AND GIGLIOLA STAFFILANI

Abstract. Strichartz-type estimates for one-dimensional surface water-waves
under surface tension are studied, based on the formulation of the problem as
a nonlinear dispersive equation. We establish a family of dispersion estimates
on time scales depending on the size of the frequencies. We infer that a solu-
tion u of the dispersive equation we introduce satisfies local-in-time Strichartz
estimates with loss in derivative:

‖u‖Lp([0,T ])W s−1/p,q(R) 6 C,
2

p
+

1

q
=

1

2
,

where C depends on T and on the norms of the initial data in Hs × Hs−3/2.
The proof uses the frequency analysis and semiclassical Strichartz estimates
for the linealized water-wave operator.
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1. Introduction

The problem of surface water waves, in its simplest form, concerns the two-
dimensional dynamics of an incompressible inviscid liquid of infinite depth and the
wave motion on its one-dimensional surface layer, under the influence of gravity and
surface tension. The moving surface is given as a nonself-intersecting parametrized
curve. The liquid occupies the domain below the curve, where the liquid motion
is described by the Euler equations under gravity. The flow beneath the moving
surface is required to be irrotational. The kinematic and dynamic boundary condi-
tions hold at the moving surface, stating respectively that the normal component
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2 CHRISTIANSON, HUR, AND STAFFILANI

of velocity is continuous along the moving surface and that the jump in pressure
across the moving surface is proportional to its mean curvature. The flow is as-
sumed to be almost at rest at great depths, and the moving surface is taken to be
asymptotically flat.

Provided with the initial surface profile and the initial state of fluid current, the
water-wave problem naturally poses as an initial value problem. Early mathemat-
ical results for local well-posedness date back to [17, 23] and include [12, 22, 33, 34].
Following the works by Sijue Wu [30, 31] there has been considerable progress
in the study of local well-posedness for the water-wave problem as well as for a
class of the Euler equations with free boundary. We refer the interested reader
to [3, 4, 10, 11, 20, 21, 25], and references therein. Recently, results for long-time
existence [24, 32] appeared for gravity water waves of infinite depth.

Nonlinearity characteristic to the boundary conditions at the moving surface
significantly restricts the range of analytical tools available for the existence theory
for the water-wave problem. As a matter of fact, all results listed in the previous
paragraph on local well-posedness hinge upon obtaining high energy expressions
and establishing their bounds, namely the energy method. While construction of
such energy expressions is nontrivial and design of an iteration scheme is involved,
nevertheless, results from the energy method do not provide any further information
about solutions, other than that they remain as smooth as their initial states. Better
understanding of the dynamics of surface water waves can be made with the help
of a priori estimates other than energy estimates.

On the other hand, the dispersion relation (see Remark 2.6)

(1.1) c(k) =

(
S

2
|k| +

g

|k|

)1/2
k

|k|

of surface water waves provides a guiding principle of their linear dynamics. Here,
c(k) is the speed of the simple harmonic oscillation with the wave number k; S >

0 is the coefficient of surface tension and g > 0 is the gravitational constant of
acceleration. Under the influence of surface tension, i.e. S > 0, the fact that the
phase velocity c(k) is asymptotically proportional to the square root of k as k → ∞
indicates a certain “regularizing” effect by the process of broadening out the surface
profile. In the gravity-wave setting, i.e. S = 0 and g > 0, in contrast, (1.1) does
not induce such a regularizing effect1.

Dispersive properties have paramount importance in the study of nonlinear
Schrödinger equations, the Korteweg-de Vries equation, nonlinear wave equations,
and other nonlinear dispersive equations. In the recent work of Alazard, Burq and
Zuilly [1], local smoothing effects are obtained for water waves under surface ten-
sion (see also Appendix A). Such a smoothing effect is a direct consequence of the
dispersive property of surface water waves, and it contrasts markedly with what
energy estimates alone can tell. The present purpose is to investigate the dispersive
property for the water-wave problem with one-dimensional surface under surface
tension by establishing estimates of the solution under the mixed Sobolev norms,
commonly referred to as Strichartz estimates.

1 Gravity waves may still be thought of as “dispersive” in the sense that wave components
with different frequencies propagate at different speeds; see [32].
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1.1. The main results. The present treatment of the dispersive property for the
water-wave problem under surface tension is based on the formulation of the prob-
lem as a second-order in time nonlinear dispersive equation

(1.2) ∂2
t u−

S

2
H∂3

αu+ gH∂αu = −2u∂t∂αu− u2∂2
αu+R(u, ∂tu),

coupled with a transport-type equation (3.8). We shall derive it in Section 2 and
Section 3. Here, u is related to the tangential velocity at the moving surface and
it serves as the unknown; t ∈ R+ is the temporal variable and α ∈ R is the
(renormalized) arclength parametrization of the curve, which serves as the spatial
variable. The Hilbert transform, denoted by H , may be defined via the Fourier

transform as Ĥf(ξ) = −isgn(ξ)f̂ (ξ). The remainder R is of lower order compared
to 2u∂t∂αu and u2∂2

αu in the sense that

‖R(u, ∂tu)‖Hs 6 C(‖u‖Hs+1 , ‖∂tu‖Hs)

for s > 1. Here and elsewhere, Hs means the L2-Sobolev space of order s in the
variable α ∈ R.

Our main results concern Strichartz estimates for the water-wave problem under
surface tension with loss in derivative. In the course of the proof, its local well-
posedness is proved.

Theorem 1.1. Let S > 0 and g > 0 be held fixed. For s > 2+1/2 the initial value
problem of (1.2) prescribed with the initial conditions

u(0, α) = u0(α) and ∂tu(0, α) = u1(α),

where (u0, u1) ∈ Hs(R)×Hs−3/2(R) is locally well-posed on a time interval t ∈ [0, T ]
for some T > 0, and the solution u satisfies (u(t), ∂tu(t)) ∈ C([0, T ];Hs(R) ×
Hs−3/2(R)).

Moreover, if s is sufficiently large, the solution u satisfies the inequality

(1.3)
( ∫ T

0

(∫ ∞

−∞

|Ds−1/p
α u(t, α)|qdα

)p/q

dt
)1/q

6 C,

where (p, q) satisfies the admissibility condition

(1.4)
2

p
+

1

q
=

1

2
, q <∞,

and C > 0 depends on s, q, p, T and ‖u0‖Hs(R), ‖u1‖Hs−3/2(R). Here and in sequel,
Dα = −i∂α.

If the solution is localized to dyadic frequency bands and semiclassical time
scales, the estimate is better.

Theorem 1.2. Let ψj(Dα) be a Fourier multiplier supported in frequencies 2j−2 6

|ξ| 6 2j+2. Under the hypothesis of Theorem 1.1 with s sufficiently large, the
frequency-localized solution ψj(Dα)u satisfies

(1.5)
(∫ 2−j/2T

0

(∫ ∞

−∞

|Ds−1/2p
α ψj(Dα)u(t, α)|qdα

)p/q

dt
)1/q

6 C,

where (p, q) satisfies (1.4) with q 6 ∞ and C > 0 depends on s, q, p, T and
‖u0‖Hs

α
, ‖u1‖H

s−3/2
α

.
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Notations. Recorded here are the notations and conventions used in the sequel.
Let 0 6 k, l 6 ∞ and 1 6 p, q 6 ∞. By W k,q

α (R) we mean the Lq Sobolev space

on α ∈ R of order k, and by W l,p
t ([0, T ]) we mean the Lp Sobolev space on the

interval t ∈ [0, T ] of order l. By H l
t([0, T ]) the L2 Sobolev space on the interval

t ∈ [0, T ] of order l . We will also use the Sobolev spaces of negative order, Hk
α(R)

with k < 0. For 0 6 p, q 6 ∞ we recall the definitions for the mixed Sobolev spaces
Lq

α(R)Lp
t ([0, T ]) and Lp

t ([0, T ])Lq
α(R) by the norms of these spaces

‖f‖Lq
α(R)Lp

t ([0,T ]) =



∫

R

(∫ T

0

|f(t, α)|p dt

)q/p

dα




1/q

,

‖f‖Lp
t ([0,T ])Lq

α(R) =

(∫ T

0

(∫

R

|f(t, α)|q dα

)p/q

dt

)1/p

.

We write Lq
αL

p
T for Lq

α(R)Lp
t ([0, T ]) and Lp

TL
q
α for Lp

t ([0, T ])Lq
α(R) when there

is no ambiguity. We use the analogous convention for W k,q
α W l,p

T , W l,p
T W k,q

α , and

H l
TH

k
α.

1.2. Perspectives. The derivative loss of 1/p in Theorem 1.1 is likely not sharp,
as the following heuristic arguments indicate.

For any dispersive equation in one spatial dimension, the W s,1
α → L∞

α decay
rate is t−1/2 (with loss of s derivatives depending on the equation). If we linearize
about the zero solution (see (1.14) below), we see the solution satisfies Strichartz
estimates with the admissibility condition (1.4) and a 1/2p derivative loss (see, for
example, [8]), which is an improvement of 1/2p derivatives compared to Theorem
1.1. Moreover, this equation satisfies the scaling symmetry2

u(t, α) 7→ λ1/2u(λ3/2t, λα)

for any dilation factor λ > 0, and we readily verify that Strichartz estimates with
the admissibility condition (1.4) and 1/2p derivative loss is invariant with respect
to this scaling. We thus expect Strichartz estimates with admissibility condition
(1.4) and 1/2p derivative loss to be optimal. That is, Theorem 1.1 represents twice
the loss in derivative of the optimal estimate.

However, this optimal estimate cannot be obtained by interpolation with known
estimates, even in weighted form. Indeed, to compare to the local smoothing esti-
mate ( [1] or Appendix A), if we use Sobolev embeddings, we have

‖ 〈α〉
−ρ
Ds−1/2p

α u‖Lp(0,T ])Lq
α

6 C‖ 〈α〉
−ρ
D

1/2−1/p
t Ds−1/2p+1/2−1/q

α u‖L2([0,T ])L2
α

and if we use that Dt is comparable to D
3/2
α (at least for a solution linearized about

0), in turn, we have

‖ 〈α〉
−ρ
D

1/2−1/p
t Ds+1/2−1/q

α u‖L2([0,T ])L2
α

6 C‖ 〈α〉
−ρ
Ds+5/4−1/q−2/p

α u‖L2([0,T ])L2
α
.

2In the absence of the effect of gravity, g = 0, the nonlinear equation (1.2) also enjoys this
scaling symmetry. This follows from the scaling symmetry of the Euler equations and the dynamic
boundary condition that the jump of pressure across the moving surface is proportional to the
mean curvature of the surface.
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1

Sobolev embedding plus local smoothing

Hölder plus energy

1/2

1/2

1

1/q

1/4

Suggested by scaling

1/p

Figure 1. Fixed time scale, 1/2p derivative loss. The (p, q) re-
lation suggested by scaling, from Sobolev embeddings plus local
smoothing effect, and from Hölder’s inequality in time with Sobolev
embeddings and energy conservation.

By the local smoothing effect gain of 1/4 derivative, we then bound ‖ 〈α〉−ρ D
s−1/2p
α u‖Lp(0,T ])Lq

α
,

ρ > 1/2, in terms of the initial data in Hs(R) ×Hs−3/2(R), provided that

2

p
+

1

q
= 1.

This is weaker than the optimal estimate. On the other hand, if we use Hölder’s
inequality plus energy conservation, we get a loss of 1/2p derivatives provided

1

2p
+

1

q
=

1

2

(see Figure 1).
To make a direct comparison of the estimate of Theorem 1.1 with the optimal

condition is not as clear, since we must use Sobolev embeddings somewhere. If
we do use an additional Sobolev embedding in the discussion above to make a
comparison of 1/p derivative loss, the optimal admissibility condition becomes

(1.6)
5

2p
+

1

q
=

1

2
,

while that from smoothing is (1.6) with the right hand side replaced by 1, and that
for energy estimates is

1

p
+

1

q
=

1

2
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Sobolev embedding plus local smoothing

1/p1/2

1/2

1

1/q

1/4
1/5 2/5

Theorem 1.1

Suggested by scaling and Sobolev

Hölder plus energy

Figure 2. Fixed time scale, 1/p derivative loss. The (p, q) rela-
tion given in Theorem 1.1, that suggested by scaling, from Sobolev
embeddings plus local smoothing effect, and from Hölder’s inequal-
ity in time with Sobolev embeddings and energy conservation.

(see FIgure 2). Again we see that the estimate of Theorem 1.1 cannot be obtained
by interpolation between known estimates.

On the semiclassical time scale 0 6 t 6 2−j/2T , our Strichartz estimate (1.5) has
a smaller loss in derivative, and the optimal scaling condition is the same as (1.4).
Since the local smoothing cannot be improved on the semiclassical time scale, our
estimate (1.5) represents a larger gain over what Sobolev embeddings plus local
smoothing could tell us on the semiclassical time scale (see Figure 3).

1.3. Idea of the proofs. While (1.2) is dispersive, its nonlinearity is severe, and
as such in the study of its dispersive properties one must take its nonlinear effect
into account. To better understand the strength of nonlinearity versus the weak-
ness of dispersion we examine the local smoothing effect for (1.2). An application
of Parseval’s formula, together with a change of variables, shows that ( [19] for
instance) the solution of the linear homogeneous equation

(1.7) ∂2
t u−

S

2
H∂3

αu = 0, S > 0

gains 1/4 derivative of smoothness over the initial data. An application of a TT ∗ ar-
gument then shows that the solution of the corresponding inhomogeneous equation
gains 2 derivatives of smoothness over the inhomogeneity. But, this local smoothing
effect is not enough to control nonlinear terms in (1.2) containing more than two
spatial derivatives, e.g. 2u∂t∂αu.



STRICHARTZ ESTIMATE FOR THE WATER-WAVE PROBLEM 7

Theorem 1.2 (and scaling)

Sobolev embedding plus local smoothing

Hölder plus energy

1/p1/2

1/2

1

1/q

1/4

Figure 3. Semiclassical time scale, 1/2p derivative loss. The
(p, q) relation given in Theorem 1.2 (agrees with that suggested by
scaling), Sobolev embeddings plus local smoothing, and Hölder’s
inequality in time plus Sobolev embeddings plus energy conserva-
tion.

To overcome this setback and to obtain Strichartz estimates for the solution of
nonlinear equation (1.2), we write it as

(1.8) ∂2
t u−

S

2
H∂3

αu+ gH∂αu+ 2u∂t∂αu+ u2∂2
αu = R(u, ∂tu).

That is, we view 2u∂t∂αu and u2∂2
αu as “linear” components of the equation, but

with variable coefficients which happen to depend on the solution itself. In other
words, we reduce the size of nonlinearity at the expense of making its linear part
more complicated. We then make a serious effort to establish Strichartz estimates
for the linear operator

(1.9) ∂2
t −

S

2
H∂3

α + gH∂α + 2V (t, α)∂t∂α + V 2(t, α)∂2
α,

for a class of functions for the variable coefficient V (t, α).
The operator (1.9) may be thought of the operator ∂2

t − H∂3
α perturbed by

variable-coefficient but lower-order terms 2V (t, α)∂α∂t + V 2(t, α)∂2
α. While the

added terms are of lower order they are not constant, and they bring a great deal
of difficulty in the analysis of the paper, which is the heart of the matter.

In [1] and in Appendix A, in order to establish the local smoothing effect for the
nonlinear equation (1.2), similar approaches are employed.
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1.3.1. Construction of the parametrix. Our approach to establishing microlocal
Strichartz estimates for (1.9) is based on the construction of its approximate solu-
tion.

When V (t, α) = 0, the solution of the homogeneous equation (1.7) is given by
the formula

u(t, α) =
1

4π

∫∫
ei(α−β)ξ

(
(eit|ξ|3/2

+ e−it|ξ|3/2

)u0(β)

+
eit|ξ|3/2

− e−it|ξ|3/2

i|ξ|3/2
u1(β)

)
dβdξ,

(1.10)

where u0 and u1 describe the initial data. Here, for the sake of exposition, we have
assumed S/2 = 1 and g = 0. Motivated by this, we make an oscillatory integral
ansatz

w(t, α) =
1

2π

∫∫
e−iβξ(eiϕ+(t,α,ξ)f+(β) + eiϕ−(t,α,ξ)f−(β)) dβdξ

to solve the problem associated to (1.9). The phase functions ϕ± is chosen to satisfy
ϕ±(0, α, ξ) = αξ, and as such the recovery of the initial conditions entails solving
for f± a system of elliptic pseudodifferential equations.

Applying the linear operator (1.9) to our ansatz, we consider the worst terms,
produced when first-order derivatives fall on the phase functions. They make a
first-order nonlinear equation (4.12) for ϕ±, commonly referred to as the eikonal
or Hamilton-Jacobi equation. The usual approach to solving the Hamilton-Jacobi
equation is through the technique of generating functions for the associated Hamil-
tonian. The equation (4.12) is, however, neither homogeneous nor polyhomoge-
neous (in ϕ±

t and ϕ±
α ), and as such solutions are found on a time scale comparable

to |ξ|−1/2. See Lemma 4.5 for details. We thus construct phase functions for each
dyadic frequency band |ξ| ∼ 2j on a frequency-dependent time scale t ∼ 2−j/2. The
construction of the leading-order parametrix w is detailed in Section 4.

1.3.2. Semiclassical Strichartz estimates. We explain our strategy to establish Strichartz
estimates for the linearized water-wave operator (1.9) under surface tension.

Let us first discuss basic ideas for Strichartz estimates for the one-dimensional
free Schrödinger equation

(1.11) i∂tu+ ∂2
αu = 0, t, α ∈ R

since we will use similar ideas. Prescribed with the initial condition u(0, α) = u0(α),
the solution of (1.11) can be written via the Fourier transform as

u(t, α) =

∫∫
eiξ(α−β)eitξ2

u0(β)dβdξ.

We write this as a convolution with an integral kernel as

u(t, α) =

∫
K(t, α, β)u0(β)dβ, where K(t, α, β) =

∫
eiξ(α−β)eitξ2

dξ.

The phase function ϕ(ξ; t, α, β) = ξ(α − β) + tξ2 has a critical point at

∂ξϕ(ξc) = α− β + 2tξc = 0, or ξc = (β − α)/2t.
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Since ∂2
ξϕ(ξc) = 2t, moreover, the phase is nondegenerate for t > 0. Then, by the

standard method of stationary phase3, at least for u0 localized in frequency, we
obtain K = K1 + (smoothing) with

(1.12) |K1(t, α, β)| 6 Ct−1/2,

where C > 0 is independent of t, α and β.
Next, we recall an abstract result which follows from the work of Ginibre-Velo [15,

16] and recorded in the paper of Keel and Tao [18], stating that a dispersion estimate
leads to Strichartz estimates under the Lp

tL
q
α-norm for a range of (p, q) depending

on the strength of the dispersion (the power of t in the dispersion estimate).

Theorem 1.3. Let (X, dx) be a measure space, let H be a Hilbert space, and let
U(t) : H → L2(X) be a linear operator satisfying

(i) ‖U(t)f‖L2
x

6 C1‖f‖H, and

(ii) ‖U(t′)U∗(t)g‖L∞
x

6 C1|t− t′|−σ‖g‖L1
x

for some σ > 0. Then for every pair (p, q) satisfying

1

p
+
σ

q
=
σ

2
,

the estimate
‖U(t)f‖Lp

t Lq
x

6 C2‖f‖H

holds true, where C2 > 0 depends only on C1, σ, p and q.

The semiclassical dispersion estimate we prove in this paper depends also on the
semiclassical parameter 2−j . A rescaling in time and application of Theorem 1.3
gives the following semiclassical Strichartz estimate theorem (see, for example, [14,
Theorem B.10]).

Theorem 1.4 (Semiclassical Strichartz estimates). Let (X, dx) be a measure space,
let h0 > 0 fixed, let H be a Hilbert space, and let U(t) : H → L2(X) be a linear
operator satisfying

(i) ‖U(t)f‖L2
x

6 C1‖f‖H , and

(ii) ‖U(t′)U∗(t)g‖L∞
x

6 C2h
−µ|t− t′|−σ‖g‖L1

x

for some σ > 0 and all 0 < h 6 h0. Then for every pair (p, q) satisfying

1

p
+
σ

q
=
σ

2
,

the estimate
‖U(t)f‖Lp

t Lq
x

6 C3h
− µ

pσ ‖f‖H

holds true, where C3 > 0 depends only on C1, C2, σ, µ, p and q.

In light of the above theorem, (1.12) gives that a solution of (1.11) satisfies the
estimate

‖u‖Lp
t Lq

α
6 C‖u0‖L2

where (p, q) satisfies
2

p
+

1

q
=

1

2
.

3 Estimate (1.12) is usually derived from the explicit formula for the kernel K, but here we want
to stress a method that can be generalized for variable coefficient dispersive differential operators.
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Furthermore, a scaling argument assures that the estimate is sharp.

Returning to our setting, we consider the linear problem

(1.13)

{
∂2

tU −H∂3
αU + 2V (t, α)∂α∂tU + V 2(t, α)∂2

αU = R(t, α)

U(0, α) = U0(α) and ∂tU(0, α) = U1(α),

on the time scale [0, 2−j/2T ],4 where U,R,U0 and U1 are localized to the dyadic
frequency band 2j−2 6 |ξ| 6 2j+2. Here, for simplicity we take S/2 = 1 and g = 0.
We write the oscillatory integrals

(1.14)

∫∫
e±it|ξ|3/2

eiξ(α−β)(U0(β) ∓ i|ξ|−3/2U1(β))dβdξ

associated to the solution of the zero-coefficient equation, V (t, α) = 0.
Considering the corresponding phase for ξ large and positive5, t > 0, and with

the + sign, let ϕ(ξ; t, α, β) = ξ(α− β) + tξ3/2. Its critical point ξc is at

(1.15) ∂ξϕ(ξc) =
3

2
tξ1/2

c + α− β = 0, or ξc =
4

9

(
β − α

t

)2

.

Since

∂2
ξϕ(ξc) =

9

8

(
t2

β − α

)
,

the critical point is nondegenerate for t > 0 and we are ready to use the method
of stationary phase. However, plugging these results into the stationary phase
argument does not yield a bound on the kernel uniform in α or β.

To remedy this, we use propagation of singularities to estimate (α − β)/t in
terms of derivatives in β to obtain a dispersion rate of t−1/2 with loss in derivative.
But, our parametrix is for the operator (1.9) with variable coefficients, which is
considerably more complicated than (1.14). Moreover, the parametrix exists only
for times t ∼ ξ−1/2, so we can only obtain this estimate on semiclassical time scales.
This approach is taken in [5, 7, 9, 26–29] and many others, for the wave equations
and the Schrödinger equations.

In the proof of the microlocal dispersion estimate Lemma 5.4, for the range
of times t ∼ ξ−1/2, where ξ is localized in a dyadic band ξ ∼ 2j, the relation
(1.15) implies that (α − β)/t is bounded by 2j/2, and as a consequence, the kernel
corresponding to (1.14) decays like 2j/4t−1/2 on such a time scale. This decay rate
explains the admissibility condition (1.4) in the main result. The loss in derivative
comes from taking µ = 1/4, σ = 1/2, and h = 2−j in Theorem 1.4.

In Theorem 5.2, we use Theorem 1.4 to deduce the semiclassical Strichartz esti-
mates for (1.13) as
(1.16)
‖U‖Lp([0,2−j/2T ])Lq

α
6 C(‖U0‖H

1/2p
α

+ ‖U1‖H
1/2p−3/2
α

+ ‖R‖
L1([0,2−j/2T ])H

1/2p−3/2
α

),

where (p, q) satisfies (1.4) and C > 0 depend on p, q and the Sobolev norms of V .

4Here and elsewhere in the paper, the interval [0, 2−j/2T ] can be substituted for any interval

I of length 2−j/2T contained in the domain of V , by shifting t to the beginning of the interval I.
5 To avoid the singularity in the phase at ξ = 0, we assume our initial data are localized to

high frequencies.
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1.3.3. Adding up the dyadic blocks and from linear to nonlinear. We give a brief
outline of the argument that allows us to move from Theorem 5.2 to Theorem 1.1
and Theorem 1.2.

Let us divide the interval [0, T ] into 2j/2 small intervals of the size 2−j/2T . We
apply (1.16) on each short interval of size 2−j/2T and we simply sum up 2j/2 many
small time-scale estimates. In doing so we introduce an additional loss of 1/2p
derivative. Then by appealing to Littlewood-Paley theory we sum up dyadic fre-
quencies to assert Corollary 5.3. We only pause here to remark that the parametrix
is constructed only for high frequencies; low frequencies can be estimated via energy
estimates.

In order to prove the estimate for the nonlinear equation (1.8), we employ the
energy method to establish local existence and uniqueness of the solution of (1.8)
in the Sobolev classes. It is detailed in Section 6. Applying ∂s

α to (1.8), we arrive
at the linear equation

∂2
t ∂

s
αu−

S

2
H∂3

α∂
s
αu+ gH∂α∂

s
αu+ 2u∂t∂α∂

s
αu+ u2∂2

α∂
s
αu = R̃(u, ∂tu)

for ∂s
αu, where R̃ is a collection of lower-order terms. By setting u = V (t, α) and

R̃(u, ∂tu) = R(t, α), and applying the above result, we assert that ∂s
αu satisfies

the estimates of Corollary 5.3. As a consequence of uniqueness then u satisfies
Strichartz estimates as in the Theorem 1.1.

Theorem 1.2 is obtained by repeating the argument above about how to move
from linear to nonlinear problem via energy method to the Strichartz estimate
(1.16) for the dyadic-frequency localization.

We finally remark that Theorem 1.2 does not imply Theorem 1.1 since frequency
localization of the initial data is lost due to the presence of the nonlinearity.

1.4. Organization. The article consists of three main parts.
The first part is to formulate the hydrodynamic problem of water waves un-

der surface tension as a nonlinear dispersive equation. In Section 2 we recall the
formulation in [3] of the water-wave problem. In Section 3 the system is further
formulated as a second-order in time nonlinear dispersive equation weakly coupled
to a transport-type equation.

The second part concerns the semiclassical Strichartz estimates for the lin-
earized water-wave equation under surface tension. In Section 4 we construct a
high-frequency parametrix for each dyadic frequency band and on the frequency-
dependent time scale. In Section 5 we prove that the parametrix possesses semi-
classical Strichartz estimates.

The third part concerns results for the nonlinear problem. In Section 6, the local-
in-time existence and uniqueness is established via the energy method. Finally,
Section 7 presents the proof of the Strichartz estimates for the nonlinear problem.

Appendix A contains a proof of the local smoothing effect for (1.2) via the
method of positive commutators, suggested to us by T. Alazard, N. Burq, and C.
Zuily. Appendices B -D collect miscellaneous calculations in the course of the paper
and linear energy estimates.
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2. The hydrodynamic problem of surface water-waves

Recorded here is the approach taken in [3] of the formulation of the water-
wave problem when surface tension is acted on. The idea is to employ a favorable
parametrization of the moving surface and choose convenient dependent variables.

Throughout the paper, partial differentiation is represented either by the symbol
∂ or by subscript. The complex plane C is identified with the real two-dimensional
space R2, whenever it is convenient to do so, via the mapping Φ : R2 → C, Φ(x, y) =
x+ iy. The conjugate of a complex number z is denoted by z̄.

2.1. The evolution of the moving surface and the vorticity strength. The
equation of the moving surface is written as (x(t, α), y(t, α)), where α ∈ R is the
parametrization of the curve, and Φ(x(t, α), y(t, α)) = z(t, α). Let

s2α = x2
α + y2

α and θ = arctan(yα/xα)

denote, respectively, the square of the arc length and the tangent angle that the
curve forms with the horizontal direction. The unit tangent and normal vectors of
the curve are t̂ = (cos θ, sin θ) and n̂ = (− sin θ, cos θ), respectively.

The evolution equations of the moving surface are written

∂t(x, y) = U‖t̂ + U⊥n̂.

In other words, U‖ is the tangential velocity and U⊥ is the normal velocity of the
moving surface. Accordingly,

∂tsα = ∂αU
‖ − U⊥∂αθ, ∂tθ =

1

sα
∂αU

⊥ +
U‖

sα
∂αθ,

respectively. By insisting6 ∂tsα = 0, and furthermore, sα = 1 for each t ∈ R+ and
α ∈ R, we regard the evolution equation of the moving surface as

(2.1) ∂tθ = ∂αU
⊥ + U‖∂αθ,

where U‖ is determined by solving ∂αU
‖ = U⊥∂αθ. Such a (renormalized) ar-

clength parametrization is assumed initially, and the choice of tangential velocity
will guarantee that the parametrization is maintained at later time.

Describing the dynamics on the moving surface, we employ the idea of vortex
sheets in the two-fluid system, and we suppose that the interface separating the
vacuum from the fluid moves with different velocities along the tangential direction
of the interface.

Let φ± represent the velocity potentials of the upper and the lower fluids, re-
spectively, and let ρ± be the densities of the upper and the lower fluids and p±

be the corresponding pressures. The Euler equations in the vacuum and the fluid
region take the form

(2.2) ∂tφ
± +

1

2
|∇φ±|2 +

p±

ρ±
= 0,

6 The normal velocity U⊥ is determined by the equations of motion, while the tangential
velocity U‖ only serves to reparametrize the moving surface. Adding an arbitrary tangential
velocity does not change the shape of the surface, and thus one may choose the tangential velocity
to satisfy a certain condition.
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and the boundary conditions at the interface are written as

[∇φ±] · n̂ = 0 and [p] = S∂αθ,

where [·] represents the jump of the quantity across the interface. We note that the
arclength parametrization of the interface offers a particularly succinct expression
of the mean curvature.

Let γ denote the vortex sheet strength7. Introducing the Birkhoff-Rott integral8

(2.3) Φ(W)(α) =
1

2πi
PV

∫ ∞

−∞

γ(α′)

z(α) − z(α′)
dα′,

we express the limiting value of velocity at the interface as

∇φ±(t,Φ−1(z)(t, α)) = W(t, α) ±
1

2
γ(t, α)t̂.

On the other hand, ∂t(x, y) = W + (U‖ − W · t̂)t̂ and U⊥ = W · n̂.
By combining Bernoulli’s equation (2.2) with the boundary conditions at the

interface and by using the above notations, we derive the evolution equation of γ

(2.4) ∂tγ = S∂2
αθ+ ∂α((U‖ −W · t̂)γ)− 2Wt · t̂−

1

2
γ∂αγ + 2(U‖ −W · t̂)Wα · t̂.

The development is detailed in [3, Appendix B].
In summary, the water-wave problem consists of (2.1) and (2.4). A useful feature

of the formulation is that surface tension enters the equation in the linear fashion.

2.2. The system for the tangent angle and the modified tangent velocity.

The choice of tangential velocity U‖ produces in (2.4) nonlinear terms involving

U‖−W · t̂. In order to express these terms in a more convenient way, we introduce
the modified tangential velocity

(2.5) u =
1

2
γ − (U‖ − W · t̂),

and we rewrite the system (2.1) and (2.4) in terms of θ and u, instead of γ. Physi-
cally interpreted, u measures the difference between the Lagrangian tangential ve-
locity W·t̂+ 1

2γ and tangential velocity U‖ which guarantees arclength parametriza-
tion. Once (x(t, α), y(t, α)) is given, the mapping γ 7→ u is one-to-one.

The first step is to approximate W in terms of the Hilbert transform. By ex-
panding Φ(W) in the Taylor fashion, one obtains

Φ(W)(α) =
1

2πi
PV

∫ ∞

−∞

γ(α′)

zα(α′)(α− α′)
dα′

+
1

2πi

∫ ∞

−∞

γ(α′)

(
1

z(α) − z(α′)
−

1

zα(α′)(α− α′)

)
dα′

:=
1

2i
H

(
γ

zα

)
+ K[z]γ.

Note that K[z]γ is not singular as the singularities in the expression of K[z] cancel.
Moreover, K[z] has the “smoothing” property

(2.6) ‖K[z]f‖Hs 6 C(‖θ‖Hs+1−n)‖f‖Hn for s > 1 and n = 0, 1.

7 The flow is irrotational. The vorticity, however, has a singular distribution supported on the
interface. The vortex sheet strength then measures concentration of vorticity along the interface.

8 In the recovery of the velocity from the vorticity distribution, we employ the Biot-Savart law
to derive an integral expression, the limit of which at the interface is the Birkhoff-Rott integral.
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The proof is very similar to that of [2, Lemma 3.5], and hence it is omitted. The
commutator operator

[H,h]f(α) =
1

π

∫ ∞

−∞

f(α′)
h(α′) − h(α)

α− α′
dα′,

has a similar smoothing property

(2.7) ‖[H,h]f‖Hs 6 C‖h‖Hs+s′‖f‖Hr−s′ , for s, s′ > 0 and r > 1/2.

The proof is found, for instance, in [33, Lemma 2.14].
The next step is to represent Wα as

(2.8) Wα · n̂ =
1

2
H(γα) + m · n̂ and Wα · t̂ = −

1

2
H(γθα) + m · t̂,

where

(2.9) Φ(m) = zαK[z]

(
γα

zα
−
γzαα

z2
α

)
+
zα

2i

[
H,

1

z2
α

](
γα −

γzαα

zα

)
.

Indeed, by differentiating W = 1
2H(γn̂)+(smooth remainder) and using n̂α = −θαt̂

one obtains

Wα =
1

2
H(γα)n̂ −

1

2
H(γθα)t̂ + (smooth remainder).

The detailed calculation is found in [2, Section 2.2].
Using the results above, finally, (2.1) and (2.4) are written as

∂tu =
S

2
∂2

αθ − gθ − u∂αu+ ∂−1
α (−r2(t, α)∂αθ + (H∂αu+ r1(t, α))2),(2.10a)

∂tθ = −u∂αθ +H∂αu+ r1(t, α),(2.10b)

where

r1(t, α) = −H(m · t̂) + m · n̂,(2.11)

r2(t, α) = Wt · n̂ + uWα · n̂ +
1

2
γθt +

1

2
γuθα.(2.12)

The detailed derivation is found in the proof of [3, Proposition 2.1].

2.3. Estimates for r1 and r2. This subsection concerns the estimates of the re-
mainder terms in the system (2.10). We state the main result.

Proposition 2.1. The remainders r1 and r2 in (2.11) and in (2.12), respectively,
satisfy

‖r1‖Hs 6 C(‖θ‖H2 , ‖θ‖Hs+n)(1 + ‖u‖H2−n) for s > 1 and n = 0, 1,(2.13)

‖r2‖Hs 6 C(‖θ‖Hs+2)(1 + ‖u‖Hs+1)2 for s > 1.(2.14)

Moreover, r2 may be written as r2 = H∂tu+ r3, where

‖r3‖Hs 6 C(‖θ‖Hs+1)(1 + ‖u‖Hs+1)2 for s > 1.(2.15)

Our result is related to that in [3], but with the important difference that here
S > 0 is held fixed whereas in [3] the estimates are uniform as S → 0.
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The remainder term r1 involves “smoothing” operators K[z] and [H, 1
z2

α
]. On

account of (2.6) and (2.7), it follows that

‖m‖Hs 6 C(‖θ‖Hs+n)‖γ‖H2−n for s > 1 and n = 0, 1.(2.16)

Then, it is immediate that

‖r1‖Hs 6 C(‖θ‖H2 , ‖θ‖Hs+n)‖γ‖H2−n for s > 1 and n = 0.1.(2.17)

We further estimate r1 in terms of u (instead of γ) and θ. Below is the basic
regularity property of γ.

Lemma 2.2. Let S > 0 be held fixed. For s > 1, if θ ∈ Hs+1/2, u ∈ Hs and
γ ∈ Hs−1 then γ ∈ Hs and

‖γ‖Hs 6 C‖u‖Hs + C(‖θ‖Hs+1/2).

Indeed, the definition of u and (2.8) yield that ∂αγ = 2∂αu+H(γ∂αθ)− 2m · t̂.
The assertion then follows from (2.16).

The estimate (2.13) finally follows by combining (2.17) with Lemma 2.2.
A consequence of (2.16) is that u = 1

2γ + (lower order terms), which is useful in
the future consideration.

Corollary 2.3. For s > 1, if θ ∈ Hs+1/2, u ∈ Hs and γ ∈ Hs−1 then U‖−W · t̂ ∈
Hs and

‖U‖ − W · t̂‖Hs 6 C(‖γ‖H1)‖u‖Hs−1 + C(‖θ‖Hs).

The assertion follows at once from ∂α(U‖ − W · t̂) = −Wα · t̂.

The estimates for r2 are more involved. Using (2.8) and (2.10b) we write

r2(t, α) = Wt · n̂ + u

(
1

2
H(γα) + m · n̂

)

+
1

2
γ(−uθα +Huα + r1(t, α)) +

1

2
γu∂αθ.

(2.18)

Much of our effort to estimate r2 goes to show that the principal part of Wt · n̂,
and subsequently, the principal part of r2 is H∂tu.

Lemma 2.4 (Calculation of Wt · n̂). For s > 1, we have

‖Wt · n̂‖Hs 6 C(‖θ‖Hs+2) + C(1 + ‖u‖Hs+1)2,(2.19)
∥∥∥Wt · n̂ −

1

2
H(γt)

∥∥∥
Hs

6 C(‖θ‖Hs+1) + C(1 + ‖u‖Hs+1)2.(2.20)
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Proof. By writing Wt in terms of γ and K[z], we have

Wt · n̂ =Re(izαΦ(Wt))

=Re
( 1

2π
zα(α)PV

∫ ∞

−∞

γt(α
′)

z(α) − z(α′)
dα′
)

− Re

(
1

2π
zα(α)PV

∫ ∞

−∞

γ(α′)
zt(α) − zt(α

′)

(z(α) − z(α′))2
dα′

)

=
1

2
H(γt) − Re

(
1

2π
PV

∫ ∞

−∞

γt(α
′)

zα(α′)

zα(α) − zα(α′)

α− α′
dα′

)

+ Re(izα(α)K[z]γt)

+ Re

(
1

2π
zα(α)PV

∫ ∞

−∞

γ(α′)

zα(α′)
zαt(α

′)
1

z(α) − z(α′)
dα′

)

− Re

(
1

2π
zα(α)PV

∫ ∞

−∞

∂α′

(
γ(α′)

zα(α′)

)
zt(α) − zt(α

′)

z(α) − z(α′)
dα′

)

:=
1

2
H(γt) +R1 +R2 +R3 +R4.

In the proof, we examine each Rj , j = 1, 2, 3, 4, separately.
In order to estimate R1, we simplify the expression by introducing

q3(α, α
′) =

zα(α) − zα(α′)

α− α′
=

∫ 1

0

zαα(τα + (1 − τ)α′)dτ.

It is standard (see [6], for instance) that

‖q3‖Hs−1
α

, ‖q3‖Hs−1

α′
6 C(‖θ‖Hs).

The Minkowski inequality and the Fubini theorem then apply to yield that

∫ ∞

−∞

|∂s
αR1(α)|2dα 6C

∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣
γt(α

′)

zα(α′)

∣∣∣∣
2

|∂s
αq3(α, α

′)|2dαdα′

6C(‖θ‖Hs+1)‖γt‖
2
L2 ,

whence

‖R1‖Hs 6 C(‖θ‖Hs+1)‖γt‖L2 .

The smoothing property of K[z] in (2.6) implies to yield a similar estimate

‖R2‖Hs 6 C(‖θ‖Hs+1)‖γt‖L2 .

Further, in Appendix B it is shown that

(2.21) ‖γt‖Hs 6 C(‖θ‖Hs+2) + C‖u‖Hs+1 for s > 0.

By the above estimate for s = 0, then, it follows that

‖R1‖Hs , ‖R2‖Hs 6 C(‖θ‖Hs+1) + C‖u‖Hs+1 for s > 1.

Next, upon writing W in terms of the Hilbert transform and K[z], we have

R3 = −Re

(
1

2
zα(α)H

(
γ

z2
α

zαt

)
+ izα(α)K[z]

(
γ

z2
α

zαt

))
,
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whence for s > 1 the following inequalities hold:

‖R3‖Hs 6 C(‖θ‖Hs)

(∥∥∥∥
γ

z2
α

zαt

∥∥∥∥
Hs

+ C(‖θ‖Hs+1)

∥∥∥∥
γ

z2
α

zαt

∥∥∥∥
L2

)

6 C(‖θ‖Hs+1)(‖γ‖Hs‖θt‖Hs + ‖γ‖H1‖θt‖L2)

6 C(‖θ‖Hs+1)(1 + ‖u‖Hs+1)2.

The last inequality uses (2.10b). Indeed,

‖θt‖Hs 6 C‖u‖Hs+1 + C(‖θ‖Hs+1) for s > 1.

In order to estimate R4, similarly, we write

R4 = Re
(1

2
zα[H, zt]

( 1

zα
∂α

( γ
zα

))

+ izαztK[z]

(
∂α

(
γ

zα

))
− zαK[z]

(
zt∂α

(
γ

zα

)))
.

We claim that

(2.22) ‖zt‖Hs 6 C‖u‖Hs + C(‖θ‖Hs+1) for s > 1.

To see this, we write

zt = Φ
(
(W · n̂)n̂ + (W · t̂)t̂ + (U‖ − W · t̂)t̂

)
.

By (2.6) and the result of Corollary 2.3 then follows

‖W‖Hs 6 C‖γ‖Hs + C(‖θ‖Hs+1)‖γ‖H1 ,

‖U‖ − W · t̂‖Hs 6 C(‖γ‖H1)‖u‖Hs−1 + C(‖θ‖Hs)

for s > 1, which proves the claim. With (2.22) immediately follows that

‖R4‖Hs 6 C(‖θ‖Hs+1)

(
‖zt‖Hs

∥∥∥∥∂α

(
γ

zα

)∥∥∥∥
H1

+

∥∥∥∥zt∂α

(
γ

zα

)∥∥∥∥
L2

)

6 C(‖θ‖Hs+1)(1 + ‖u‖H2 + ‖u‖Hs)2.

Finally, combining estimates for R1 through R4 yields that

‖R1 +R2 +R3 +R4‖Hs 6 C(‖θ‖Hs+1) + C(1 + ‖u‖Hs+1)2.

This together with (2.21) asserts (2.19) and (2.20). �

Returning to the estimate of r2, we estimate terms in (2.18) other than Wt · n̂
in the usual way by using (2.16), and therefore (2.14) follows. To establish (2.15),
we write r2 = H∂tu+ r3, where

r3 = ∂t(U
‖ − W · t̂) +R1 +R2 +R3 +R4.

Since

∂t∂α(U‖ − W · t̂) = −
1

2
H(γtθα) −

1

2
H(γθαt) + ∂t(m · t̂),

it follows (2.15). This completes the proof of Proposition 2.1.
We end this subsection with estimates of the time derivatives of K[z]f and

[H,h]f , which will be useful in the following section.
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Corollary 2.5. For s > 1 we have

‖∂t(K[z]f)‖Hs 6C(‖θ‖Hs+1)(1 + ‖u‖Hs+1 + ‖f‖Hs + ‖∂tf‖L2),(2.23)

‖∂t[H,h]f‖Hs 6‖∂th‖Hs‖f‖H1 + ‖h‖Hs+1‖∂tf‖L2(2.24)

for s > 1.

The proofs are in Appendix B.

Remark 2.6 (The dispersion relation). We linearize (2.10) about a flat equilibrium
u = 0 and θ = 0 to obtain {

∂tu = S
2 ∂

2
αθ − gθ,

∂tθ = H∂αu.

By considering the plane-wave solution u = exp ik(α − c(k)t), we arrive at the
dispersion relation

c(k) =

(
S

2
|k| +

g

|k|

)1/2
k

|k|
,

where c(k) is the phase velocity corresponding to the wave number k; ω = c(k)k is
the frequency.

Colloquially, when S > 0, waves of high frequencies (short waves) propagate
faster than waves of low frequencies (long waves). Broadening out the wave profile,
it in consequence induces a certain “smoothing effect”. When S = 0, on the
other hand, such a smoothing effect is not expected. Alternatively put, the above
dispersion relation indicates that the linear system of surface water waves exhibits
a regularizing effect when the effects of surface tension are accounted for.

The present purpose is to quantitatively analyze such a smoothing effect in terms
of integrability under the mixed Sobolev norms.

3. Reformulation: the water-wave problem as a dispersive equation

The formulation of the water-wave problem under surface tension ultimately
takes the form of a second-order in time nonlinear dispersive equation, coupled
with a transport-type equation.

When both the effects of surface tension and gravity are present, S > 0 and
g > 0, in (2.10) the surface-tension term S

2 ∂
2
αθ is of higher order compared to the

gravity term gθ and it dominates the linear dynamics. For simplicity of exposition,
thus, the effects of gravity are neglected and further the coefficient of the surface
tension term is normalized so that

g = 0 and
S

2
= 1.

3.1. Reduction to the dispersive equation. By differentiating (2.10a) in the
t-variable we obtain the second-order in time nonlinear dispersive equation

∂2
t u−H∂3

αu = −2u∂α∂tu− u2∂2
αu− ∂αθ∂

2
αu

− 3∂αu∂tu− 3u(∂αu)
2 + ∂2

αr1 + 2u∂αr4 + ur4 + r5.

Here, r1 is defined in (2.11), and

r4 =∂−1
α (r2(t, α)∂αθ + (H∂αu+ r1(t, α))2),(3.1)

r5 =∂−1
α ∂t(−H(∂tu)∂αθ + r3(t, α)∂αθ + (H∂αu+ r1(t, α))2).(3.2)
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By (2.13) and (2.14) it follows that

‖r4‖Hs 6 C(‖θ‖Hs+1)(1 + ‖u‖Hs)2 for s > 1.(3.3)

Further, the leading term of ∂−1
α ∂t(−H(∂tu)∂αθ) cancels -∂αθ∂

2
αu so that the

highest-order nonlinear terms in the above equation do not involve θ explicitly.
Indeed, successive substitutions of ∂tu and ∂tθ by (2.10) result in that

r5 = − ∂αθH∂t(∂
2
αθ − u∂αu+ r4) − ∂t∂αθH(∂tu)

+ ∂tr3∂αθ + r3∂t∂αθ + 2(H∂αu+ r1)(H∂t∂αu+ ∂tr1)

=∂αθ∂
2
αu− ∂−1

α (∂2
αθ∂

2
αu)

− ∂−1
α

(
(∂αθ)H(−2u∂α∂tu− u2∂2

αu− ∂αθ∂
2
αu

− 3∂αu∂tu− 3u∂2
αu+ ∂tr4 − u∂αr4 − 2r4∂αu)

)

+ ∂−1
α (r3 −H∂tu)(H∂

2
αu− ∂αθ∂αu− u∂tu− u2∂αu+ ∂αr1 + ur4)

+ ∂−1
α (∂αθ∂tr3) + 2∂−1

α (H∂αu+ r1)(H∂α∂tu+ ∂tr1).

Therefore, we arrive at the following equation

∂2
t u−H∂3

αu = −2u∂α∂tu− u2∂2
αu,+R(u, ∂tu, θ).

The remainder is given as

(3.4) R(u, ∂tu, θ) = ∂2
αr1 + u∂αr4 + 2ur4 − ∂−1

α (∂2
αu(∂tu+ u∂αu− r4)) + r6,

where

∂αr6 = − (∂αθ)H(−2u∂α∂tu− u2∂2
αu− ∂αθ∂

2
αu− 3∂αu∂tu

− 3u∂2
αu+ ∂tr4 − u∂αr4 − 2r4∂αu)

+ (r3 −H∂tu)(H∂
2
αu− ∂αθ∂αu− u∂tu− u2∂αu+ ∂αr1 + ur4)

+ ∂αθ∂tr3 + 2(H∂αu+ r1)(H∂α∂tu+ ∂tr1).

(3.5)

The remainders r1, r4 and r6 involve θ, which incidentally is determined by
solving (2.10b) when u is prescribed. As such, R may be thought of depending u
and ∂tu only. In this sense, we write it as R(u, ∂tu). The remainder term R(u, ∂tu)
is of lower order compared to u∂α∂tu and u2∂2

αu. More precisely, in the following
subsection we will show that

‖R(u, ∂tu)‖Hs 6 C(‖u‖Hs+1 , ‖∂tu‖Hs)(3.6)

for s > 1.
The water waves under surface tension is finally viewed as the nonlinear disper-

sive equation

(3.7) ∂2
t u−H∂3

αu = −2u∂α∂tu− u2∂2
αu+R(u, ∂tu),

where R(u, ∂tu), defined in (3.4), is determined with the help of the transport-type
equation

(3.8) ∂tθ = −u∂αθ +H∂αu+ r1(t, α).

Nothing is lost in deriving (3.7) (coupled with (3.8)) from (2.10). To see this,
we write (3.7) as the first-order in time system as

{
∂tu+ u∂αu = v,

∂tv + u∂αv = H∂3
αu+R(u, ∂tu) − ∂tu∂αu− u∂2

αu.
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Comparing the first equation of the above system with (2.10) dictates that the first
equation of the above is equivalent to (2.10a) if we set v = ∂2

αθ + r4. It is then
straightforward to see that the second equation of the above system is equivalent
to (2.10b) up to constants of integration, which are zero under the assumption that
the wave profile and its derivatives vanish at infinity.

Proposition 3.1. The equation (3.7), where R(u, ∂tu) is defined by (3.4), is equiv-
alent to (2.10).

Similarly, the initial value problem of (3.7) prescribed with the initial conditions
u(0, α) = u0(α) and ∂tu(0, α) = u1(α) is equivalent to the initial value problem of
(2.10) with the initial conditions u(0, α) = u0(0) and θ(0, α) = θ0(α) provided that
the compatibility condition

u1 = ∂2
αθ0 − u0∂αu0 + ∂−1

α (−r2(0, α)∂αθ0 + (H∂αu0 + r1(0, α))2)

holds true.
The transport-type equation (3.8) is to help to determine certain terms in the

expression of R in (3.7) in terms of u and ∂tu only, and we only need (3.6) in the
forthcoming analysis.

As explained in Section 1, a useful feature of the formulation (3.7) is that its dis-
persive character is visible in the linear part. Moreover, the highest-order nonlinear
terms in (3.7) do not involve θ explicitly.

Another useful feature of (3.7) is that it suggests a natural expression for high
energy of the nonlinear problem. See Section 6.

While (3.7) is dispersive, its nonlinearity is rather severe, and as such in the
study of the dispersive property for (3.7) we must take its nonlinearity into account.
Indeed, we view (3.7) as

∂2
t u−H∂3

αu+ 2u∂α∂tu+ u2∂2
αu = R(u, ∂tu).

That is, we view 2u∂α∂tu and u2∂2
αu as “linear” components of the equation, but

with variable coefficients which happen to depend on the solution itself. Then, we
make efforts to establish the dispersive property for the linear operator

∂2
t −H∂3

α + 2V (t, α)∂t∂α + V 2(t, α)∂2
α

for a general class of functions for V (t, α).

3.2. Estimates for the remainder. The proof of (3.6) involves estimates of var-
ious remainder terms in (3.4) in terms of u and ∂tu only (instead of θ). To this
end, we estimate θ in terms of u and ∂tu once and for good.

Lemma 3.2. For s > 0 it follows that

(3.9) ‖θ‖Hs+2 6 C(‖u‖H2)(1 + ‖∂tu‖Hs + ‖u‖Hs+1)2.

The proof is given in Appendix B. With the use of (3.9), we obtain the estimates
for the various remainders in terms of u and ∂tu as

‖r1‖Hs 6 C(‖u‖H2 , ‖u‖Hs−1 , ‖∂tu‖Hs−2),

‖r2‖Hs 6 C(‖u‖Hs+1 , ‖∂tu‖Hs),

‖r3‖Hs 6 C(‖u‖Hs+1 , ‖∂tu‖Hs−1),

‖r4‖Hs 6 C(‖u‖H2 , ‖u‖Hs , ‖∂tu‖Hs−1),

where s > 1. We also estimate for ∂tr1, ∂tr2, (and in turn, ∂tr3).
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Lemma 3.3. For s > 1,

‖∂tr1‖Hs 6 C(‖∂tu‖H1 , ‖u‖Hs+1, ‖∂tu‖Hs−1),(3.10)

‖∂tr2‖Hs 6 C(‖u‖Hs+2 , ‖∂tu‖Hs+1),(3.11)

‖∂tr3‖Hs 6 C(‖u‖Hs+2 , ‖∂tu‖Hs+1),(3.12)

‖∂tr4‖Hs 6 C(‖u‖Hs+1 , ‖∂tu‖Hs).(3.13)

The proofs of (3.10) and (3.12) are given in Appendix B. Therefore,

‖r6‖Hs 6 C(‖u‖Hs+1 , ‖∂tu‖Hs),

and (3.6) follows.

4. Construction of the dyadic frequency parametrix

This section contains the detailed construction of semiclassical parametrices for
the linearized water-wave equation.

4.1. The oscillatory-integral ansatz. Let us invoke the standard notationsDt =
−i∂t and Dα = −i∂α and let us denote

(4.1) P = D2
t − iHD3

α + 2V (t, α)DαDt + V 2(t, α)D2
α,

where the coefficient function V ∈ H l([0, T ])Hk(R) is given for some T > 0 fixed
and for l, k > 0 sufficiently large. We assume that V is real-valued, and we tacitly
identify V with an H l

tH
k
α extension supported in a slightly larger set in t.

The operator P is obtained by replacing the nonlinear coefficient u in

∂2
t −H∂3

α + 2u∂α∂t + u2∂2
α,

which defines the nonlinear equation (3.7), by a variable coefficient V (t, α), and
thus it is related to the linearized equation of (3.7).

Let the frequency cut-off function ψ0 ∈ C∞(R) satisfy ψ0(ξ) ≡ 1 for |ξ| > M + 1
and ψ0(ξ) ≡ 0 for |ξ| 6 M for some M > 0 large to be fixed later. Let the dyadic
frequency cut-off function ψ ∈ C∞(R) satisfy ψ(ξ) ≡ 1 on ξ ∈ [2−1/4, 21/4], be
supported on [2−3/4, 23/4], and

∑

j>j0

ψ(2−j|ξ|) ≡ 1 for |ξ| > M + 1,

where 2j0 > M , and let

ψj(ξ) = ψ(2−j |ξ|).

That is, ψj(ξ) = 1 on ξ ∈ [2j−1/4, 2j+1/4] and it is supported on [2j−3/4, 2j+3/4]. A
function f is said to satisfy the dyadic-frequency localization if

(4.2) ψj(Dα)f = f.

Let j > j0 be held fixed throughout this section, where 2j0 > M . Let uj
0 ∈ L2(R)

and uj
1 ∈ H−3/2(R) satisfy the dyadic frequency localization (4.2). Our goal is to

construct a dyadic-frequency parametrix to Pu = 0 with the frequency-localized
initial data uj

n’s, n = 0, 1, for frequencies comparable to 2j and on a time scale
comparable to 2−j/2. More precisely, we shall find a function wj approximately
solving {

Pu = 0 in [0, 2−j/2T ]t × Rα,

u(0, α) = uj
0(α) and ∂tu(0, α) = uj

1(α)
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(with errors bounded in Sobolev spaces) for the frequency interval 2j−2 6 |ξ| 6

2j+2. Here, we only consider the time interval t ∈ [0, 2−j/2T ], although the results
apply on any semiclassical time interval of length 2−j/2T . The over all dependence
on the coefficient function V is in the fixed time interval t ∈ [0, T ]. For simplicity
of exposition, we often write |ξ| ∼ 2j to mean the dyadic frequency band 2j−2 6

|ξ| 6 2j+2.
Motivated by the oscillatory integral representation in (1.10) for the zero-coefficient

case, we make the ansatz

(4.3) wj(t, α) =
1

2π

∫∫
e−iβξ(eiϕj,+(t,α,ξ)f j,+(β) + eiϕj,−(t,α,ξ)f j,−(β))dβ dξ

for the (leading-order) parametrix. Here, ϕj,± and f j,± satisfy the dyadic frequency
localization (4.2). In order to satisfy the initial conditions, we insist that

ϕj,±(0, α, ξ) = αξ.

The phase functions ϕj,± are taken in the class of rough symbols, which is described
below.

Symbol classes. For k > 0 and m ∈ R, denoted by Sm
k the class of rough symbols

is defined to be the set

Sm
k = {a(α, ξ) ∈ 〈ξ〉

m
W k,∞

α (R)C∞
ξ (R) : |∂k′

α ∂
m′

ξ a| 6 Ck′,m′ 〈ξ〉
m−m′

for k′ 6 k},

where 〈ξ〉 = (1+ξ2)1/2. Symbols in Sm
k are not necessarily smooth in the α-variable

(as opposed to classical symbols), but they share in common with classical symbols
decay properties in the ξ-variable. We write Sk for S0

k when there is no ambiguity.
The quantization of a symbol a in Sm

k is the usual (left) quantization. It is
initially defined as an operator on Schwartz functions f as

Op (a)(α,D)f(α) =
1

2π

∫∫
a(α, ξ)ei(α−β)ξf(β) dβ dξ,

and then extended in the distributional sense. We write Ψm
k for the corresponding

space of quantized operators.
The main property of the symbol classes Sm

k is the L2 boundedness.

Lemma 4.1. If a ∈ S0
k for k > 0 sufficiently large, then Op (a) extends to a

bounded linear operator

Op (a) : L2(R) → L2(R)

with the operator norm depending on at most k derivatives of a(α, ξ) measured in
the L∞ norm.

The proof is exactly the same as in the setting of smooth symbols, keeping track
of how many derivatives are used.

Finally, byW l,∞
T Sm

k we denote the spaceW l,∞
t ([0, T ])Sm

k , the space ofW l,∞([0, T ])
functions taking values in rough symbols in Sm

k .

The main result of this section is the existence of the dyadic-frequency parametrix
of the form in (4.3) with certain properties of the phase functions ϕ±.

Proposition 4.2 (Existence of the leading-order parametrix). Let V ∈ H l([0, T ])Hk(R)
for some T > 0 and l, k ≫ 1 sufficiently large and let j > j0 > 1, where 2j0 > M is
sufficiently large.
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If (uj
0, u

j
1) ∈ L2(R) × H−3/2(R) satisfy the dyadic-frequency localization (4.2),

then there exist the phase functions

ϕj,±(t, α, ξ) = αξ ± |ξ|3/2(t+ ϑj,±(t, α, ξ))

for 0 6 t 6 2−j/2T and 2j−2 6 |ξ| 6 2j+2 with ϑ± ∈ W l,∞
2−j/2T

S0
k , and f± which

satisfy the dyadic-frequency localization (4.2) and the estimate

(4.4) ‖f±‖L2
α

6 C1(‖u
j
0‖L2

α
+ ‖uj

1‖H
−3/2
α

),

so that wj defined by (4.3) satisfies
{
Pw = E in [0, 2−j/2T ]t × Rα,

w(0, α) = uj
0(α) and ∂tw(0, α) = uj

1(α)

with the pointwise error estimate

(4.5) ‖E(t)‖L2
α

6 C2(‖u
j
0‖H1 + ‖uj

1‖H−1/2), 0 6 t 6 2−j/2T.

Here, C1, C2 > 0 are polynomials in ‖V ‖Hl′ ([0,T ])Hk′ (R) for some values of l′ and k′

in the ranges 0 6 l′ 6 l, 0 6 k′ 6 k.

Remark 4.3. As we will see later, on the short time scales, the oscillatory integral
defined by ϕj,± preserves dyadic localization (see Lemma 4.8). In particular, multi-

plying the integral by 2js, any estimate we prove on wj,± in Hs′

α has an immediate

analogue in Hs′+s
α .

At first glance, the error E looks bad, for it requires in (4.5) one more derivative
of the initial data. However, the error is in the inhomogeneity, and as such it only
appears when we try to measure the difference between the actual solution and
the parametrix. The energy estimates (5.4) associated to the linear inhomogeneous
problem with zero initial data, on the other hand, control 3/2 more derivatives of
the solution as compared to the inhomogeneity. Hence, E is bad but controllable.

Remark 4.4 (Remark on the ansatz). We explain why we take (4.3) as our
parametrix.

In order to solve Pu = 0 with the initial data localized to high frequencies, one
would try a fine parametrix with amplitudes A± as

w(t, α) =
1

2π

∫∫
e−iβξ(eiϕ+(t,α,ξ)A+(t, α, ξ)f+(β)

+ eiϕ−(t,α,ξ)A−(t, α, ξ)f−(β)) dβ dξ.

We require that ϕ± satisfy ϕ±(0, α, ξ) = αξ and that A±(0, α, ξ) and A±
t (0, α, ξ)

are elliptic, and as such the recovery of the initial conditions entails solving for f±

a system of elliptic pseudodifferential equations.
Applying Pu = 0 to our ansatz, we group terms according to their orders in

ξ. The worst terms, produced when derivatives fall on the phase functions, make
a first-order nonlinear equation for ϕ±, commonly referred to as the eikonal or
Hamilton-Jacobi equation. The other terms form a linear equation, commonly
referred to as the transport equation, for A± with coefficients depending on ϕ± and
its derivatives.

The usual approach to solving the Hamilton-Jacobi equation is through the tech-
nique of generating functions for the associated Hamiltonian. The equation is,
however, neither homogeneous nor polyhomogeneous (in ϕ±

t and ϕ±
α ), and as such
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solutions are found on a time scale comparable to |ξ|−1/2. See Lemma 4.5. We
thus construct phase functions (and amplitudes) for each dyadic frequency band
|ξ| ∼ 2j on a time interval comparable to 2−j/2.

With ϕ± determined, the usual approach to solving the transport equation is to
expand A± as a formal series as

A±(t, α, ξ) =
∑

n>0

A±,n(t, α, ξ)ξ−n/2

and determining A±,n recursively. In practice, one takes a finite number of terms
in the formal series and estimates the resulting error. In our application, we only
take the very first term, A±,0 ≡ 1, in the amplitude expansion. As a result, we
have (4.3) as our leading-order parametrix.

The full amplitude expansion can be computed assuming more regularity on V ,
but it results in polynomial growth of the lower order terms in the amplitude.

We now construct the parametrix. Let us fix j > j0 > 1, where 2j0 > M is
sufficiently large. Our parametrix as well as the phase function depend on the
dyadic-frequency band 2j−2 6 |ξ| 6 2j+2. However, we simply write w and ϕ±,
respectively. To avoid excessive notation, we furthermore consider only the term
with the superscript + and write ϕ = ϕj,+, f = f j,+, and

(4.6) w(t, α) =
1

2π

∫∫
e−iβξeiϕ(t,α,ξ)f(β) dβ dξ.

The construction is completely analogous for the term with the superscript −. We
further assume ξ > 0. After our construction is complete, it will be justified that
the parametrix preserves the sets 2j−2 6 ξ 6 2j+2 and −2j+2 6 ξ 6 −2j−2. Thus,
we tacitly assume ξ > 0 and 2j−2 6 ξ 6 2j+2 throughout our construction.

We compute Pw using the ansatz (4.3). It is straightforward that

D2
tw(t, α) =

1

2π

∫∫
e−iβξeiϕ(ϕ2

t − iϕtt)f(β)dβdξ,(4.7)

D2
αw(t, α) =

1

2π

∫∫
e−iβξeiϕ(ϕ2

α − iϕαα)f(β)dβdξ,(4.8)

DtDαw(t, α) =
1

2π

∫∫
e−iβξeiϕ(ϕαϕt − iϕαt)f(β)dβdξ.(4.9)

We recall that the subscripts mean partial differentiation. In Appendix C we show
that iHD3

αw = −H∂3
αw can be expressed in a similar fashion as

iHD3
αw(t, α)

=
1

2π

∫∫
e−iβξeiϕ(t,α,ξ)

(
|Dα|

3 + 3|Dα|
2|ϕα| + 3|Dα||ϕα|

2 + |ϕα|
3

+ 3i(|Dα| + |ϕα|)ϕαα − ϕααα

)
f(β)dβdξ.

(4.10)

For simplicity of exposition, in what follows, we take Dα and ϕα to be positive
and avoid the absolute value and the sign. Again, this is justified in Lemma 4.8 by
showing that negative frequencies and positive frequencies do not interfere.
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Applying Pw = 0 to the results in (4.7)-(4.10), we obtain the following equation
for ϕ:

ϕ2
t − iϕtt + 2V (t, α)(ϕαϕt − iϕtα − iϕα∂t − ∂t∂α)

+ V 2(t, α)(ϕ2
α − iϕαα) − (ϕ3

α − 3iϕαϕαα − ϕααα) = 0.
(4.11)

In solving the above equation, we only consider terms that are produced when
first-order derivatives fall on the phase function only. They make a nonlinear equa-
tion for ϕ, commonly referred to as the eikonal or Hamilton-Jacobi equation. For
other applications, a lower order error may be required. This can be brought about
by considering a linear transport equation for amplitudes as well; see Remark 4.4.

4.2. Construction of the phase functions. This subsection concerns solving
the nonlinear Hamilton-Jacobi equation and determining the phase functions.

Lemma 4.5 (The Hamilton-Jacobi equation). Given a coefficient function V in
a bounded subset of H l([0, T ])Hk(R) for some T > 0 and for l, k ≫ 1 sufficiently
large, and given j > j0 with 2j0 > M > 0 sufficiently large, the following equation
(4.12)
ϕ2

t (t, α, ξ) + 2V (t, α)ϕt(t, α, ξ)ϕα(t, α, ξ) + V 2(t, α)ϕ2
α(t, α, ξ) − ϕ3

α(t, α, ξ) = 0

with the initial condition

ϕ(0, α, ξ) = αξ

has two solutions ϕj,± for 2j−2 6 ξ 6 2j+2 on the time interval 0 6 t 6 2−j/2T .
Moreover,

(4.13) ϕj,±(t, α, ξ) = αξ ± ξ3/2(t+ ϑj,±(t, α, ξ))

where

ϑj,±(t, α, ξ) = Ø(t(|V (t, α)| + |V (t, α)|2)) ∈W l,∞

2−j/2T
S0

k

satisfies

|∂m′

ξ ∂k′

α ϑ
±| 6 Cm′2−j/2 〈ξ〉

−m′

for k′ 6 k − 1.

The derivatives of ϕj,± have the following properties

ϕj,±
α (t, α, ξ) =ξ ± ξ3/2ϑ±α (t, α, ξ) = ξ(1 + Ø(t)) ∈W l,∞

2−j/2T
S1

k−1,

(4.14)

ϕj,±
t (t, α, ξ) = ± ξ3/2(1 + ϑ±t (t, α, ξ)) = ξ3/2(1 + O(ξ−1/2)) ∈W l,∞

2−j/2T
S

3/2
k−1

(4.15)

for 2j−2 6 ξ 6 2j+2. That is, ϕj,±
α is of order ξ on the dyadic frequency band

2j−2 6 ξ 6 2j+2 and on the small frequency-dependent time scale 0 6 t 6 2−j/2T
and ϕj,±

t is of order ξ3/2.

The class of rough symbols Sm
k is defined in the previous subsection.

We recall that only ϕ = ϕj,+ is considered in writing (4.11). That enforces ξ be
positive, which is tacitly assumed in this subsection and the following one.

Remark 4.6. A few comments are needed about Lemma 4.5.
First, the result applies equally well on any time interval I of length 2−j/2T

which is in the domain of V . The initial conditions for ϕ± are then prescribed at
the beginning of I rather than at 0.
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Second, since (4.12) is quadratic in ϕt, there are two phases ϕ±. This may
be thought of as an analog of incoming/outgoing solutions of the wave equation,
although we do not exercise that level of sophistication here. We write the two
branches of (4.12) as

(4.16) ϕ±
t = −V (t, α)ϕ±

α ± (ϕ±
α )3/2,

and we will work on the “factorized” Hamilton-Jacobi equation in sequel.
A standard method of existence for a Hamilton-Jacobi equation of the kind of

(4.16) would be to construct ϕ± as a generating function of a symplectic transforma-
tion which arises as a solution of the corresponding system of ordinary differential
equations {

α̇ = −V (t, α) + 3
2η

1/2,

η̇ = Vα(t, α)η

with the initial condition

α(0) = β, η(0) = ζ

for each β, ζ ∈ R. Here and elsewhere, the dot above a variable denotes the differ-
entiation with respect to the t-variable. This system has a solution only for a time
scale comparable to ξ−1/2, which is what we are after, but we desire a finer control.

The idea lies in that (4.16) is sought of as perturbation of ϕ±
t = (ϕ±

α )3/2 under
a lower-order term. With the initial condition ϕ(0, α, ξ) = αξ the solutions of
this equation are found explicitly to be ϕ0(t, α, ξ) = αξ ± tξ3/2. Then, it seems
reasonable to find solutions to (4.16) as a perturbation of ϕ0. The added term in
(4.16), while being of lower order, destroys the homogeneity of the equation and it
causes serious difficulties in the application of the Hamilton-Jacobi theory.

Proof. For simplicity of exposition, we will suppress the dependence of the phase
on dyadic frequencies ξ ∼ 2j and we will prove for the + sign only. Let ϕ = ϕj,+

denote the solution; the proof for the − sign is identical.
Let us consider the initial value problem

(4.17) ϕt = −V (t, α)ϕα + ϕ3/2
α , ϕ(0, α, ξ) = αξ,

where ϕ is a function of t, α with a parameter ξ. As is remarked above, we construct
the solution as a perturbation of

ϕ0(t, α, ξ) = αξ + tξ3/2,

which is a solution to a homogeneous equation ϕt = ϕ
3/2
α with the same initial

condition. Specifically, we make the ansatz

ϕ(t, α, ξ) = αξ + ξ3/2(t+ ϑ(t, α, ξ)),

where

ϑ(t, α, ξ) = ϑ̃(t, 2−j/2α, ξ) and ϑ̃ ∈ Sk.

Substituting our ansatz for ϕ into (4.17) yields the following initial value problem

(4.18)

{
ϑ̃t = −ξ−1/2V (t, 2j/2α)(1 + 2−j/2ξ1/2ϑ̃α) + (1 + 2−j/2ξ1/2ϑ̃α)3/2 − 1,

ϑ̃(0, α, ξ) = 0

where ϑ̃ is evaluated at (t, α, ξ). The corresponding Hamiltonian is

q(t, α, η) = −ξ−1/2V (t, 2j/2α)(1 + 2−j/2ξ1/2η) + (1 + 2−j/2ξ1/2η)3/2 − 1



STRICHARTZ ESTIMATE FOR THE WATER-WAVE PROBLEM 27

and the corresponding Hamiltonian system is




α̇ =
∂q

∂η
= −2−j/2V (t, 2j/2α) + 3

22−j/2ξ1/2(1 + 2−j/2ξ1/2η)1/2,

η̇ = −
∂q

∂α
= 2j/2ξ−1/2Vα(t, 2j/2α)(1 + 2−j/2ξ1/2η)

(4.19a)

with the initial conditions

α(0) = β and η(0) = ζ,(4.19b)

where β, ζ ∈ R and ζ ∈ [−ǫ, ǫ] for some ǫ > 0. We recall that the dot above a
variable denotes the differentiation with respect to the t-variable. Since under the
assumption of ξ ∼ 2j the right sides of (4.19a) satisfy the Lipschitz condition with
respect to α and η with the Lipschitz constants comparable to 2j/2, it is standard
from the theory of ordinary differential equations that a unique solution of (4.19)
exists on the time interval 0 6 t 6 2−j/2T for the range of the initial conditions
given above, and the solution is at least as smooth as the right hand side.

We write α = αt(β, ζ), η = ηt(β, ζ), and κt(β, ζ) = (α, η) for the symplectomor-
phism given by the solution of (4.19). Let ω be the 1-form

ω = −τdt+ ηdα+ βdζ,

and let Λ be the surface

Λ = {(t, q(t, κt(β, ζ)), κt(β, ζ), β, ζ) : (t, β, ζ) ∈ [0, 2−j/2T ]t × Rβ × [−ǫ, ǫ]ζ}.

Since Λ is a graph it is an embedded three-dimensional submanifold of T ∗R3. Since
dω is a symplectic structure on T ∗R3 and since the fact that κt is symplectic
implies dω|Λ = 0, additionally, Λ is a Lagrangian submanifold. Such an embedded
Lagrangian submanifold Λ can be written as the graph of a closed 1-form, say
σ(t, β, ζ). Since R3 is simply connected, the Poincaré lemma implies that there

exists ϑ̃(t, β, ζ) such that

dϑ̃ = σ.

We will prove in Appendix C that the mapping

(4.20) β 7→ αt(β, ζ)

is invertible for each ζ ∈ [−ǫ, ǫ] and 0 6 t 6 2−j/2T , and we write β = β(α, ζ).

Comparing ω with dϑ̃ written in the (t, α, ζ) coordinates, we find that

dϑ̃ = −τdt+ ηdα+ βdζ.

This implies

∂ϑ̃

∂ζ
= β(α, ζ),

∂ϑ̃

∂α
= η(β(α, ζ), ζ), and

∂ϑ̃

∂t
= q(t, α, η),

which, in turn, implies for ζ ∈ [−ǫ, ǫ],

ϑ̃t(t, α, ζ) = −ξ−1/2V (t, 2j/2α)(1 + 2−j/2ξ1/2ϑ̃α(t, α, ζ))

+ (1 + 2−j/2ξ1/2ϑ̃α)3/2(t, α, η) − 1.

Therefore, (4.17) follows once we substitute for ϑ and ϕ.
The estimates (4.14) and (4.15) follow easily by differentiating the relations

(4.17) and (4.19), using the timescale 0 6 t 6 2−j/2T and substituting ϑ(t, α, ξ) =

ϑ̃(t, 2−j/2α, ξ). This completes the proof. �
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4.3. Finishing up the construction: recovery of initial conditions. It re-
mains to determine f j,± to satisfy the initial conditions

wj(0, α) = uj
0(α), Dtw

j(0, α) = −iuj
1(α).

Since ϕj,±(0, α, ξ) = αξ it follows that

wj(0, α) =
1

2π

∫∫
ei(α−β)ξ(f j,+(β) + f j,−(β))dβ dξ = f j,+(α) + f j,−(α),

Dtw
j(0, α) =

1

2π

∫∫
ei(α−β)ξ(ϕj,+

t (0, α, ξ)f j,+(β) + ϕj,−
t (0, α, ξ)f j,−(β))dβ dξ

=: Aj,+
1 (α,Dα)f j,+ +Aj,−

1 (α,Dα)f j,−.

Thus, we are led to the elliptic system for f j,± as
{
f j,+ + f j,− = uj

0,

Aj,+
1 (α,Dα)f j,+ +Aj,−

1 (α,Dα)f j,− = −iuj
1.

The results of Lemma 4.5 state that

ϕj,±
t (0, α, ξ) = ±ξ3/2(1 + Ø(ξ−1/2)) ∈ S

3/2
k−1

behave like the classical symbol ±ξ3/2. Consequently, Aj,±
1 are elliptic pseduod-

ifferential operators, which are approximately ±D
3/2
α , and they have approximate

inverses, denoted by (Aj,±
1 )−1. We only pause here to note that the existence of

approximate inverses here means the existence of honest inverses with the same es-
timates as the approximate inverse maps. Indeed, the error involved in our setting
is Ø(ξ−1/2), which, in the dyadic-frequency band ξ ∼ 2j is Ø(2−j/2). Hence the
approximate inverse mapping has an error which is bounded by Ø(2−j/2) on the
appropriate Hilbert space and the honest inverse can be obtained by the natural
Neumann series.

Therefore, the operators 1− (Aj,−
1 )−1Aj,+

1 and 1− (Aj,+
1 )−1Aj,−

1 are bounded on
L2 and invertible with L2 bounded inverses. We set

f j,+ =(1 − (Aj,−
1 )−1Aj,+

1 )−1(uj
0 + i(Aj,−

1 )−1uj
1),

f j,− =(1 − (Aj,+
1 )−1Aj,−

1 )−1(uj
0 + i(Aj,+

1 )−1uj
1).

Then, (4.4) follows immediately.
This completes the construction of the parametrix and the proof of Proposition

4.2.

4.4. The Fourier integral operators. We establish the basic boundedness prop-
erty and propagation of singularities for our leading-order parametrix. Let us first
establish a basic L2-boundedness result.

Lemma 4.7. Let F (t) for 0 6 t 6 2−j/2T be defined, initially on the Schwartz
class, by the formula

F (t)f(α) =

∫∫
e−iβξeiϕj(t,α,ξ)f(β) dβdξ

where ϕj is either of ϕj,± and is constructed in Lemma 4.5. Then F (t) extends to
a bounded linear operator L2

α → L2
α and

‖F (t)‖L2
α→L2

α
6 1 + Ø(t).
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The proof of the lemma shows that F (t) is almost unitarity point-wise in t. If
ϕ± have been constructed on an interval of length 2−j/2T in the domain of V (t, α),
then the result holds equally true for each point on the interval.

Proof. We will prove the assertion for ϕj = ϕj,+, the proof for ϕj,− being analogous.
Further, We will prove the estimate for F ∗ rather than F , since some nontrivial
cancellation makes the proof much easier. Indeed, we will show that F ∗(t) =
F−1A(α, 2−j/2Dα) for a pseudodifferential operator A with rough symbol, A =
1 + Ø(t). Since

‖F ∗(t)f‖2
L2

α
= 〈F (t)F ∗(t)f, f〉 6 ‖F (t)F ∗(t)f‖L2

α
‖f‖L2

α
,

it suffices to prove the assertion for

(4.21) F (t)F ∗(t)f(α) =

∫∫
ei(ϕj(t,α,ξ)−ϕj(t,α′,ξ))f(α′)dα′dξ.

Recalling the results of ϕ from Lemma 4.5, we have

ϕj(t, α, ξ) − ϕj(t, α′, ξ) = (α− α′)ξ + ξ3/2(ϑj(t, α, ξ) − ϑj(t, α′, ξ))

= (α− α′)ξ(1 + ϑ̃j(t, α, α′, ξ))

where ϑ̃j = Ø(t) ∈W l,∞

2−j/2T
S0

k−1 satisfies

∂k1

α ∂k2

α′ ϑ̃
j = 2−j(k1+k2)/2Ø(t)

for k1 + k2 6 k− 1. We perform the change of variables η = ξ(1 + ϑ̃j(t, α, α′, ξ)) in
(4.21) to obtain

F (t)F ∗(t)f(α) =

∫∫
ei(α−α′)ξA(t, α, α′, ξ)f(α′)dα′dξ,

where a symbol

A(t, α, α′, ξ) = 1 + Ø(t) ∈ W l,∞

2−j/2T
S0

k−1

satisfies
∂k1

α ∂k2

α′A = 2−j(k1+k2)/2Ø(t) for 1 6 k1 + k2 6 k − 1.

Then the Calderón-Vaillancourt theorem implies the assertion. �

The following lemma regarding the Fourier integral operator related to (4.3)
shows how to pass derivatives through the oscillatory integral, and it also justifies
localizing to positive or negative ξ.

Lemma 4.8. Let m ∈ R, l > 2, k > 3 and let j > j0 > 1 with 2j0 > M sufficiently

large. Let ϕj,±(t, α, ξ) ∈W l,∞
2−j/2T

S
3/2
k be as constructed in Lemma 4.5.

Suppose that B(α, ξ) ∈ Ψm
k′ , where k′ > k + 4. Then, for any f ∈ Hm

α (R)
satisfying the dyadic frequency localization (4.2) the following

B(α,Dα)

∫∫
e−iβξeiϕj,±(t,α,ξ)f(β) dβdξ

=

∫∫
e−iβξeiϕj,±(t,α,ξ)2jmB̃(t, α, ξ)f(β) dβdξ + (Ef)(t, α)

holds, where B̃ ∈ W l−1,∞
2−j/2T

S0
k−1 is supported in c′02

j 6 ξ 6 c′12
j for some 0 < c′0 < c′1

independent of j, and Ef satisfies the dyadic-frequency localization (4.2) and Ef
enjoys the estimate

‖Ef‖L2([0,2−j/2T ])L2
α

6 C‖f‖Hm−1
α

.
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Furthermore, if ψ̃j(Dα) ∈ Ψ0
k′ is equal to 1 in the dyadic region 2j−2 6 |ξ| 6

2j+2, then

ψ̃j(Dα)

∫∫
e−iβξeiϕj,±(t,α,ξ)f(β) dβdξ =

∫∫
e−iβξeiϕj,±(t,α,ξ)f(β) dβdξ

modulo a lower order error.

As usual, the constant C > 0 in the error estimate depends on up to k derivatives
in α of B(α, ξ) and k derivatives in α of V (t, α). The requirement of 4 derivative
comes from keeping track of the number of derivatives used to control the error
terms in the Egorov theorem. Of course, the error estimate can be improved upon
more careful use of the Egorov theorem.

Proof. As usual, we prove only for ϕj = ϕj,+; the proof for ϕj,− is similar.
Let us consider the oscillatory integral operator

(Ff)(t, α) =

∫∫
e−iβξeiϕj(t,α,ξ)f(β) dβdξ.

The results of Lemma 4.5 say that

ϕj(t, α, ξ) = αξ + ξ3/2(t+ ϑj(t, α, ξ))

with ϑj(t, α, ξ) = Ø(t) ∈W l,∞
2−j/2T

Sk and that

ϕj
α(t, α, ξ) = ξ(1 + Ø(t)) ∈W l,∞

2−j/2T
S1

k−1.

Since

ϕj
ξ(t, α, ξ) = α+

3

2
ξ1/2(t+ ϑj(t, α, ξ)) + ξ3/2ϑj

ξ(t, α, ξ),

it follows that

(4.22) ξ2 6 C

(∣∣∣∣
∂ϕj

∂α

∣∣∣∣
2

+ ξ2
∣∣∣∣
∂ϕj

∂ξ

∣∣∣∣
2
)

for 2j−2 6 ξ 6 2j+2,

where C > 0 is independent of ξ. In light of this and Lemma 4.7, then F is an
elliptic Fourier integral operator.

Let us also choose χ2(ξ) such that χ2(ξ) = 1 on [1/2, 2] and it is supported in

[1/4, 4]. Let χj
2(ξ) = χ2(2

−jξ). We define a modified phase function

(4.23) ϕ̃j(t, α, ξ) = αξ + tξ3/2 + χj
2(ξ)ϑ

j(t, α, ξ)ξ3/2.

Note that the modified phase function ϕ̃j is defined for all ξ > M and ϕ̃j(t, α, ξ) =
ϕj(t, α, ξ) on the dyadic-frequncy band 2j−2 6 ξ 6 2j+2.

We note that the phase ϕj is the generating function of the symplectomorphism
in the proof of Lemma 4.5 in the dyadic band 2j−2 6 ξ 6 2j+2, which is a lower
order perturbation of the symplectomorphism

(4.24) α 7→ α+
3

2
tξ1/2, ξ 7→ ξ.

The phase ϕ̃j generates the same symplectomorphism in the dyadic region, and
extends it to be (4.24) in the rest of phase space. Let κt be this extended symplec-
tomorphism.

In light of the Egorov theorem [13], then it follows that F transforms symbols
according to the symplectic transformation κt.
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It remains to show that κt maps dyadic frequencies to dyadic frequencies and
preserves the order of the symbol. Indeed, the ξ component of κt is ξ(1 + Ø(t)),
whence

{c02
j 6 ξ 6 c12

j} ⊂ {(κt)2(α, ξ) : c′02
j 6 ξ 6 c′12

j} ⊂ {c′′02j 6 ξ 6 c′′12j}

for some positive constants c0 < c1, c
′
0 < c′1, and c′′0 < c′′1 , where (κt)2 denotes the

second component of κt.
Therefore, for any pseudodifferential operator B ∈ Ψm

k′ , where k′ > k + 4, it
follows that

B(α,Dα)

∫∫
e−iβξeiϕj(t,α,ξ)f(ξ)dβdξ =

∫∫
e−iβξeiϕj(t,α,ξ)(B̃f)(β)dβdξ

for some pseudodifferential operator B̃ ∈ Ψm
k−1 with principal symbol

σ(B̃) = e(t, α, ξ)(κt)∗σ(B),

where e ∈ S0
k−1 is elliptic on the support of (κt)∗σ(B). This completes the proof.

�

Remark 4.9. The assertion of Lemma 4.8 holds true when replacing ξ by −ξ.
This justifies considering only positive ξ in the construction of the parametrix in
the previous section. In what follows, we will drop the assumption that we work
on positive ξ. In other words, the phase functions take the form

ϕj,±(t, α, ξ) = αξ ± |ξ|3/2(t+ ϑj,±(t, α, ξ))

and similarly for the amplitudes and others.

5. Strichartz estimates for the linearized equation

A dispersion estimate on a semiclassical time scale implies semiclassical Strichartz
estimates for linearized water-wave problems under surface tension. Gluing these
together Strichartz estimates on a fixed time scale are established with loss in de-
rivative.

5.1. Preparation for the proof. Let us consider the initial value problem of the
linear homogeneous equation

(5.1)

{
∂2

t u−H∂3
αu+ 2V (t, α)∂α∂tu+ V 2(t, α)∂2

αu = 0,

u(0, α) = u0(α) and ∂tu(0, α) = u1(α),

where the coefficient function V ∈ H l([0, T ])Hk
α(R) is given for some T > 0 fixed

and for l, k > 1 sufficiently large, Let us also consider the related initial value
problem of the inhomogeneous equation with the zero data

(5.2)

{
∂2

t v −H∂3
αv + 2V (t, α)∂α∂tv + V 2(t, α)∂2

αv = R(t, α),

v(0, α) = 0 and ∂tv(0, α) = 0,

where R ∈ L2([0, T ])Hs
α(R) for some s > 0.

As a preliminary result, we establish the existence and uniqueness of the actual
solutions of (5.1) and (5.2) via the standard energy method.
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Theorem 5.1 (Existence and uniqueness for (5.1) and (5.2)). Let V ∈ H l([0, T ])Hk
α(R)

for some T > 0 and for some l, k > 0.
For each pair of u0 ∈ Hs+3/2(R) and u1 ∈ Hs(R), where 0 6 s+ 3/2 6 k, there

exists a unique solution u to (5.1) on the interval 0 6 t 6 T satisfying

(5.3) ‖u‖
L∞([0,T ])H

s+3/2
α (R)

+‖∂tu‖L∞([0,T ])Hs
α(R) 6 C1(‖u0‖Hs+3/2(R)+‖u1‖Hs(R)).

Furthermore, for each R ∈ L2([0, T ])Hs
α(R), there exists a unique solution v to

(5.2) satisfying

(5.4) ‖vt‖L∞([0,T ])Hs
α(R) + ‖v‖

L∞([0,T ])H
s+3/2
α (R)

6 C2‖R‖L2([0,T ])Hs
α(R).

Here, C1, C2 > 0 are polynomial in ‖V ‖L∞([0,T ])W s,∞
α (R) and ‖Vt‖L∞([0,T ])W s,∞

α (R).

The existence and uniqueness is standard by combining the energy estimate (5.3)
and (5.4) with regularization and a Galerkin approximation. The detailed proofs
of (5.3) and (5.4) are in Appendix D.

The main result is in this section is semiclassical Strichartz estimates for the
linearized water-wave problem under surface tension.

Theorem 5.2. Let V ∈ H l([0, T ])Hk
α(R) for some T > 0 and for l, k ≫ 1 suf-

ficiently large and let j > j0, where j0 ≫ 1 is sufficiently large. Suppose that
U ∈ L∞([0, 2−j/2T ])H1/2p(R) solves
(5.5){
∂2

tU −H∂3
αU + 2V (t, α)∂α∂tU + V 2(t, α)∂2

αU = R(t, α) for t ∈ [0, 2−j/2T ],

U(0, α) = U0(α) and ∂tU(0, α) = U1(α),

where (U0, U1) ∈ H1/2p(R) ×H1/2p−3/2(R) and R ∈ L2([0, T ])H1/2p−3/2(R). Sup-
pose, further, that U , R, U0, and U1 satisfy a dyadic frequency localization (4.2) at
frequency 2j. Then, U enjoys the estimate
(5.6)
‖U‖Lp([0,2−j/2T ])Lq

α
6 C(‖U0‖H

1/2p
α

+ ‖U1‖H
1/2p−3/2
α

+ ‖R‖
L1([0,2−j/2T ])H

1/2p−3/2
α

),

where (p, q) satisfies
2

p
+

1

q
=

1

2
,

and C depend on p, q and the Sobolev norms of V of orders bounded by l and k.

Moreover, gluing together these estimates on 2j/2 many time intervals of length
2−j/2T we obtain Strichartz estimates on a fixed time scale with loss in derivative.

Corollary 5.3. Let V ∈ H l([0, T ])Hk
αR) for some T > 0 and for some l, k ≫ 1

sufficiently large.
If (U0, U1) ∈ H1/p(R)×H−3/2+1/p(R), then the solution U ∈ L∞([0, T ])H1/p(R)

of the initial value problem (5.1) satisfies the inequality

(5.7) ‖U‖Lp([0,T ])Lq(R) 6 C1(‖U0‖H1/p(R) + ‖U1‖H−3/2+1/p(R)).

If R ∈ L2([0, T ])H−3/2+1/p(R), then the solution v ∈ L∞([0, T ])H1/p(R) of the
initial value problem (5.2) satisfies the inequality

(5.8) ‖v‖Lp([0,T ])Lq(R) 6 C2‖R‖L1([0,T ])H−3/2+1/p(R).

Here, (p, q) satisfies the admissibility condition in Theorem 5.2 with q < ∞, and
C1, C2 depend on p, q and the Sobolev norms of V of orders bounded by l and k.
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5.2. Proof of Theorem 5.2 and Corollary 5.3. We explain our strategy to
proving Theorem 5.2. We first demonstrate that the homogeneous dyadic-frequency
parametrix in Proposition 4.2 satisfies an L1

α → L∞
α dispersion estimate on a semi-

classical time interval of length 2−j/2. Then we use Theorem 1.4 to deduce the
semiclassical Strichartz estimates for the parametrix. We use the energy estimates
to show that the parametrix is sufficient to estimate the actual solution in the
Strichartz norms on semiclassical time scales. To prove Corollary 5.3, we sum up
the estimates on semiclassical time scales to obtain an estimate on a fixed time
scale with loss in derivative from the summation.

We begin by proving the short-time dispersion estimate. Without loss in gen-
erality, we work on the time interval t ∈ [0, 2−j/2T ]. The analogous statments
are true for any interval of length 2−j/2T in [0, T ]. In order to estimate various
quantities involving the parametrix (4.3) we have found it expedient to “glue” to-
gether on the time scale 0 6 t 6 2−j/2T the phases ϕj,±, which are supported on
2j−2 6 |ξ| 6 2j+2, to obtain global phases with similar properties. As usual, we
avoid excessive notation by considering the ϕj,+ case only and writing ϕj = ϕj,+

and similarly for other quantities with the ± parity. The analysis in the ϕj,− case
is completely analogous.

For ǫ > 0 small, let us choose χ1(t) such that χ1(t) = 1 on [0, T ] and it is
supported in [0 − ǫ, T + ǫ]. Recall that χ2(ξ) is such that χ2(ξ) = 1 on [1/2, 2]
and it is supported in [1/4, 4]. We need χ̃2 satisfying χ̃2(ξ) ≡ 1 on suppχ2(ξ)

and supp χ̃2 ⊂ [1/4 − ǫ, 4 + ǫ]. Let χj
1(t) = χ1(2

j/2t), χj
2(ξ) = χ2(2

−jξ), and

χ̃j
2(ξ) = χ̃2(2

−jξ). We define a modified phase function

(5.9) ϕ̃j(t, α, ξ) = αξ + t|ξ|3/2 + χj
1(t)χ

j
2(|ξ|)ϑ

j(t, α, ξ)|ξ|3/2,

where ϑj = ϑj,+ has been constructed in Proposition 4.2. The modified phase
function ϕ̃j is defined for all t and all |ξ| > M and we claim it has the properties

(5.10) ϑj(t, α, ξ) = tO(|t| + |ξ|−1/2) ∈ W l,∞
2−j/2T

S0
k .

To see this, note that

(5.11) ϑj
t (t, α, ξ) = O(|t| + |ξ|−1/2).

Indeed, a simple substitution of ϕ in the eikonal equation yields that ϑ satisfies

(5.12) ϑt(t, α, ξ) = −|ξ|−1/2V (t, α)(1 + ϑα) + (1 + ϑα)3/2 − 1,

where ϑα(t, α, ξ) = Ø(t). Since ϑ(0, α, ξ) = 0 by construction, ϑ(t, α, ξ) = tØ(|t| +
|ξ|−1/2) as claimed.

We redefine wj,+ by replacing the phase function ϕj by ϕ̃j . The new oscillatory
integral agrees with the old one for 0 6 t 6 2−j/2T and for the data uj

0 and uj
1

satisfying the dyadic-frequency localization (4.2), but it has the virtue of being
globally defined so that we can use the theory of Fourier integral operators.

Let us consider the Fourier integral operator

(5.13) (Ff)(t, α) =
1

2π

∫∫
e−iβξeiϕ̃j(t,α,ξ)χ1(t)χ̃

j
2(ξ)f(β) dβdξ.

It is standard from the results of Lemma 4.7 and Lemma 4.8 that

‖Ff(t)‖Hs
α

6 (1 + Ø(t))‖f‖Hs
α
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for s > 0 and each 0 6 t 6 T . As in Section 1.3 for the Schrödinger equation, we
write the oscillatory integral as

Ff(t, α) =

∫
K(t, α, β)f(β)dβ,

where

(5.14) K(t, α, β) =

∫
e−iβξeiϕ̃j(t,α,ξ)χ1(t)χ̃

j
2(ξ)dξ.

Lemma 5.4 (Microlocal dispersion estimates). The kernel in (5.14) satisfies

‖K‖L∞
β

6 C2j/4t−1/2 for |t| 6 2−j/2T,

so that

‖Ff(t)‖L∞
α

6 C2j/4t−1/2‖f‖L1
α

for |t| 6 2−j/2T .

Proof. The proof uses the method of stationary phase together with the assumption
that t is in an interval of length 2−j/2T to estimate the error terms. We assume as
usual that ξ is large and positive; the large negative case is treated similarly.

We next compute

∂ξ(ϕ̃
j(ξ; t, α) − βξ) = α− β +

3

2
t|ξ|1/2 +

3

2
χj

1(t)χ
j
2(|ξ|)|ξ|

1/2ϑj(t, α, ξ)

+ χj
1(t)2

−jχ′
2(2

−j |ξ|)|ξ|3/2ϑj(t, α, ξ)

+ χj
1(t)χ

j
2(|ξ|)|ξ|

3/2∂ξϑ
j(t, α, ξ)

= α− β +
3

2
t|ξ|1/2 + t|ξ|1/2Ø(|t| + |ξ|−1/2)

on |t| 6 2−j/2T and for 2j−1 6 |ξ| 6 2j+1. The second equality uses that ϑj ∈ S0
k ,

the t localization due to χj
1(t), and (5.10)-(5.11). A critical point of the phase

ϕ̃j(ξ; t, α) − βξ, therefore, is given by

ξ1/2
c =

2

3

β − α

t
(1 + Ø(2−j/2)).

We observe that the localization of χ̃j
2 implies that the integrand is zero unless

ξ ∼ 2j , and hence ξc ∼ 2j.
Next, we compute for |t| 6 2−j/2T :

∂2
ξ (ϕ̃j(ξ; t, α) − βξ) =

3

4
t|ξ|−1/2 +

3

4
χj

1(t)χ
j
2(|ξ|)|ξ|

−1/2ϑj(t, α, ξ)

+ χj
1(t)2

−2jχ′′
2(2−j |ξ|)|ξ|3/2ϑj(t, α, ξ)

+ χj
1(t)χ

j
2(|ξ|)|ξ|

3/2∂2
ξϑ

j(t, α, ξ)

+ 3χj
1(t)2

−jχ′
2(2

−j |ξ|)|ξ|1/2ϑj(t, α, ξ)

+ χj
1(t)2

−jχ′
2(2

−j |ξ|)|ξ|3/2∂ξϑ
j(t, α, ξ)

=
3

4
t|ξ|−1/2(1 + Ø(|t| + |ξ|−1/2)),



STRICHARTZ ESTIMATE FOR THE WATER-WAVE PROBLEM 35

where we have again used the t localization of χj
1(t) and (5.10)-(5.11). Evaluating

this at the critical point, we obtain

∂2
ξ (ϕ̃j(ξ; t, α) − βξ)

∣∣
ξ=ξc

=
3

4
t ·

3

2

t

β − α
(1 + Ø(2−j/2))

=
9

8

t2

β − α
(1 + Ø(2−j/2)).

Thus, the critical point is nondegenerate for t > 0.
Applying the method of stationary phase9 completes the proof of the lemma,

once we observe that the restriction |t| 6 2−j/2T combined with the restriction
ξc ∼ 2j implies that (β − α)1/2/t1/2 is bounded by 2j/4 for this range of t. �

In order to apply Theorem 1.4, we need to control F (t′)F ∗(t).

Lemma 5.5. The Fourier integral operator F given in (5.13) satisfies the estimate

‖F (t′)F ∗(t)f(α)‖L∞
α

6 C2j/4|t′ − t|−1/2‖f‖L1
α

for |t′|, |t| 6 2−j/2T .

Proof. We write

F (t′)F ∗(t)f(α) =

∫∫
ei(ϕ̃j(t′,α,ξ)−ϕ̃j(t,α′,ξ))χ1(t)χ1(t

′)(χ̃j
2(ξ))

2f(α′)dα′dξ

and its corresponding kernel

K1(α, α
′) =

∫
ei(ϕ̃j(t′,α,ξ)−ϕ̃j(t,α′,ξ))χ1(t)χ1(t

′)(χ̃j
2(ξ))

2dξ.

We cannot apply the same argument as in Lemma 5.4 to estimate K1, since the
difference of the two phases depends on α and α′. However, the only part from
which we cannot directly factor the t′ − t is of lower order. Precisely,

ϕ̃j(t′, α, ξ) − ϕ̃j(t, α′, ξ) = (α− α′)ξ+(t′ − t)|ξ|3/2

+|ξ|3/2χj
2(|ξ|)(χ

j
1(t

′)ϑj(t′, α, ξ) − χj
1(t)ϑ

j(t, α′, ξ))

= (α − α′)ξ(1 + Ø(2−j/2)) + (t′ − t)|ξ|3/2(1 + Ø(2−j/2)).

We then apply the same arguments as in Lemma 5.4 to complete the proof. �

The parametrix constructed in Proposition 4.2 is not an exact solution for (5.1),
and it only exists for a short time scale depending on the dyadic frequency band.
We use energy estimates for the linear equation (5.1) to show that the parametrix
is sufficient to estimate the actual solution.

Proof of Theorem 5.2. We break U into a piece solving the homogeneous equation
with the frequency-localized initial data and a piece solving the inhomogeneous
equation with the null data. Once we prove the result for the homogeneous equation,
then the result for the inhomogeneous equation follows immediately from Duhamel’s
principle. Hence, we may assume that U solves the initial value problem for the
homogeneous equation{

PU = 0 for t ∈ [0, 2−j/2T ],

U(0, α) = U0(α), ∂tU(0, α) = U1(α)

9Stationary phase gives a bound of 2j/4t−1/2 plus a reminder term. Since we localize both in
time and space this reminder is even smaller than t−1/2.
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recalling the notation (4.1). We approximate U on the interval [0, 2−j/2T ] by the
oscillatory integral parametrix given in Proposition 4.2. The parametrix W solves{

PW = E for t ∈ [0, 2−j/2T ],

W (0, α) = U0(α), ∂tW (0, α) = U1(α),

where E satisfies the error estimates (4.5). We write

‖U‖Lp([0,2−j/2T ])Lq
α

6 ‖W‖Lp([0,2−j/2T ])Lq
α

+ ‖U −W‖Lp([0,2−j/2T ])Lq
α
.

Upon applying Theorem 1.4, it is readily seen that the first term on the right side
satisfies (5.6).

The function Z = U −W solves{
PZ = −E for t ∈ [0, 2−j/2T ],

Z(0, α) = 0, ∂tZ(0, α) = 0,

and hence satisfies the energy estimate (5.4)

(5.15) ‖∂tZ‖L∞([0,2−j/2T ])Hs
α

+ ‖Z‖
L∞([0,2−j/2T ])H

s+3/2
α

6 C‖E‖L2([0,2−j/2T ])Hs
α

for −3/2 6 s 6 k − 3/2.
By the Sobolev embedding, Hölder inequality in time and the energy estimate

with s = 1/2 − 1/q we then have

‖Z‖Lp([0,2−j/2T ])Lq
α

6C‖Z‖
Lp([0,2−j/2T ])H

1/2−1/q
α

6C(T 2−j/2)1/p‖Z‖
L∞([0,2−j/2T ])H

1/2−1/q
α

6C(T 2−j/2)1/p‖E‖
L2([0,2−j/2T ])H

−1−1/q
α

6CT 1/p‖E‖
L2([0,2−j/2T ])H

−1−1/q−1/2p
α

6CT 2/p‖E‖
L∞([0,2−j/2T ])H

−1−1/q−1/p
α

.

Then using the estimates on E given in (4.5), the estimate (5.6) for Z follows. �

Proof of Corollary 5.3. As above, once we prove (5.7), then an application of Duhamel’s
principle and the Minkowski inequality yields (5.8). In what follows, thus, we con-
sider only the homogeneous equation.

The first step is to chop the actual solution of (5.1) into pieces each of which is
localized in a dyadic frequency band. Let us choose a partition of unity in ξ

1 = (1 − ψ0)(ξ) +
∑

j>j0

ψj(ξ)

as in Section 4. It is standard from the Littlewood-Paley theory that if f ∈ Lq(R),
q <∞, then

‖f‖Lq
α

6 C‖(1 − ψ0)(Dα)f‖Lq
α

+


∑

j>j0

‖ψj(Dα)f‖2
Lq

α




1/2

,

and hence it suffices to prove (1.3) on dyadic frequency bands.
Let U be the actual solution of (5.1), and let U j = ψj(Dα)U . It is readily seen

that U j solves

(5.16)

{
∂2

tU
j −H∂3

αU
j + 2V (t, α)∂α∂tU

j + V 2(t, α)∂2
αU

j = Rj(U),

U j(0, α) = U j
0 (α) and ∂tU

j(0, α) = U j
1 (α),
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where U j
0 = ψj(Dα)U0, U

j
1 = ψj(Dα)U1 and

Rj(U) = [2V (t, α)∂α∂t + V 2(t, α)∂2
α , ψ

j(Dα)]U

= ψ̃j(Dα)2−j(A2V (t, α,Dα)DtDα + AV 2(t, α,Dα)D2
α)U.

(5.17)

Here, [·, ·] denotes the commutator, A2V and AV 2 are zeroth-order pseudodifferen-

tial operators, and ψ̃j is a smooth function with support contained in a neighbour-
hood of the support of ψj . It is immediate to see that Dα is comparable to 2j on
the support of ψ̃j . Consequently, we have the estimate

(5.18) ‖Rj‖L2
α

6 C(‖ψ̃jU‖H1
α

+ ‖ψ̃j∂tU‖L2
α
),

where C > 0 is a constant independent of j depending only on a finite number of
derivatives of V .

Let U j = U j
h + U j

i be the solutions to the homogeneous and inhomogeneous

problems, respectively, corresponding to (5.16). That is, U j
h solves

{
PU j

h = 0 for t ∈ [0, T ],

U j
h(0, α) = U j

0 (α), ∂tU
j
h(0, α) = U j

1 (α),

while U j
i solves {

PU j
i = Rj(U) for t ∈ [0, T ],

U j
i (0, α) = 0, ∂tU

j
i (0, α) = 0.

We will prove the Strichartz estimates for U j
h, which, via Duhamel’s principle, will

imply the Strichartz estimates for U j
i . Then summing in j will imply the Strichartz

estimates for U solving (5.1).
We divide the interval [0, T ] into 2j/2 small intervals of the size 2−j/2T . Let

Tm,j = 2−j/2(m− 1)T , where 1 6 m 6 2j/2 and let Im,j = [Tm,j, Tm+1,j] so that

[0, T ] =
⋃

16m62j/2

Im,j .

Then, we apply the results of Theorem 5.2 on each short time interval Im,j , 1 6

m 6 2j/2, to obtain

‖U j
h‖

p
Lp([0,T ])Lq(R) =

2j/2∑

m=1

‖U j
h‖

p
Lp(Im,j)Lq(R)

6 C

2j/2∑

m=1

(
‖U j

h(Tm,j)‖H1/2p(R) + ‖∂tU
j
h(Tm,j)‖H1/2p−3/2(R)

)p

6 C2j/2
(
‖U j

0‖H1/2p(R) + ‖∂tU
j
1‖H1/2p−3/2(R)

)p

.

The last inequality uses the energy estimate.

On the other hand, 2j/2p ∼ D
1/2p
α on the frequency support of U j

0 and U j
1 , and a

localized version for j > j0 of (5.7) follows. To finish the proof we first notice that
for small frequencies, j 6 j0, the estimate follows from Sobolev embedding and the
energy estimate (5.3). By Duhamel’s principle and Minkowski’s integral inequality
then also (5.8) follows. This completes the proof. �
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6. Local well-posedness via energy estimates

This section concerns the local well-posedness of the initial value problem asso-
ciated to (3.7). The result is of independent interest.

We recall that R(u, ∂tu) (3.7), defined in (3.4), involves θ, which is determined
by (3.8). To be precise, hence, the local well-posedness is to be established for (3.7)
coupled with (3.8). Upon the observation that (3.7) and (3.8) are of different type,
we proceed by a “bootstrapping” argument. First, given θ in an appropriate func-
tion space, the local well-posedness for (3.7) is established via the energy method,
with R(u, ∂tu) evaluated with the given θ. With u so obtained , next (3.8) is solved
via the standard method of characteristics with the variable-coefficient u and r1
evaluated by the solution u in the first step. We focus on the development of an
energy estimate for (3.7) and its local well-posedness.

We begin by writing (3.7) as the first-order in time system

(6.1)

{
∂tu = v − u∂αu,

∂tv = H∂3
αu− u∂αv + R̃(u, v).

In other words, v = ∂tu+ u∂αu is the material derivative of u. Here,

R̃(u, v) = R(u, v − u∂αu) + v∂αu+ u(∂αu)
2

satisfies an estimate similar to (3.6):

‖R̃(u, v)‖Hs 6 C(‖u‖Hs+1 , ‖v‖Hs) for s > 1.

Let us define the k-th energy associated to (6.1) as

(6.2) Ek(t) =
1

2

∫ ∞

−∞

((∂k+1
α u)H∂α(∂k+1

α u) + (∂k
αv)

2) dα

and the energy function for (6.1) of order s as

(6.3) Es(t) = ‖u‖2
L2

α
(t) + ‖v‖2

L2
α
(t) +

s∑

k=1

Ek(t).

Note that the operator H∂α is a positive operator with the symbol of its Fourier
transform |ξ| and that

‖f‖2

H
1/2
α

=

∫ ∞

−∞

(f2 + fH∂αf) dα.

In the energy estimates below, we make use of the fact that

(6.4)

∫ ∞

−∞

h∂αfH∂αf dα = −
1

2

∫ ∞

−∞

([H,h]∂αf)∂αf dα 6 C‖h‖H5/2+‖f‖2
L2.

Indeed, by integration by parts,
∫ ∞

−∞

h∂αfH∂αf dα = −

∫ ∞

−∞

H(h∂αf)∂αf dα

= −

∫ ∞

−∞

h(H∂αf)∂αf dα−

∫ ∞

−∞

([H,h]∂αf)∂αf dα.

Then, (6.4) follows by (2.7) and upon the observation that [H,h]∂αf = ∂α([H,h]f)−
[H, ∂αh]f .
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It is readily seen that the energy function Es(t) is equivalent to ‖u(t)‖2
Hs+3/2 +

‖∂tu(t)+u(t)∂αu(t)‖
2
Hs . Furthermore, Es(t) is equivalent to ‖u(t)‖2

Hs+3/2+‖∂tu(t)‖
2
Hs

if s > 1/2.
We now state and prove the nonlinear energy estimate for (6.1).

Proposition 6.1 (The nonlinear energy estimates). If (u, v) ∈ Hs+3/2(R)×Hs(R)
for s > 1/2 solves (6.1) on the interval t ∈ [0, T ] for some T > 0 and if ‖u‖

H
5/2+
α

<

+∞ for 0 < t < T then

(6.5) Es(t) < C1 for 0 < t < T

and subsequently

‖u(t)‖Hs+3/2 + ‖∂tu(t)‖Hs < C2 for 0 < t < T ,

where the constants C1, C2 > 0 depends on ‖u(0)‖Hs+3/2 + ‖∂tu(0)‖Hs .

Remark 6.2 (Remark on the energy expression). One may try

(6.6)

∫ ∞

−∞

((∂k
α∂tu)

2 + ∂k+1
α uH∂k+2

α u) dα

as the k-th energy function for (3.7). Due to the multi-derivative nonlinear term
u2∂2

αu, however, the application to (6.6) of the standard energy method is unwieldy.
Indeed, one takes the t-derivative of the energy function and substitutes ∂2

t u by
(3.7), but to arrive at an expression containing

∫ ∞

−∞

(∂k
α∂tu)∂

k
α(u2∂2

αu)dα,

which cannot be controlled by the energy function (6.6).
The idea of the proof is to write (3.7) as a system (6.1) to resolve the multi-

derivative term u2∂2
αu into two single-derivative terms u∂αu and u∂αv, which work

favorably in the application of the energy method by canceling higher Sobolev
norms when integrated by parts.

Proof. We begin by investigating the time derivative of Ek by calculating

d

dt
Ek(t) =

∫ ∞

−∞

((∂k+1
α ∂tu)H∂α(∂k+1

α u) + (∂k
α∂tv)(∂

k
αv)) dα

:=Ek
1 + Ek

2 .

(6.7)

Let us first compute Ek
1 . By using the first equation in (6.1) and the integration

by parts we may write

Ek
1 =

∫ ∞

−∞

∂k+1
α (−u∂αu+ v)H∂α(∂k+1

α u) dα

= −

∫ ∞

−∞

u(∂k+2
α u)(H∂k+2

α u) dα

+

∫ ∞

−∞

(∂k+1
α v)H∂α∂

k+1
α u dα+ (lower order terms),

(6.8)

where (lower order terms) is a collection of terms which can be bounded in terms
of energy in a routine way. The second inequality uses (6.4). Note that

∫ ∞

−∞

u(∂k+2
α u)(H∂k+2

α u) dα 6 ‖u‖H5/2+‖u‖2
Hk+1.
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Similarly, we compute

Ek
2 =

∫ ∞

−∞

∂k
α(−u∂αv +H∂3

αu+ R̃(u, v))(∂k
αv) dα

= −

∫ ∞

−∞

(∂k
α(u∂αv) − u∂k+1

α v)(∂k
αv) dα−

∫ ∞

−∞

(∂k+1
α v)H∂k+2

α u dα

+

∫ ∞

−∞

(∂k
αv)∂

k
αR̃(u, v) dα+ (lower order terms).

(6.9)

Again, (lower order terms) is made up of terms which can be bounded in terms of
the energy in a routine way. Note that

‖∂k
α(u∂αv) − u∂k+1

α v‖L2 6 C‖u‖Hk‖∂αv‖Hk−1 .

The third term on the right side of (6.8) and the third term on the right side of
(6.9) cancel when added together. Other terms are bounded in terms of the energy,
provided that ‖u‖H5/2+ < +∞.

We have proved

dEs

dt
6 CEs(1 + Es)p,

for some positive constant C and for some p > 1. The proof then is complete by
applying Gronwall’s inequality. �

Now, we make a few remarks on the existence, uniqueness and continuous de-
pendence for (3.7), or equivalently, for (6.1). In order to establish the existence
of solutions, we would need to regularize the equation in a certain way. The most
straightforward way is to introduce mollifiers (approximations to the Dirac delta
function) into the right sides of (6.1). We then repeat the argument in the proof
of Proposition 6.1 for the regularized problems to obtain energy estimates of the
kind in (6.5) independent of the mollification parameter. Subsequently, the Picard
theorem for ordinary differential equations on a Banach space applies to assert
that solutions to the mollified equations exist on short intervals of time. The solu-
tions can be continued on a time interval which is independent of the mollification
parameter thanks to the uniform bound from the energy estimate.

Next, an estimate similar to the energy estimate but in a low norm ((u, v) ∈

Hs′

(R)×Hs′−3/2(R) with 2 6 s′ < 3 ) establishes that as the mollification param-
eter tends to zero, the solutions of the mollified equations converge to a solution
of the original (non-molified) equation (6.1). By interpolation, we find that this
convergence occurs in the high Sobolev norms, as well.

Uniqueness follows by the energy estimates for the difference of two solutions,
and continuous dependence follows from the time-reversibility of the equations.

The detail of local well-posedness via the argument above is carried out in [2]
for the vortex sheet problem with surface tension.

We summarize our result.

Theorem 6.3 (The local well-posedness). The initial value problem for (3.7), pre-
scribed with the initial conditions (u0, u1) ∈ Hs(R) × Hs−3/2(R), s > 2 + 1/2,
is well-posed on the time interval [0, T ] for some T > 0 and (u(t), ∂tu(t)) ∈
C([0, T ];Hs(R) ×Hs−3/2(R)).
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Remark 6.4. The assumption that s > 2+ 1/2 is due to the commutator estimate
used in the proof of the energy estimates (Proposition 6.1). Although this commu-
tator estimate can be improved by putting 1/2 derivatives on each of two copies of
u appearing in the energy calculation, we need 2+ derivatives to couple with the
transport equation. In this sense, the local well-posedness should hold at s > 2,
although we do not prove it in this paper.

7. Strichartz estimates for the nonlinear problem

At last, we are in a position to prove the Strichartz estimates (1.3) and (1.5) for
solutions to (3.7).

Let us consider the initial value problem for (3.7) with the initial conditions

u(0, α) = u0(α) and ∂tu(0, α) = u1(α),

where (u0, u1) ∈ Hs(R) × Hs−3/2(R) for s > 2 + 1/2. Theorem 6.3 applies to
ensure that a unique solution exists on the time interval [0, T ] for some T > 0 and
(u(t), ∂tu(t)) ∈ C([0, T ];Hs(R) ×Hs−3/2(R)).

We apply ∂s
α to (3.7) and the above initial conditions to obtain

(7.1)

{
(∂2

t −H∂3
αu+ 2u∂α∂tu+ u2∂2

α)∂s
αu = R̃(u, ∂tu),

∂s
αu(0, α) = ∂s

αu0(α) and ∂t∂
s
αu(0, α) = ∂s

αu1(α),

where

(7.2) R̃(u, ∂tu) = ∂s
αR+ [∂s

α, u
2∂2

α + 2u∂α∂t]u.

We view the initial value problem (7.1) as a linear problem for ∂s
αu of the form in

(5.1) and (5.2), where the solution u is the coefficient function V (t, α) and R̃(u, ∂tu)
is the inhomogeneous term R(t, α). This can be done thanks to uniqueness of these
initial value problems.

Let us take s > 1 sufficiently large so that u ∈ H l([0, T ])Hk(R), where l, k > 1
are large enough for the results in Section 4 and Section 5 and so that (∂s

αu0, ∂
s
αu1) ∈

L2(R) × H−3/2(R) and R̃ ∈ L2([0, T ])L2
α(R). Therefore, Theorem 5.2 applies to

yield the semiclassical Strichartz estimates (1.5), and Corollary 5.3 apply to yield
the fixed time Strichartz estimates (1.3). This completes the proof of Theorem 1.1
and Theorem 1.2.

Appendix A. Local smoothing effect for the nonlinear problem

Remarked here is how the method of positive commutator yields the local smooth-
ing effect for (3.7) of the gain of a 1/4 derivative’s smoothness. The method used
here was suggested to us by T. Alazard, N. Burq, and C. Zuily.

Theorem A.1 (The local smoothing effect). If s > 2 + 1/2 is sufficiently large,
then the solution u ∈ C([0, T ];Hs(R)) of the initial value problem for (3.7) with the
initial condition (u0, u1) ∈ Hs(R) ×Hs−3/2(R) satisfies the estimate

(A.1) ‖ 〈α〉
−ρ
Ds+1/4

α u‖L2([0,T ])L2
α

6 C(‖u0‖Hs , ‖u1‖Hs−3/2),

where ρ > 1/2. Here, 〈α〉 = (1 + α2)1/2 describes weighted Sobolev spaces and
Dα = −i∂α.
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Proof. We recall that the energy method yields the local well-posedness of the initial
value problem for (3.7) and u ∈ C([0, T ];Hs

α(R)) for some T > 0.
Once we settle the issue of existence and uniqueness, we view (3.7) as

∂2
t u−H∂3

αu+ 2V (t, α)∂t∂αu+ V 2(t, α)∂2
αu = R(t, α),

where the variable coefficient V (t, α) replaces the solution u and R(t, α) replaces
the remainder R(u, ∂tu), as in Section 7. We choose s > 1 large so that V (t, α) and
R(t, α) have the required regularity.

Let ψ ∈ C∞(R) be such that ψ(ξ) ≡ 1 for |ξ| > 1 and ψ(ξ) ≡ 0 for |ξ| 6 1/2,
and let

u = w + v,

where w = ψ(Dα)u is the high frequency part of the solution and v is the low
frequency part of the solution. It is straightforward that v belongs to every Sobolev
space, and thus v is as smooth as we want. It suffices to show (A.1) for w.

Further, let ψ(Dα) = ψ+(Dα) + ψ−(Dα), where ψ+ = ψ|ξ>0 and ψ− = ψ|ξ60,
and let w± = ψ±(Dα)u. We will present the argument only for positive high
frequencies w+. For simplicity of notation, in what follows, we write w for w+.

For positive high frequencies ξ > 0, the Hilbert transform H behaves like the
multiplication by −i, and thus

(A.2) Pw = (∂2
t + i∂3

α + 2V (t, α)∂t∂α + V 2(t, α)∂2
α)w = R̃(t, α),

where

R̃ = ψ+(Dα)R(t, α) + [2V (t, α)∂t∂α + V 2(t, α)∂2
α, ψ

+(Dα)]u

satisfies the estimate

(A.3) ‖R̃‖L2
α(R) 6 ‖ψ+(Dα)R‖L2(R) + C(‖w‖H1

α(R) + ‖∂tw‖L2
α(R)),

where C > 0 depends on V and its derivatives.
Let

A(α) =

∫ α

−∞

〈β〉−2ρ dβ

for ρ > 1/2 as in the statement of the theorem. Let 〈·, ·〉L2 denote the (Hermitian)
L2

α-inner product. We compute

2i Im

∫ T

0

〈
AR̃,w

〉
L2
dt =

∫ T

0

〈
AR̃,w

〉
L2
dt−

∫ T

0

〈
w,AR̃

〉
L2
dt

=

∫ T

0

〈APw,w〉L2 dt−

∫ T

0

〈Aw,Pw〉L2 dt

=

∫ T

0

〈[A,P ]w,w〉L2 dt+

∫ T

0

〈(P − P ∗)Aw,w〉L2 dt

+
[
〈A∂tw,w〉L2

]T
0
−
[
〈Aw, ∂tw〉L2

]T
0
.

Here, P ∗ denotes the adjoint of P . The second equality uses that A is self-adjoint,
and the third inequality uses integrations by parts in t. The sum of the boundary
terms is 2i[Im 〈A∂tw,w〉L2 ]T0 .

It is important to note that although the solution to the nonlinear equation (3.7)
may be assumed real-valued, the solution w of (A.2) is not, since we have cut it off
to positive frequencies. Indeed, if we add back in the negative frequencies so that
w is once more real-valued and if we try to construct an appropriate commutant,
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then we are inevitably led to use the Hilbert transform as part of the commutant,
and the resulting boundary terms do not cancel.

Next, it is straightforward that

[P,A]w = 3iAα∂
2
αw + 3iAαα∂αw + iAαααw

+ 2V (t, α)Aα∂tw + 2V 2(t, α)Aα∂αw + V 2(t, α)Aααw.

Now, we compute

∫ T

0

〈Aw,Pw〉L2 dt =

∫ T

0

〈P ∗Aw,w〉L2 dt. Integrations by parts

in t and in α yield

∫ T

0

〈
Aw, ∂2

t w
〉

L2 dt =
[
〈Aw, ∂tw〉L2

]T
0
−
[
〈A∂tw,w〉L2

]T
0

+

∫ T

0

〈
A∂2

tw,w
〉

L2 dt

= − 2i
[
Im 〈A∂tw,w〉L2

]T
0

+

∫ T

0

〈
A∂2

tw,w
〉

L2 dt,

∫ T

0

〈
Aw, i∂3

αw
〉

L2 dt =

∫ T

0

〈i∂α(Aw), w〉L2 dt.

Similarly,

∫ T

0

〈Aw, 2V ∂t∂αw〉L2 dt =
[
〈2V Aw, ∂αw〉L2

]T
0
−

∫ T

0

〈2VtAw, ∂αw〉L2 dt

+

∫ T

0

(
〈2VαA∂tw,w〉L2 dt+ 〈2V ∂t∂α(Aw), w〉L2

)
dt,

∫ T

0

〈
Aw, V 2∂2

αw
〉

L2 dt =

∫ T

0

( 〈
(V 2)ααAw,w

〉
L2

+
〈
2(V 2)α∂α(Aw), w

〉
L2 +

〈
V 2∂2

α(Aw), w
〉

L2

)
dt.

Therefore,

3i

∫ T

0

〈Aα∂αw, ∂αw〉L2 dt =2i

∫ T

0

Im
〈
AR̃,w

〉
L2
dt+ 4i

[
Im 〈A∂tw,w〉L2

]T
0

+ i

∫ T

0

(
〈Aαααw,w〉L2 + 〈2V Aα∂tw,w〉L2

)
dt

+

∫ T

0

( 〈
2V 2Aα∂αw,w

〉
L2 +

〈
V 2Aααw,w

〉
L2

)
dt

+
[
〈2V Aw, ∂αw〉

]T
0
−

∫ T

0

〈2VtAw, ∂αw〉L2 dt

+

∫ T

0

(
〈2Vα∂t(Aw), w〉L2

+
〈
(V 2)ααAw,w

〉
L2 +

〈
2(V 2)α∂α(Aw), w

〉
L2

)
dt.



44 CHRISTIANSON, HUR, AND STAFFILANI

Since A and its derivatives are in L∞(R), using the energy estimates, Sobolev

embeddings, and the estimates for R̃, it follows that

‖Aα∂αw‖
2
L2

T L2
α

6 C(‖R̃‖2
L2

T H−3/4 + ‖w‖2
L2

T H3/4 + ‖w‖2
L∞

T H3/4 + ‖∂tw‖
2
L∞

T H−3/4

+ ‖V ‖2
L∞

T Hs
α
‖w‖2

L2
T H

3/4
α

+ ‖∂tw‖
2

L2
T H

−3/4
α

+ (1 + ‖V 2‖2
L∞

T Hs
α
)‖w‖2

L2
T H

1/2
α

+ (1 + ‖V ‖2
L∞

T Hs
α
)‖w‖2

L∞
T H

1/2
α

+ (1 + ‖∂tV ‖2
L∞

T Hs
α
)‖w‖2

L2
T H

1/2
α

+ ‖∂αV ‖2
L∞

T Hs
α
‖w‖2

L2
T H

3/4
α

+ ‖∂tw‖
2

L2
T H

−3/4
α

+ (1 + ‖∂2
α(V 2)‖2

L∞
T L∞

α
)‖w‖2

L2
T L2

α

+ (1 + ‖∂α(V 2)‖2
L∞

T Hs
α
)‖w‖2

L2
T H

1/2
α

)

6 C(T, ‖V ‖
H

3/2

T Hs′
α

)(‖w‖
L∞

T H
3/4
α

+ ‖∂tw‖L∞
T H

−3/4
α

)2

for some s′ > 0. This completes the proof. �

Appendix B. Assorted proofs: formulation

We collect the proofs of (2.21), Corollary 2.5, Lemma 3.2, and Lemma 3.3.
In order to estimate ‖γt‖Hs in terms of u and θ, we recall that

∂tγ = S∂2
αθ + ∂α((U‖ − W · t̂)γ) − 2Wt · t̂ −

1

2
γ∂αγ + 2(U‖ − W · t̂)Wα · t̂.

We expand Wt · t̂ as

Wt · t̂ =Re(zαΦ(Wt))

=Re

(
1

2πi
zα(α)PV

∫
γt(α

′)

z(α) − z(α′)
dα′

)

+ Re

(
1

2πi
zα(α)PV

∫
γ(α′)

zt(α) − zt(α
′)

(z(α) − z(α′))2
dα′

)
:= J [z]γt +R5,

where J [z]f = Re
(
2izαH

(
f
zα

)
+ zα(α)K[z]f

)
. Accordingly, the above equation

for γt takes the form as

(B.1) (1+2J [z])γt = S∂2
αθ+∂α((U‖−W·t̂)γ)−

1

2
γ∂αγ+2(U‖−W·t̂)Wα·t̂−2R5.

It is proved in [2, Lemma 6.1] that (1 + 2J [z])−1 : L2 → L2 is bounded. One
observes that R5 may be written in such a way that it is the sum of terms which
differ from R3 and R4 by multiplication by i, and therefore, they are estimated
mutandis mutandi to yield that

‖R5‖Hs 6 C(‖θ‖Hs+1)(1 + ‖u‖Hs+1)2

for s > 1. The argument in the proof of [2, Lemma A.4] applies to assert (2.21)

Proof of Corollary 2.5. We write

∂t(K[z]f) = K[z](∂tf) +
1

2i
H

(
f

z2
α

zαt

)
−

1

2πi

∫
f(α′)

zt(α) − zt(α
′)

(z(α) − z(α′))2
dα′.

Here, the last term is related to R3 and R4 in the proof of Lemma 2.4, and thus it
is estimated in a similar way.
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By the usual product rule, (2.24) follows. �

Proof of Lemma 3.2. For s = 0, 1, we use the transport equation (3.8). By multi-
plication by θ to (3.8) and integration by parts yield

d

dt

∫
θ2dα =

1

2

∫
θ2∂αu dα+

∫
θH∂αu dα+

∫
θr1(t, α) dα.

We obtain the analogous identity for
∫
(∂αθ)

2, and by adding,

d

dt
‖θ‖H1 6 ‖∂αu‖L∞‖θ‖H1 + 2(‖u‖H2 + ‖r1‖H1).

Gronwall’s inequality then applies to give that

‖θ(t)‖H1 6‖θ0‖H1 +

∫ t

0

(‖u‖H2 + ‖r1‖H1)dt′

+ C

∫ t

0

‖∂αu‖L∞

(
‖θ0‖H1 +

∫ t′

0

(‖u‖H2 + ‖r1‖H1)

)
exp

(∫ t

t′
‖∂αu‖L∞

)
dt′

6C(‖u‖H2)(1 + ‖u‖H2 + ‖r1‖H1).

Indeed, ‖r1‖H1 6 C(‖θ‖H2 )(1 + ‖u‖H1).
Next, for s = 2 by multiplying (2.10b) by ∂2

αθ and by integrating it it follows
that

‖∂2
αθ‖

2
L2 6 ‖∂tu‖L2 + ‖u‖2

H1 + ‖∂αθ‖
2
L∞‖∂tu‖L2 + C(‖θ‖H2)(1 + ‖u‖H1)2.

Together with the ‖θ‖H1 estimate above, this proves (3.9) for s = 0. For s > 2, we
take derivative of (2.10b) and repeat the argument. This proves the assertion. �

Proof of Lemma 3.3. First, it is straightforward to see that

∂tr1 = −H(mt · t̂) −H(m · n̂)θt + mt · n̂ + (m · t̂)θt,

where

Φ(mt) =zαtK[z]

(
γα

zα
−
γzαα

z2
α

)
+ zα∂t

(
K[z]

(
γα

zα
−
γzαα

z2
α

))

+
zαt

2i

[
H,

1

z2
α

](
γα −

γzαα

zα

)
+
zα

2i
∂t

[
H,

1

z2
α

](
γα −

γzαα

zα

)
.

Then, (2.23) and (2.24) apply to assert that

‖mt‖Hs 6 C(‖∂tu‖H1 , ‖u‖Hs+1 , ‖∂tu‖Hs−1),

and, in turn, it follows (3.10). The difference is estimated in the usual way.
Next is the estimate for ∂tr2. We recall from the proof of Lemma 2.4 that

∂tr2 =
1

2
H∂2

t γ + ∂t(R1 +R2 +R3 +R4).
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In order to estimate for ∂2
t γ, we take the derivative with respect to t-variable of

(B.1) to obtain

(id+ J [z])γtt = − Re
(
2izαtH

(
γt

zα

)
− 2izαH

(
γt

z2
α

zαt

)

+ zαtK[z]γt +
zα

2i
H

(
γt

z2
α

zαt

)
−

zα

2πi

∫
γt(α

′)
zt(α) − zt(α

′)

(z(α) − z(α′))2
dα′
)

+ θααt + ∂t∂α(γ(U‖ − W · t̂)) − 2∂t

(
1

4
γγα − (U‖ − W · t̂)Wα · t̂

)
.

Each term on the right side of the equation is estimated by using various estimates
we established previously, and then we conclude that

‖∂2
t γ‖Hs 6 C(‖u‖Hs+2 , ‖∂tu‖Hs+1).

Again, using the estimates established previously, we obtain

‖∂t(R1 +R2 +R3 +R4)‖Hs 6 C(‖∂tu‖H1 , ‖u‖Hs+1, ‖∂tu‖Hs−1).

The differences of ∂2
t γ and ∂tRj ’s, j = 1, 2, 3, 4, are obtained in the usual way.

Therefore follows (3.12).
That is, without the cancellation of the highest-order derivative term ∂αθ∂

2
αu in

r2, the remainder R(u, ∂tu) is of second-order in α. This completes the proof. �

Appendix C. Assorted proofs: parametrix construction

We first derive (4.10). Let us first write iHD3
αw via the Fourier transform as

iHD3
αw(t, α) = −H∂3

αw(t, α)

=
1

4π

∫∫
ei(α−α′)ξ|ξ|3

∫∫
e−iβξ′

eiϕ(t,α′,ξ′)f(β) dβdξ′ dα′dξ.

In what follows, we recall that we implicitly assume that both ξ and ϕα are large
and positive and that ξ ∼ 2j. Our goal is to eliminate the dependence on ξ in the
above integral so that the integration in α′ and ξ yields δ(α−α′) (so that the above
representation reduces to an integral in β and ξ′ only). To this end, we write

ϕ(t, α, ξ′) = ϕ(t, α′, ξ′) + Φ(α, α′)(α − α′)

and we perform a change of variables to obtain

iHD3
αw(t, α) =

1

4π

∫∫
ei(α−α′)η|η + Φ(α, α′)|3

·

∫∫
e−iβξ′

eiϕ(t,α,ξ′)f(β)dβdξ′ dα′dη.

We further write Φ(α, α′) = ϕα(t, α′, ξ′) + Φ1(t, α, α
′, ξ′), where

Φ1(t, α, α
′, ξ′) =

1

2
ϕαα(t, α′, ξ′)(α − α′)

+
1

6
ϕααα(t, α′, ξ′)(α− α′)2 + Φ̃(t, α, α′, ξ′)(α− α′)3
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for some Φ̃ = O(supα |∂4
αϕ|), and accordingly, the above integral becomes

iHD3
αw(t, α)

=
1

4π

∫∫
ei(α−α′)η

(
|η + ϕα|

3 + 3|η + ϕα|
2Φ1 + 3|η + ϕα|Φ

2
1 + Φ3

1

)

·

∫∫
e−iβξ′

eiϕ(t,α,ξ′)f(β) dβdξ′ dα′dη.

We keep in mind that ϕα in the above expression is evaluated at (t, α′, ξ′). Now,
Φ1 is a sum of terms multiplied with powers of α− α′, which upon integrations by
parts in η are cancelled and the above integral, in turn, becomes

iHD3
αw(t, α) =

1

4π

∫∫
ei(α−α′)η

(
|η + ϕα|

3 + 3i|η + ϕα|ϕαα − ϕααα

)

·

∫∫
e−iβξ′

eiϕ(t,α,ξ′)f(β) dβdξ′dα′dη.

(C.1)

Under the assumption that either both η and ϕα are large and positive or both
are large and negative the above formal argument is justified. Indeed, the dyadic
frequency localization assumption (4.2) on f implies that w+ is also localized to
dyadic frequencies (possibly with different constants), and hence the singularity of
|η| at η = 0 does not enter into the above calculation.

We now expand |η + ϕα|
3 for both η and ϕα large and positive (see Lemma 4.8

for a justification of this)

|η + ϕα|
3 = |η|3 + 3|ϕα||η|

2 + 3|ϕα|
2|η| + |ϕα|

3.

Again, we keep in mind that ϕα is evaluated at (t, α′, ξ′). Substituting this in (C.1)
and integrations by parts in α′ then yield that

iHD3
αw(t, α) =

1

4π

∫∫
ei(α−α′)η

·
(
|η|3 + 3|η|2|ϕα| + 3|η||ϕα|

2 + |ϕα|
3 + 3i(|η| + |ϕα|)ϕαα − ϕααα

)

·

∫∫
e−iβξ′

eiϕ(t,α,ξ′)f(β)dβdξ′dα′dη.

Finally, (4.10) follows upon integrations in α′ and η.

Next, we show that the mapping in (4.20) is invertible for each ζ ∈ [−ǫ, ǫ] and
0 6 t 6 2j/2T . It suffices to show that∣∣∣∣

∂α

∂β

∣∣∣∣ > C−1 > 0 for 0 6 t 6 2−j/2T .

First, if η(t) is a solution of (4.19a) with the initial condition η(0) = ζ then

[(1 + 2−j/2ξ1/2η)2]· = 2(1 + 2−j/2ξ1/2η)2−j/2ξ1/2η̇ = 2Vα(t, 2j/2α)(1 + 2−j/2ξ1/2η)2,

whence

−C(1 + 2−j/2ξ1/2η)2 6 [(1 + 2−j/2ξ1/2η)2]· 6 C(1 + 2−j/2ξ1/2η)2

for some C > ‖Vα‖L∞
T L∞

α
. We recall that the dot represents differentiation in the

t-variable. By Gronwall’s inequality it then follows that

(1 + 2−j/2ξ1/2ζ)2 exp(−Ct) 6 (1 + 2−j/2ξ1/2η)2 6 (1 + 2−j/2ξ1/2ζ)2 exp(Ct).
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That is, (1 + 2−j/2ξ1/2η(t))2 = (1 + 2−j/2ξ1/2ζ)2(1 + O(t)).
Next, we calculate

[(∂(1 + 2−j/2ξ1/2η)

∂β

)2]·

= 2 · 2−j/2ξ1/2 ∂(1 + 2−j/2ξ1/2η)

∂β

∂η̇

∂β

= 2
∂(1 + 2−j/2ξ1/2η)

∂β

(
Vα(t, 2j/2α)

∂(1 + 2−j/2ξ1/2η)

∂β

+ 2j/2Vαα(t, 2j/2α)(1 + 2−j/2ξ1/2η)
∂α

∂β

)

6

(
2|Vα| + 2j/2|Vαα(1 + 2−j/2ξ1/2η)|2

)(∂(1 + 2−j/2ξ1/2η)

∂β

)2

+ 2j/2

(
∂α

∂β

)2

.

By Gronwall’s inequality it follows that

(
∂(1 + 2−j/2ξ1/2η)

∂β

)2

(t) 6 exp(Ct2j/2‖V ‖2
L∞

T W 2,∞
α

)

(
C′ + 2j/2

∫ t

0

(
∂α

∂β

)2
)

for some C,C′ > 0.
Finally, we calculate

[(∂α
∂β

)2]2
= 2

∂α

∂β

∂α̇

∂β

= 2
∂α

∂β

(
3

4
2−j/2ξ1/2(1 + 2−j/2ξ1/2η)−1/2 ∂(1 + 2−j/2ξ1/2η)

∂β
− 2j/2ξ−1/2Vα(t, 2j/2α)

∂α

∂β

)

> −(2j/2ξ−1/2|Vα| + 1)

(
∂α

∂β

)2

− C(1 + 2−j/2ξ1/2η)−1

(
∂(1 + 2−j/2ξ1/2η)

∂β

)2

> −C

(
∂α

∂β

)2

− C sup
06t62−j/2T

2−j/2

(
∂α

∂β

)2

.

The claim then follows by Gronwall’s inequality once ∂α
∂β

∣∣∣
t=0

= 1 and 0 6 t 6

2−j/2T are observed. Consequently, the inverse function theorem applies to give
that the mapping (4.20) is invertible for 0 6 t 6 2−j/2T .

Appendix D. Energy estimates for the linearized equation

This appendix concerns the energy estimates (5.3) and (5.4) for the linear prob-
lems (5.1) and (5.2), respectively, the idea of which will be used repeatedly through-
out this work.

We write the second-order equation (5.1) as the following first-order system

(D.1)

{
∂tu = −V (t, α)∂αu+ v,

∂tv = −V (t, α)∂αv +H∂3
αu+ Vt(t, α)∂αu+ V (t, α)Vα(t, α)∂αu.

In other words, v = ∂tu+ V (t, α)∂αu is the directional derivative.
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Let us define the k-th energy associated to the above system by

(D.2) Ek(t) =
1

2

∫ ∞

−∞

(
(∂k+1

α u)H∂α(∂k+1
α u) + (∂k

αv)
2
)
dα

and define the energy function of order s by

(D.3) Es(t) = ‖u‖2
L2(t) + ‖v‖2

L2(t) +

s∑

k=1

Ek(t).

Note that H∂α is a positive operator with the symbol of its Fourier transform |ξ|
and that

‖f‖2
H1/2 =

∫ ∞

−∞

(f2 + fH∂αf) dα.

It is immediate that Ek(t) is equivalent to ‖u(t)‖2
Hs+3/2 + ‖∂tu(t)‖

2
Hs provided that

‖V ‖L∞([0,T ])W s,∞
α (R) is bounded.

We begin by investigating the time derivative of Er, by calculating

d

dt
Ek(t) =

∫ ∞

−∞

(
(∂k+1

α ∂tu)H∂α(∂k+1
α u) + (∂k

α∂tv)(∂
k
αv
)
) dα

:=Ek
1 + Ek

2 .

(D.4)

The first equality uses that H∂α is self-adjoint.
Let us first compute Ek

1 . By using the first equation in (D.1) and the integration
by parts we may write

Ek
1 =

∫ ∞

−∞

∂k+1
α (−V (t, α)∂αu+ v)H∂α(∂k+1

α u) dα

= −

∫ ∞

−∞

V (t, α)(∂k+2
α u)H∂k+2

α u dα

+

∫ ∞

−∞

(∂k+1
α v)H∂α∂

k+1
α u dα+ (lower order terms)

=

∫ ∞

−∞

(∂k+1
α v)H∂α∂

k+1
α u dα+ (lower order terms),

where (lower order terms) is a collection of terms which can be bounded in terms
of energy in a routine way. The third equality uses (6.4).

Similarly, we compute

Ek
2 =

∫ ∞

−∞

∂k
α(−V (t, α)∂αv +H∂3

αu

− Vt(t, α)∂αu− V (t, α)Vα(t, α)∂αu)(∂
k
αv) dα

= −

∫ ∞

−∞

(∂k
α(V (t, α)∂αv) − V (t, α)∂k+1

α v)(∂k
αv) dα

−

∫ ∞

−∞

(∂k+1
α v)H∂k+2

α u dα+ (lower order terms).

Again, (lower order terms) is made up of terms which can be bounded in terms
of the energy in a routine way. The first term on the right side is bounded by
‖V ‖Hk‖∂αv‖Hk−1 .
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The first term on the right side of Ek
1 and the second term on the right side of

Ek
2 cancel when added together. Other terms are bounded in terms of the energy.

Therefore we have proved

dEs

dt
6 CEs,

for some positive constant C, provided that ‖V ‖L∞([0,T ])W s,∞(R) is bounded. The
energy estimates (5.3) with s > 0 then follows once Gronwall’s inequality applies.

For the inhomogeneous problem (5.2) with s > 0, we proceed similarly to obtain

dEs

dt
6 CEk + ‖R(t)‖2

Hs(R),

from which (5.4) follows.
We next show that this can be extended to negative indices s. Let 0 6 s′ 6 3/2,

and observe that if u solves (5.1) for t ∈ [0, T1], then U = 〈Dα〉
−s′

u satisfies

{
PU = [P, 〈Dα〉

−s′

]u for t ∈ [0, T1],

U(0, α) = 〈Dα〉
−s′

u0, ∂tU(0, α) = 〈Dα〉
−s′

u1.

Thus U satisfies the energy estimates (5.3)-(5.4) for s > 0:

‖∂tU‖L∞([0,T1])Hs
α

+ ‖U‖
L∞([0,T1])H

s+3/2
α

(D.5)

6 CT1
(‖[P, 〈Dα〉

−s′

]u‖L2([0,T1])Hs
α

+ ‖u0‖H
s−s′+3/2
α

+ ‖u1‖Hs−s′
α

).

The commutator term is bounded by

‖[P, 〈Dα〉
−s′

]u‖L2([0,T1])Hs
α

6 C(‖∂tu‖L2([0,T1])H
s−s′
α

+ ‖u‖
L2([0,T1])H

s−s′+1
α

)

6 C(T1)
1/2(‖∂tu‖L∞([0,T1])H

s−s′
α

+ ‖u‖
L∞([0,T1])H

s−s′+1
α

),

but for T1 > 0 sufficiently small and fixed, this can be absorbed into the left hand
side of (D.5) to get
(D.6)

‖∂tu‖L∞([0,T1])H
s−s′
α

+ ‖u‖
L∞([0,T1])H

s−s′+3/2
α

6 C(‖u0‖H
s−s′+3/2
α

+ ‖u1‖Hs−s′
α

).

Applying this argument over a finite number of time steps of size T1 > 0 yields the
estimate for any finite T > 0, with constants dependent on T . A similar argument
applies in the case of (5.2) to yield the estimate (5.4) for −3/2 6 s 6 0.

Acknowledgement. We would like to thank N. Burq for pointing out several
mistakes in earlier versions of this work and for many helpful suggestions. We would
also like to thank T. Alazard, N. Burq, and C. Zuily for suggesting the method used
in Appendix A.

HC was supported by an NSF Postdoctoral Fellowship while in residence at
the Mathematical Sciences Research Institution (MSRI). The work of VMH was
supported partly by the NSF grant DMS-0707647. The work of GS was supported
partly by the NSF grant DMS-0602678.



STRICHARTZ ESTIMATE FOR THE WATER-WAVE PROBLEM 51

References

[1] T. Alazard, N. Burq, and C. Zuily. On the water waves equations with surface tension.
preprint, 2009.

[2] David M. Ambrose. Well-posedness of vortex sheets with surface tension. SIAM J. Math.
Anal., 35(1):211–244, 2003.

[3] David M. Ambrose and Nader Masmoudi. The zero surface tension limit of two-dimensional
water waves. Comm. Pure Appl. Math., 58(10):1287–1315, 2005.

[4] David M. Ambrose and Nader Masmoudi. The zero surface tension limit of three-dimensional
water waves. Indiana U. Math. J., 2008. to appear.
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