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Linear Algebra for Computing Gröbner Bases of Linear
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Abstract

The so-called Berlekamp – Massey – Sakata algorithm computes a Gröbner basis
of a 0-dimensional ideal of relations satisfied by an input table. It extends the
Berlekamp – Massey algorithm to n-dimensional tables, for n > 1.

We investigate this problem and design several algorithms for computing such
a Gröbner basis of an ideal of relations using linear algebra techniques. The first
one performs a lot of table queries and is analogous to a change of variables on the
ideal of relations.

As each query to the table can be expensive, we design a second algorithm
requiring fewer queries, in general. This FGLM-like algorithm allows us to com-
pute the relations of the table by extracting a full rank submatrix of a multi-Hankel
matrix (a multivariate generalization of Hankel matrices).

Under some additional assumptions, we make a third, adaptive, algorithm and
reduce further the number of table queries. Then, we relate the number of queries
of this third algorithm to the geometry of the final staircase and we show that it is
essentially linear in the size of the output when the staircase is convex. As a direct
application to this, we decode n-cyclic codes, a generalization in dimension n of
Reed Solomon codes.

We show that the multi-Hankel matrices are heavily structured when using the
LEX ordering and that we can speed up the computations using fast algorithms for
quasi-Hankel matrices. Finally, we design algorithms for computing the generating
series of a linear recursive table.
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computation, 0-dimensional ideal, multidimensional linear recursive sequence

1. Introduction

A fundamental problem in Computer Science is to estimate the linear com-
plexity of an infinite sequence S : this is the smallest length of a recurrence with
constant coefficients satisfied by S or the length of the shortest linear feedback shift
register (LFSR) which generates it.

The Berlekamp – Massey algorithm (BM, Berlekamp (1968); Massey (1969))
guesses a solution of this problem for sequences with one parameter, i.e. in the
one-dimensional case. For n-dimensional sequences, the definition of a recurrence
relation with constant coefficients was proposed by several authors Chabanne and
Norton (1992); Fitzpatrick and Norton (1990); Saints and Heegard (1995); Sakata
(1988, 1990).

Sakata extended the BM algorithm to 2 dimensions in Sakata (1988) and then to
n dimensions in Sakata (1990, 2009). The so-called Berlekamp – Massey – Sakata
algorithm (BMS) computes a Gröbner basis of the ideal of relations satisfied by the
first terms of the input sequence, (Sakata, 1990, Lemma 5).

Direct and important applications of this generalization can be found in Coding
Theory: n-dimensional cyclic codes, a generalization of Reed Solomon codes, can
be decoded using the BMS algorithm, Sakata (1991). As the ouput of the BMS
algorithm is a Gröbner basis, a natural application is the computation of a Gröbner
basis of an ideal for another order, in fact the latest versions of the Sparse-FGLM
algorithm rely heavily on the BM and BMS algorithms.

Related work
In the 18th century, Gauß was interested in predicting the next term of a se-

quence. Given a discrete set (ui)i∈N, find the best coefficients, in the least-squares
sense, (αi)i∈N that will approximate ui by −

∑d
k=1 αn−k uk.

This yields a linear system whose matrix is Toeplitz and symmetric. This prob-
lem has also been extensively used in Digital Signal Processing theory and applica-
tions. Numerically, Levinson – Durbin recursion method can be used to solve this
problem. Hence, to some extent, the original Levinson – Durbin problem in Nor-
bert Wiener’s Ph.D. thesis, Levinson (1947); Wiener (1964), predates the Hankel
interpretation of the Berlekamp – Massey algorithm, see for instance Jonckheere
and Ma (1989).

We refer to Kaltofen and Pan (1991); Kaltofen and Yuhasz (2013a,b). A very
nice classification of the BM algorithms for solving this problem, and generaliza-
tion to matrix sequences, can be found in the latter two. Of particular importance
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for us is the solution of the underlying linear system in Toeplitz/Hankel form. Let
us also recall that the BM algorithm can be considered as a simplified version
of the extended Euclidean algorithm. Indeed, the BM algorithm called on table
(u0, u1, . . . , u2d−1) will do the same computations as the extended Euclidean algo-
rithm with input polynomials x2d and u0 x2d−1 + u1 x2d−2 + · · · + u2d−1.

The BM algorithm has two classical forms: an algebraic form, handling poly-
nomials, and a matrix form, yielding a Hankel linear system. The BMS algorithm,
Sakata (1988, 1990), extends the algebraic form of the BM algorithm to n dimen-
sions. For a 0-dimensional ideal, according to Sakata (1990), the BMS algorithm
can be used for computing a Gröbner basis.

The BM and BMS algorithms only guess and check that the computed relations
are valid for a finite number of terms of the input sequence. Then, usually, one
needs to prove that they are satisfied for all the terms of the sequence. In this
paper, a table shall denote a finite subset of terms of a sequence: it is one of the
input parameter of the algorithms since one cannot handle an infinite sequence.

Contributions

First of all, we recall what are linear recursive sequences in n dimensions,
following Fitzpatrick and Norton (1990); Sakata (1988) and give some character-
izations thereof. We link them with 0-dimensional ideals and define their order
as the degree of the ideal generated by the relations satisfied by the sequence (see
Section 2). Classically, this number is also the size of the staircase of the Gröbner
basis (the canonical set of generators for the residue class ring).

As a first step, we try to rely on the BM algorithm to solve the n dimensional
case: applying a random change of variables yields a new table whose relations are
simpler, see Section 3. Exploiting this property yields Theorem 1.

Theorem 1. Let u = (ui1,...,in)i1,...,in∈N be a n-dimensional linear recursive sequence
over K. Let d ∈ N. When the size of K is large enough, we can find an equivalent
basis of its relations for all i1 + · · · + in ≤ 2d in randomized time in O(n2d +

n M(d) log d) operations in K, where M(d) is the complexity of multiplying two
polynomials of degree at most d − 1.

Under genericity assumptions, this probabilistic technique essentially reduces
the problem to using the efficient 1-dimensional BM algorithm.

We extend the Hankel interpretation of the BM algorithm into a multi-Hankel
one (a multivariate generalization thereof) for this problem. This allows us to char-
acterize the output and to give properties of our algorithms. It also helps us to
simplify the proofs of our results. The objective of these algorithms is to extract
a maximum full rank submatrix of such a multi-Hankel matrix. This is exactly
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what does our first FGLM-like algorithm, Scalar-FGLM, in Sections 4. It can be
observed that if one were to build a linear recursive sequence from an ideal J, the
Scalar-FGLM algorithm would not necessarily return J as the ideal of relations of
the table independently from the initial conditions. The first result is that the out-
put ideal is necessarily Gorenstein, see Brachat et al. (2010); Gorenstein (1952);
Macaulay (1934). In particular, if the solution points of J have no multiplicities,
then the output is the expected one, that is J. This linear algebra interpretation
allows us to also notice that the BMS algorithm can only return Gorenstein ideals.

Sections 4 and 5 are devoted to FGLM-like algorithms for computing Gröbner
bases of the ideal of relations, namely Scalar-FGLM and Adaptive Scalar-FGLM.
As for the BM and BMS algorithms, the Scalar-FGLM algorithm needs an upper
bound on the order of the table to compute the Gröbner basis of the ideal of re-
lations. On the one hand, whenever the order of the table is relatively big, this
algorithm is efficient. On the other hand, when the order of the table is abnor-
mally small, we propose an output sensitive probabilistic algorithm, called Adap-
tive Scalar-FGLM: this time an estimate of the order of the table is given.

An important parameter of the complexity of the algorithms is the number of
table queries. Indeed, in some applications, it is very costly to compute one element
ui1,i2,... of the table; thus the number of table queries has to be minimized. In fact,
the main drawback of the change of variables is the large number of queries to the
original table. The FGLM application is a kind of application wherein the knowl-
edge of a table element is expensive as each query requires a matrix-vector product
to be computed. Though the number of table queries can be sharply estimated by
counting the number of distinct elements in a multi-Hankel matrix. This quantity
can also be linked to the geometry of the staircase of the computed Gröbner basis.

Theorem 2. The number of queries to the table is the cardinal of set 2 S = {u v |
(u, v) ∈ S 2} where S is the staircase of the ideal.

We show that in favorable cases such as convex ones, the complexity is essen-
tially linear in the size of the output. However, we also exhibit pathological cases
where the complexity grows quadratically.

In Sections 5.2 and 5.3, to illustrate the efficiency of the proposed algorithms,
we report on experiments for two applications: the Sparse-FGLM algorithm and
the decoding of n-dimensional cyclic codes. The results of the experiments are
fully in line with the theory: for instance, in coding theory, when t errors are gen-
erated randomly, they can be recovered in O(t) evaluation of the syndromes.

For the LEX ordering, multi-Hankel matrices are heavily structured. If di is
the maximal degree of the polynomials in xi, then the matrix is quasi-Hankel
with displacement rank d2 · · · dn. This allows us to use fast quasi-Hankel arith-
metic, see Bostan et al. (2007), in Section 6, to solve the underlying linear system
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in O((d2 · · · dn)ω−1 M(d1 · · · dn) log(d1 · · · dn)) operations in the base field. When-
ever d2, . . . , dn are bounded, denoting δ = d2 · · · dn, this complexity is quasi-
linear in the size of the staircase of the Gröbner basis: O(δω−1 M(d1 δ) log(d1 δ)) =

O(M(d) log d).
In Section 7, we recall that the generating series of the recursive linear se-

quences is of special interest. It is a rational fraction whose denominator fac-
tors into univariate polynomials. We propose several algorithms for computing
this rational fraction, a deterministic one based on the Scalar-FGLM algorithm
and a fast probabilistic one using the BM algorithm. On the one hand, thanks
to its factorization into univariate polynomials, the denominator can be computed
in O(n M(d) log d) operations in the base field through our fast probabilistic algo-
rithm. On the other hand, though not mandatory, expanding the numerator can be
done in at most O(n dn−1 M(d)) operations in the base field. This is coherent with
the fact that the numerator is a dense multivariate polynomial of degree di ≤ d in
each xi.

As stated above, the BMS algorithm is an extension to the algebraic form of
the BM algorithm. We left as an open question whether our algorithms could be
seen as a matrix version of the BMS algorithm.

Amongst the changes from the ISSAC version of the paper (Berthomieu et al.
(2015)), we now mention that only Gorenstein ideals can be recovered as ideal
of relations. This gives another probabilistic test for the Gorenstein property, see
also Daleo and Hauenstein (2015). The Adaptive Scalar-FGLM algorithm, pre-
sented in the ISSAC paper and in Section 5, could fail on tables satisfying a rela-
tion for a while and then switching not to satisfy it anymore. In particular, it fails if
the first element is 0. The Extended Adaptive Scalar-FGLM algorithm, or Algo-
rithm 5, extends the Adaptive Scalar-FGLM algorithm through an input parameter
allowing to check multiple table elements at a time. This parameter represents the
trade-off between an exact computation and the output-sensitivity of the Adaptive
Scalar-FGLM algorithm. Finally, Section 7 with the generating series characteri-
zation of recursive sequences and the algorithms to compute the generating series
was not present in the ISSAC version of the paper.

2. Definition and Characterization of Linear Recursive Sequences

This section is devoted to characterizing linear recursive (with constant coeffi-
cients) sequences. This is done in Definition 1 and in Proposition 4. In Section 2.3,
we adopt an FGLM viewpoint to describe a multidimensional linear recursive se-
quence.

We shall use standard notation, with bolding letters corresponding to vectors
or sequences. In particular, we let i = (i1, . . . , in) ∈ Nn and x = (x1, . . . , xn). As
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usual, we write xi for xi1
1 · · · x

in
n and |i| = i1 + · · · + in. When needed ei shall be

the ith element of the canonical basis of Zn. In the remaining part of the paper,
u = (ui)i∈Nn shall be a n-dimensional sequence over a field K.

Let us recall that a one-dimensional sequence u = (ui)i∈N over K is linear
recursive if there exist α0, . . . , αd−1 ∈ K such that for all i ∈ N

ui+d = −

d−1∑
k=0

αk ui+k.

Such a relation shall be called linear recurrence relation (with constant coeffi-
cients).

Furthermore, if d is minimal, then u is said to be linear recursive of order d.
It is quite easy to see that the knowledge of u0, . . . , ud−1, α0, . . . , αd−1 allows one
to compute any term ui of u. In Section 7, we also remind the reader that the
generating series is a rational fraction,∑

i∈N
ui xi ∈ K(x).

Extending the notion of a linear recurrence relation satisfied by a multi-dimensional
sequence u = (ui)i∈Nn is straightforward, see (Saints and Heegard, 1995, Defini-
tion 21): letK be a finite subset of Nn, let α = (αk)k∈K be nonzero, then u satisifes
the linear relation definied by α if for all i ∈ Nn,∑

k∈K

αk ui+k = 0.

In (Chabanne and Norton, 1992, Definition 2), the authors propose that a se-
quence shall be called linear recursive if it satisfies one linear recurrence relation.
On the one hand, such sequences may not allow one to compute any term from a
finite number of initial terms nor may they have a generating series that is a rational
fraction. For instance u = (1/i!)(i, j)∈N2 satisfies ui, j+1−ui, j = 0 for all (i, j) ∈ N2 but
one needs to know infinitely many initial conditions, say ui,0 = 1/i!, to compute
any term. In this instance, the generating series has the closed form exp x

1−y < K(x, y).
On the other hand, there exist sequences satisfying a linear recurrence relation

with a generating series that is a rational fraction, yet they do not allow one to com-
pute any term of the sequences from a finite number of initial terms. An example
of this kind is bi, j =

(
i
j

)
which satisfies Pascal’s rule bi+1, j+1 − bi, j+1 − bi, j = 0, its

generating series is∑
(i, j)∈N2

(
i
j

)
xi y j =

∑
i∈N

xi (1 + y)i =
1

1 − x − x y
∈ K(x, y),
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yet one cannot compute all the terms of sequence without the infinitely many initial
conditions ui,0 = 1 for all i ≥ 0 and u0, j = 0 for all j ≥ 1.

This motivates us to follow Sakata (1988) and Fitzpatrick and Norton (1990)
to define linear recursive sequences. They were called “rectilinear recurrent se-
quences” in the latter.

Definition 1. Let u = (ui)i∈Nn be a n-dimensional sequence with coefficients in
K. The sequence u is linear recursive if from a nonzero finite number of initial
terms ui, i ∈ S , and a finite number of linear recurrence relations, without any
contradiction, one can compute any term of the sequence.

In (Sakata, 2009, p. 147), the following sequence u = (ui, j)(i, j)∈N2 is exhibited
with relations contradicting themselves. The set of initial terms is {u0,0, u1,0, u0,1}

and the set of relations is {ui+2, j − ui, j = 0, ui+1, j+1 − ui, j = 0, ui, j+2 − ui, j = 0}. It is
then clear that ui+1, j − ui, j+1 = 0 implying, in particular, that the set of initial con-
ditions is only {u0,0, u1,0}. Therefore, if u0,1 were initialised with a different value
from u1,0, then the sequence would be inconsistant and one could not compute any
term.

In Section 7, Proposition 18, we recall that the generating series of a n-dimensional
linear recursive sequence is a rational fraction whose denominator can be factored
into univariate polynomials. This is coherent with the binomial counter-example
where the denominator of the generating series, 1− x− x y, cannot be factored into
univariate polynomials.

Remark 3. A linear recursive sequence is a special case of a P-recursive sequence
whose recurrence relations only have constant coefficients, Koutschan (2013).

Binomial sequence b =
((

i
j

))
(i, j)∈N2 is P-recursive satisfying for all (i, j) ∈ N2

both relations

(i − j + 1) bi+1, j − (i + 1) bi, j = 0, ( j + 1) bi, j+1 − (i − j) bi, j = 0.

2.1. Ideal of relations

For a one-dimensional linear recursive sequence u satisfying the smallest re-
lation R(i) = ui+d +

∑d−1
k=0 αk ui+k = 0 for all i ∈ N and with α0, . . . , αk, polyno-

mial Polu(R)(x) = xd +
∑d−1

k=0 αk xk is called the characteristic polynomial of the
sequence. One can prove that the vector space of sequences satisfying R has di-
mension d, corresponding to the d initial conditions u0, . . . , ud−1 one can choose.
Another way of seeing this vector space of dimension d is recalling that if ζ , 0
is a root of Polu(R) with multiplicity µ, then sequences (imζ i)i∈N, with 0 ≤ m < µ

satisfy R, hence d independent sequences.
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Definition 2. Let K be a finite subset of Nn and let (αk)k∈K ∈ N#K be a nonzero
vector. We define the function R : Nn → K that maps i to R(i) =

∑
k∈K αk ui+k.

If R(i) = 0 for all i ∈ Nn, then we say that the sequence u satisfies the linear
recurrence relation R(i) = 0.

Finally, the associated polynomial of (αk)k∈K is

Polu(R)(x) =
∑
k∈K

αk xk.

Conversely, from any polynomial P ∈ K[x], P =
∑

k∈K αk xk, we define the non-
instantiated associated relation Relu(P)(i) =

∑
k∈K αk ui+k.

In the end, we can always shift any polynomial so that it is enough to evaluate
such a relation in i = (0, . . . , 0), consequently we will use the following convention:

[
xi1

1 · · · x
in
n

]
u

= [xi1
1 · · · x

in
n ] = ui1,...,in ,

[P]u = [P] =
∑
k∈K

αk uk.

Example 1. If P(x, y) = x y − x − 1 ∈ K[x, y] then [P] = u1,1 − u1,0 − u0,0 and
[x2 y P] = u3,2 − u3,1 − u2,1.

Let us now recall classical definitions and properties of Gröbner bases and
admissible monomial orders. These will be used in Proposition 4, which can be
seen as another equivalent definition of linear recursive sequences.

An admissible monomial order ≺ is an order on monomials of K[x] s.t. for
any monomial s , 1, 1 ≺ s and for any monomials t,m, s.t. s ≺ t, m s ≺ m t.
This implies that there does not exist any infinite strictly decreasing sequences of
monomials.

The leading term of a polynomial P for ≺, denoted LT≺(P) or LT(P) if no
confusion can arise, is the greatest monomial of P multiplied by its coefficient.

A Gröbner basis of an ideal I for ≺ is a finite subsetG of I such that for all f ∈ I,
there exists a g ∈ G s.t. LT≺(g)|LT≺( f ). The set of monomials in x that are not
divisible by any LT≺(g), g ∈ G forms a canonical basis of the algebra K[x]/I. It is
called the staircase of G since these are exactly the monomials below {LT≺(g), g ∈
G}. If the algebra K[x]/I has finite dimension over K, then equivalently all the
polynomials in I have finitely many common solutions over the algebraic closure
of K and I is said 0-dimensional.

For a homogeneous ideal I, i.e. spanned by homogeneous polynomials, a trun-
cated Gröbner basis of I up to degree d for ≺, or d-truncated Gröbner basis, is a
finite subset G of I s.t. for all f ∈ I, if deg f ≤ d then there exists a g ∈ G s.t.
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LT(g)|LT( f ). This can be computed using any Gröbner basis algorithm by discard-
ing critical pairs of degree greater than d.

For an affine ideal I, an analogous definition of d-truncated Gröbner basis ex-
ists. It is the output of a Gröbner basis algorithm discarding all critical pairs ( f , ϕ)
with deg LT( f ) + deg LT(ϕ) − deg lcm(LT( f ),LT(ϕ)) > d, i.e. with degree higher
than d. In this situation, a d-truncated Gröbner basis G will span the subspace of
polynomials

∑
g∈G hg g with deg hg ≤ d − deg g.

Proposition 4. Let u be a n-dimensional sequence defined over a field K. The set
of all the polynomials Polu(R), with R a linear recurrence relation sastified by u, is
an ideal of K[x] called the ideal of relations.

Furthermore, u is linear recursive if and only if its ideal of relations has dimen-
sion 0.

Proof. We shall take the convention that the void relation, associated to the zero
polynomial, is always true.

Let (αk)k∈Nn , (βk)k∈Nn be two vectors with only a finite number of nonzero
coefficients such that for all i ∈ Nn, R1(i) =

∑
k∈Nn αk ui+k = 0 and R2(i) =∑

k∈Nn βk ui+k = 0, i.e. Polu(R1) and Polu(R2) are in this set. For any λ ∈ K,
R1(i) + λR2(i) = 0 =

∑
k∈Nn(αk + λ βk) ui+k for all i ∈ Nn, thus Polu(R1 + λR2)

is also in this set. Finally, for any j ∈ Nn, let us define the shifted vector (α′k)k∈Nn

by for all k ∈ Nn, α′k+j = αk. We denote by R′1 the maps from Nn to K, it in-
duces. Since R1(i) = 0 for all i ∈ Nn, then R1(i + j) = 0 =

∑
k∈Nn αk uk+j+i =∑

k∈Nn α′k+j uk+j+i = R′1(i) and Polu(R′1) = xj Polu(R1) is in this set.
All in all, this proves that this set of polynomials is an ideal of K[x].
Let u be a n-dimensional linear recursive sequence, K be a finite subset of Nn

of initial conditions of u. For any i ∈ Nn \ K , there exists a α(i) =
(
α(i)

k

)
k∈K

s.t.

∀j ∈ Nn, ui+j =
∑
k∈K

α(i)
k uk+j,

hence
(
xi −

∑
k∈K α

(i)
k xk

)
∈ I. Therefore, in K[x]/I, all monomials xi with i ∈

Nn \ K reduce to a linear combination of the xk,k ∈ K , hence K[x]/I has finite
dimension and I is 0-dimensional.

Conversely, let G = {g1, . . . , gm} be a minimal reduced Gröbner basis of I for
a monomial order ≺. There exists a finite subset S of Nn s.t. for all j, 1 ≤ j ≤ m,
g j = xi j −

∑
k∈S γi j,k xk with γi j,k ∈ K. Let us prove we can set a finite number of

terms of u and then compute any term. Let ui be any term of the sequence. If xi is
in the staircase of G, then we set ui. Otherwise there exist j and i′ s.t. xi = xi′xi j ,
hence xi′g j = xi −

∑
k∈S γi j,k xi′+k ∈ I. By recurrence on the xi′+k ≺ xi, there exist

αi,k ∈ K s.t. xi −
∑

k∈S αi,kxk ∈ I. Therefore ui −
∑

k∈S αi,k uk = 0 and one can
compute any ui from a finite number of initial terms.
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In other words, u is linear recursive if and only if K[x]/I is a finite dimensional
K-vector space. The dimension shall be called the order of u.

This is related to the definition of a holonomic function in an Ore algebra
A = K(z)〈∂z〉, see (Koutschan, 2013, Definition 1). If Ann( f ) is the left ideal of
polynomials vanishing on f =

∑
i∈Nn ui zi, then A/Ann( f ) is a finite dimensional

vector space overA.

Example 2. Consider the following sequences:

1. u =
(
(2i + 3i) 7 j

)
(i, j)∈Nn is linear recursive of order 2 satisfying the relations

∀ (i, j) ∈ N2, ui+2, j − 5 ui+1, j + 6 ui, j = 0, ui, j+1 − 7 ui, j = 0.

Its ideal of relations is 〈(x−2) (x−3), y−7〉. The polynomial system spanned
by these equations has two solutions with multiplicity 1.

2. v =
(
(i + 1) 2i 7 j

)
(i, j)∈N2 is linear recursive of order 2 satisfying the relations

∀ (i, j) ∈ N2, vi+2, j − 4 vi+1, j + 4 vi, j = 0, vi, j+1 − 7 vi, j = 0.

Its ideal of relations is 〈(x − 2)2, y − 7〉. The polynomial system spanned by
these equations has one solution with multiplicity 2.

3. b =
((

i
j

))
(i, j)∈N2 is not linear recursive, however it is holonomic. Calling the

BMS algorithm or Algorithms 3 and 4 on this table for all bi, j, i + j ≤ 2d,
one obtains relations

bi+1, j+1 − bi, j+1 − bi, j = 0,

the famous Pascal’s rule, together with

d∑
k=0

(
d
k

)
(−1)d−k bi+k, j = 0, bi, j+d = 0.

From the polynomial point of view, they form a d-truncated Gröbner basis of
I = 〈(x − 1)d, x y − x − y, yd〉 = 〈1〉. Let us notice that 1 is reached by these
polynomials only as a linear combinations of degree d + 1 and the ideal 〈1〉
has not dimension 0 but −1. From the sequence point of view, one needs to
add infinitely many initial conditions to compute the whole sequence.

2.2. Gorenstein ideals

In the proof of Proposition 4, we showed that a Gröbner basis G of an ideal
J and the initial conditions {ui, i ∈ K}, with K the staircase of G define uniquely
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a sequence as they allow one to compute any term thereof. However, the ideal of
relations of this sequence need not be J.

Let K be an effective field and let a, b ∈ K with a , 0. Let us consider the
sequence u built from J = 〈x2〉 and initial conditions {u0 = a, u1 = b}. It is quite
clear that the ideal of relations of u is I = 〈x〉 ⊃ J if and only if b = 0 and that it is
J otherwise.

More generally, let J = 〈Q〉 be the ideal used to build the sequence u = (ui)i∈N
and let I = 〈P〉 be the ideal of relations of u. Since [Q]u = 0, then Q ∈ I and J ⊆ I.
Therefore, if the ideal of relations is bigger then there are relations induced by the
recurrence system between the initial conditions.

For multidimensional sequences, the situation is more complex. The ideal of
relations can intrinsically be bigger than the ideal used to build the sequence what-
ever the initial conditions are. Let a, b, c ∈ K with a , 0. Let J = 〈x2, x y, y2〉

with initial conditions {u0,0 = a, u1,0 = b, u0,1 = c}. It is easy to check that for all
i, j ∈ N, c ui+1, j − b ui, j+1 = 0 meaning that c x− b y must be in I. Hence, whenever
b and c are not 0, the ideal is in fact I = 〈x − b y/c, y2〉 ⊃ J. If b = 0, c , 0 then
I = 〈x, y2〉, else if b , 0, c = 0 then I = 〈x2, y〉 else b = c = 0 and I = 〈x, y〉. All
these cases are generalizations of the dimension 1 situation.

Proposition 3.3 in Brachat et al. (2010) proves that the ideal of relations of a
linear recursive sequence is necessarily Gorenstein, Gorenstein (1952); Macaulay
(1934), and problems occur only if J has a zero of multiplicity at least 2. The
following theorem can also be found in (Elkadi and Mourrain, 2007, Theorem 8.3).

Theorem 5. Let I ⊆ K[x] be a 0-dimensional ideal and let R = K[x]/I. The ideal
I (resp. ring R) is Gorenstein if equivalently

1. R and its dual are isomorphic as R-modules;
2. there exists a K-linear form τ on R such that the following bilinear form is

non degenerate

R × R→ K
(a, b) 7→ τ(a b).

On the one hand, this result is important for the Sparse-FGLM application. If
the input ideal is not Gorenstein, the output ideal will be bigger. However, this can
be easily tested by comparing the degrees of the input and output ideals. On the
other hand, this yields a probabilistic test for the Gorenstein property of an ideal
J. Pick at random initial conditions, construct a sequence thanks to these initial
conditions and J and then compute the ideal I of relations of the sequence. If
I = J, then J is Gorenstein. We refer to Daleo and Hauenstein (2015) for another
test on the Gorenstein property of an ideal.

11



As stated above, a non Gorenstein zero-dimensional ideal induces a polynomial
system with a zero of multiplicity at least 2. However, this does not mean that
ideals with multiplicities are out of reach. The ideal of relations of the sequence
u = (ui, j)(i, j)∈N2 defined by ui, j = 1 if i, j ≤ 1 and ui, j = 0 otherwise is exactly
J = 〈x2, y2〉. Yet, the vanishing variety of J is the origin with multiplicity 4.

2.3. Matrix multiplications in the quotient ring point of view

This section introduces a key point for the adaptive Algorithm 4, designed in
Section 5.

In Proposition 4, we showed that the initial terms of a sequence and the ideal
of relations are enough to allow one to compute any term of the sequence. In
fact, adopting a FGLM viewpoint, we will show that any term is a scalar product
between two vectors, one of them being the vector of the initial terms.

Let u = (ui)i∈Nn be a linear recursive sequence over K. Let K be the staircase
of a Gröbner basis of its ideal of relations I, then K[x]/I is a K-algebra whose
canonical basis as a vector space is (xk)k∈K . Let us define T j to be the multiplica-
tion matrices by x j in K[x]/I for all j, 1 ≤ j ≤ n. The identity element 1 ∈ K[x]/I
is represented by the first vector of the canonical basis 1 = (1, 0, . . . , 0)T. For any
i = (i1, . . . , in) ∈ Nn, the vector representing xi in K[x]/I is T i1

1 · · · T
in
n · 1. Now,

to express ui in terms of the uk,k ∈ K , it suffices to perform the scalar product
ui = 〈r,T i1

1 · · · T
in
n · 1〉 where r = (u0, . . .) = (uk)k∈K .

Example 3. The set G = {x − y, y2 − y − 1} is a Gröbner basis of the ideal I = 〈G〉
for the DRL ordering with y ≺ x whose staircase K is {1, y}. Let u = (ui, j)(i, j)∈N2

be a two-dimensional sequence such that for all (i, j) ∈ N2, ui, j = Fi+ j where
(Fi)i∈N is the Fibonacci sequence. Clearly for all (i, j) ∈ N2, [(x − y) xi y j] =

ui+1, j − ui, j+1 = Fi+ j+1 − Fi+ j+1 = 0 and [(y2 − y − 1) xi y j] = ui, j+2 − ui, j+1 − ui, j =

Fi+ j+2 − Fi+ j+1 − Fi+ j = 0. There are no smaller relations so that I is the ideal of
relations of u.

We let r be the vector of initial conditions r = (u0,0, u0,1) = (0, 1) and T1,T2 be
the multiplication matrices by x and y in K[x, y]/I for the canonical basis (1, y).
Thus, T1 = T2 =

(
0 1
1 1

)
and for all (i, j) ∈ N2, (i, j) , (0, 0),

〈r,T i
1 · T

j
2 · 1〉 = ( 0 1 )

(
0 1
1 1

)i+ j (
1
0

)
= ( 0 1 )

( Fi+ j−1 Fi+ j
Fi+ j Fi+ j+1

) (
1
0

)
= Fi+ j = ui, j.

3. Randomized Reduction: from the Berlekamp – Massey – Sakata Algorithm
to the Berlekamp – Massey Algorithm

When solving algebraic systems coming from applications, computational dif-
ficulties might appear because of the choices of the variables. In general, a random
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linear change of variables is first applied on the system so that it has better chances
to behave as a generic system. After the computations, the inverse map is applied
to the results.

In this section, we introduce an action of GLn(K), the group of invertible ma-
trices of size n, on a n-dimensional sequence u = (ui)i∈Nn . With good probability,
this randomized preprocessing will yield a new sequence that will have one linear
recurrence relation of the form ui+d e1 −

∑d−1
k=0 αk ui+k e1 = 0, for all i and other rela-

tions of the type ui+e j −
∑d−1

k=0 β j,k ui+k e1 = 0. These recurrence relations means that
the first one should be computed by calling the BM algorithm on the subsequence
(ui e1)i∈N while each other one is found by solving a special linear system.

Therefore, the bottleneck of the execution of the BMS algorithm on this table
would be the computation of the first relation.

3.1. Linear Transformation of the Table

In this section, we describe the action of GLn(K) over the set KNn
of n-dimensional

sequences over K. For a matrix A = (ai, j)1≤i, j≤n ∈ GLn(K), we denote

A x = ξ = (ξ1, . . . , ξn) =

 n∑
k=1

a1,k xk, . . . ,

n∑
k=1

an,k xk

 .
Then, by extension, for all i = (i1, . . . , in) ∈ Nn, we let

(A x)i = ξi =

n∏
k=1

ξik
k .

We define the action of A on an n-dimensional sequence as follows.

Definition 3. Let u = (ui)i∈Nn be a n-dimensional sequence. We define the action

of an invertible matrix A ∈ GLn(K) on u as A · u =

(([
(A x)i

]
u

)
i

)
i∈Nn

.

For u = (ui, j)(i, j)∈N2 , A =
(

a b
c d

)
∈ GL2(K) and v = A · u, we have

v0,0 = u0,0,

v1,0 = a u1,0 + b u0,1, v0,1 = c u1,0 + d u0,1,

v2,0 = a2 u2,0 + 2 a b u1,1 + b2 u0,2, v1,1 = a c u2,0 + (a d + b c) u1,1 + b d u0,2, . . .

The following proposition shows that the action of A on a sequence u extends
to polynomials naturally, i.e. as the classical action of GLn(K) on polynomials in
K[x].

13



Proposition 6. Let u be a n-dimensional sequence. Let P be a polynomial associ-
ated to a linear recurrence relation of u. Let A be an invertible matrix of size n and
let v = A · u. Then the polynomial P(A−1 x) is associated to a linear recurrence
relation of v.

Proof. Let i ∈ Nn. Since vi is merely the polynomial (A x)i evaluated in u, any
polynomial P(A−1 x) evaluated in v will yield P(x) evaluated in u. Therefore,[
P(A−1 x)

]
v

= 0 if and only if [P(x)]u = 0.

Therefore, the preprocessing of applying a randomized invertible linear map
on the table can be seen as applying – the same – randomized invertible linear
transformation on the variables appearing in the ideal of relations of the table.

3.2. Essential reduction to the Berlekamp – Massey algorithm
We design an algorithm that computes the ideal of relations of a table u using

a randomized linear transformation of the table and running the BM algorithm on
the new table.

Let u = (ui)i∈Nn be a n-dimensional linear recursive sequence and let I ∈ K[x]
be its ideal of relation. We shall introduce a new variable t and a new ideal J =

I + (t− 1) in K[x, t]. The ideal J is consequently the ideal of relation of the (n + 1)-
dimensional sequence v = (vi, j)(i, j)∈Nn×N defined by

∀ i ∈ Nn, ∀ j ∈ N, vi, j = ui,

where t represents the last coordinate.
Generically, when applying a change of coordinates fixing each xi and mapping

t onto t +
∑n

k=1 ck xk for some c1, . . . , cn ∈ K, the minimal reduced Gröbner basis
of the new ideal J′ obtained from J for the LEX order with t < x1 < · · · < xn is
in shape position. This means the Gröbner basis is 〈 f (t), x1 − f1(t), . . . , xn − fn(t)〉,
with ∀ k ∈ {1, . . . , n}, deg fk < deg f , see Gianni and Mora (1989); Lakshman
(1990).

As f (t) =
∑d

k=0 αk tk depends only on t, it is found by running the BM algorithm
on the first terms of the subsequence (ṽ0, j) j∈N, with 0 = (0, . . . , 0) ∈ Nn, of ṽ
obtained from v and the aforementioned change of coordinates. Each polynomial
xk − fk(t) = xk −

∑d−1
`=0 βk,` t`, for 1 ≤ k ≤ n, is then found by solving the linear

system 
ṽek ,0 =

∑d−1
`=0 βk,` ṽ0,`

...
...

ṽek ,d−1 =
∑d−1
`=0 βk,` ṽ0,`+d−1

whose matrix is Hankel.
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Therefore, after applying a linear transformation on the table, finding the first
relation only in t essentially comes down to running the BM algorithm on a 1-
dimensional subtable. Then, the other relations are found by solving Hankel sys-
tems with the exact same matrix as in the call to the BM algorithm but with different
right-hand side vectors. This is summed up in Algorithm 1.

Algorithm 1: The BM algorithm for n-dimensional tables.

Input: A n-dimensional table u = (ui)i∈Nn .
Output: An equivalent basis of relations of u.
Pick at random c1, . . . , cn ∈ K and let ξ = 1 + c1 x1 + . . . + cn xn.

Compute ṽ = (ṽi, j)(i, j)∈Nn×N =

((
[xi ξ j]u

)
i, j

)
(i, j)∈Nn×N

.

Compute f of degree d by running the BM algorithm on
(
ṽ0, j

)
j∈N

.

For k from 1 to n do
Solve the Hankel linear system

ṽ0,0 · · · ṽ0,d−1
... . . .

...

ṽ0,d−1 · · · ṽ0,2 d−2



βk,0
...

βk,d−1

 =


ṽek ,0
...

ṽek ,d−1

.
Return f , x1 −

∑d−1
`=0 β1,` t`, . . . , xn −

∑d−1
`=0 βn,` t`.

Let us illustrate this algorithm with the following example.

Example 4. We consider the sequence u = ((−1)i1 i2)(i1,i2)∈N2 . We set c1 = −1
and c2 = 2 and get the sequence ṽ = (ṽi1,i2, j)(i1,i2, j)∈N3 . The first terms of the
subsequence

(
ṽ0,0, j

)
j∈N

are (1, 2, 12, 32, 144, 512, 2112, 8192, 33024, 131072).

Calling the BM algorithm on this table yields f (t) = t4 −4 t3 −4 t2 + 16 t. Then
solving 

ṽ0,0,0 ṽ0,0,1 ṽ0,0,2 ṽ0,0,3
ṽ0,0,1 ṽ0,0,2 ṽ0,0,3 ṽ0,0,4
ṽ0,0,2 ṽ0,0,3 ṽ0,0,4 ṽ0,0,5
ṽ0,0,3 ṽ0,0,4 ṽ0,0,5 ṽ0,0,6



β1,0
β1,1
β1,2
β1,3

 =


ṽ1,0,0
ṽ1,0,1
ṽ1,0,2
ṽ1,0,3


1 2 12 32
2 12 32 144
12 32 144 512
32 144 512 2112



β1,0
β1,1
β1,2
β1,3

 =


1
−2
−4
−32


yields β1,0 = −1, β1,1 = 2/3, β1,2 = 1/2, β1,3 = −1/6 so that we find the polynomial
of relation x1 + 1

6 t3 − 1
2 t2 − 2

3 t + 1.
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Likewise, we find x2 + 1
12 t3 − 1

4 t2 − 5
6 t + 1 when solving the same linear system

but with the right-hand side vector


ṽ0,1,0
ṽ0,1,1
ṽ0,1,2
ṽ0,1,3

 =


1
4
8

40

.
We mention that the degrees of I, J and J′ coincide and are all d and that one

can also obtain a set of generator of I ⊂ K[x], the ideal of relations of the original
sequence, i.e. the polynomials not in t, by computing a new Gröbner basis of the
ideal for an order eliminating t, i.e. any monomial ordering wherein a monomial di-
visible by t is greater than any monomial only in x1, . . . , xn , for instance LEX with
x1 ≺ · · · ≺ xn < t. This can be done with the FGLM algorithm for instance and we
refer the reader to Example 9 for a continuation of Example 4 with a computation
of a Gröbner basis for an order eliminating t.

For instance, one can use Poteaux and Schost (2013)’s Las Vegas algorithm
to change the order of a triangular set with complexity essentially that of modular
composition O(C(d)) ⊆ O(d(ω+1)/2) operations.

3.3. Complexity results

Proposition 7. Let d ∈ N. Computing terms vi for all i ∈ Nn such that |i| ≤ d can
be done in O(n2 d) operations in K, O(n2 d) memory space and O(nd) queries to the
table elements.

Proof. According to Section 3.1, for any i ∈ Nn with |i| ≤ d, one needs to compute
ξi = ξi1 · · · ξin , where ξ = A x.

Introducing a new set of variables z0, z1, . . . , zn, we can get all the ξi with i ≤ d
by expanding

(z0 + ξ1 z1 + . . . + ξn zn)d .

This allows us to directly determine all the polynomials we need to compute vi,
|i| ≤ d.

The linear form z0 + ξ1 z1 + . . . + ξn zn has n2 + 1 monomials, therefore its dth
power has

(
n2+d

d

)
∈ O(n2 d) monomials, that must be all stored, and one needs to

perform O(n2 d) operations in K to compute them.
To obtain each vi, we evaluate the polynomial by replacing xi by ui. For a given

i ∈ Nn, |i| ≤ d, all the replacements of an xi by ui requires a lonely query to the
table, hence a global total of O(nd) queries.

For δ ∈ {0, .., d}, each of the O(nδ) different polynomials of degree δ has O(nδ)
coefficients. Thus O

(∑d
δ=0 n2 δ

)
= O(n2 d) multiplications must be performed.
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Proof of Theorem 1. Besides the change of basis in O(n2 d), we need to run the BM
algorithm once in O(M(d) log d) operations in K. Then, each Hankel system can
be solved in O(M(d) log d) operations, according to Bostan et al. (2007).

4. Multi-Hankel Solver

This section is devoted to the design of an FGLM-like algorithm for computing
the Gröbner basis of the ideal of relations of a table u = (ui)i∈Nn , with coefficients
in K.

We fix ≺ to be an admissible monomial ordering on x1 . . . , xn, then T is the
ordered set of terms that we can make from x1, . . . , xn. For P ∈ K[x1, . . . , xn],
we let T (P) denote the set of terms appearing in P and LT(P) = LT≺(P) is the
maximum of T (P). For any D ∈ N, TD is the ordered set of all terms of degree
less than or equal to D sorted by increasing order (wrt. ≺).

From the algorithm point of view, it is impossible for us to check that a relation
is valid for all i ∈ Nn. Indeed, at some point of the algorithm we will have a finite
subset of indices T ⊂ Nn and we will try to find relations that are valid for those
indices:

∀ i ∈ T, ui+d +
∑
k∈K

αk ui+k = 0.

Definition 4. Let T be a finite subset of Nn. We say that a polynomial P ∈
K[x1, . . . , xn] is valid up to T if Relu(P)(i) =

[
xi P

]
u

= 0 for all i ∈ T. In that
case we write that NF(P,u,T ) = 0.

Let T be a finite subset of T . We say that a polynomial P ∈ K[x1, . . . , xn] is
valid up to T if [t P] = 0 for all t ∈ T. In that case we write that NF(P,u,T ) = 0.

From the relations ui+d +
∑

k∈K αk ui+k = 0, valid for all i ∈ T , we can make
the polynomial P = xd +

∑
k∈K αk xk. This polynomial satisfies [xi P]u = 0 for all

i ∈ T . In other words, we have NF(P,u,T ) = 0.

Example 5. Let T = {(0, 0), (0, 1), (1, 0), (0, 2)} be a finite ordered subset of N2 and
let u = ((−1)i j)(i, j)∈N2 . Finding α0,0, α1,0, α0,1 such that

u0,2 + α0,0 u0,0 + α0,1 u0,1 + α1,0 u1,0 = 1 + α0,0 + α0,1 + α1,0 = 0
u0,3 + α0,0 u0,1 + α0,1 u0,2 + α1,0 u1,1 = 1 + α0,0 + α0,1 − α1,0 = 0
u1,2 + α0,0 u1,0 + α0,1 u1,1 + α1,0 u2,0 = 1 + α0,0 − α0,1 + α1,0 = 0
u0,4 + α0,0 u0,2 + α0,1 u0,3 + α1,0 u1,2 = 1 + α0,0 + α0,1 + α1,0 = 0

yields α0,0 = −1 and α1,0 = α0,1. Hence, the polynomial P = y2 − 1 is such that for
all (i, j) ∈ T, [xi y j P]u = 0, i.e. NF(P,u,T ) = 0.
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4.1. Staircase
We assume now that T ⊂ T is a finite set of terms. Equivalently, T ′ is the set of

exponents of all t ∈ T . Any BMS-style algorithm will generate minimal relations;
hence a new relation can be found if for a finite subset K of Nn, the following two
properties are satisfied:

(a) There are scalars αk ∈ K,k ∈ K such that ∀ i ∈ T ′, ui+d +
∑

k∈K αk ui+k = 0;
(b) There are no nonzero relations

∑
k∈K βk ui+k = 0 which are valid for all i ∈ T ′.

This would lead to the relation ui+d +
∑

k∈K αk ui+k = 0.
We can translate these properties in polynomial terms:

(a) There is a monic polynomial P ∈ K[x] of leading term xd s.t. NF(P,u,T ) = 0;
(b) There are no nonzero relations

∑
t∈ T (P−xd) βt Relu(t)(i) = 0 which are valid for

all i ∈ T ′. Equivalently, there are no nonzero relations
∑

t∈ T (P−xd) βt [m t] = 0
which are valid for all m ∈ T .

In other words, we need to identify a set of terms for which there is no linear
relations.

Definition 5. Let T be a finite subset of T . We say that a finite set S ⊂ T of terms
is a useful staircase wrt. u, T and ≺ if∑

t∈S

βt [m t] = 0, ∀m ∈ S

implies that βt = 0 for all t ∈ S , S is maximal for the inclusion and minimal for ≺.
We compare two ordered sets for ≺ by seeing them as tuples of their elements and
then comparing them lexicographically.

Let us mention that these “useful staircases” are not necessarily staircases in
the sense of Gröbner bases since they are not always stable under division.

Example 6. In dimension 1, consider the set T = {1, x, x2} of monomials of degree
less than or equal to 2 and the sequence u = (ui)i∈N defined by

ui =

0, if i ≤ 2,
i − 2, otherwise.

For m ∈ T, we have the following potential relations
α1 [1] + αx [x] + αx2 [x2] = 0
α1 [x] + αx [x2] + αx2 [x3] = αx2 = 0
α1 [x2] + αx [x3] + αx2 [x4] = αx + 2αx2 = 0.
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Therefore, the useful staircase is {x, x2} and this set is not stable under division
because 1 is not inside. Using the stability criterion, we can recover the complete
staircase {1, x, x2}.

Notice though, that if T is big enough, the useful staircase shall coincide with
the classical staircase: let us take this time T = {1, x, x2, x3} and the same se-
quence. The potential relations become

α1 [1] + αx [x] + αx2 [x2] + αx3 [x3] = αx3 = 0
α1 [x] + αx [x2] + αx2 [x3] + α3 [x4] = αx2 + 2αx3 = 0
α1 [x2] + αx [x3] + αx2 [x4] + αx3 [x5] = αx + 2αx2 + 3αx3 = 0
α1 [x3] + αx [x4] + αx2 [x5] + αx3 [x6] = α1 + 2αx + 3αx2 + 4αx3 = 0,

and the useful staircase is {1, x, x2, x3}.

Algorithm 2 transforms a useful staircase into a staircase.

Algorithm 2: Stabilize

Input: A useful staircase S
Output: A staircase
S ′ := ∅
For s ∈ S do S ′ := S ′ ∪ {t | t ∈ T and t|s}.
Return S ′.

4.2. Linear Algebra to find relations

We design a simple algorithm for checking that a finite set S ⊆ T is a useful
staircase wrt. u, T and ≺. Let us first start with an example:

Example 7. We consider the sequence u = (ui, j)(i, j)∈N2 defined by

ui, j =

1, if i = 1, j = 2,
0, otherwise.

and we look for a relation P(x, y) = αx2 x2 +αx y x y+αy2 y2 +αx x +αy y+α1. That
is, we try to find (αs)deg s≤2 s.t. [t P] = 0 for all t ∈ T:

∀(i, j) ∈ N2, i+ j ≤ 2, α1 ui, j+αy ui, j+1+αx ui+1, j+αy2 ui, j+2+αx y ui+1, j+1+αx2 ui+2, j = 0.
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Finding a useful staircase S is equivalent to extracting a full rank matrix with as
many low-labeled columns as possible in the following multi-Hankel matrix:

HT =



1 y x y2 x y x2

1 u0,0 u0,1 u1,0 u0,2 u1,1 u2,0
y u0,1 u0,2 u1,1 u0,3 u1,2 u2,1
x u1,0 u1,1 u2,0 u1,2 u2,1 u3,0
y2 u0,2 u0,3 u1,2 u0,4 u1,3 u2,2
x y u1,1 u1,2 u2,1 u1,3 u2,2 u3,1
x2 u2,0 u2,1 u3,0 u2,2 u3,1 u4,0


=



1 y x y2 x y x2

1 0 0 0 0 0 0
y 0 0 0 0 1 0
x 0 0 0 1 0 0
y2 0 0 1 0 0 0
x y 0 1 0 0 0 0
x2 0 0 0 0 0 0


.

In this example, the columns labeled with 1, x2 are clearly linearly dependent from
the columns labeled with lower terms so that S = {y, x, y2, x y} is the useful stair-
case and det(HS ) = 1 , 0. Furthermore, we can now try to find a relation
Q(x, y) = x2 − αx y x y − αy2 y2 − αx x − αy y. Again this is equivalent to finding
αy, . . . , αx y s.t. Rel(Q)(i, j) = 0 for all (i, j) ∈ N2 with i + j ≤ 2. Finally, this comes
down to solving the linear system:

HS


αy

αx

αy2

αx y

 =


u2,1
u3,0
u2,2
u3,1

 =


0
0
0
0

 .
Since HS is full rank we find αy = αx = αx2 = αx y = 0 and the relation Q(x, y) =

x2.

For the more general case of two sets of terms, we are now in a position to
define the structured matrix associated to these sets.

Definition 6. Let T and S be two finite subsets of T . We consider the polynomial
PS (x) =

∑
s∈S as s and the linear equations [t PS ] = 0 for all t ∈ T. Then, we

generate the coefficient matrix HT,S from the previous linear system of equations
in the unknown variables as for s ∈ S :

HT,S =


··· s∈S ···

...
. . .

... . . .

t∈T · · · [s t]u · · ·
... . . .

...
. . .

.
When T = S we simply write HT for the multi-Hankel matrix HT,S .

The following two computations are the key of our algorithms and make use of
linear algebra techniques:
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(a) Assuming two finite sets S and T are such that #T ≥ #S , then checking that
S ⊂ T is a useful staircase wrt. T is equivalent to checking that the matrix
HT,S has full rank;

(b) Given a finite set of terms T , computing a monic polynomial P ∈ K[x] of
support T (P) s.t. NF(P,u,T ) = 0 is equivalent to solving a linear system

HT,S × a + HT,{LT(P)} = 0,

where S = T (P−LT(P)) is the support of the polynomial P except the leading
term. If a is a solution then P = LT(P) +

∑
s∈S ass is a polynomial s.t.

NF(P,u,T ) = 0.

Proposition 8. Let T be a finite subset of T . Let S be a subset of T , then rank HT ≥

rank HS .
Furthermore, if S is a useful staircase wrt. u, T and ≺ then:

det(HS ) , 0 and rank HS = rank HT,S = rank HT .

Proof. The first statement is clear for HS is a submatrix of HT .
The second statement is another wording of Definition 5.

4.3. An FGLM-like Algorithm
The algorithm we want to design cannot check all the infinitely many elements

of the sequence u. That is why we need a bound d ≥ 0 given by the user on the
order of the sequence. Let us recall that the order of a linear recursive sequence is
the size of the staircase of a Gröbner basis of its ideal of relations. This also means
that if the order is d, no monomials of degree greater or equal to d appear in the
staircase. We let T be the set of all monomials of degree less than d and ≺ be an
admissible monomial ordering.

Calling the BMS algorithm on table u and bound d ≥ returns a d-truncated
Gröbner basis of the ideal of relations of u. We shall try to adapt existing Gröbner
basis algorithms to obtain the same result. To this end, we can try to slightly modify
the FGLM algorithm, Faugère et al. (1993). Let us notice that when running the
FGLM algorithm, the user already knows the quotient ring structure thanks to the
input Gröbner basis and its staircase. In this scalar case, we aim to determine the
structure of the quotient ring and therefore cannot rely on this knowledge during
the computation. This is a fundamental difference between both situations.

To ease the presentation, we shall split our algorithm in two steps. The first
step is devoted to the staircase computation wrt. to ≺, the monomial ordering, and
to d, the bound on the degree. The second step concernes the d-truncated Gröbner
basis computation. It is worth mentioning that in a real implementation, both steps
should be combined to increase the efficiency of the algorithm.
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Algorithm 3: Scalar-FGLM.

Input: A table u = (ui)i∈Nn with coefficients in K, d a given bound and ≺ a
monomial ordering.

Output: A reduced (d + 1)-truncated Gröbner basis wrt. ≺ of the ideal of
relations of u.

Build the matrix HTd .
Extract a submatrix of maximal rank. // as in Section 4.2

Find S the useful staircase s.t. rank HTd = rank HS .
S ′ := Stabilize(S ). // the staircase (stable under division)

L := Td+1\S ′. // set of next terms to study

G := ∅. // the future Gröbner basis

While L , ∅ do
t := min≺(L) and remove t from L.
Find α s.t. HS α + HS ,{t} = 0.
G := G ∪

{
t +

∑
s∈S αs s

}
.

Sort L by increasing order (wrt. ≺) and remove multiples of LT(G).
Return G.

Example 8. Let us trace Algorithm 3 on Example 2, item 3.
We consider the sequence b = (bi, j)(i, j)∈N2 defined by bi, j =

(
i
j

)
and we fix d = 2,

≺ the DRL ordering with y ≺ x, i.e. xi y j ≺ xk y` if and only if

(i + j < k + `) ∨ ((i + j = k + l) ∧ ( j > `)).

Then T2 = {1, y, x, y2, x y, x2} and the matrix HT2 is as follows

HT2 =



1 y x y2 x y x2

1 1 0 1 0 1 1
y 0 0 1 0 0 2
x 1 1 1 0 2 1
y2 0 0 0 0 0 1
x y 1 0 2 0 1 3
x2 1 2 1 1 3 1


.

We can verify easily that the column (resp. row) labeled with x y is the sum of
the first and second columns (resp. rows) labeled with 1 and y and that the other
columns (resp. rows) are all linearly independent. Therefore, the useful staircase
is S = {1, y, x, y2, x2}. As S is stable under division, S ′ = Stabilize(S ) = S and we
initialize L to the ordered set {x y, y3, x y2, x2 y, x3}.
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In the while loop, we start with t = x y and we need to solve the linear system

HS α +


1
0
2
0
3


= 0 ⇒ α =


−1
−1
0
0
0


.

Hence G = {x y − y − 1}. We update L = {y3, x3}. Then we take t = y3, find
G = {x y − x − y, y3} and update L = {x3}.

Finally, setting t = x3, we find G = {x y − x − y, y3, x3 − 3 x2 + 3 x − 1} and
update L = ∅.

We showed in Example 2 that G is not a Gröbner basis of the ideal of relations
but only a 3-truncated Gröbner basis of the ideal. The reason is twofold: the
Gröbner basis of 〈G〉 is 1 and the true ideal of relations is only 〈x y − y − 1〉.

Theorem 9. Algorithm 3 is correct, terminates and its output is a (d +1)-truncated
Gröbner basis. Moreover, if u is a recursive linear sequence of order D, taking
d = D suffices to recover a Gröbner basis of the ideal of relations of the sequence.

Proof. Algorithm 3 clearly terminates since the size of L decreases at each step.
Taking the basis monomials in increasing order ensures that the set S ′ contains

monomials of smallest degrees. Let us first show that the staircase of the ideal
of u contains the useful staircase: any polynomial with leading term outside the
staircase of the ideal of u reduces to a polynomial with support in the staircase.

Let us denote K the field of coefficients of u and I = 〈G〉 ⊆ K[x] where G is
computed by Algorithm 3. Suppose that one element e of the useful staircase lies
outside the staircase. On the one hand as e is not in the staircase S , one can find
αs ∈ K, s ∈ S such that e−

∑
s∈S αs s = 0 in K[x]/I. Therefore, the column labeled

with e is a linear combination of columns labeled with lower terms s, s ∈ S with
coefficients αs. On the other hand, as e is in the useful staircase, column labeled
with e should be linearly independent from the previous ones, which are all labeled
with terms lower than e by construction of the matrix. This is a contradiction.

Conversely, if S does not contain a maximal (for the natural order on the table)
element of the staircase for u, then this element can be written as a linear combina-
tion of smaller terms, which contradicts the fact that it belongs to the staircase. The
stabilization of these maximal elements is therefore the full staircase of the ideal
of u.

The set G contains elements with leading terms that do not divide each other.
Let us consider f and g in G (with leading terms in Td+1) and their S -polynomials
S ( f , g). Then either the leading term of S ( f , g) is in Td+1 \ S or it is in S . In the
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latter case, it means there is a relation in HS , so it cannot be a new relation. In
the former case, the relation was already found by the main loop. So no S ( f , g)
produces a new relation. When d is the order of the linear recursive sequence, then
it is also the size of the staircase and the result is a Gröbner basis.

Given a useful staircase S , when counting the number of table queries, 2 S =

{s t | s, t ∈ S } must not be too big compared to S . We shall see how to bound the
cardinality of 2 S in Section 5.1.

5. Adaptive Algorithm

Sections 3 and 4 were devoted to the designs of two algorithms to recover the
relations of a table.

The main drawback of the Algorithm 1 is the number of table queries. Indeed,
in the generic case where the new ideal is in shape position, running the BM algo-
rithm on the new table means accessing all elements of index (0, . . . , 0, in+1) with
0 ≤ in+1 ≤ 2 d − 1. These elements are obtain from all the elements ui, i ∈ Nn of
index degree |i| ≤ 2 d − 1 in the original table u. Hence, we need to access all the(
n+2 d
2 d−1

)
terms ui, i ∈ Nn with |i| ≤ 2 d − 1.

Likewise, Algorithm 3 is efficient when the given bound on the degree of the
polynomials is small compared to the order of the sequence: otherwise we need to
access once again all the elements of order the order of the sequence by construc-
tion of the matrix. In other word, if d is the order of the recurrence of u then both
algorithms are efficient whenever

max deg G ≈ d1/n.

Unfortunately, this is not always the case, especially if the monomial ordering
is a LEX ordering and using Algorithms 1 or 3 on these examples would increase
too much the number of accesses to the table. In this section, we design an adaptive
algorithm taking into account the shape of the final Gröbner basis.

As the strategy we shall use is similar to the one of the FGLM algorithm, we
shall start by recalling how it works. Given a zero-dimensional ideal I ⊆ K[x]
and a Gröbner basis G1 of I for the monomial ordering ≺1, the FGLM algorithm
computes a Gröbner basis G2 of I for the ordering ≺2. To this end, the algorithm
has an ordered (for ≺2) set of monomials L to check and a staircase S . At the
beginning, L = {1} and S = G2 = ∅. At each step, the algorithm selects m the
smallest monomial of L and removes it from L: if m reduces modulo I (thanks to
G1) to a linear combination of monomials in S , then a new polynomial is found and
added to G2, all multiples of m are removed from L. Otherwise, m is added to S
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and all the monomials x1 m, . . . , xn m, that are not multiples of leading monomials
of G2, are added to L. The algorithm stops when L is empty.

Example 9. This example is a continuation of Example 4.
Let us consider the Gröbner basis G1 = {t4 − 4 t3 − 4 t2 + 16 t, x1 + 1

6 t3 − 1
2 t2 −

2
3 t + 1, x2 −

1
12 t3 − 1

4 t2 − 5
6 t + 1} of the ideal I = 〈G1〉 for the monomial ordering

LEX with t ≺1 x1 ≺1 x2. We aim to compute G2 a Gröbner basis of I for the LEX
ordering with x1 ≺2 x2 ≺2 t. We let L = {1}, S = G2 = ∅.

We start with 1 which does not reduce modulo G1. Then L = {x1, x2, t} and
S = {1}.

Next, x1 reduces modulo G1 to − 1
6 t3 + 1

2 t2 + 2
3 t−1, but no nonzero linear com-

bination of 1, x1 can reduce to 0. Therefore, we update L = {x2
1, x2, x1 x2, t, x1 t},

S = {1, x1}.
Then, x2

1 reduces modulo G1 to 1. Fortunately, now the polynomial x2
1 − 1

reduces to 0 modulo G1. Hence G2 = {x2
1 − 1} and L = {x2, x1 x2, t, x1 t}.

Next, x2 is selected and reduces modulo G1 to − 1
12 t3 + 1

4 t2 + 5
6 t − 1. Like-

wise, no nonzero linear combination of 1, x1, x2 can reduce to 0. We update L =

{x1 x2, x2
2, t, x1 t, x2 t} and S = {1, x1, x2}.

Then, x1 x2 reduces moduloG1 to − 1
4 t2+ 1

2 t+1, but no nonzero linear combina-
tion of 1, x1, x2, x1 x2 can reduce to 0. Therefore, we update L = {x2

2, x1 x2
2, t, x1 t, x2 t,

x1 x2 t}, S = {1, x1, x2, x1 x2}.
Next, x2

2 is selected and reduces modulo G1 to 1. Thus the polynomial x2
2 − 1

reduces to 0. Therefore, G2 is updated to {x2
1−1, x2

2−1} and L to {t, x1 t, x2 t, x1 x2 t}.
Finally, t does not reduce modulo G1 but t + x1 − 2 x2 − 1 reduces to 0. Thus,

G2 is updated to {x2
1 − 1, x2

2 − 1, t + x1 − 2 x2 − 1} and L to ∅.
The algorithms returnsG2 and the ideal of relations of the sequence ((−1)i1 i2)(i1,i2)∈N2

is the ideal spanned by the polynomials inG2 that are not in t, that is 〈x2
1−1, x2

2−1〉.

In the FGLM algorithm, when we discover a relation

f = t +
∑
s∈S

αs s

then we know for all m ∈ T , m f is still a valid relation. In constrast, in Algo-
rithm 3, finding a relation

[ f ]u = [t]u +
∑
s∈S

αs [s]u = 0 (1)

need not imply [m f ]u = 0. In fact, in the 1-dimensional BM algorithm, this is the
reason why the relation must be updated.
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Reconsidering Section 2.3, we can see that any n-dimensional linear recursive
sequence u can be written as

∀ i ∈ Nn, ui = 〈r,T i1
1 · · · T

in
n · 1〉,

where r is a vector depending on the initial conditions and Ti are multiplication
matrices associated to the Gröbner basis G. Therefore, relation (1) can be rewritten
as

〈r,NormalForm( f ,G)〉 = 0. (2)

Therefore, if r is random enough, we deduce that NormalForm( f ,G) = 0 so that
NormalForm(m f ,G) = 0 for all m ∈ T which implies that [m f ]u = 0.

We would like to point out that in some applications, it is possible to check
afterwards that the relation is correct, we refer for instance to Remark 15 in Sec-
tion 5.2. Accordingly, we design Algorithm 4 which is an FGLM-like algorithm
using this property. Let us also recall that, from Section 2.2, we know that only
Gorenstein ideals of relations can be recovered in this framework. This gives
another probabilistic test for the Gorenstein property, see Daleo and Hauenstein
(2015).

We proceed term by term to discover the new staircase. This is equivalent to
increasing the rank of the multi-Hankel matrix by 1. We start with matrix H∅ and
proceed by induction. Assuming we found a subset of term S ⊆ T such that HS

has full rank, we set t to be the minimum of T \ S . If rank HS∪{t} = rank HS + 1,
then S is updated to S ∪ {t}, otherwise we consider t′ the minimum of T \ (S ∪ {t}).

Instead of taking a bound on the degrees of the polynomials, this algorithm
takes a lower bound on the size of the staircase. It also ensures to return a truncated
Gröbner basis whose staircase has size at least this lower bound.

We shall see later that for many applications the complexity can be reduced
drastically; depending on the shape (for instance the convexity) of the final stair-
case, the number of queries to the table can often be linear in the order of the
recurrence, similarly to the one-dimensional case. In the following algorithm, for
any set of terms G, MinGBasis(G) is the corresponding minimal Gröbner basis.

Remark 10. Depending on the origin of the sequence u, it is possible that ui has
no meaning whatsoever for certain i. For instance, in error correcting codes, see
e.g. Section 5.3, there exists a bound B ∈ N such that ui cannot be computed
for i = (i1, . . . , in) with ik > B. It suffices to change two lines: the first one is
L := L∪{xi t | i = 1, . . . , n} \ {t} where only monomials xi t, with [xi t]u computable,
should be added to L. The second one is solving the system HS α + HS ,{t′} = 0
and updating G := G ∪

{
t′ +

∑
s∈S αs s

}
which should be skipped as soon as a term

[s t′]u cannot be computed for s ∈ S .
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Algorithm 4: Adaptive Scalar-FGLM (simple version).

Input: A table u = (ui)i∈Nn with coefficients in K, d a given bound and ≺ a
monomial ordering.

Output: A reduced Gröbner basis of a zero-dimensional ideal of degree
≥ d.

L := {1}. // set of next terms to study

S := ∅. // the useful staircase wrt. the new ordering ≺

G′ := ∅. // leading terms of the final Gröbner basis

While L , ∅ do
t := min≺(L).
If HS∪{t} is full rank then

S := S ∪ {t} and L := L ∪ {xi t | i = 1, . . . , n} \ {t}.
Remove multiples of elements of G′ in L.
If # S ≥ d then // early termination

G := ∅ and G′ := MinGBasis(G′ ∪ L ∪ Tdeg t+1 \ S ).
For all t′ ∈ G′ do

Find α s.t. HS α + HS ,{t′} = 0.
G := G ∪

{
t′ +

∑
s∈S αs s

}
.

Return S and G.
Else

G′ := G′ ∪ {t} and remove multiples of t in L.

Error “Run Algorithm 3”.

27



Proposition 11. Let S and G be the output of Algorithm 4. Then S is a staircase
of size ≥ d and G is a set of valid relations, that is to say NF( f ,u, S ) = 0 for all
f ∈ G.

Example 10. We give the trace of the algorithm on Example 2, item 1, i.e., for the
table u = ((2i +3i) 7 j)(i, j)∈N2 , with bound d = 2 and ≺ the DRL ordering with y ≺ x.

We start with L = {1}, S = ∅,G′ = ∅. Setting t = 1 yields the matrix H = ( 2 )
with max rank. Thus S = {1} and we update L = {y, x}.

Now, we set t = y and get the matrix
(

2 14
14 98

)
of rank 1, hence G′ = {y} and

L = {x}.
Letting t = x yields the matrix

(
2 5
5 13

)
of rank 2 which let us update S = {1, x}

and L = {x2}. As # S ≥ d, we reach the early termination part of the algorithm.
We have G′ = MinGBasis({y} ∪ {x2} ∪ {y2, x y, x2} \ {1, x}) = {y, x2}. Solving the

two linear systems yields G = {y − 7, x2 − 5 x + 6}.

Remark 12. It is worth mentioning that on the one hand if d is set too small, since
Algorithm 3 does not check whether a relation is valid on the following terms or
not, it might return clearly a wrong result. On the other hand, for greater d, it
might return an error coming from the wrong relations setting L = ∅ but yielding
a staircase of size less than d.

For instance, on table ((−1)i j)(i, j), Algorithm 4 shall produce {y − 1, x − 1}
when d is set to 1 and an error if d is set to 2 or more. Yet, the ideal of relations is
〈y2 − 1, x2 − 1〉.

This remark motivates an extension of Algorithm 4. As said before, its draw-
back is that given a computed staircase S , it only checks elements at distance 1 of
S , i.e. elements of form xi s, s ∈ S to find new relations. Following algorithm ex-
tends this behavior to check elements at distance e, where e is an input parameter,
i.e. elements xi s, s ∈ S with |i| ≤ e.

Example 11. Let us detail how Algorithm 5 works on u = ((−1)i j)(i, j)∈N2 with
parameters d = 4 and e = 2.

The sets L, S ,G′ are initialized with L = {1, y, x}, S = G′ = ∅ while t = {1, y}
and the matrix H =

(
1 1
1 1

)
has rank 1. Hence S = {1}, L = {y, x, y2, x y, x2}.

Now t = {y, x} and the matrix H =

(
1 1 1
1 1 −1
1 −1 1

)
has rank 3. Hence S = {1, y, x},

L = {y2, x y, x2, y3, x y2, x2 y, x3}.

Taking t = {y2, x y}, the matrix H =

 1 1 1 1 −1
1 1 −1 1 1
1 −1 1 1 1
1 1 1 1 −1
−1 1 1 −1 1

 has rank 4 with clearly

the 4th column, labeled with y2, linearly dependent from the previous ones, thus
S = {1, y, x, x y} and L = {y2, x2, y3, x y2, x2 y, x3, x y3, x2 y2, x3 y}.
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Algorithm 5: Extended Adaptive Scalar-FGLM (simple version).

Input: A table u = (ui)i∈Nn with coefficients in K, d a given bound, e the
maximal distance for the allowed neighbors and ≺ a monomial
ordering.

Output: A reduced Gröbner basis of a zero-dimensional ideal of degree
≥ d.

L := {xi | |i| ≤ e}. // set of next terms to study

S := ∅. // the useful staircase wrt. the new ordering ≺

G′ := ∅. // leading terms of the final Gröbner basis

While L , ∅ do
e′ := min(e, # L).
t := {t0, . . . , te′−1 | t0 ≺ · · · ≺ te′−1, ∀u ∈ L \ {t0, . . . , te′−1}, te′−1 ≺ u}.
If rank HS∪{t0,...,te′−1} > rank HS then

S ′ := S , S := usefulStaircase(S ∪ {t0, . . . , te′−1}).
L := L ∪

{
xi u

|i| ≤ e, u ∈ t
}
\ S .

Remove multiples of elements of G′ in L.
If # S ≥ d then // early termination

G := ∅ and
G′ := MinGBasis

((
G′ ∪ L ∪

⋃
t′∈S \S ′ Tdeg t′+1

)
\ Stabilize(S )

)
.

For all t′ ∈ G′ do
Find α s.t. HS α + HS ,{t′} = 0.
G := G ∪

{
t′ +

∑
s∈S αs s

}
.

Return S and G.
Else

G′ := G′ ∪ {t0} and remove multiples of t0 of degree at least
deg t0 + e in L.

Error “Run Algorithm 3”.
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The staircase size being greater than 4, we find G′ = {y2, x2}. Solving the linear
systems yields G = {y2 − 1, x2 − 1}.

Remark 13. The only difference between the Extended Adaptive Scalar-FGLM
and Adaptive Scalar-FGLM algorithms is the parameter e allowing one to check
elements at distance e from the uncovered staircase. Should this parameter be as
big as the order of the table, the algorithm would behave as the Scalar-FGLM
algorithm. Therefore, this parameter represents the trade-off between an exact
computation and the output-sensitivity of the Adaptive Scalar-FGLM algorithm.

5.1. Relation between the number of table queries and the geometry of the final
basis

The complexity of Algorithms 3, 4 and 5 depend on two main parameters: the
number of table queries and the linear algebra part. Section 6 deals with the latter
while we shall focus on the former in this section.

In the black-box model, it may be possible that computing a single element
ui of the table is very costly, we refer for instance to Section 5.2. Hence, it is
important to minimize the number of queries.

Estimating this number is equivalent to counting the number of distinct ele-
ments in HS where S can be any state of the variable in Algorithm 4. We denote by
S the set at the end of the algorithm. Similarly to the original FGLM algorithm we
can bound the number of monomials t that we have to consider using # L ≤ n # S .
Hence it is crucial to bound the number of elements in HS where S is the final
staircase. Restating Theorem 2, the necessary number of queries to u to build HS

is the cardinal of 2 S = {u v | (u, v) ∈ S 2} the dilated set of S .
Obviously # (2 S ) ≤ # S (# S − 1)/2 ≤ (# S )2/2 in the worst case; however in

many applications we have # (2 S ) ≤ c # S for some constant c. (Ruzsa, 1994,
Theorem 1.1) states that sets S satisfying this condition are exactly those included
in a bigger set whose elements are in arithmetical progression of dimension d and
of size C # S for some constant C. In other words, S is included in a d-dimensional
parallelotope with C # S points.

Proposition 14. We give several estimations on # (2 S ) depending on the shape of
the final staircase for d → ∞.

(a) (Dimension 1 – the BM algorithm) n = 1, S d = {1, x, . . . , xd−1} then 2 S d =

S 2 d−1 # (2 S d) = 2 d − 1 and

# (2 S d)
# S d

=
2 d − 1

d
≈ 2;
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(b) (Dimension 1 – worst case) n = 1, S d = {1, x2, x4, . . . , x2d−1
} then # (2 S d) =(

d+1
2

)
+ 1 and

# (2 S d)
# S d

=

(
d+1

2

)
+ 1

d
≈

d
2

;

(c) (Algorithm 3) S d = {t ∈ T | deg t < d} then 2 S d = S 2 d−1 and # (2 S d) =(
n+2 d−2

n

)
and

# (2 S d)
# S d

=

(
n+2 d−2

n

)(
n+d−1

n

) ≈ (n + 2 d)n

(n + d)n ≈ 2n;

(d) (Shape position) When G = {x1 − h1(xn), . . . , xn−1 − hn−1(xn), hn(xn)}, with
deg hn = d, then S d = {1, xn, . . . , xd−1

n }. Again

# (2 S d)
# S d

≈ 2;

(e) (Dimension n – worst case) S d =
⋃n

i=1{1, xi, x2
i , . . . , x

d/n
i } then

# (2 S d)
# S d

≈
1
2

n − 1
n

# S d.

# (2 S ) = 2D 2D 2nD n−1
2 n D2

Figure 1: Behavior of # (2 S ) wrt. D = # S (the area in blue)

Proof.

a. Clearly 2 S d = S 2 d−1.
b. S 2 d = S d ∪ {x2i+2 j

| 1 ≤ i < j ≤ d − 1} ∪ {x2d
}. Note that S d is not stable under

division in that case.
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c. Noticing 2 S d = S 2 d−1 and # S d =
(
n+d−1

n

)
, we have

# S 2 d−1

# S d
= 2n − 2n−1

(
n + 1

2

)
1

d − 1
+ O

(
1
d2

)
.

d. Same as item a.
e. We define S ′(n, d) =

⋃n
i=1{x

j
i | j = 0, . . . , d} and it easy to show that # (2 S ′(n, d)) =

n (n − 1) d2 + 2 n d + 1. Hence S d = S ′(n, d/n) and

# (2 S d)
# S d

=

n−1
2n d2 + 2 d + 1

d + 1
≈

1
2

n − 1
n

d.

5.2. Application to the Sparse-FGLM algorithm
The Sparse-FGLM algorithm, Faugère and Mou (2011), is a natural application

of the previous algorithm: for a 0-dimensional polynomial system we compute a
first Gröbner basis (most of the time wrt. a total degree ordering). Then, we com-
pute the D × D multiplication matrices Ti wrt. the variable xi for all i ∈ {1, . . . , n}.
We consider the table ui = 〈r,T i1

1 · · · T
in
n · 1〉 where r is a random vector and

1 = [1, 0, . . .]T. The computation of one element of the table from the previous
ones can be reduced to one matrix-vector multiplication.

Remark 15. Assuming that we store the vectors Vi = T i1
1 · · · T

in
n · 1 for the vis-

ited indices i, any relation g =
∑

s∈S αs s ∈ G computed by the algorithm can be
easily checked: if

∑
s∈S αs Vs = 0 then we have a proof that g ∈ I. Note, that in

addition, we know precisely the bound d since it is the number of solutions (with
multiplicities). Hence it is always possible to check the correctness of Algorithm 4.

Even if the sparsity of the multiplication matrices can be used to speed up
the computation, it is important not to precompute all the elements of the table in
advance. Hence a black-box representation is recommended. As shown in Faugère
and Mou (2011), when the lexicographical basis is in shape position, the Gröbner
basis can be computed very efficiently; in particular, the number of table queries is
2 D, in this situation we can also use the change of variables designed in Section 3
to compute the Gröbner basis. This is why, in the experiments of the following
paragraphs, we consider examples which are far from the shape position and we
compute the LEX basis.

Cyclic-n problem
This is a well known benchmark; there are n equations in n variables, the ith

equation is of degree i and is invariant by the action of the nth Cyclic group; since
there is a linear equation, the actual number of variables is n − 1. We report in
Table 2, the number of rank computations and the normalized number of table
queries (the number divided by the number of solutions). This number is always
less than 2n−1.
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Example n D Nb Ranks # Queries/D
Cyclic-5 5 70 76 7.4
Cyclic-6 6 156 167 9.4
Cyclic-7 7 924 953 21.7

Figure 2: Number of rank computations and table queries

Ideal of points
Given a set P ⊂ Kn of t distinct points, we define the ideal IP = { f ∈

K[x1, . . . , xn] | f (p) = 0 ∀p ∈ P}. We consider two such sets.

a. (Random) For any integer B, we generate exactly t points in PB ⊂ Kn with
coordinates randomly chosen in {0, . . . , B−1}. Since B is a bound on the degree
of the univariate polynomial in the LEX Gröbner basis, this basis is far from the
shape position when t � B.

b. (Worst Case) Pt = {i e j, 1 ≤ i ≤ n, 1 ≤ j ≤ t/n}.

In both cases we report the ratio between the number of queries and the number of
points. As expected in the first case, this ratio is a constant c ∈ [2, 2n] depending on
the value of B. In the second case, we expect a linear behavior, from Proposition 14.
In Figure 3, the points below the thick dashed black line correspond to Gröbner
bases in shape positions.

5.3. Application to error correcting codes

In Coding Theory, n-dimensional cyclic codes with n > 1 are generalizations
of Reed Solomon codes. We give a simplified description of such codes. Let `
be an integer and a ∈ Fp such that a j , 1 for 0 < j < p − 1. We work with
polynomials in R = Fp[x]/〈xp−1

1 − 1, . . . , xp−1
n − 1〉. Then we define the generating

polynomials gi(x) =
∏`−1

j=0(xi − a j). When we send a message M we split this

message into n blocks M(k) = (c(k)
1 , c(k)

2 , . . .) where ci ∈ Fp and we generate n
multivariate polynomials Uk(x) = c(k)

1 + c(k)
2 x1 + c(k)

3 x2 + · · ·. The transmitter sends
the encoded message M(x) =

∑n
k=1 gk(x)Uk(x). The receiver interprets the received

word as a multivariate polynomial N(x) = M(x) + e(x) where e(x) ∈ R is the error
polynomial. If the length of e(x) is less than t = `

2 the goal is to recover it. To this
end, we build the table ui1,...,in := N(ai1 , . . . , ain) ≡ e(ai1 , . . . , ain) in R for 0 ≤ i j < t
and we apply Algorithm 4 to obtain a LEX Gröbner basis G. It is easy to recover
all the solutions in the finite field Fq; next, by computing the discrete logarithm
wrt. a of all the components we recover the position of the nonzero monomials in
e(x). Lastly, we solve a linear system to find the coefficients of e(x).
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Figure 3: Number of table queries divided by number of points.

In the experiments of Table 4, we consider two cases: (random case) we ran-
domly generate the support and the coefficients of the error polynomial e(x); (worst
case) we take e(x) =

∑n
i=1

∑t/n
j=0 ci, j x j

i .
We can see that whenever the errors are picked at random, the number of ta-

ble queries grows linearly in the number of errors, i.e. the size of the staircase of
the Gröbner basis. This illustrates that generically, in the error correcting codes
application, the decoding complexity should be linear in the number of errors. In
accordance with Proposition 14, we observe a quadratic behaviour for the worst
case scenario.

6. Multilevel Block Hankel Arithmetic

This section is devoted to the complexity of Algorithms 3 and 4. Multi-Hankel
matrices are structured but exploiting this structure might not be so easy at a first
glance. When the chosen monomial ordering ≺ is a LEX order, then the matri-
ces are multilevel block Hankel, see Fasino and Tilli (2000) and Serra-Capizzano
(2002) for results on multilevel block Hankel or multilevel block Toeplitz matrices.

We recall that a Gröbner basis of a 0-dimensional ideal I for LEX order on
x1, . . . , xn with x1 ≺ · · · ≺ xn is of special form and interest. The least polynomial
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Figure 4: Number of table queries divided by number of points.

is univariate in x1 and shall be called P1,1. Then, for each k > 1, there are poly-
nomials Pk,1, . . . , Pk,mk ∈ K[x1, . . . , xk] with degxk

Pk,` ≤ dk, for all `, 1 ≤ ` ≤ mk.
Furthermore, LT(Pk,mk ) is a pure power of xk. We also remind the reader that

∀ k, 1 ≤ k ≤ n, I ∩K[x1, . . . , xk] = 〈P1,1, . . . , Pk,1, . . . , Pk,mk〉.

Definition 7. A multilevel block Hankel matrix of depth 0 is a scalar while a
multilevel block Hankel matrix of depth 1 is a Hankel matrix.

For any n ∈ N, a multilevel block Hankel matrix of depth n + 1 is a block
Hankel matrix whose blocks are multilevel block Hankel matrices of depth n.

In the remaining part of the section, a multilevel block Hankel matrix of depth
n shall be called n-multiblock Hankel.

Following Algorithms 3 and 4, a multi-Hankel matrix is built from an increas-
ing set of monomials. For the LEX ordering with x1 ≺ · · · ≺ xn, the set of mono-
mials is at first S 1 = {1, x1, . . . , x

d1−1
1 } and the matrix HS is indeed Hankel, as in

the BM algorithm.
Because of the relation induced by P1,1 no more pure powers of x1 are needed

and we shall introduce x2. The set of monomials of the useful staircase, see Defi-
nition 5, is now S 2 = S 1

0 ∪ x2 S 1
1 ∪ · · · ∪ xd2−1

2 S 1
d2−1 with S 1

1, . . . , S
1
d2−1 ⊆ S 1

0 = S 1.
For any i, j, we let Hxi

2 S i,x
j
2 S j

be Hankel rectangular. This construction yields the
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following matrix

HS 2 =



HS 1
0

HS 1
0,x2 S 1

1
· · · H

S 1
0,x

d2−1
2 S 1

d2−1

Hx2 S 1
1,S

1
0

Hx2 S 1
1

· · · H
x2 S 1

1,x
d2−1
2 S 1

d2−1
...

...
. . .

...

H
xd2−1

2 S 1
d2−1,S

1
0

H
xd2−1

2 S 1
d2−1,x2 S 1

1
· · · H

xd2−1
2 S 1

d2−1


We can extend HS 2 so that each block is square, by replacing each rectangular
block Hxi

2 S 1
i ,x

j
2 S 1

j
by Hxi

2 S 1,x j
2 S 1 . The extended matrix


HS 1 HS 1,x2 S 1 · · · H

S 1,xd2−1
2 S 1

Hx2 S 1,S 1 Hx2 S 1 · · · H
x2 S 1,xd2−1

2 S 1

...
...

. . .
...

H
xd2−1

2 S 1,S 1 H
xd2−1

2 S 1,x2 S 1 · · · H
xd2−1

2 S 1


is 2-multiblock Hankel and has the same rank has the original HS 2 by construction
and the definition of a useful staircase.

More generaly, assuming, when reaching variable xk, k ∈ N, the constructed
matrix HS k can be embedded in a k-multiblock Hankel matrix. Then for vari-
able xk+1, we shall consider the matrix HS k+1 that is block Hankel with blocks
Hxi

k+1 S k
i ,x

j
k+1 S k

j
, 0 ≤ i, j ≤ dk+1 − 1 such that S k

1, . . . , S
k
dk+1−1 ⊆ S k

0 = S k. That is,

they will have the same shape as HS k and thus can be embedded in a k-multiblock
Hankel. When replacing each block Hxi

k+1 S k
i ,x

j
k+1 S k

j
by Hxi

k+1 S k ,x j
k+1 S k , the matrix is

(k + 1)-multiblock Hankel.

Example 12. We consider the following table u = (ui, j,k)(i, j,k)∈N3 defined as follows

∀ (i, j, k) ∈ N3, ui, j,k = 2i + (1 + j) (1 + k).

The Gröbner basis of the ideal of relations I returned by Algorithm 3 for LEX
with x ≺ y ≺ z is

I = 〈x2 − 3 x + 2, x y − y − x + 1, y2 − 2 y + 1, x z − z − x + 1, z2 − 2 z + 1〉

= 〈(x − 1) (x − 2), (x − 1) (y − 1), (y − 1)2, (x − 1) (z − 1), (z − 1)2〉.

The set of monomials S 1 is thus {1, x} and matrix HS 1 is
(
2 3
3 5

)
, which is

Hankel.
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The set of monomials S 2 is {1, x, y} and extending it yields S 2
e = S 1 ∪ y S 1 =

{1, x, y, x y}. The matrix HS 2 and 2-multiblock Hankel matrix HS 2
e

are as follows

HS 2 =


2 3 3
3 5 4
3 4 4

 , HS 2 =


2 3 3 4
3 5 4 6
3 4 4 5
4 6 5 7

 .
Finally, the set of monomials S 3 is {1, x, y, z, y z} while the extended set is S 3

e =

S 2
e ∪ z S 2

e = {1, x, y, x y, z, x z, y z, x y z}. Then the matrices are

HS 3 =


2 3 3 3 5
3 5 4 4 6
3 4 4 5 7
3 4 5 4 7
5 6 7 7 10


, HS 3

e
=



2 3 3 4 3 4 5 6
3 5 4 6 4 6 6 7
3 4 4 5 5 6 7 8
4 6 5 7 6 7 8 10
3 4 5 6 4 5 7 8
4 6 6 7 5 7 8 10
5 6 7 8 7 8 10 11
6 7 8 10 8 10 11 13


.

A displacement operator ϕ for a matrix H is a linear operator acting on matrices
s.t. ϕ(H) has small rank.

It is well known that the best displacement operator for Hankel matrices comes
from a “shift of the coefficients along the anti-diagonals”. That is, denoting

Z =


0 ··· ··· 0

1
. . .

...
. . .

. . .
...

1 0

 ,
then for H Hankel, ϕ(H) = H − Z H Z has rank at most 2.

Solving linear systems with a Hankel matrix can be done in O(M(d) log d) op-
erations in the base field, where M(d) is the complexity for multiplying two poly-
nomials of degree at most d − 1.

Hankel-like matrices, which are small sums of Hankel matrices, or equivalently
which are matrices sent on low-rank matrices by the aforementioned displacement
operator ϕ, can also be solved fast. For H of size d, and α = rank ϕ(H), the linear
system can be solved in O(αω−1 M(d) log d) operations in the base. We refer the
reader to Bostan et al. (2007).

Block Hankel matrices are also of interest by themselves. Deflating the oper-
ator ϕ by replacing 1’s by identity matrices of size the blocks’ size gives a new
displacement operator. Sending block Hankel matrices to matrices of rank twice
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the size of the blocks. But the 2-multiblock Hankel matrix has Hankel blocks,
therefore, it seems natural to apply ϕ to each blocks. It is quite easy to show that
the rank of the resulting matrix is at most 2 min(d1, d2) where d2 is the number of
blocks and d1 the size of the blocks.

For a (n + 1)-multiblock Hankel matrix, this can be generalized: we deflate the
displacement operator for n-multiblock Hankel matrices, apply it and then apply
the displacement operator for n-multiblock Hankel matrices to each block.

Consequently, for n-multiblock Hankel matrices and embedding blocks of sizes
d1, . . . , dn, one can find a displacement operator, different from the Hankel matrices
displacement operator, s.t. the displacement rank is at most 2

∏n
i=1 di/maxn

i=1 di.
We leave it open if one could use this structure to improve the complexity

estimate of solving such a system.

6.1. Complexity comparisons

In this section, we estimate the complexity of Algorithm 3 and compare it
with the BMS algorithm. This complexity shall depend on two parameters: the
dimension n of the table and the size d of the staircase of the (truncated) Gröbner
basis output by the algorithm.

In Sakata (2009), the complexity of the BMS algorithm is given in terms of
another parameter: µ, the cardinality of the Gröbner basis. The complexity of the
BMS algorithm is then O(µ d2). While n, d do not depend on ≺, we recall that µ
does. Sakata uses the approximation µ ∈ O(d) to give an upper bound on the BMS
algorithm, that is O(d3).

To this day, (Faugère et al., 1993, Cor. 2.1) gives the only known upper bound
on µ in terms of n and d: µ ≤ n d. This allows us to estimate the complexity of the
BMS algorithm as O(n d3) operations in K.

Our multiblock Hankel point of view seems to overestimate the complexity of
Algorithm 3, in particular because the n-multiblock Hankel matrix is bigger than
the actual computed matrix, see Example 12.

We give a situation where we can estimate the complexity of Algorithm 3.

Proposition 16. Let µ be the number of polynomials in the output Gröbner basis.
Then the number of operations in the base field to compute the Gröbner basis is no
more than

O
(
µ dω−1

2 · · · dω−1
n M(d1 · · · dn) log(d1 · · · dn)

)
.

In particular, in the shape position case, d2 = · · · = dn = 1, µ = n and the
complexity comes down to O(n M(d) log d).

Proof. Let δ = d2 · · · dn. For the LEX order, the extended multiblock Hankel
matrix H is in fact quasi-Hankel. As H is a block matrix with δ blocks on each
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row and column, with blocks of size d1, then ϕ(H) contains δ column vectors of
size δ d1 and δ (d1 − 1) column vectors of size δ deflated into vectors of size δ d1.
Thus, at most 2 δ columns of ϕ(H) are independent and the displacement rank of H
is 2 δ. By a result of Bostan et al. (2007), one can solve a linear system with H as
the matrix in O

(
δω−1 M(d1 δ) log(d1 δ)

)
. One such system must be solved for each

polynomial in the Gröbner basis, hence a factor µ in the complexity estimate. The
shape position case is then straightforward.

Corollary 17. Assume d2, . . . , dn are bounded and d1 is not. Then, µ is also nec-
essarily bounded and the number of operations in the base field to compute the
Gröbner basis is no more than

O
(
µ dω−1

2 · · · dω−1
n M(d1 · · · dn) log(d1 · · · dn)

)
= O(M(d) log d).

Proof. Let xi1
1 · · · x

in
n be the leading monomial of a polynomial of the Gröbner basis.

Since i2, . . . , in are respectively bounded by d2, . . . , dn, we have a bounded number
of choices for i2, . . . , in, independent from d1. Thanks to the divisibility property,
only one i1 can then be choosen. Therefore, µ is bounded.

Let us notice that, whenever n is fixed, the complexity of the BMS algorithm
is cubic in d while Algorithm 3 is quasi-linear in d, under the hypotheses given in
Corollary 17.

It is classical that the BM algorithm is equivalent to solving a Hankel linear
system, the special case n = 1 of Algorithm 3, therefore both have the same com-
plexity. However, we are not able to say if either of our algorithms can be seen as
a matrix version of the BMS algorithm. Should Algorithm 3 or 4 be equivalent to
the BMS algorithm, we could improve the complexity of the BMS algorithm. On
the one hand, finding loop invariants in these algorithms could also be the key to
reach this goal and make their complexities sharper. On the other hand, it could
also help us finding optimal termination criteria, in order to reduce the number of
table queries.

7. Computing the Generating Series

Given a sequence u = (ui)i∈Nn defined over K, its generating series S ∈ K[[x]]
is defined as

S =
∑
i∈Nn

ui xi.

Whenever n = 1, it is classical that S ∈ K(x) if and only if u is linear recursive.
For multivariate sequences, only the if part of the statement remains true. Indeed,
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as shown in Section 2, Example 2, b =
((

i
j

))
(i, j)∈N2 is not linear recursive, yet P-

recursive, and its generating series is

S =
∑

(i, j)∈N2

(
i
j

)
xi y j =

1
1 − x − x y

∈ K(x, y).

On the other hand, the P-recursive condition cannot be sufficient to have a gener-
ating series as a rational fraction. The unidimensional sequence u = (1/i!)i∈N is
P-recursive and its generating sequence, the exponential, is not in K(x).

If u is linear recursive, then S can be computed from the ideal of relations and
finitely many terms of u. As the ideal of relations of u is zero-dimensional, let
us all recall that for all k ∈ {1, . . . , n}, I ∩ K[xk] = (Pk(xk)) with Pk nonzero and
monic. In other words, for any xk, there exist univariate polynomials in xk in I and
Pk is their monic greatest common divisor.

For a given polynomial P ∈ K[x] of degree d, we denote Q = xd P(1/x) its
reciprocal polynomial, i.e. if P =

∑d
i=0 pi xi, then Q =

∑d
i=0 pi xd−i. Notice, that

such a Q cannot be a multiple of x.

Proposition 18. Let u = (ui)i∈Nn a linear recursive sequence and let I be its ideal of
relations. For k, 1 ≤ k ≤ n, let Pk(xk) be the monic polynomial spanning I ∩K[xk],
dk denote its degree and Qk(xk) be Pk’s reciprocal. Then,

S =

(
Q1(x1) · · ·Qn(xn)

∑(d1−1,...,dn−1)
i=(0,...,0) ui xi

)
mod (xd1

1 , . . . , x
dn
n )

Q1(x1) · · ·Qn(xn)
.

Conversely, if S is a rational fraction of K(x1, . . . , xn) whose denominator can
be factored as Q1(x1) · · ·Qn(xn), then u is linear recursive.

Proof. We shall prove this by induction on n, the number of variables.
Assuming n = 1, then by definition I = (P(x)) with P nonzero, monic and of

degree d. Let P = p0 + · · · + pd xd, with pd = 1, then Q(x) = p0 xd + · · · + 1 and

Q(x) S =

d∑
k=0

pk

∞∑
i=0

ui xi+d−k =

d∑
k=0

∞∑
i=−k

pk ui+k xi+d

= (pd u0) + (pd−1 u0 + pd u1) x + · · · + (p1 u0 + · · · + pd ud−1) xd−1

+

∞∑
i=0

 d∑
k=0

pk ui+k

 xi+d

= (pd u0) + (pd−1 u0 + pd u1) x + · · · + (p1 u0 + · · · + pd ud−1) xd−1

= Q(x)
d−1∑
i=0

ui xi mod xd.
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Conversely, if S = (a0 + · · ·+ ad−1 xd−1)/Q(x) with Q = q0 + · · ·+ qd xd, q0 = 1
and q1, . . . , qd ∈ K. Then it is clear that S satisfies

S = a0 + · · · + ad−1 xd−1 − (q1 x + · · · + qd xd) S .

On the left-hand-side of the equation, for i ≥ d, the coefficient of xi is merely ui,
while on the right-hand-side it is −q1 ui−1−· · ·−qd ui−d, hence u is linear recursive.

Let n ∈ N∗, let us assume the statement holds for all k with 1 ≤ k ≤ n and
let us prove the statement still holds for n + 1. Let u = (ui, j)(i, j)∈Nn×N be a linear
recursive sequence. Let I be the ideal of relations of u, for all k, 1 ≤ k ≤ n + 1, let
(Pk(xk)) = I ∩K[xk] and let Qk be the reciprocal of Pk.

For i ∈ Nn, each sequence v(i) = (v(i)
j ) j∈N = (ui, j) j∈N is one-dimensional linear

recursive satisfying the recurrence relation

v(i)
j+dn+1

+ pn+1,dn+1−1 v(i)
j+dn+1−1 + · · · + p0,dn+1−1 v(i)

j = 0,

where Pn+1(xn+1) = xdn+1
n+1 + pn+1,dn+1−1 xdn+1−1 + · · · + p0,dn+1−1. Thus, one has

S =
∑
i∈Nn

∞∑
j=0

ui, j x j
n+1 xi =

∑
i∈Nn

∞∑
j=0

v(i)
j x j

n+1 xi

=
∑
i∈Nn

Qn+1(xn+1)
∑dn+1−1

j=0 ui, j x j
n+1 mod xdn+1

n+1

Qn+1(xn+1)
xi

=
∑
i∈Nn

S i(xn+1) xi.

Clearly, (S i(xn+1))i∈Nn is a n-dimensional linear recursive sequence over K(xn+1)
satisfying the relations associated to P1(x1), . . . , Pn(xn). Hence

S =

(
Q1(x1) · · ·Qn(xn)

∑(d1−1,...,dn−1)
i=(0,...,0) S i(xn+1)

)
mod (xd1

1 , . . . , x
dn
n )

Q1(x1) · · ·Qn(xn)

S =

((∏n+1
k=1 Qk(xk)

) ∑(d1−1,...,dn+1−1)
(i, j)=(0,...,0) ui, j xi x j

n+1

)
mod (xd1

1 , . . . , x
dn+1
n+1 )

Q1(x1) · · ·Qn+1(xn+1)

Conversely, let us assume S = A(x1, . . . , xn+1)/(Q1(x1) · · ·Qn+1(xn+1)). Then, S
can be seen as a rational fraction in x1, . . . , xn over K(xn+1). By the induction
hypothesis, this means it is the generating series of some linear recursive sequence
(S i(xn+1))i∈Nn = (Bi(xn+1)/Qn+1(xn+1))i∈Nn satisfying the relations associated to
P1(x1), . . . , Pn(xn). Hence, each S i is a linear recursive sequence satisfying the
relation associated to Pn+1(xn+1). Finally, u satisfies also those n + 1 relations
which makes its ideal of relations zero-dimensional. By Definition 4, u is linear
recursive.
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Remark 19. The generating series of a multidimensional sequence satisfying one
linear recurrence relation with constant coefficients is given in Bousquet-Mélou
and Petkovšek (2000). The authors show in (Bousquet-Mélou and Petkovšek, 2000,
Section 4.2) that whenever the initial conditions have rational generating func-
tions, then the generating series is rational. This could give another proof of
Proposition 18 by recurrence on the number of variables.

Their result is illustrated with the binomial sequence b =
((

i
j

))
(i, j)∈N2 whose

generating series 1
1−x−x y is rational. The sequence satisfies the relation bi+1, j+1 −

bi, j+1 − bi, j for all (i, j) ∈ N2 and its set of initial terms
{(

i
0

)
,
(
0
j

)∣∣∣∣i ∈ N, j ∈ N∗
}

has
the rational generating series∑

i∈N

(
i
0

)
xi +

∑
j∈N∗

(
0
j

)
y j =

∑
i∈N

xi =
1

1 − x
.

7.1. Algorithms for computing the generating series
Based on Proposition 18, this section is devoted to the design of several al-

gorithms for computing the generating series. The first one is a deterministic al-
gorithm using Algorithms 3 and 4. The second algorithm uses our probabilistic
essential reduction to one call to the BM algorithm introduced in Section 3.2 while
the last one is another probabilistic algorithm using n calls to the BM algorithm.
These algorithms differ on the method to obtain all the n univariate polynomials
P1 ∈ K[x1], . . . , Pn ∈ K[xn], needed to compute the generating series, see Propo-
sition 18.

If needed, their common last step is expanding the numerator. For each k,
1 ≤ k ≤ n, we need to multiply a univariate polynomial of degree less than dk by
d1 · · · dn/dk univariate polynomials of degree less than dk. Since d1, . . . , dn ≤ d,
this is can be done in O(n dn−1M(d)) operations in the base field.

Let us now describe Algorithm 6 for computing the generating series. Calling
the BMS algorithm, Algorithm 3 or Algorithm 4 on a n-dimensional table with a
LEX ordering with x1 ≺ · · · ≺ xn yields a Gröbner basis with P1 but not P2, . . . , Pn

which are also needed. For each k, 2 ≤ k ≤ n, we apply a change of ordering on
the output ideal to obtain a LEX Gröbner basis with xk ≺ x1 ≺ · · · ≺ xk−1 ≺ xk+1 ≺

· · · ≺ xn yielding Pk ∈ K[xk].
Following Algorithm 7 uses Algorithm 1 and resultants computations to deter-

mine the n univariate polynomials. It works if the output of Algorithm 1 is in shape
position.

Proposition 20. Given a (n + 1)-dimensional linear recursive table over K whose
ideal of relations is in shape position, Algorithm 7 computes its n + 1 univariate
polynomials in O(n d M(d) log d) operations in K.
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Algorithm 6: Deterministic computation of the generating series.

Input: A table u = (ui)i∈Nn .
Output: The n univariate polynomials needed for the generating series.
Compute G1 := {P1, P2,1, . . . , Pn,mn} as returned by Algorithm 3 for LEX

x1 ≺ · · · ≺ xn.
For k from 2 to n do

Compute Gk := {Pk} ∪ {P
(k)
i, j |1 ≤ i ≤ n, i , k, 1 ≤ j ≤ m(k)

j } as returned by
the FGLM algorithm called on G1 with LEX
xk ≺ x1 ≺ · · · ≺ xk−1 ≺ xk+1 ≺ · · · ≺ xn.

Return P1, . . . , Pn.

Algorithm 7: Probabilistic computation of the generating series.

Input: A table u = (ui)i∈Nn .
Output: The n univariate polynomials needed for the generating series.
Compute f0 ∈ K[t], f1 ∈ K[x1, t], . . . , fn ∈ K[xn, t] as returned by
Algorithm 1.

For k from 1 to n do
Compute Pk the resultant of f0 and fk in t.

Return P1, . . . , Pn.

Proof. Calling Algorithm 1 counts for O(n M(d) log d) operations in K. Then, each
resultant computation is the resultant of two polynomials of degree at most d, one
of them being bivariate and of degree 1 is the second variable. By evaluating
the second variable and interpoling the results, each resultant can be computed in
O(d M(d) log d) operations, hence a global complexity in O(n d M(d) log d) opera-
tions in K.

For all k ∈ {1, . . . , n} and N1, . . . ,Nk−1,Nk+1, . . . ,Nn ∈ N, the sequence u(k) =

(u(k)
i )i∈N = (uN1,...,Nk−1,i,Nk+1,...,Nn)i∈N is linear recursive of dimension 1 satisfying the

relation associated to Pk. Therefore, running Berlekamp – Massey on this table
yields a factor of Pk. Assuming Pk has degree d, with good probability however,
table ( d∑

`=1

α` uN`,1,...,N`,k−1,i,N`,k+1,...,N`,n

)
i∈N

should not satisfy any relation associated to a strict factor of Pk and running Ber-
lekamp – Massey on it should yield Pk.

Example 13. The sequence u = ((−1)i j)(i, j)∈N2 is linear recursive of order 4 whose
ideal of relations is 〈x2 − 1, y2 − 1〉.
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For any even N, the sequence (ui,N)i∈N = (1)i∈N satisfies the relation associated
to x − 1, while for any odd N, the sequence (ui,N)i∈N = ((−1)i)i∈N satisfies the
relation associated to x + 1. Therefore x2 − 1 cannot be found by a single run of
Berlekamp – Massey on the first coordinate.

Let N1,N2 ∈ N, α1, α2 ∈ K,

v =
(
α1 uN1,i + α2 ui,N2

)
i∈N =

(
α1 (−1)N1 i + α2 (−1)N2 i

)
i∈N

.

For random N1,N2, with probability 1/2, N1 and N2 are not both even nor odd.
Assuming wlog. that N1 is even and N2 is odd, the sequence is

(
α1 + α2 (−1)i

)
i∈N

which satisfies at best x2 − 1 as long as α1 , 0, α2 , 0.

Algorithm 8: Fast probabilistic computation of the generating series.

Input: A table u = (ui)i∈Nn .
Output: The n univariate polynomials needed for the generating series.
For k from 1 to n do

For ` from 1 to d do
Pick at random α` ∈ K.
Pick at random N`,1, . . . ,N`,k−1,N`,k+1, . . . ,N`,n in {0, . . . , d − 1}.

Compute Pk as returned by the BM algorithm on table(∑d
`=1 α` uN`,1,...,N`,k−1,i,N`,k+1,...,N`,n

)
i∈N

Return P1, . . . , Pn.

Proposition 21. Given a n-dimensional linear recursive table over K, Algorithm 8
computes its n univariate polynomials in O(n M(d) log d) operations in K and 2 n d2

queries to the table.

Proof. Each table is made by combining d subsequences. Each call to the BM
algorithm amounts for O(M(d) log d) operations in K and 2 d queries to the table
elements, hence 2 n d2 queries to table.
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