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Abstract: We present in this paper a spatial model describing the growth of a photosynthetic
microalgae biofilm. In this model we consider photosynthesis, extracellular matrix excretion, and
mortality. These mechanisms are described precisely using kinetic laws that take into account
some saturation effects which limit the reaction rates and involve different components that we
treat individually. In particular, to obtain a more detailed description of the microalgae growth,
we consider separately the lipids they contain and the functional part of microalgae (proteins,
RNA, etc ...), the latter playing a leading role in photosynthesis. We also consider the components
dissolved in liquid phase as CO2. The model is based on mixture theory and the behavior of
each component is described on the one hand by mass conservation, which takes into account
biological features of the system, and on the other hand by conservation of momentum, which
describes the physical properties of the components. Some numerical simulations are displayed
in the one-dimensional case and show that the model is able to estimate accurately the biofilm
productivity.

Key words: Biofilm growth, Photosynthetic micro-algae biofilm, Front propagation, Fluid
dynamics model, Numerical simulations

1 Introduction

The term "biofilm" was introduced by Costerton et al. [15] in 1978 to design a mixture of organisms,
embedded in an extra-cellular matrix and attached to a surface in contact with water. Biofilm
is the prevailing mode of micro-organisms life. They are ubiquitous in nature and they appear
commonly in various domains, such as medical infections, reprocessing of waste or production of
clean energy.

The formation of a biofilm follows well-identified steps: at the beginning, micro-organisms
colonise the surface, then the colony grows and organises within an extra-cellular matrix and
finally some of the organisms are dispersed in order to colonise another location of the surface.
The extra-cellular matrix plays a particular role in this organisation, since it acts as a barrier and
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provides a protection for the whole colony. However, the physical structure of a biofilm, which
has a gel-like structure, is still unclear: in the same biofilm, some parts have a viscous behavior,
whereas other parts have a visco-elastic structure [20]. Moreover, even if the biofilm contains liquid
inside, it is mainly in a solid phase.

During the last decades, the study of micro-algae biofilm has become an important field of
research. Although micro-algae biofilms are almost always detrimental in industrial fields [22], it
is a credible alternative for the production of clean energy, which is one of the biggest challenge of
our century.

Indeed, there exist a wide variety of micro-algae species that are able to develop as a biofilm
and to produce chemical components for green oil production. The main interest of a biofilm
culture, in comparison with usual cultures of micro-algae in suspension, is the reduction of the
harvesting cost. Indeed, it is estimated that the biomass obtained from biofilm contains between
80% and 90% of water instead of more than 99% for cultures in suspension [21]. Moreover, for
a classical micro-algae culture in suspension, several steps are needed to remove the water and
to concentrate the products, which is both time consuming and expensive. On the opposite, for a
biofilm system, micro-algae are stuck on a surface and are harvested by scraping.

Since the comprehension of the development of phototrophic biofilms is an important topic of
research, several types of mathematical models have already been proposed. A first kind of models
are based on ordinary differential equations (ODE)[36] and take into account the kinetic reactions
involved in the biofilm growth. In these models, the biological mechanisms are well detailed
by considering many components and using a detailed modelling of the mass transfers between
components. However, there is no description of the spatial behavior of the biofilm. Another
type of models are multidimensional and multi-species cell centered models [35]. The solutions
of these discrete models are obtained by individual based approaches or cellular automata. In
these models also, many biological features are included thanks to the precise description of the
mechanisms. However, fluid mechanics effects are difficult to take into account and, despite the
recent advances in parallel computing that enable to simulate the evolution of a few hundreds
of cells, this approach remains quite expensive from a computational perspective. Thus, hybrid
models, coupling some cell-centered approaches with partial differential equations, have been
proposed to improve this point [2].

At the same time, fully continuous models have also been developed. In such a model, the
biofilm is described as a viscoelastic material that expands in response to the pressure induced by
mass exchanges between the biofilm and the surrounding liquid. Two classes of partial differential
equations (PDE) models can be distinguished: in the first kind of PDE models, biofilm and
liquid are separated by a physical interface, the evolution of which is computed by moving front
techniques [1]. On the opposite, other models are based on mixture theory and do not treat the
evolution of an interface. Mixture theory was introduced in the 1960s by a series of articles by
Trusdell and provides continuous models based on PDEs for multi-component fluids by assuming
that several components may be present locally; for more details about mixture theory, see [34, 26].
Mixture models have been successfully used later on for the description of several biological
systems and, in particular, for modelling biofilms [12, 13, 1, 16, 38, 39].

In this article, we focus on the mathematical modelling of micro-algae biofilms through mixture
models with a special attention to the biological mechanisms involved in its growth. To do so,
we improve and adapt the previous mixture model for biofilms of cyanobacteria in a fountain,
proposed by Clarelli et al. in [12, 13]. Note that, from the analytical perspective, the existence of
solutions for such mixture models has been established very recently and only for some simplified
models [9].

In our model, the components under consideration are micro-algae, extra-cellular matrix and
liquid, on the one hand, and some dissolved components, such as carbon dioxide, oxygen and
substrate, on the other hand. In line with quota models usually used to describe growth limited by
a nutrient, we consider separately the pool of carbon storage, mainly made of sugars and lipids,
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and the functional part of micro-algae, composed of proteins, RNA, etc... Therefore, the behavior
of each of the seven components considered in the model is described by two conservation laws:
mass balance equation, which accounts for mass transfers between the different components and
gives the evolution of the component density, and force balance equation, which gives the evolution
of momentum and contains physical properties of the phase. The model is supplemented by
an incompressibility constraint, obtained from the total mass conservation. This constraint is
expressed on the mean hydrodynamic velocity and leads to an hydrostatic pressure term in the
force balance equations of the model. As in [12, 13], we keep the inertial terms in momentum
equations to guarantee the hyperbolicity of the system and the finite speed of propagation of the
front.

However, the adaptation of the model in [12] to the present context imposes several improve-
ments: first, we consider a larger number of components and therefore we need to work with more
velocities. Moreover, we take into account some components dissolved in the water, for which
we add a diffusion term in the mass balance equations, leading to reaction-advection-diffusion
equations. Finally, the main improvement is the fine description of the mass transfers between
components, focusing on the biological mechanisms that drive the development of the biofilm,
namely photosynthesis, respiration , functional biomass synthesis, extra-cellular matrix excretion
and micro-algae death. To do so, all these mechanisms are expressed under the form of chemical
reactions and the kinetic of these reactions is carefully studied. To express the reaction rates, we
need to identify clearly the influence of each of the components of the model on the reaction under
consideration. Some inhibiting factors or some threshold effects are described by kinetic laws,
such as Monod’s law [24] or Haldane’s law [4]. In particular, we use Droop’s model [17] in order
to take into account an activation threshold and a saturation effect of an internal ratio for the
photosynthesis reaction rate. Finally, combining all this information, we are able to define in an
appropriate way the source terms of the mass balance equations. Note that this fine description
brings us to consider an incompressibility constraint with a non zero right-hand side, unlike in
[12].

Once the model is established, we propose a numerical scheme in order to perform some
accurate numerical simulations, using some finite differences techniques. This numerical scheme
is presented in details in the appendices. The basis of the scheme relies on what has been done in
[12], that is to say we compute the hyperbolic part of the problem with a robust Riemann solver
based on a relaxation scheme. The same difficulties as in [12] have to be faced: first, in some
regions, some phases may vanish. Unlike gas theory, where we can work in absence of vacuum,
the situation when one phase or several phases vanish is relevant in a biological context. In such a
case, the computation of the velocities has to be done carefully, using an implicit discretisation
in time for the momentum equations. Another common difficulty between the two works is the
computation of the pressure, linked to the treatment of the incompressibility constraint. As in [12],
we use a fractional step approach, based on Chorin-Temam projection method [32, 10], adapted to
the particular incompressibility constraint we deal with. However, another difficulty arises in our
case: the source terms appearing in the mass balance equations, built from the kinetic laws, may be
stiff and lead to numerical instabilities. We therefore use a partially implicit time discretisation for
some of the components in the source terms, which ensures that all the densities remain positive.

This numerical scheme enables us to present some numerical simulations in the one-dimensional
case in order to study the influence of various parameters of the model, such as the value of the
substrate supply or the parameters involved in the light modelling. More precisely, some tests
are presented at the end of the article to show the effect of the intensity on the upper surface of
the water, the absorption coefficient of light by the biofilm and the day-night variation of light.
Some numerical simulations in the two-dimensional case have also been performed, but will be
presented in a forthcoming article with the aim of comparing them with experimental results.

The paper is organised as follows: in the first section, we present the components considered in
the mathematical model and we detail the biological mechanisms, expressing them under the form
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of chemical reactions. In the second section, we describe the equations that compose the model,
namely the mass balance equations and the force balance equations. A subsection is devoted to the
expression of the source terms for the mass balance equations, based on the previously mentioned
chemical reactions. To do so, we need to define precisely in a third subsection the form of the
reaction rates, taking into account all the factors that may favor or inhibit the reactions. Finally,
at the end of this section, we give an estimate of all the parameters included in the equations of
the model. We display, in the last section, some numerical results in the one-dimensional case,
investigating the influence of several parameters on the model. Finally, conclusion and perspectives
are given. Two appendices are dedicated respectively to the description of the numerical scheme
and to supplementary numerical simulations.

2 Description of the biological system

Since the scope of the model is to describe precisely the production of lipids by the micro-algae
within the framework of biofilms, we need to consider several mechanisms. In particular, we
will study in details the reactions that drive the growth of the biofilm and the production of
extra-cellular matrix (ECM). This section is dedicated first to the presentation of the components
that are described in our model. Then, we will detail the mechanisms and summarise them through
chemical reactions.

2.1 Considered components in the mathematical model

In this section, we aim at giving the list of the components quantified by the model, that is to say
micro-algae, extra-cellular matrix, liquid and constituents dissolved in liquid phase.

In a biofilm, micro algae are embedded within a self produced extra-cellular matrix. Micro-algae
and extra-cellular matrix are both organic compounds but they have some very different roles in
the biofilm formation: photosynthesis takes place in the micro-algae, whereas extra-cellular matrix
is an inert component. Indeed, extra-cellular matrix is made of dead cells and extra-polymeric
substance released by micro-algae such as polysaccharides and small quantities of proteins.

Photosynthesis supports growth of micro-algae and takes place in organelles called chloroplasts,
which are part of functional biomass. In order to have a better description of photosynthesis,
we track the evolution of the functional biomass present in micro-algae. Therefore, instead of
considering micro-algae as a whole, we will consider separately the functional biomass and the pool
of carbon storage, following [7, 23]. On the one hand, the functional biomass gathers biosynthetic
apparatus such as proteins, nucleic acids and structural material. On the other hand, the pool of
carbon storage is defined as the micro-algae without the functional part and is mainly made of
sugar, lipids and carbohydrates.

Consequently, the mathematical model under consideration contains four main constituents,
that is to say: pool of carbon storage denoted by A, functional biomass denoted by N, extra-cellular
matrix denoted by E and liquid phase denoted by L. Note that the two elements A and N form
micro-algae, that may be denoted by M when necessary. We also consider three main components
dissolved in liquid phase which play an active role in biofilm growth and extra-cellular matrix
production: carbon dioxide denoted by C, oxygen denoted by O and substrate (mainly nitrogen)
denoted by S.

Before going further, let us detail the definition of A, N and E. Micro-algae are mostly made
of water: we consider that 90% of their mass is water. So components A and N represent the
pool of carbon storage and the functional biomass within the associated liquid present inside
the cellular membrane of micro-algae. For example, the pool of carbon storage gathers sugars,
lipids and carbohydrates with a part of the internal water of micro-algae. It is assumed that water
inside micro-algae is proportionally divided into A and N according to their mass. Similarly the
extra-cellular matrix is a tangle of polymers soaked in water so E denotes the ECM with internal
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water. Observe that liquid phase L represents the water outside of the biofilm and should not be
confused with water trapped into biofilm.

Finally, let us notice that the effect of the light intensity is of course of great importance in
order to model photosynthesis; in the following, light intensity is denoted by I .

2.2 Main biological mechanisms considered

2.2.1 Micro-algae growth

Now, let us describe what are the main mechanisms that occur during the formation of micro-algae
biofilms.

The leading mechanism responsible for the biofilm development is photosynthesis, that is to
say the absorption of the carbon dioxide dissolved in water using the light. More precisely, during
the photosynthesis process, micro-algae consume carbon dioxide and water, release oxygen and
produce carbohydrate in order to gain energy. Inorganic carbon uptake depends on many factors
and we summarise in what follows the overriding phenomena that occur during photosynthesis.
First, the photosynthesis rate increases with the amount of reactants (carbon dioxide and water),
although several studies highlight that this rate saturates when the carbon dioxide concentration
exceeds a certain value. Then, the photosynthesis rate also increases with light intensity up to a
threshold, above which it decreases due to photo-inhibition [19, 6]; since biofilm develops during
several days, it also benefits from a periodical enlightment, following the day and night cycle.
Another inhibiting factor for photosynthesis is the oxygen concentration [14]. Finally, as explained
in previous subsection, photosynthesis happens within the functional biomass and, therefore, the
quota of functional biomass present in the micro-algae will affect the photosynthesis rate.

Moreover, when the micro-algae are not illuminated, they use another source of energy provided
by the respiration. Basically, it is the reverse of photosynthesis: the cells use the oxygen dissolved
in water to oxidise the carbohydrate contained in the pool of carbon storage of micro-algae. During
this process, carbon dioxide and water are released.

Finally, since we quantify the production of functional biomass, we consider that this process
consumes the carbohydrate contained inside micro-algae and the nitrate dissolved in the water.

2.2.2 Extra cellular matrix formation

Let us describe the different mechanisms that lead to the formation of extra-cellular matrix, which
is composed both of dead cells and extra-polymeric substance (EPS) released by micro-algae.

First, part of the extra-cellular matrix is composed of EPS excreted by the micro-algae. During
the photosynthesis process, when micro-algae are illuminated in the presence of carbon dioxide,
they store carbon under the form of carbohydrate. Then, in the presence of nitrogen, they produce
functional biomass and divide. However, if no nitrogen is available and the pool of carbon storage
is full, micro-algae start to release polysaccharides [30], but also some parts of the functional
biomass, composed of proteins.

The other mechanism which produces extra-cellular matrix is the death of micro-algae which
occurs in absence of light and nutrients. We assume that micro-algae death rate depends exclusively
on the dissolved oxygen concentration: the micro-algae start to die when the oxygen concentration
becomes smaller than a threshold. On the opposite, the dissolved oxygen concentration can exceed
more than three times the oxygen saturation in liquid at equilibrium, due to photosynthesis. In
such a case, the medium is unbalanced which also causes the death of micro-algae. In practice,
when the micro-algae die, the functional biomass and the pool of carbon storage contained in the
cells are released and become entangled within the surrounding extra-cellular matrix.
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2.3 Representations of the biological mechanisms under the form of chemical reac-
tions

The aim of this subsection is to give a schematic representation of five of the mechanisms considered
in Subsections 2.2.1 and 2.2.2 under the form of chemical reactions, involving the components
listed in Sec. 2.1. More precisely, we restrict ourselves to the description of photosynthesis,
respiration, functional biomass synthesis, EPS excretion and micro-algae death. All these chemical
reactions depend on the stoichiometry and the reaction rates.

The stoichiometric coefficient of a chemical reaction is equal to the ratio between the number
of units of reactants consumed and the number of units of synthesised products. However, some
components of the model stand for several chemical elements and some reactions are not perfectly
balanced. As a consequence, we would rather use pseudo-stoichiometric coefficients to take
into account losses that may occur during the reactions. In the following, pseudo-stoichiometric
coefficients are denoted by ηφP (resp. ηφR , ηφN , ηφE and ηφD) for Photosynthesis (resp. Respiration,
functional biomass synthesis, EPS excretion and micro-algae Death) where φ stands for one of the
components φ ∈ {A,N,E,L,S,C,O}. Note that the values of all these parameters are fixed later on
in Table 1.

Moreover, the reaction rate describes the number of units of the main synthesised product
by unit of time. This function depends on several parameters, in particular the concentrations
of reactants. In the following, we denote by ϕP (resp. ϕR,ϕN ,ϕE ,ϕD ) the reaction rate for
photosynthesis (resp. respiration, functional biomass synthesis, EPS excretion and micro-algae
death) and, in the following subsections, we will make precise for each reaction with which
component we normalise the reaction rate. All these reaction rates will be modeled in details as
source terms of the mass balance equations later on, in Subsection 3.2.2.

2.3.1 Photosynthesis

As described in Sec. 2.2.1, during photosynthesis, micro-algae assimilate the carbon dioxide
contained in liquid phase thanks to light. More precisely in the presence of light, micro-algae
consume carbon dioxide and liquid to produce sugar and reject oxygen. In terms of the components
of Sec. 2.1, photosynthesis consumes C and L to produce A and O. Therefore, the schematic
representation of photosynthesis is

ηCP C + ηLPL
ϕP−−−−−−−−−−→A + ηOP O, (2.1)

where ϕP is the reaction rate of photosynthesis normalised with respect to the pool of carbon
storage A and ηφP for φ = C,L,O are the pseudo-stoichiometric coefficients of photosynthesis.

2.3.2 Respiration

In absence of light, respiration provides energy to the micro-algae cells by breaking large molecules,
such as carbohydrate, contained in the pool of carbon storage into smaller ones. The respiration
process consumes carbohydrate contained into micro-algae and oxygen dissolved in liquid to
produce energy; this mechanism releases carbon dioxide and water. It can therefore be written
under the following form:

A + ηOR O
ϕR−−−−−−−−−−→ ηCRC + ηLRL, (2.2)

where ϕR is the reaction rate of respiration normalised with respect to A and ηφR for φ = C,L,O are
the pseudo-stoichiometric coefficients of respiration.
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2.3.3 Functional biomass synthesis

Functional biomass is composed of nitrogen embedded into long carbon chains. Carbon chains are
provided by the pool of carbon storage A, whereas nitrogen comes from the substrate S. Therefore,
the reaction is represented by

ηANA + ηSNS
ϕN−−−−−−−−−−→N, (2.3)

where ϕN is the reaction rate, normalised by the functional biomass N and ηAN and ηSN are the
pseudo-stoichiometric coefficients for A and S of the synthesis of functional biomass.

2.3.4 Extra-polymeric substance (EPS) excretion

As explained in Sec. 2.1, extra-cellular matrix E constitutes a fundamental component of the
biofilm and is mainly made of polysaccharides and of a few proteins. The polysaccharides released
by micro-algae come from the pool of carbon storage A, whereas proteins are produced by the
functional biomass N. Therefore EPS (extra-polymeric substrate) excretion is divided into two
reactions:

A
ϕAE−−−−−−−−−−→ E, (2.4a)

N
ϕNE−−−−−−−−−−→ E, (2.4b)

where ϕAE (resp. ϕNE ) is the reaction rate for the excretion of polysaccharides (resp. of functional
biomass).

2.3.5 Micro-algae death

Due to environmental factors, micro-algae may die and the content of the cells goes into the
extra-cellular matrix. Consequently, the death can be represented by two reactions, one for the
pool of carbon storage and the other one for the functional biomass, namely:

A
ϕAD−−−−−−−−−−→ E, (2.5a)

N
ϕND−−−−−−−−−−→ E, (2.5b)

where ϕAD and ϕND are the two reaction rates.

3 Description of the mathematical model

In this section, we introduce a mathematical model describing the formation and the growth of
a biofilm of micro-algae together with the biofilm composition. All the phenomena mentioned
in previous section will be integrated into the model. To avoid the mathematical complexity
associated with the introduction of a physical interface between the biofilm and the external
medium, we use the mixture theory framework, following [12]. This model is composed of a mass
balance equation for each component coupled with force balance equations in which the physical
properties of each phase are described. Since the mass balance equations are written in terms of
volume fractions, the model includes a volume constraint, which can be expressed equivalently as
an incompressibility constraint, in the spirit of Navier-Stokes incompressibility constraint. Notice
that, since we are dealing with bio-chemical reactions, the expressions of the source terms for the
mass balance equations are complex nonlinear functions which will be detailed in section 3.2.
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3.1 Mass balance equations

As mentioned in Section 2.1, we split the components considered in this model in two parts: on the
one hand, the ones that constitute biofilm and liquid, and on the other hand, the ones dissolved in
liquid.

3.1.1 Notations and conventions

In the following, we denote by t > 0 the time variable and x ∈Ω the position with Ω the spatial
domain under consideration which may be a subset of R, R2 or R3.

Note that, although this article focuses on the one-dimensional case, our aim is to perform
numerical simulations and comparisons with experiments in a 2D or 3D setting. Therefore, we
present the following mathematical model in a general context.

For a component, we denote by φ its volume fraction, by ρφ the volumetric mass density, by vφ
its velocity and by Γφ the source term of the mass balance equation describing the evolution of its
volume fraction. In particular, we denote by A (resp. N,E,L) the volume fraction of pool of carbon
storage A (resp. of functional biomass N, extra-cellular matrix E and liquid L), namely the volume
occupied by the component in an elementary volume V divided by the volume of V.

Remark that pool of carbon storage A and functional biomass N are both parts of micro-algae;
therefore, we use for these two elements the same density, denoted by ρM and the same velocity
called vM , where M stands for the whole micro-algae.

3.1.2 Mass balance equations for biofilm and liquid

By a balance of mass in the elementary volume V, we find that the evolution with respect to time
of the mass of one of the components verifies

d
dt

∫

V
ρφφ dV = −

∫

∂V
ρφφvφ · ~ndσ +

∫

V
Γφ dV ,

where ∂V is the boundary of V and ~n its unitary external normal. We can thus deduce the following
mass balance equation:

∂t
(
ρφφ

)
+∇X ·

(
ρφφvφ

)
= Γφ.

Assuming that this component is incompressible, that is to say that ρφ is constant in time and
space, we finally obtain the following equality:

∂tφ+∇X ·
(
φvφ

)
=

Γφ

ρφ
.

Thus, for φ = A,N,E and L, the corresponding mass balance equations write as follows:

∂tA+∇X · (AvM ) =
ΓA

ρM
(3.1a)

∂tN +∇X · (NvM ) =
ΓN

ρM
(3.1b)

∂tE +∇X · (EvE) =
ΓE

ρE
(3.1c)

∂tL+∇X · (LvL) =
ΓL

ρL
. (3.1d)

3.1.3 Incompressibility constraint

Assuming that the volume of the dissolved components is negligible, for any time t > 0 and position
X ∈Ω, the volume fractions A,N,E and L satisfy the volume condition:

A(t,X) +N (t,X) +E(t,X) +L(t,X) = 1. (3.2)
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Consequently, by summing the four equations (3.1) and using condition (3.2), we obtain an
incompressibility constraint:

∇X · ((A+N )vM +EvE +LvL) =
ΓA + ΓN

ρM
+
ΓE

ρE
+
ΓL

ρL
. (3.3)

Let us notice that we can work with the two equations (3.2) and (3.3) in the following, omitting
therefore the mass balance equation for liquid (3.1d).

3.1.4 Mass balance equations for components dissolved in liquid

Let us now consider the components dissolved in liquid phase, that is to say substrate S, carbon
dioxide C and oxygen O. Since their volume fraction is negligible, we consider their mass fraction,
denoted by S, C and O, that is to say the mass contained in liquid divided by the mass of liquid.
Their volumetric mass density is the same as the liquid density ρL and their velocity is driven by
the velocity of liquid phase vL. Moreover, in addition to the convection phenomenon, we take into
account the diffusion and we add a diffusive term in the mass balance equations. Following [3]
we assume that the diffusion follows the Fick’s law, namely the diffusive flux is assumed to be
proportional to the concentration gradient of dissolved component in liquid. The concentration of
dissolved components in liquid phase contained in the elementary volume V is φρL for φ = S,C
and O. So the integral form of the diffusion terms writes as

∫

∂V
Lδφ∇X (φρL) dσ =

∫

V
∇X ·

(
Lδφ∇X (φρL)

)
dV

where δφ are the diffusion coefficients. Therefore the local formulation of the mass balance equation
for the components dissolved in liquid phase writes as

∂t (SL) +∇X · (SLvL)−∇X · (δSL∇XS) =
ΓS

ρL
(3.4a)

∂t (CL) +∇X · (CLvL)−∇X · (δCL∇XC) =
ΓC

ρL
(3.4b)

∂t (OL) +∇X · (OLvL)−∇X · (δOL∇XO) =
ΓO

ρL
. (3.4c)

3.2 Source terms and reaction rates

In this section, we will make precise the form of the source terms that appear on the right-hand
side of equations (3.1) and (3.4) and that describe the mechanisms presented in Section 2.3. We
will detail this expression for each component in the following subsection and then we will give
the expressions of the reaction rates that may depend on several factors.

3.2.1 Source terms

Pool of carbon storage A is a product of photosynthesis, see Sec. 2.3.1, with reaction rate ϕP .
Moreover, according to Sec. 2.3.2, 2.3.3, 2.3.4 and 2.3.5, it is a reactant for all the other mechanisms:
A is consumed by respiration with rate ϕR (see Sec. 2.2), by synthesis of functional biomass (2.3)
with rate ηANϕN , by the EPS excretion (2.4a) with rate ϕAE and by micro-algae death (2.5a) with
rate ϕAD . By combining all these terms, we obtain that the source term for A can be written as:

ΓA = ϕP −ϕR − ηANϕN −ϕAE −ϕAD . (3.5a)

Now, considering Sec. 2.3.3, functional biomass N is produced with rate ϕN . However, the loss
of functional biomass is due to EPS (extra-polymeric substance) excretion with rate ϕNE and to
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mortality with rate ϕND , see equations (2.4b) and (2.5b). Therefore, we can define the source term
for N as:

ΓN = ϕN −ϕNE −ϕND . (3.5b)

Extra-cellular matrix E is only produced and comes from two mechanisms: EPS excretion and
mortality, which both can use either the pool of carbon storage or the functional biomass as a
reactant. In all cases, according to Sec. 2.4a, 2.4b, 2.5a and 2.5b, pseudo stoichiometric coefficients
are equal to 1 and we obtain the following source term:

ΓE = ϕAE +ϕNE +ϕAD +ϕND . (3.5c)

Water which is the main component of liquid phase L is a reactant in photosynthesis with rate
ηLPϕP and a product in respiration with rate ηLRϕR, see Sec. 2.1 and 2.2, so:

ΓL = ηLRϕR − ηLPϕP . (3.5d)

Now, substrate S is only consumed by functional biomass synthesis (2.3), with rate ηSNϕN ; thus,
we define the source term for S as:

ΓS = −ηSNϕN . (3.5e)

Carbon dioxide C, as liquid, is a reactant for photosynthesis (2.1) and a product of the
respiration process (2.2); therefore we set:

ΓC = ηCRϕR − ηCP ϕP . (3.5f)

Finally, oxygen O is released by the photosynthesis mechanism (2.1) with rate ηOP ϕP and
consumed by the respiration mechanism with rate ηORϕR. Therefore, the source term for C can be
written as:

ΓO = ηOP ϕP − ηORϕR. (3.5g)

3.2.2 Expressions of reaction rates

Now, in this section, let us give the expressions of the reaction rates presented in Section 2.3 and
used in previous subsection to model mass exchanges between species. To do so, we will use
classical kinetics models, like Michaëlis-Menten’s law for enzyme catalyzed reactions or Haldane’s
kinetics law when inhibition is considered. These laws are defined as dimensionless elementary
functions with values in the interval [0,1] and each reaction rate is built as a product of elementary
functions multiplied by the maximal rate per unit of time. In what follows, this maximal rate is
called µα where α represents the considered mechanism; the estimated values of these rates are
given in Table 1, as well as the other constants of the model.

Note that some mechanisms may depend on the intra–cellular quota Q defined by

Q =
N

N +A
,

which represents the amount of functional biomass per unit of micro algae biomass. In particular,
this quota will be used to express the photosynthesis rate.

Photosynthesis rate. Photosynthesis 2.1, which is the most complex mechanism since its
reaction rate is driven by all components except substrate, is also obviously influenced by the
light intensity, denoted by I . For the reader’s convenience, we consider separately the effects
of each component and we denote by fφ, with φ = Q,N,L,C,O,I , the corresponding elementary
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function which depends only on φ and takes values in [0,1], except fN . The expression for the
photosynthesis rate will finally be the product

ϕP = µP fN fQfLfCfOfI , (3.6)

where µP is the maximal photosynthesis rate by unit of micro-algae and unit of time.
First, we assume that the growth of the pool of carbon storage depends linearly on the functional

biomass amount, so fN is equal to ρMN up to a constant k, to be determined.
Then, µP is defined as the maximal photosynthesis rate by unit of mass of micro-algae and unit

of time, that is to say as the maximal value for 1
ρM

ϕP
N+A . But the maximal value for 1

ρM
ϕP
N+A is also

equal to µP k
(
N
N+A

)
max

= µP kQmax according to eq. (3.6).

Therefore k =
1

Qmax
and we set

fN =
ρMN

Qmax
(3.7a)

with Qmax a threshold above which the functional biomass production is stopped, that is to say the
quota Q does not have any impact on the photosynthesis rate if Q ≥Qmax.

Moreover, as mentioned in Sec. 2.2.1, photosynthesis is performed by chloroplasts, contained in
the functional biomass. Their quantity increases with the intra-cellular quota and photosynthesis
occurs when Q exceeds a given threshold Qmin, which can be described by Droop’s model [8, 17].
We obtain therefore:

fQ =
Qmax

Qmax −Qmin
max

{
0,1− Qmin

min {Q,Qmax}
}
, (3.7b)

which implies that fQ = 0 for Q < Qmin and fQ = 1 when Q > Qmax.
Now, to take into account the impact of reactants, namely carbon dioxide and liquid, we use

Michaëlis-Menten’s law which reflects an almost linear increase for a low amount of reactants and
a threshold effect when reactants are in excess. The photosynthesis rate depends consequently on

fC =
C

KC +C
, fL =

L
KL +L

, (3.7c)

with KC and KL the half saturation constants of carbon dioxide and liquid. So we have fφ ∼ φ
Kφ

when φ goes to 0 and fφ ∼ 1 when φ goes to infinity, for φ = C and L.
Moreover, according to [14], photosynthesis is inhibited when the oxygen concentration is too

high. We model this effect with the following sigmoid function:

fO =
1

1 +
(
O
KO

)α (3.7d)

with KO the half saturation constant and α > 0 a strictly positive parameter that determines the
stiffness of the sigmoid.

Finally, we need to consider a last effect, which is the impact of light intensity. Since the reaction
is inhibited when light intensity is too high, we model the effect of light on the photosynthesis rate
by Haldane’s law [19, 33], that is to say:

fI = 2(1 +KI )
Î

Î2 + 2KI Î + 1
, where Î =

I
Iopt

, (3.7e)

with I the received light intensity, Iopt the optimal light intensity and KI a parameter. This function
behaves almost like a linear function of Î for Î < 1 and like 1

Î
for Î greater than 1.
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The received light intensity I is a space-dependent parameter, since light is absorbed according
to the various layers it encounters. So local light intensity I(t,x,y,z) depends on the incident light
intensity on the upper surface of water I0(t,x,y) and on an attenuation coefficient, which evolves
with the depth and the composition of the above medium. Precisely, the attenuation coefficient at
position X = (x,y,z) depends on the depth and on the medium composition at points (x,y,ξ) for
z ≤ ξ ≤H , with H the height of the domain.

Following [31], we can describe the received light intensity by:

I(t,X) = I0(t,x,y)exp
(
−
∫ H

z
τLL (t,x,y,ξ) + τM (A (t,x,y,ξ) +N (t,x,y,ξ) +E (t,x,y,ξ))dξ

)
, (3.8)

where τL and τM are the absorption coefficients of liquid and biofilm, estimated in Table 1
Finally, by combining equations (3.7a) to (3.7e), we deduce the form of the photosynthesis rate,

that is to say:

ϕP =
µP ρM

Qmax −Qmin
N

C
KC +C

L
KL +L

max
{

0,1− Qmin
min {Q,Qmax}

}
1

1 +
(
O
KO

)α
2(1 +KI ) Î

Î2 + 2KI Î + 1
. (3.9a)

Respiration rate. For the respiration, we only take into account the effects of the reactants,
namely the oxygen and the pool of carbon storage, see Sec. 2.3.2. We assume that ϕR depends
linearly on the quantity of the pool of carbon storage ρMA and that the Michaëlis-Menten’s law
applies for the dependence on oxygen; we denote by KR the half saturation constant for the oxygen
and by µR the maximal respiration rate. Thus, we obtain the following form for the respiration
rate:

ϕR = µRρMA
O

KR +O
(3.9b)

which induces a quasi linear increase for small values of O and a threshold effect for O�KR.
Functional biomass synthesis rate. The functional biomass is synthesised thanks to a pool

of enzymes and other molecules containing nitrogen such as DNA, RNA. Thus ϕN (see 2.3.3) is
assumed to depend linearly on the quantity of functional biomass ρMN . It also depends on the
availability of the two reactants, that is to say the substrate and the pool of carbon storage, and on
the need for functional biomass. The influence of the substrate S can be modelled by Michaëlis-
Menten’s kinetic with the half saturation constant KS . In line with Droop’s model, we assume that
the growth process depends on the fraction of nitrogen per unit of biomass. The availability in
carbohydrate contained in the pool of carbon storage is related to the intra-cellular quota: a low
value of Q means high disposability whereas large values of Q indicate a low availability of A.
Similarly, since low values for the intra-cellular quota indicate a lack of functional biomass, the
production of functional biomass decreases with the intra-cellular quota. As a consequence the
availability in carbohydrate and the need for functional biomass are modelled together by a linear
decreasing function of the intra–cellular quota which vanishes for Q >Qmax. Therefore, we set

ϕN = µNρMN
S

KS + S
max

{
0,
Qmax −max {Q,Qmin}

Qmax −Qmin

}
, (3.9c)

with µN the maximal rate of functional biomass synthesis. Note that ϕN = 1 for Q smaller than
Qmin and ϕN = 0 when Q is greater than Qmax.

EPS excretion rates. The EPS is mainly excreted from the pool of carbon storage and, in
smaller amounts, from the functional biomass. Therefore, the EPS excretion rate ϕAE (resp. ϕNE ) is
proportional to the quantity of the pool of carbon storage (resp. functional biomass) contained in
micro-algae. In both cases, the mechanism is the same but the kinetic of excretion is slower for the
EPS coming from functional biomass. So, the maximal excretion rate µNE for the EPS coming from
N in the reaction (2.4b) is smaller than the maximal excretion rate µAE for EPS coming from A in
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reaction (2.4a) – their values are estimated in Table 1. Moreover, we assume that the EPS excretion
rate depends on the intra–cellular quota Q similarly as for the functional biomass synthesis rate.
Combining all these effects, we obtain:

ϕAE = µAEρMAmax
{

0,
Qmax −max {Q,Qmin}

Qmax −Qmin

}
, (3.9d)

ϕNE = µNE ρMNmax
{

0,
Qmax −max {Q,Qmin}

Qmax −Qmin

}
. (3.9e)

Micro-algae death rates. Finally, the micro-algae death rates ϕAD and ϕND introduced in Sec.
2.3.5 are two parts of the same mechanism. Therefore, their expressions are identical except
that ϕAD is proportional to the quantity of the pool of carbon storage and ϕND to the quantity of
functional biomass. The variations of the death rates are driven essentially by the dissolved oxygen
concentration: if the oxygen concentration is below the reference concentration KD , the mortality
of micro-algae increases. On the opposite, due to photosynthesis, the oxygen concentration can
exceed the reference concentration , which also increases the death rate. Consequently the death
rate depends on the ratio between the oxygen concentration and the optimal oxygen concentration:
Ô = O

KD
. In order to model a quasi linear decrease of the death for O < KD we use a modified

Michaëlis-Menten’s law:

fD
(
Ô
)

= 1− βÔ

Ôβ + β − 1
(3.9f)

with β > 1 a parameter estimated in Table 1, that settles the stiffness of the increase of the death
rate for O >KD . Observe that we put 1− β in the denominator in order that fD remains in [0,1] for
Ô > 0 and fD(1) = 0. Finally we set:

ϕAD = µDρMA
(
1− βÔ

Ôβ + β − 1

)
, (3.9g)

ϕND = µDρMN
(
1− βÔ

Ôβ + β − 1

)
, (3.9h)

where µD is the maximal mortality rate.

3.3 Force balance equations

In this section, we establish some equations to compute the velocities used in the mass balance
equations. To do so, we write some evolution equations for the momentum thanks to some force
balance considerations. Following what we have done in Sec. 3.1, we consider the three following
velocities: velocity of micro-algae vM , velocity of extra-cellular matrix vE and liquid velocity vL.
Keeping the notations of Sec. 3.1, for φ = M,E or L, the evolution in time of momentum in an
elementary volume V satisfies

∂t

∫

V
ρφφvφ dV = Fvol +Fsurf, (3.10)

where Fvol are the forces inside the volume V and Fsurf are the forces acting through the surface of
V. Forces inside the volume can be decomposed as body forces, contact forces between species and
source of momentum resulting from mass exchanges, leading to the following expression:

Fvol =
∫

V
ρφbφ dV +

∫

V
m̃φ dV +

∫

V
Γφvφ dV . (3.11)
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Moreover, forces acting through the boundary come from the flux of momentum and from contact
forces within the component, that is to say:

Fsurf = −
∫

∂V
ρφφvφ

(
vφ · ~n

)
dσ +

∫

∂V
T̃φ · ~ndσ. (3.12)

Finally, we obtain the following formulation for the force balance equation:

∂t
(
ρφφvφ

)
+∇X ·

(
ρφφvφ ⊗ vφ

)
= ∇X · T̃φ + ρφbφ + m̃φ + Γφvφ. (3.13)

Since the mixture is saturated, i.e. without vacuum, following [3, 12], we can decompose
T̃φ = −φP I +φTφ and m̃φ = P∇xφ+mφ, where P is the hydrostatic pressure, Tφ is the excess stress
tensor, mφ is the excess interaction force and I is the identity matrix. In line with previous works
[11, 38, 39], we assume that the body forces are negligible. So, equation (3.13) can be written as:

∂t
(
ρφφvφ

)
+∇X ·

(
ρφφvφ ⊗ vφ

)
=mφ −φ∇xP +∇X ·

(
φTφ

)
+ Γφvφ. (3.14)

In a close mixture system, the sum of the momentum supply due to the interaction forces
and of the momentum transfers caused by the mass exchanges is equal to zero, that is to say∑

φ=A,N,E,L

m̃φ + Γφvφ = 0. Then, using the definition of m̃φ and condition (3.2), we deduce that we

have the following relation for liquid phase:

mL + ΓLvL = − (mM + (ΓA + ΓN )vM +mE + ΓEvE) . (3.15)

Moreover, following [3, 12], the general form of the excess stress tensor for an elastic fluid is
given by

φTφ = −
(
Σφ(φ)−φκφ(φ)∇X · vφ

)
I +φµφ(φ)

(
∇xvφ +

(
∇xvφ

)T )
,

with Σφ(φ) the elastic interaction and µφ(φ) the viscosity coefficient. We assume that the stress
is constant and we neglect all the shear stress effects for the biofilm components A, N and E,
namely κφ(φ) = µφ(φ) = 0 for φ = A,N,E. Furthermore, we consider that Σφ depends linearly on
φ: Σφ(φ) = γφφ with γφ > 0 such that for φ = A,N,E, equation (3.14) becomes

∂t
(
ρφφvφ

)
+∇X ·

(
ρφφvφ ⊗ vφ

)
= −φ∇xP −∇X ·

(
γφφ

)
+mφ + Γφvφ. (3.16)

Regarding liquid phase, we make the classical assumption that TL = 0 meaning that the excess
stress tensor is present only in solid components [26]. Thus, in liquid phase, the only external force
is the hydrostatic pressure in order to have liquid at rest in absence of biofilm. Consequently, using
eq. (3.15) to simplify eq. (3.14) for φ = L, we deduce that the force balance equation for liquid
phase can be written as:

∂t (ρLLvL) +∇X · (ρLLvL ⊗ vL) = −L∇xP −mM −mE − ΓMvM − ΓEvE . (3.17)

Finally, let us detail the interaction forces. Following [12], we assume that the contact forces
obey Darcy’s law and are proportional to the relative difference between the velocities of the
components. Thus, we set

mM = −mML (vM − vL)−mME (vM − vE) and mE = −mEL (vE − vL)−mEM (vE − vM ) ,

where the friction coefficients mML,mME ,mEL and mEM are experimental parameters. In addition,
we assume that the friction force of extra-cellular matrix on biofilm and the friction force of biofilm
on extra-cellular matrix have the same magnitude, which leads to mEM =mME . These parameters
are estimated in Table 1.
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To sum up, from equations (3.16) and (3.17), we deduce that force balance equations are equal
to:

∂t ((A+N )vM ) +∇X · ((A+N )vM ⊗ vM ) =
1
ρM

(
−(A+N )∇xP −∇X ·

(
γM(A+N )

)
(3.18a)

−mML (vM − vL)−mME (vM − vE) + ΓMvM

)

∂t (EvE) +∇X · (EvE ⊗ vE) =
1
ρE

(−E∇xP −∇X · (γEE)−mEL (vE − vL) +mME (vM − vE) + ΓEvE)

(3.18b)

∂t (LvL) +∇X · (LvL ⊗ vL) =
1
ρL

(−L∇xP +mML (vM − vL) +mEL (vE − vL)− ΓMvM − ΓEvE) . (3.18c)

3.4 Boundary conditions

We complement this system with some boundary conditions as follows: we impose Neumann
boundary conditions for the components constituting biofilm and for the liquid. For components
dissolved in liquid phase, we also impose Neumann boundary conditions on all boundaries except
on the boundary on top, where we impose some non homogeneous Dirichlet boundary conditions.
These boundary conditions stand for external supply of substrate coming from the top of the
domain.

The definition of the boundary conditions for the velocities requires more attention. Indeed
by integrating the incompressibility constraint (3.3) on the whole domain Ω and using Stokes’
theorem, we get the following compatibility condition

∫

∂Ω
((A+N )vM +EvE +LvL) · ~n dν =

∫

Ω

(
ΓA + ΓN

ρM
+
ΓE

ρE
+
ΓL

ρL

)
dω.

In order to satisfy this compatibility condition, we impose for all the velocities some no flux
boundary conditions on each boundary except on the top of the domain where the flux is imposed
so that the compatibility condition holds.

3.5 Complete system of PDEs in 1D

In this subsection, let us summarise the full set of equations we derived in previous subsections.
On the one dimensional domain Ω = [0,Lx] the full system consists in mass balance equations (3.1)
– (3.4) coupled with source terms (3.5) and reaction rates (3.9), force balance equations (3.18),
condition (3.2) and the incompressibility constraint (3.3), complemented by boundary conditions:
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Reaction rates

ϕP =
µP ρM

Qmax −Qmin
N

C
KC +C

L
KL +L

2(1 +KI ) Î

Î2 + 2KI Î + 1
max

{
0,1− Qmin

min {Q,Qmax}
}

1

1 +
(
O
KO

)α ,

ϕR = µRρMA
O

KR +O
,

ϕN = µNρMN
S

KS + S
max

{
0,
Qmax −max {Q,Qmin}

Qmax −Qmin

}
,

ϕAE = µAEρMAmax
{

0,
Qmax −max {Q,Qmin}

Qmax −Qmin

}
,

ϕNE = µNE ρMNmax
{

0,
Qmax −max {Q,Qmin}

Qmax −Qmin

}
,

ϕAD = µDρMA
(
1− βÔ

Ôβ + β − 1

)
,

ϕND = µDρMN
(
1− βÔ

Ôβ + β − 1

)
,

Q =
N

N +A
, Ô =

O
KD

, Î =
I
Iopt

,

I(t,x) = I0(t)exp
(
−
∫ Lx

x
τLL (t,ξ) + τM

(
A (t,ξ) +N (t,ξ) +E (t,ξ)

)
dξ

)

Source terms

ΓA = ϕP −ϕR − ηANϕN −ϕAE −ϕAD , ΓN = ϕN −ϕNE −ϕND ,
ΓE = ϕAE +ϕNE +ϕAD +ϕND , ΓL = ηLRϕR − ηLPϕP ,
ΓS = −ηSNϕN , ΓC = ηCRϕR − ηCP ϕP ,
ΓO = ηOP ϕP − ηORϕR,

Mass balance equations

∂tA+∂x (AvM ) =
ΓA

ρM
, ∂tN +∂x (NvM ) =

ΓN

ρM
, ∂tE +∂x (EvE) =

ΓE

ρE
,

Volume constraint and incompressibility constraint

A+N +E +L = 1, ∂x ((A+N )vM +EvE +LvL) =
ΓA + ΓN

ρM
+
ΓE

ρE
+
ΓL

ρL
,

Mass balance equations for components dissolved in liquid

∂t (SL) +∂x (SLvL)−∂x (δSL∂x (S)) =
ΓS

ρL
,

∂t (CL) +∂x (CLvL)−∂x (δCL∂x (C)) =
ΓC

ρL
,

∂t (OL) +∂x (OLvL)−∂x (δOL∂x (O)) =
ΓO

ρL
,
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Force balance equations

∂t ((A+N )vM ) +∂x
(
(A+N )vM

2
)

=
1
ρM

(
−(A+N )∂xP −∂x

(
γM(A+N )

)

−mML (vM − vL)−mME (vM − vE) + (ΓA + ΓN )vM
)
,

∂t (EvE) +∂x
(
EvE

2
)

=
1
ρE

(
−E∂xP −∂x (γEE)−mEL (vE − vL) +mME (vM − vE) + ΓEvE

)
,

∂t (LvL) +∂x
(
LvL

2
)

=
1
ρL

(
−L∂xP +mML (vM − vL) +mEL (vE − vL)− (ΓA + ΓN )vM − ΓEvE

)
.

Boundary conditions

∂xφ (t,0) = 0, ∂xφ (t,Lx) = 0, for φ = A,N,E,L,

vφ(t,0) = 0, vφ (t,Lx) =
∫ Lx

0

(
ΓA + ΓN

ρM
+
ΓE

ρE
+
ΓL

ρL

)
dx, for φ =M,E,L,

∂x (φL) (t,0) = 0, ∂x (φL) (t,Lx) = θφ, for φ = S,C,O,

where θS ,θC ,θO are the external supplies of substrate, carbon and oxygen.

3.6 Parameters estimates

The parameter values chosen for the simulations are presented in Table 1. Most of the parameters
are derived from the literature and some parameters are derived from the state of the art on
photosynthesis. The half saturation constants used in the reaction rates are generally expressed
in terms of concentration in kgL−1 or in molL−1. However, in our case, the amount of each
component is dimension free and the values given in Table 1 are therefore converted, using the
volumetric mass density or the molar mass.

For the photosynthesis and the respiration processes, the pseudo-stoichiometric coefficients are
estimated using the molar mass of the components involved in the reactions and considering that,
during the reaction, around 90% of the exchanged matter is water.

Moreover, the values of KO and α are chosen to fit the curve proposed in [14] as a sigmoid
function. Finally, the values of Qmin and Qmax are deduced from Mairet et al. [23], where the range

of
N
A

is estimated.

Name Value Interpretation Ref.

ηAP 1 kgA/kgA Photosynthesis pseudo stoichiometric
coefficient for A

eq. (2.1)

ηOP 0.106 kgO/kgA Photosynthesis pseudo stoichiometric
coefficient for O

eq. (2.1)

ηCP 0.146 kgC/kgA Photosynthesis pseudo stoichiometric
coefficient for C

eq. (2.1)

ηLP 0.960 kgL/kgA Photosynthesis pseudo stoichiometric
coefficient for L

eq. (2.1)

ηAR 1 kgA/kgA Respiration pseudo stoichiometric coef-
ficient for A

eq. (2.2)

ηOR 0.106 kgO/kgA Respiration pseudo stoichiometric coef-
ficient for O

eq. (2.2)
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ηCR 0.146 kgC/kgA Respiration pseudo stoichiometric coef-
ficient for C

eq. (2.2)

ηLR 0.960 kgL/kgA Respiration pseudo stoichiometric coef-
ficient for L

eq. (2.2)

ηAN 1.583 kgA/kgL Pseudo stoichiometric coefficient for A
in the synthesis of N

eq. (2.3)

ηSN 0.867 kgL/kgL Pseudo stoichiometric coefficient for S
in the synthesis of N

eq. (2.3)

µP 2 d−1 Maximal photosynthesis rate [7, 6]

µR 0.1 d−1 Maximal respiration rate [18]

µN 0.559 d−1 Maximal functional biomass synthesis
rate

eq. (3.9c)

µAE 0.3 d−1 Maximal EPS excretion rate from A eq. (3.9d)

µNE 0.05 d−1 Maximal EPS excretion rate from N eq. (3.9e)

µD 0.1 d−1 Maximal micro-algae death rate eq. (3.9g)

KO 3.2 · 10−5 kgO/kgL Oxygen half saturation constant in pho-
tosynthesis

[14]

α 14 Stiffness of the sigmoid for the oxygen
in photosynthesis

[14]

KL 0.05 Liquid half saturation constant in pho-
tosynthesis

eq. (3.7c)

KC 4.4 · 10−6 kgC/kgL Inorganic carbon half saturation con-
stant in photosynthesis

[25]

KI 0.1 Light parameter [12, 31]

Iopt 100 µmolm−2 s−1 Optimal light intensity [12, 31]

KR 7.2 · 10−6 kgO/kgL Oxygen half saturation constant in res-
piration

eq. (3.9b)

KS 6.2 · 10−8 kgL/kgL Substrate half saturation constant in
functional biomass synthesis

[7]

KD 7.2 · 10−6 kgO/kgL Oxygen half saturation constant for
micro-algae death

eq. (3.9f)

β 1.3 Stiffness of the increase of the death rate
in mortality

eq. (3.9f)

Qmin 5.82 · 10−2 Minimal threshold of functional
biomass quota

[23]

Qmax 1.57 · 10−1 Maximal threshold of functional
biomass quota

[23]

ρM 1.053 kgL−1 Volumetric mass density of micro-algae eq. (3.1a)– (3.1b)

ρE 1.035 kgL−1 Volumetric mass density of EPS eq. (3.1c)

ρL 1.025 kgL−1 Volumetric mass density of liquid eq. (3.1d)

θS 2− 5 · 10−5 kgS/kgL Substrate intake [7, 23]

θC 2− 14 · 10−5 kgC/kgL Inorganic carbon intake [7]

θO 7.2 · 10−6 kgO/kgL Oxygen intake [27]

δS 1.47 · 10−4 m2 d−1 Substrate diffusion coefficient [36]

18



δC 1.80 · 10−4 m2 d−1 Inorganic carbon diffusion coefficient [37]

δO 1.98 · 10−4 m2 d−1 Oxygen diffusion coefficient [36]

τL 0.1 m−1 Light absorption coefficient for L [31, 12, 13]

τM 2.5 · 104 m−1 Light absorption coefficient for M [40, 12, 13]

mML 20 kgm−3 d−1 Friction coefficient of M over L [12, 13]

mEL 20 kgm−3 d−1 Friction coefficient of E over L [12, 13]

mME 20 kgm−3 d−1 Friction coefficient of M over E [12, 13]

γM 2.8 · 10−7 kgm−1 d−2 Tensor coefficient for micro-algae M [12, 13]

γE 2.8 · 10−7 kgm−1 d−2 Tensor coefficient for extra-cellular ma-
trix E

[12, 13]

Table 1: Estimated values of the biological and physical parameters used in the system described
in subsection 3.5

4 Numerical simulations

In this section, we present some numerical results in the one dimensional case. Although the one
dimensional case is not realistic, it is very useful to make preliminary tests on the efficiency of the
model and to analyse solutions of the system. For example, in our case, the following simulations
help to understand effects of the limiting processes present in the expression of the reaction
rates and the role of some key parameters. More precisely, after giving a first test case which is
considered as a reference case, we study the influence of the following parameters : substrate
supply θS , intensity on the upper surface of the water I0, absorption coefficient τM and variation
of light. Note that other numerical simulations are presented in appendices to show the influence
of the elastic tensor coefficients γM and γE and of the maximal photosynthesis rate µP .

The one dimensional setting has to be interpreted as the case when biofilms have a uniform
horizontal distribution and the space variable under consideration is therefore the height. In all
the simulations presented here, we take the following values: the length of the domain is equal to
Lx = 5 mm, the number of discretisation points is Nx = 400 and the initial data are taken as:

A0 = 5 · 10−2χx610−4 , N0 = 8.38 · 10−3χx610−4 , E0 = 0, L0 = 1−A0 −N0 −E0,

S0 = θS , C0 = θC , O0 = θO,

with

θS = 5 · 10−5 kgS/kgL θC = 100 · 10−5 kgC/kgL θO = 7.2 · 10−6 kgO/kgL,

and where χx610−4 denotes the characteristic function of interval [0,10−4]. Boundary conditions are
described in section 3.5; they are all homogeneous, except for the components dissolved in liquid
on top of the domain (i.e. x = Lx), for which we take the same values θS , θC and θO as for initial
conditions above. Values of all the other parameters of the system can be found in Table 1. Finally,
light intensity on the upper surface of water (x = Lx) is given by I0 (t,Lx) = Iopt and is independent
of time.

19



4.1 First tests

In Figure 1, we represent the volume fractions of the biofilm components, that is to say A,N,E and
A+N +E, and the mass fractions of the components dissolved in liquid, that is to say S,C and O,
for t = 10, 45 and 90 days. Note that the left boundary of the domain corresponds to the bottom of
the tank and the right boundary to the top of the tank, where nutrients are brought to the domain.

We can observe the evolution of a front, corresponding to the development of biofilm within
water. The total volume fraction of biofilm increases with time at the location of the front (see
the purple curve of A+N +E on Fig. 1a, 1c, 1e). Moreover we observe that the composition of the
biofilm is not homogeneous in space: in the region of the front, the amount of micro-algae A (in
green in Fig. 1) and of N (in red) is particularly high, whereas the region of the bottom is almost
exclusively made of extra-cellular matrix (in brown).

Now, looking at the figures displaying the mass fractions of the components dissolved in liquid,
we distinguish three regions. The interpretation of these regions is tightly linked to the limiting
factors involved in the reaction rates and displayed in Fig. 4, that is to say, starting from the right
side of the domain:

• On top of the tank, corresponding to x ∈ [2.4;5] in Fig. 1f, the mass fractions of S and C are
smaller than their values on the top boundary, which are fixed by boundary conditions, owing
to their consumption by the biofilm at the front: x ∈ [2.2;2.4], whereas the mass fraction of O
is higher due to the significant release of oxygen by photosynthesis.

• In the area directly behind the front, corresponding to x ∈ [1.8;2.2] in Fig. 1f, the mass
fraction of C slowly increases due to release induced by respiration (see the red curve of fR in
Fig. 4d) and due to absence of consumption because of the null photosynthesis rate (see the
orange curve of fP in Fig. 4c). For oxygen, an opposite phenomenon occurs : since oxygen
is no longer active, its mass fraction decreases due to respiration. In this area, substrate is
slightly consumed and its mass fraction decreases slowly.

• Finally, on bottom of the tank, where biofilm is almost exclusively made of extracellular
matrix, corresponding to x ∈ [0;1.8] in Fig. 1f, mass fractions are nearly constant in space.

Assuming that biofilm is uniform in the two other directions, the daily production rate is
estimated to 0.982 gm−2 d−1 of dry matter (considering that biofilm contains about 90% of water)
at t = 10 days, 1.084 gm−2 d−1 at t = 45 days and 1.374 gm−2 d−1 at t = 90 days. On average, daily
production rate is equal to 1.131 gm−2 d−1. This value is comparable with biological experiments
made by Schnurr et al. [29, 28] or Gross et al. [21], in which daily productivity is estimated between
0.7 gm−2 d−1 and 6.5 gm−2 d−1 depending on conditions, species and cultivation methods.

Note that the mass fractions of components dissolved in liquid phase influence the reaction
terms through the reaction rates. However, the amount of matter is given by the quantities SL,CL
and OL that are represented in Figure 2. For convenience, we only describe Figure 2c but the two
other figures in Figure 2 read similarly. On top of the tank (i.e. x ∈ [2.3;5]) the volume fraction of
liquid is equal to 1 so SL,CL and OL have the same behavior as their mass fractions S,C and O,
that is to say the amount of S and of C decreases, whereas the mass fraction of O increases. In the
biofilm front area (i.e. x ∈ [1.8;2.3]), the volume fraction of liquid decreases suddenly, leading to a
decrease of SL,CL and OL. On bottom of the tank, the amount of these quantities slowly increases
along with the volume fraction of liquid.

Figure 3 represents the velocities of the different components at t=90 days. We observe that the
velocities of micro-algae and of extra-cellular matrix behave similarly, that is to say they are positive
around the biofilm front region, as expected from the evolution of biofilm front. Indeed, the front
location, defined as the point where the gradient of A+N +E is the largest, moves with a speed
equal to 26.1 µmd−1, which is in the range of 23 – 27 µmd−1 measured in [29]. On the opposite,
the velocity of liquid is negative, which can be explained by the fact that liquid is consumed by
biofilm through photosynthesis.
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0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
·10−4

m
as
s
fr
ac
ti
on

s

S C O

(b) Dissolved components at t=10 days
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(c) Biofilm components at t=45 days
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(d) Dissolved components at t=45 days
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(e) Biofilm components at t=90 days
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(f) Dissolved components at t=90 days

Figure 1: On Figures 1a, 1c and 1e (on the left), volume fractions of A (in green), N (in red), E (in
brown) and A+N +E (in purple) with respect to space at t = 10 days (on top), t = 45 days (in the
middle) and t = 90 days (on bottom) respectively; on Figures 1b, 1d and 1f (on the right), mass
fractions of S (in red) , C (in green) and O (in blue) with respect to space at t = 10 days, t = 45 days
and t = 90 days.
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Figure 2: Volume fractions SL (in red),CL (in green) and OL (in blue) with respect to space at t = 10
days (on the left), t = 45 days (in the middle) and t = 90 days (on the right).
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Figure 3: Velocities of micro-algae (on the left), extra-cellular matrix (in the middle) and liquid (on
the right) with respect to space at t = 90 days.

22



Now, let us illustrate in Figure 4 the limiting factors of the mechanisms involved in biofilm
development. Since all the considered mechanisms cannot take place in absence of micro-algae,
we concentrate on the biofilm region, namely for x ∈

[
0;1.2 · 10−3

]
in Fig. 4a and 4b and x ∈[

0;2.4 · 10−3
]

in Fig. 4c and 4d.
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(a) Elementary functions (3.7) that compose the pho-
tosynthesis rate (3.9a) at t=45 days.
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(b) Other elementary functions that compose the
other reaction rates (3.9) at t=45 days.
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(c) Elementary functions (3.7) that compose the pho-
tosynthesis rate (3.9a) at t=90 days.
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(d) Other elementary functions that compose the
other reaction rates (3.9) at t=90 days.

Figure 4: Plots at t = 45 days (on top) and t = 90 days (on bottom) of the elementary functions used
to compute the reactions rates, with respect to space. On the left, we display the functions (3.7) used
for the photosynthesis rate and their product, denoted by fP ; on the right, we plot fR(O) = O

KO+O

present in the respiration rate (3.9b), fS(S) = S
KS+S and fN (Q) = max

{
Qmax−max{Q,Qmin}

Qmax−Qmin
}

present in

the functional biomass synthesis rate (3.9c) and fD(O) = 1− βÔ

Ôβ+β−1
, with Ô = O

Oref
, present in the

death rates (3.9g) and (3.9h).

Figures 4a and 4c represent functions fQ, fL, fC , fO and fI described at equations (3.7b), (3.7c),
(3.7d), (3.7e) and involved in the expression of the photosynthesis reaction rate (3.9a), evaluated
at t=45 and 90 days, respectively. At t = 45 days, we can observe that elementary functions fC and
fL have values greater than 0.88, meaning that they are not limitant for photosynthesis. On the
opposite, functions fI , fO and fQ take smaller values, meaning that photosynthesis is limited by the
lack of light and functional biomass and inhibited by high concentration of oxygen. More precisely,
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90% of light is absorbed in the first 240 µm after the biofilm front (i.e. x ∈
[
0.82 · 10−3;1.06 · 10−3

]
)

leading to fI (in yellow) equal to zero for x ∈
[
0;0.7 · 10−3

]
. The function fQ (in red) is equal to

1 in the interval
[
0;0.8 · 10−3

]
and rapidly decreases to around 0.67 at x = 1.2 mm to stabilise

around 0.57 in the last part of the domain. So, the quota of functional biomass is not limiting
inside the biofilm but is partially limiting on the biofilm front. On the interval

[
0;1.3 · 10−3

]
, where

oxygen concentration is high, see Fig. 1d, the function fO has values under 0.7, meaning that
oxygen inhibits the photosynthesis process. Finally, the product fP = fQfLfCfOfI , which is nearly
equal to the photosynthesis rate is also plotted on the same figure (in orange) and it confirms that
photosynthesis takes place on top of the biofilm, that is to say in the interval

[
1 · 10−3;1.2 · 10−3

]
.

At t=90 days, we observe in Fig. 4c that fO is now above 0.82, meaning that oxygen concentration
is hardly inhibiting. Indeed, according to Figures 1d and 1f, the mass fraction of oxygen in biofilm
area has decreased between 45 and 90 days. At the same time, the total volume fraction of biofilm
has increased (see Fig. 1c and 1e), leading the volume fraction of water to decrease. fL takes values
around 0.82 in the area of the biofilm front, so the water becomes slightly limiting. For the light
intensity and the effect of the quota of the functional biomass, we observe the same effects as at
t=45 days: 90% of the light is absorbed in the first 250 µm after the biofilm front (see fI in yellow)
and Q is not limiting inside the biofilm but is partially limiting in the biofilm front. Finally, we
also plot fP , that confirms that photosynthesis still takes place on top of the biofilm (in the interval[
2.2 · 10−3;2.4 · 10−3

]
), even if the order of influence of the elementary functions has changed.

Now, in Figures 4b and 4d, we show the other functions used to compute the reactions rates (3.9).
First, we notice that Fig. 4d is basically a shift of Fig. 4b meaning that the influence of fR, fS , fN
and fD , unlike the elementary functions that compose ϕP , does not change inside the biofilm over
time. We can also observe that the graph of fR, defined by fR(O) = O

KO+O and used in respiration
rate (3.9b), remains close to 0.8 in the biofilm area, so oxygen is almost not limitant for respiration.
Then, concerning the functional biomass synthesis rate (3.9c), function fS(S) = S

KS+S is nearly equal

to 1, whereas fN (Q) = max
{
Qmax−max{Q,Qmin}

Qmax−Qmin
}

vanishes in the biofilm region. Therefore, functional

biomass synthesis happens mostly in the region of the biofilm front. Finally, fD(O) = 1− βÔ

Ôβ+β−1
,

with Ô = O
Oref

, present in death rates (3.9g), takes higher values in the biofilm, since the presence of
oxygen increases these rates.

4.2 Influence of the value of substrate supply θS

We study in this subsection the influence of the value of substrate supply θS .
Figure 5a represents the average daily production rate (estimated on 90 days) of dry biomass

for the different constituents of the biofilm with respect to the parameter θS . According to this
graph, the daily production rate of dry biofilm (A + N + E) increases until θS = 20 µgS/gL, then
stabilises around 1.13 gm−2 d−1. However, differences can be observed between the production
rate of each component. Indeed the production rates of carbon pool (A) and functional biomass (N)
increase linearly until θS = 35 µgS/gL; then they stabilise at 1.63 gm−2 d−1 for A and 0.68 gm−2 d−1

for N. Behavior of ECM is different: its production rates increases until 9.77 gm−2 d−1 for θS =
17.5 µgS/gL, then decreases and stabilises at 8.8 gm−2 d−1 for θS > 35 µgS/gL. These production
rate changes impact the biofilm composition, as it can be observed in Figure 5b. Indeed, from
θS = 0 to θS = 35 µgS/gL, the percent of EPS composing the biofilm decreases from 93.1 to 77.2%,
whereas the percentage of carbon pool (resp. functional biomass) increases from 6.1 to 16.7% (resp.
0.8 to 6.1%). Then, for θS > 35 µgS/gL, the biofilm composition remains stable. The front velocity
behaves as the total production rate, namely it increases until θS = 15 µgS/gL and then stabilizes
at 26.1 µmd−1.

In order to better understand the influence of substrate supply, we present the results of
numerical simulations performed with θS = 1.65 · 10−5, equal to a third of the previous value
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Figure 5: Average production rate of dry constituent in gm−2 d−1 for 90 days with respect to
substrate supply θS (on the left) and biofilm composition in percent with respect to substrate
supply θS (on the right).

of Section 4.1; the other parameters remain unchanged. Figure 6 represents volume and mass
fractions at t = 90 days and in Fig. 7, we plot the elementary functions that compose the reaction
rates.

We remark that these parameters lead to a substrate deficiency, since mass fraction S (in red
in Fig. 6b) is equal to zero in the biofilm region. Substrate deficiency promotes extra-cellular
matrix excretion: the volume fraction of the whole biofilm is almost the same as previously, with a
difference of less than 5%, but the shape and the composition change significantly. The pool of
carbon storage and the functional biomass volume fractions are 38.5% and 52.9% smaller, while
the ECM volume fraction is 6.9% larger, see Figures 6a and 1e. Moreover, the peak on the biofilm
front is smaller.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

x (in mm)

vo
lu
m
e
fr
ac
ti
on

s

A
N
E

A+N+E

(a) Biofilm components at t = 90 days
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Figure 6: On graph 6a (on the left), volume fractions of A (in green), N (in red), E (in brown) and
A+N +E (in purple) and, on graph 6b (on the right), mass fractions of S (in red) , C (in green) andO
(in blue) with respect to space at t = 90 days in the case of substrate deficiency, i.e. θS = 1.65 · 10−5.

Regarding the elementary functions that compose the reaction rates, we notice that the photo-
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synthesis rate is the same as in previous simulations, see Fig. 7a. However, the functional biomass
synthesis rate (3.9c) is influenced by function fS(S) = S

KS+S , which is nearly equal to zero in Fig. 7a
inside the biofilm region x ∈ [0;2.1] mm. This effect is compensated by the functional biomass
quotaQ through the function fN (Q) = max

{
Qlim−max{Q,Qmin}

Qlim−Qmin
}
, which is non zero above 2 mm (instead

of 2.1 mm in Fig. 4d).
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(a) Elementary functions (3.7) that compose the pho-
tosynthesis rate (3.9a) at t=90 days.
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Figure 7: Plots at t = 90 days of elementary functions used to compute the reactions rates with
respect to space, in the case of substrate deficiency θS = 1.65 · 10−5. On graph 7a (on the left),
we display the functions (3.7) used for photosynthesis rate and their product fP ; on graph 7b
(on the right), we plot fR(O) = O

KO+O present in respiration rate (3.9b), fS(S) = S
KS+S and fN (Q) =

max
{
Qlim−max{Q,Qmin}

Qlim−Qmin
}

present in functional biomass synthesis rate (3.9c) and fD(O) = 1 − βÔ

Ôβ+β−1
,

with Ô = O
Oref

, present in death rates (3.9g) and (3.9h).

4.3 Influence of light intensity on the upper surface of water: I0(t,Lx)

In this subsection, we investigate the influence of light intensity on the average daily production
rate and on the velocity of the biofilm front.

Figure 8a represents the average daily production rate (estimated on 90 days) of dry biomass
for the different constituents of the biofilm with respect to the light intensity on the upper
surface I0(t,Lx). We can observe that the average production rate for A,N and E increases until
I0(t,Lx) = 1.8Iopt and then decreases. So the maximal productivity is reached for I0(t,Lx) = 1.8Iopt,
whereas Iopt is the light intensity for which fI is maximal in the photosynthesis rate. However,
the improvement of daily productivity for I0(t,Lx) = 1.8Iopt compared to the productivity for
I0(t,Lx) = Iopt is very low: ∼ 3%. We can also observe that the average production rate of A and N
for I0(t,Lx) > Iopt is constant, meaning that the light intensity on the upper surface of water I0(t,Lx)
does not change the productivity of these compounds. Now, Figure 8b shows that the velocity of
the biofilm front is maximal for I0(t,Lx) = 0.6Iopt, that is to say the maximal daily production rate
and the maximal velocity of the front are not reached for the same values of I0(t,Lx).

As we can remark in Figure 9, for a light intensity on the upper surface I0(t,Lx) = 1.8Iopt, shape
of the biofilm components (A,N,E) and mass fraction of the substrate (S) are comparable to the
case when I0(t,Lx) = Iopt, represented in Fig. 1e and 1f. But in the biofilm region, for a higher value
of light intensity, mass fraction of inorganic carbon is smaller whereas mass fraction of oxygen is
greater.
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Figure 8: Average production rate of dry constituent in gm−2 d−1 for 90 days with respect to light
intensity on the upper surface of water in graph 8a (on the left) and average velocity of the biofilm
front with respect to light intensity in graph 8b (on the right).
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(a) Biofilm components at t = 90 days, when I0(t,Lx) =
1.8Iopt
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Figure 9: On graph 9a (on the left), volume fractions of A (in green), N (in red), E (in brown) and
A+N +E (in purple) and, on graph 9b (on the right), mass fractions of S (in red) , C (in green) and
O (in blue) with respect to space at t = 90 days, when I0(t,Lx) = 1.8Iopt.
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(a) Elementary functions (3.7) that compose the pho-
tosynthesis rate (3.9a) at t=90 days.
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Figure 10: Plots at t = 90 days of the elementary functions used to compute the reactions rates
with respect to space. On graph 10a (on the left), we display the functions (3.7) used for the
photosynthesis rate and their product fP ; on graph 10b (on the right), we plot fR(O) = O

KO+O

present in the respiration rate (3.9b), fS(S) = S
KS+S and fN (Q) = max

{
Qmax−max{Q,Qmin}

Qmax−Qmin
}

present in

the functional biomass synthesis rate (3.9c) and fD(O) = 1− βÔ

Ôβ+β−1
, with Ô = O

Oref
, present in the

death rates (3.9g) and (3.9h).

The curves that represent in Fig. 10b the elementary functions used in the reaction rates differ
also partly, especially fI . Outside of the biofilm region, namely x ∈

[
2.2 · 10−3;5 · 10−3

]
, the value of

fI is about 0.86, meaning that if micro-algae were present in this area, photosynthesis would be
inhibited due to a too high light intensity. Then, gradually, as light penetrates into the biofilm and
is absorbed, its intensity decreases until it reaches the optimal light intensity, here for x = 2.1 mm.
Finally, as light intensity continues to be absorbed and thus decreases, fI decreases until it reaches
0 for x ∼ 1.8 mm. We can also observe that fO takes smaller values in the area of the biofilm front,
when the light intensity on the upper surface is higher.

4.4 Influence of light absorption coefficient for the biofilm τM

In this subsection, we investigate the influence of the light absorption coefficient of micro-algae τM ,
see equation (3.8), which accounts directly for the light penetration in the biofilm. In Figure 11
we represent the volume and mass fractions for the constituents considered in the model with the
light absorption parameter of micro-algae set to τM = 1.25 · 104 m−1, i.e. twice smaller than the
simulations of Fig. 4.1. First of all, although the biofilm shape (in purple) remains consistent with
the results presented in the first test case, see Fig. 1e, we can observe that the biofilm composition
differs. Indeed after 90 days, the volume fraction of A (in green) is 21.9% larger and the volume
fraction of ECM (in brown) is 2.7% larger, whereas the volume fraction of functional biomass (in
red) is 5.7% smaller. These discrepancies lead to an increase of 5.4% for the total mass of the
biofilm. In Figure 11a, we can also notice that the biofilm front has only reached x = 2 mm whereas
in the first test case in Fig. 1e, it has reached x = 2.4 mm, meaning that the velocity of the biofilm
front is smaller. Indeed, the front velocity t is estimated to 21.4 µmd−1, instead of 26.1 µmd−1 in
Fig. 4.1, so the light absorption parameter has an indirect impact on the front velocity.

As regards the components dissolved in liquid represented in Fig. 11b, we can observe that, in
the biofilm area, mass fractions for carbon dioxyde and for substrate are lower while oxygen mass
fraction is higher compared to Fig. 1f.
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(a) Biofilm components at t = 90 days
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Figure 11: On the left, volume fractions of A (in green), N (in red), E (in brown) and A+N + E
(in purple) and, on the right, mass fractions of S (in red) , C (in green) and O (in blue) with
respect to space at t = 60 days in the case of a smaller light absorption coefficient for the biofilm,
i.e. τM = 1.25 · 104 m−1.

In order to explain these differences, let us take a look at the elementary functions used to
build the reaction rates and represented in Figure 12. Although light intensity through function
fI remains the main limitant parameter, the decrease as it penetrates into the biofilm is slower.
Moreover we can observe that fO (in cyan) takes values below 0.6 in the area of the biofilm front,
so photosynthesis is here inhibited by the excess of oxygen. We can also notice that the function fP
(in orange), which is nearly the photosynthesis rate, decreases more smoothly, so photosynthesis
occurs deeper into the biofilm. Regarding the other elementary functions used to build the reaction
rates and represented in Fig. 12b, only fN has a different shape: like photosynthesis, assimilation
of substrate continues to occur deeper into the biofilm.

4.5 Influence of variation of light

Finally, we consider that light intensity on top of the domain depends on time as follows:

I0 (t,Lx) = 3Ioptmax {0,sin(2πt)} ,

such that the biofilm is periodically enlightened with an intensity between 0 and 3Iopt. Results can
be observed in Figure 13 for the volume fractions and in Figures 14 and 15 for the mass fractions
and the elementary functions that compose the reaction rates. Average daily production rate over
the first 150 days is equal to 0.495 gm−2 d−1 and the biofilm front moves with a speed equal to
15.2 µmd−1. Volume fractions and composition of the biofilm are unchanged. However the mass
fractions of the components dissolved into liquid phase (substrate, inorganic carbon and oxygen)
represented in Fig. 14 and 15 evolve all day long with the enlightenment of the biofilm. Indeed,
assimilation of inorganic carbon and release of oxygen are tightly linked to photosynthesis and so
to light intensity. Regarding the elementary functions that compose the photosynthesis rate and
displayed in the middle column in Fig. 14 and 15, we can observe that the limiting factors are light
intensity fI and oxygen excess fO defined in equations (3.7e) and (3.7d) respectively. As long as
light intensity increases and remains smaller than Iopt, the photosynthesis rate on the biofilm front
increases; then, when light intensity becomes greater than Iopt, it starts to inhibit photosynthesis
on the front but enables micro-algae to make photosynthesis behind the front (i.e.: x ∈ [2.6;3]). At
the same time, oxygen saturation increases due to the released induced photosynthesis and leads
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(a) Elementary functions (3.7) that compose the pho-
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Figure 12: Plots at t = 90 days of the elementary functions used to compute the reactions rates
with respect to space, in the case a smaller light absorption coefficient for the biofilm, i.e. τM =
1.25 ·104 m−1. On the left, we display the functions (3.7) used for the photosynthesis rate and their
product fP ; on the right, we plot fR(O) = O

KO+O present in the respiration rate (3.9b), fS(S) = S
KS+S

and fN (Q) = max
{
Qlim−max{Q,Qmin}

Qlim−Qmin
}

present in the functional biomass synthesis rate (3.9c) and

fD(O) = 1− βÔ

Ôβ+β−1
, with Ô = O

Oref
, present in the death rates (3.9g) and (3.9h).

to an inhibition of photosynthesis; this phenomenon is confirmed by the curve of fO in Fig. 15b
and 15f that takes small values in the area of the biofilm front.
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Figure 13: Volume fractions of A (in green), N (in red), E (in brown) and A+N +E (in purple) with
respect to space at t = 150 days, when the biofilm is periodically enlightened.

On the last column of Fig. 14 and 15, we represent the other elementary functions: fR(O) = O
KO+O

present in the respiration rate (3.9b), fS(S) = S
KS+S and fN (Q) = max

{
Qmax−max{Q,Qmin}

Qmax−Qmin
}

present in the

functional biomass synthesis rate (3.9c) and fD(O) = 1− βÔ

Ôβ+β−1
, with Ô = O

Oref
, present in the death

rates (3.9g) and (3.9h). In this simulation, substrate supply is in excess which is confirmed by the
values of fS that remain close to 1. During night (first row in Fig. 14 and 15), in the biofilm area, fD
takes values around 0.2 meaning there is death induced by lack of oxygen. The deficiency of oxygen
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is caused by the respiration process which is represented by fR, which is equal to about 0.2 in the
biofilm area. Moreover, oxygen concentration increases with the light intensity which induces
fR to increase: in the biofilm area, fR goes from 0.2 for I0 (t,Lx) = 0 to 0.8 when I0 (t,Lx) = 3Iopt.
Finally, let us take a look at the death process (see the curve of fD ) which increases with the oxygen
concentration, so it is minimal for I0 (t,Lx) = Iopt/2 and it increases up to 0.2 for I0 (t,Lx) = 3Iopt.

5 Conclusion

In this paper, we have proposed a new mixture model for micro-algae biofilm producing lipids.
The main originality of this model is the precise description of the biological mechanisms involved
in its formation and development, combined with the use of partial differential equations to
take into account the spatial variations of the biofilm. In particular, we use Droop’s theory to
describe the assimilation of carbon through photosynthesis and we model finely functional biomass
growth, extra-cellular matrix excretion process and variation of light intensity. The general form
of our model is the same as the model in [12], but it differs on several points, among which the
source terms of the mass balance equations and therefore the incompressibility constraint, the
consideration of a third velocity in force balance equations and the addition of a diffusion term for
the components dissolved in liquid.

In addition, we have proposed a well adapted numerical scheme, able to deal with the stiffness
of the reaction terms. This numerical scheme can be straightforwardly extended in the two and
three dimensional cases. However, the model contains a great number of parameters: the values
of many of them are given in the literature, but some of them remain unknown and have to be
calibrated. Consequently, in a further work, a sensibility analysis, as well as biological experiments,
are scheduled in order to set up more precisely the parameters. A careful confrontation of the
model in 2D or 3D with experimental results is foreseen.

Some first tests are performed in the one-dimensional case. This case is not realistic, but it
remains relevant for a uniform horizontal biofilm, the spatial variable being the height. Moreover,
it enables to obtain some first results on the model. Comparison of the numerical simulations
presented here with experimental results that can be found in the literature shows that our model
predicts realistic daily production rates and front speeds, which gives a first validation. In these
simulations, we can observe that the biofilm is composed of three distinct regions: the front, made
of micro-algae performing photosynthesis, the middle of the biofilm composed of extra-cellular
matrix and micro-algae and finally the bottom of the tank where only extra-cellular matrix remains.
We expect this composition of the biofilm to hold true also in the two-dimensional and the three-
dimensional cases and to observe in these cases some mushroom-shaped structure, as described in
[38, 39].

This first model can be extended to more complicated domains than a simple tank: several
biological teams experiment the idea of cultivating micro-algae biofilms on rotative systems, where
the biofilm is periodically immersed and enlightened. It would be of great interest to adapt the
present model to this case and to study the dependence of such a model on factors, such as light
frequency, light intensity or rotating frequency.

A Numerical scheme

The aim of this section is to present the numerical scheme we use to discretize the full set of
equations described in Subsection 3.5. This scheme follows, for the spatial discretization, the
strategy of [12] derived for a similar model, that is to say some finite-differences scheme derived
from relaxation techniques. In this article, the authors dealt with the two following issues: the
computation of the velocities in the case of a vanishing phase and the computation of the pressure
term. However, we have to face another difficulty here: the mass exchanges between components
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Figure 14: Plots of the mass fractions on the components dissolved in liquid (on the left) with
respect to space for different times of the 150th day: night (on top), I0(150.027,Lx) = Iopt/2 (in
the middle), I0(150.0545,Lx) = Iopt (on bottom). In the middle and on the right, the elementary
functions used to compute the reactions rates with respect to space; more precisely: in the middle,
the elementary functions (3.7) used for the photosynthesis rate and their product fP and, on
the right, we plot fR(O) = O

KO+O present in the respiration rate (3.9b), fS(S) = S
KS+S and fN (Q) =

max
{
Qmax−max{Q,Qmin}

Qmax−Qmin
}

present in the functional biomass synthesis rate (3.9c) and fD(O) = 1− βÔ

Ôβ+β−1
,

with Ô = O
Oref

, present in the death rates (3.9g) and (3.9h).
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Figure 15: Plots of the mass fractions of the components dissolved in liquid (on the left) with respect
to space for different times of the 150th day: I0(150.1165,Lx) = 2Iopt (on top) and I0(150.25,Lx) =
3Iopt (on bottom). In the middle and on the right, the elementary functions used to compute the
reactions rates with respect to space; more precisely: in the middle the elementary functions (3.7)
used for the photosynthesis rate and their product fP and on the right we plot fR(O) = O

KO+O

present in the respiration rate (3.9b), fS(S) = S
KS+S and fN (Q) = max

{
Qmax−max{Q,Qmin}

Qmax−Qmin
}

present in

the functional biomass synthesis rate (3.9c) and fD(O) = 1− βÔ

Ôβ+β−1
, with Ô = O

Oref
, present in the

death rates (3.9g) and (3.9h).
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are non linear and stiff, so we use some explicit-implicit treatment of the source terms of the mass
balance equations in order to preserve the non-negativity of the solutions.

We consider the one dimensional domain Ω = [0,Lx] of width Lx. The extension of the following
scheme to the 2D and 3D cases is straightforward, but in this paper we focus our attention on the
one dimensional case. We denote by ∆x the space step in the x direction and we use a regular grid
on Ω, namely the discretization points xi = i∆x, 1 ≤ i ≤Nx. The kth time step is denoted by ∆tk and
the time discretizations are therefore equal to tn =

∑n
k=1∆tk .

We begin with rewriting the full system of Subsection 3.5 under the following form:

∂tU +∂xF (U,W ) = Γ(U ) +∂x
(
MδL∂x

(U
L

))
, (A.1a)

∂tW +∂xG (U,W ) = GI (U,W ) +GT (U,W ) +GP(U ), (A.1b)

L = 1−A−N −E, (A.1c)

∂x ((A+N )vM +EvE +LvL) =
ΓA + ΓN

ρM
+
ΓE

ρE
+
ΓL

ρL
, (A.1d)

that is to say one equation for the mass balances, one equation for the force balances, the volume
condition and the incompressibility constraint. Here, U is a vector containing the mass fractions,
W is vector containing the three velocity, F (resp. G) is the flux of vector U (resp. of vector W ), Mδ

is the diffusion matrix for U , Γ(U ) is the mass exchanges source term in the mass balance equations.
The source terms in the force balance equations are split into three parts: the pressure part GP(U ),
the interactions term GI (U,W ) and the mass exchanges term GT (U,W ), that is to say:

U =




A
N
E
SL
CL
OL




, F (U,W ) =




AvM
NvM
EvE
SLvL
CLvL
OLvL




, Γ (U ) =




ΓA · ρ−1
M

ΓN · ρ−1
M

ΓE · ρ−1
E

ΓS · ρ−1
L

ΓC · ρ−1
L

ΓO · ρ−1
L




, Mδ =




0
0

0
0

δS
δC

δO




,

W =




(A+N )vM
EvE
LvL


 , G (U,W ) =




(A+N )
(
vM

2 +γM
)

E
(
vE

2 +γE
)

LvL
2



, GP (U ) =




− (A+N )∂xP
−E∂xP
−L∂xP


 ,

GI (U,W ) =




−mML
ρM

(vM − vL)− mME
ρM

(vM − vE)
−mEL
ρE

(vE − vL) + mME
ρE

(vM − vE)
mML
ρL

(vM − vL) + mEL
ρL

(vE − vL)



, GT (U,W ) =




ΓA+ΓN
ρM

vM
ΓE
ρE
vE

− 1
ρL

((ΓA + ΓN )vM + ΓEvE)



.

We denote by Un
i and W n

i the discrete approximations of U (tn,xi) and W (tn,xi).

A.1 Numerical approximation of mass balance equations

The first step consists in solving equation (A.1a), using an explicit discretization based on a
relaxation technique, presented in [5] and used in [12], for the flux term and a mixed strategy for
the diffusion term and the source term. More precisely for the diffusion, U is treated implicitly to
reduce the CFL condition, whereas L is taken explicitly. The spatial discretization is done with
classical finite differences method which involves numerical approximations of L on the edges of
the mesh cells; they are interpolated as the mean values of L on the cells sharing this edge, namely
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we use the approximation Li+ 1
2

= 1
2 (Li+1 +Li). The strategy for the source term is explained further

on. We obtain therefore a scheme of the form:

Un+1
i −∆tΓ

(
Un
i ,U

n+1
i

)
− ∆t

∆x2


Lni+ 1

2



Un+1
i+1
Lni+1

− U
n+1
i

Lni


−Lni− 1

2



Un+1
i

Lni
− U

n+1
i−1
Lni−1







=Un
i −

∆t
2∆x

(
F
(
W n
i+1

)
−F

(
W n
i−1

))
+λ

∆t
4∆x

(
Un
i+1 − 2Un

i +Un
i−1

) (A.2)

where the numerical velocity λ is common to the mass balance equations and to the force balance

equations and is equal to the maximum of the eigenvalues of the Jacobian matrix of the fluxes
(
F

G

)
,

that is to say:

λ = max
{
|2vL| , |vM |+

√
γM
ρM

, |vE |+
√
γE
ρE

}
.

For stability reasons, the time step ∆t is computed at each time step such that the stability condition

λ
∆t
∆x
≤ 1 is satisfied.

Now, let us explain how to compute the source terms with the explicit - implicit strategy, in
order to guarantee that each component of U remains in [0,1]. From now on in this subsection, we
will drop the spatial indices, since no confusion is possible. We therefore discretise, at each point
of the domain, the photosynthesis rate, the respiration rate and the functional biomass synthesis
rate using implicit expressions for SL, CL and OL at the numerator and explicit expressions for all
the other terms, which leads to the following discretizations:

ϕP (Un,Un+1) = µAρMN
n
(
1− Qmin

Qn

) (CL)n+1

(KL +Ln) (KC +Cn)
,

ϕR(Un,Un+1) = µRρMA
n (OL)n+1

LnKR + (OL)n
,

ϕN (Un,Un+1) = µNρMN
n (SL)n+1

LnKS + (SL)n
Qmax −Qn
Qmax −Qmin

.

Note that the two other reaction rates, namely the EPS excretion rate and the micro-algae death
rate, are treated explicitly. The source terms are consequently approximated at each point of the
domain by:

ΓA

(
Un,Un+1

)
=

1
ρM

(
ϕP (Un,Un+1)−ϕR(Un,Un+1)− ηANϕN (Un,Un+1)−ϕAE (Un)−ϕAD (Un)

)
,

ΓN

(
Un,Un+1

)
=

1
ρM

(
ϕN (Un,Un+1)−ϕNE (Un)−ϕND (Un)

)
,

ΓE (Un) =
1
ρE

(
ϕAE (Un) +ϕNE (Un) +ϕAD (Un) +ϕND (Un)

)
,

ΓS

(
Un,Un+1

)
= −η

S
N

ρL
ϕN (Un,Un+1),

ΓC

(
Un,Un+1

)
=

1
ρL

(
−ηCP ϕP (Un,Un+1) + ηCRϕR(Un,Un+1)

)
,

ΓO

(
Un,Un+1

)
=

1
ρL

(
ηOP ϕP (Un,Un+1)− ηORϕR(Un,Un+1)

)
.

In practice, since we do not treat implicitly any variable in the denominator of the source terms,
each component of Un+1 can be easily computed through the resolution of linear systems. The
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overall strategy at time step tn+1 is the following: we first obtain the volume fractions (SL)n+1,
(CL)n+1 and (OL)n+1 as the solutions of linear systems, which allows to compute the reaction rates
ϕP (Un,Un+1),ϕR(Un,Un+1) and ϕN (Un,Un+1). It is then straightforward to compute the remaining
components of Un+1, that is to say An+1,Nn+1 and En+1. Finally, an approximation of the volume
fraction of liquid is given thanks to condition (A.1c).

A.2 Numerical approximation of force balance equations

Dealing with the computation of force balance equations, we face two difficulties: vanishing phases
and computation of the pressure term.

Firstly, force balance equations give the evolution of the momentum of each component,
whereas the friction forces depend on the velocities. As a consequence, when one of the phases is
vanishing, it is not clear how to define its velocity, that is needed to approximate the friction forces
at the following time step. Note that, in a biological context, situations where for example L = 1
and A = N = E = 0 are relevant and we cannot claim to be far from vacuum, as can be done in a
physical context. Therefore, in order to compute the velocities, we use an implicit-explicit time
discretization strategy for the momentum equations, where the interaction forces term GI (U,W ) is
treated implicitly, see [12].

Secondly, to compute the velocities, we need to know the gradient of the hydrostatic pressure,
which is another unknown of the system. A natural approach consists in finding an equation
verified by P , by taking the divergence of the sum of the momentum equations and by using
eq. (A.1d). However, this method, which is known to be inefficient, leads to an elliptic equation
for P with a non-unique solution. To overcome this difficulty we use a splitting approach which
is basically an adaptation of the Chorin-Temam projection method [32, 10], see again [12]. This
method uses a projection-correction approach: first, we compute an approximation of the velocities
using the force balance equations without the pressure terms; then, using the predicted velocities
and the average incompressibility constraint, we compute the pressure as the solution of an elliptic
equation. Finally, the velocities are corrected thanks to the value of ∂xP .

Let us recall that the vector Un+1 is computed at a previous step. We now give some details on
the scheme for the force balance equations computation.

First, the projection step enables us to estimate some predicted values V n+ 1
2 for the velocities

and this first step of the scheme writes as:

Mn+1
i V

n+ 1
2

i =W n
i −

∆t
2∆x

(G (U,W )ni+1 −G (U,W )ni−1) +λ
∆t

4∆x

(
W n
i+1 − 2W n

i +W n
i−1

)

+∆tGT

(
Un+1
i ,W n

i

) (A.3)

where

V =




vM
vE
vL


 , GT

(
Un+1,W n

)
=




ΓM
n+1

ρM
vM

n

ΓE
n+1

ρE
vE

n

− 1
ρL

(
ΓM

n+1vM
n + ΓE

n+1vE
n
)




,

Mn+1
i =




An+1
i +Nn+1

i +
∆t
ρM

(mML +mME) − ∆t
ρM

mME − ∆t
ρM

mML

−∆t
ρE
mME En+1

i +
∆t
ρE

(mEL +mME) −∆t
ρE
mEL

−∆t
ρL
mML −∆t

ρL
mEL Ln+1

i +
∆t
ρL

(mML +mEL)




.
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Note that the matrix M contains also the coefficients of the interaction terms, which are treated
implicitly, and that this matrix can be computed thanks to the knowledge of Un+1. Moreover, we
can compute the determinant of M, namely

detM = (A+N )EL

+∆t

(
mML
ρL

(A+N )E +
mEL
ρL

(A+N )E +
mEL
ρE

(A+N )L+
mME
ρE

(A+N )L+
mML
ρM

EL+
mME
ρM

EL

)

+∆t2 (mELmML +mMEmML +mMEmEL)
(
A+N
ρEρL

+
E

ρMρL
+

L
ρMρE

)
,

which is a polynomial of degree 2 in ∆t with positive coefficients. Since all the friction coefficients
are strictly positive and since the constraint A+N +E +L = 1, with A,N,E,L positive, is satisfied,
the leading coefficient of detM is non zero. So, for all ∆t strictly positive, detM does not vanish
and linear system (A.3) has a unique solution.

Then in the second step of splitting we have to solve

∂t
(
φvφ

)
= − φ

ρφ
∂xP (A.4)

for φ =M,E,L in the interval [t, t +∆tn] with initial data φn+1v
n+ 1

2
φ . The discrete approximation of

these equations for φ =M,E,L is given by

φn+1vn+1
φ −φn+1v

n+ 1
2

φ = −∆tφ
n+1

ρφ
∂xP

n+1.

Then taking the divergence of the sum of these equations over φ we get

∂x
((
An+1 +Nn+1

)
vn+1
M +En+1vn+1

E +Ln+1vn+1
L

)
−∂x

((
An+1 +Nn+1

)
v
n+ 1

2
M +En+1v

n+ 1
2

E +Ln+1v
n+ 1

2
L

)

=−∆t∂x
((
An+1 +Nn+1

ρM
+
En+1

ρE
+
Ln+1

ρL

)
∂xP

n+1
)
.

Now using the discrete approximation of the incompressibility constraint (A.1d), we deduce that
P is solution of an elliptic equation with non constant coefficients:

∆t∂x







(
An+1 +Nn+1

)

ρM
+
En+1

ρE
+
Ln+1

ρL


∂xP

n+1


 (A.5)

= ∂x
((
An+1 +Nn+1

)
v
n+ 1

2
M +En+1v

n+ 1
2

E +Ln+1v
n+ 1

2
L

)
− Γ n+1

A + Γ n+1
N

ρM
− Γ n+1

E

ρE
− Γ n+1

L

ρL
(A.6)

This equation is completed with Neumann boundary conditions on P . This boundary condition
can be directly deduced from boundary conditions on the velocities and equation (A.4) on the
boundary defined by x = 0. For x = Lx, we need to note that, in this step, vT does not change since
none of the volume or mass fractions are modified, so using equation (A.4) we also get Neumann
boundary condition for the pressure on x = Lx. However, with Neumann boundary conditions on
P , equation (A.5) does not have a unique solution. In practice, we choose the solution for which
the average value of P is null, that is to say the solution satisfying

∫ Lx

0
P (t,y) dy = 0.
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Finally in order to get a symmetric system we rather solve the minimisation problem

∆t∂x

((
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2
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2
L
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− Γ n+1
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E

ρE
− Γ n+1

L

ρL
,

∫ Lx

0
P n+1 dy = 0,

(
∂xP

n+1
)
(0) =

(
∂xP

n+1
)
(Lx) = 0,

with λ the Lagrange multiplier associated to the constraint
∫ Lx

0 P n+1 dy = 0. This system is dis-
cretized using classical centered finite differences method and leads to the resolution of a linear
symmetric system.

Finally since the volume fractions do not change in this step, we update velocities as follows:

vn+1
M = v

n+ 1
2

M − ∆t
ρM

(∂xP )n+1 ,

vn+1
E = v

n+ 1
2

E − ∆t
ρE

(∂xP )n+1 ,

vn+1
L = v

n+ 1
2

L − ∆t
ρL

(∂xP )n+1 .

B Numerical simulations

B.1 Influence of the values of elastic interaction tensor coefficients γM and γE

According to [12], the value of the elastic tensor coefficient γ drives the speed of the biofilm front.
In our model, unlike in [12], we consider two distinct elastic tensor coefficients: γM for micro-algae
and γE for extra-cellular matrix. In Figure 4.1, simulations were performed with γM = γE ; however,
in Figures 16 and 17, we show the volume and mass fractions and the velocities obtained for
γM = 2.8 ·10−7 kgm−1 d−2 and γE = 5 ·10−8 kgm−1 d−2. The values of the volume fractions and the
composition of the biofilm are the same as in Fig. 4.1, with a difference of less than 3.2%. However,
the velocity of extra-cellular matrix is lower than the micro-algae velocity in this case.

Note that when γE ≥ γM , the conclusion is similar: the composition of the biofilm does not
change and the velocity of extra-cellular matrix is greater than the micro-algae velocity. In practice,
the influence of γE appears to be low, unlike γM that drives the velocity of the biofilm front.

As in [12], we can observe in Figure 18a that the front velocity depends linearly on
√
γM . Indeed,

the front velocity determined with numerical experiments (red marks) fits the linear regression (in
blue) given by y = 4.4311 · 10−2x+ 2.6488 · 10−6 with correlation coefficient equal to 0.99996. In
Fig. 18b we represent the average daily production rate (defined as the difference of dry biomass
between two consecutive days) of dry biomass over 90 days. Again we observe that numerical
experiments (red marks) fit the linear regression (in blue) given by y = 517.04x + 0.85866 with
correlation coefficient equal to 0.9997.

B.2 Influence of maximal photosynthesis rate µP

In this subsection, we investigate the influence of maximal photosynthesis rate µP .
Figure 19a represents the average daily production rate (estimated on 90 days) of dry biomass

for the different constituents of the biofilm with respect to maximal photosynthesis rate µP . As
it can be expected, the production rate of pool of carbon storage increases with the value of
the maximal photosynthesis rate. Since all other biofilm components (N and E) are synthesised
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(a) Biofilm components at t = 90 days
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Figure 16: On the left, volume fractions of A (in green), N (in red), E (in brown) and A+N +E (in
purple) and, on the right, mass fractions of S (in red) , C (in green) and O (in blue) with respect to
space at t = 90 days, when γE = 3 · 10−10 m2 d−2 and γM = 3 · 10−9 m2 d−2.
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Figure 17: Velocities of micro-algae, extra-cellular matrix and liquid at t=90 when γE =
3 · 10−10 m2 d−2 and γM = 3 · 10−9 m2 d−2.
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Figure 18: Front velocity in md−1 (on the left) and average production rate of dry biomass in
gm−2 d−1 with respect to elastic tensor coefficient
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from carbohydrate of the pool of carbon storage, their production rates also increase with the
maximal photosynthesis. So the growth of the whole biofilm (A, N and E) increases with µP .
Consequently, the velocity of the front, which is represented on figure 19b, also rises with the
maximal photosynthesis rate.

However, the production rates and the velocity of the biofilm front increase more slowly when
µP increases, meaning that biofilm growth is limited. Indeed, as µP increases, the photosynthesis
rate rises and also leads to an increase of oxygen released by this mechanism. So, the oxygen mass
fraction near the biofilm front becomes very high and inhibits increasingly the photosynthesis rate.
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Figure 19: Average production rate of dry constituent in gm−2 d−1 for 90 days with respect to the
maximal photosynthesis rate in graph 19a (on the left) and average velocity of the biofilm front
with respect to the maximal photosynthesis rate in graph 19b (on the right).
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