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Synopsis

A methodology of assessment is presented of the groundwater 

resources available in fracture zones, within the weathered mantle 

of gneiss, migmatite and granite. A model of weathering is devel 

oped, and values of porosity, hydraulic conductivity and electrical 

resistivity assigned to the different grades of weathering. A 

geophysical technique is developed, based upon a combination of 

electrical resistivity profiling and sounding, which allows a vol 

ume estimate of the various weathering grades to be made. A finite 

difference algorithm is used for this estimate which enables the app 

arent resistivity response of an inhomogeneous resistivity distri 

bution to be calculated. An iterative approach is then adopted, ad 

justing the resistivity model until the calculated response agrees 

with the field data.

An analysis of recharge in a savanna climate is developed based 

upon the Monteith equation for predicting evapotranspiration, and 

upon a model of unsaturated zone soil moisture movement. The re 

charge function developed is included in a one dimensional catchment 

water balance model. The results from this model are compared with 

observed runoff and groundwater hydrographs.

The estimate of recharge is combined with the estimate of aquifer 

storage to produce an assessment of available groundwater. Optimal 

methods for the development of the resource are discussed. While 

developed in Northern Nigeria, the methodology of assessment is 

applicable to any similar geological and climatological environment.



CONTENTS

Page No

Acknowledgements

Synopsis

List of Figures I

List of Plates IV

List of Tables VI

1. INTRODUCTION 1

1.1 Research Location * 5

1.2 Savanna Environment

Introduction 7 

Climatic characteristics 7 

Savanna vegetation 8

1.3 The Hydrogeological Problem

Introduction 9 

Method of analysis adopted 10

1.4 Previous Research

General 11

1.5 Available Information

General 12

Remote sensing data 12

Sidelooking airborn radar 12

Aerial photography 12

Climate data 12

Geological data 13

2. CLIMATIC ENVIRONMENT

Introduction 14

2.1 Atmospheric Circulation over West Africa

General 17 

The Inter tropical Convergence Zone 20 

Recent developments 23

2.2 Rainfall

General 26



Rainfall mechanisms 26

Squall lines 30

Rainfall distribution in space 32

Rainfall distribution in time 3^

Energy load of rainstorms 46

2.3 Solar Radiation Balance

General 48

Solar radiation 49

Dispersion of solar radiation 52

Assessment of albedo 53

Calculation of net radiation 54

Temperature distribution 64

2.4 Evaporation and Evapotranspiration

General 68

The calculation of evaporation 68

Sensitivity of the evaporation calculation 75

Estimate of evaporation 80

The calculation of evapotranspiration 84

Evapotranspiration results 87

2.5 Summary 94

3. GEOLOGICAL ENVIRONMENT

Introduction

3.1 General Geology 99

3.2 Jointing and Fracturing

Definitions and method of formation 102 

Origin of joints 102 

Pressure release joints 103 

Depth of jointing 105

3.3 Weathering Gneisses, Kigmatites and Granites

General 107

V/eathering processes 107

Chemical weathering 109

Constant volume weathering 114

Deep weathering profiles 117

Groundwater chemistry 122



Page !To.

3.4 Deep Y/eathering Model

General 125

Definition of terms 125

Grade I - fresh 128

Grade II - slightly weathered 128

Grade III - moderately weathered 129

Grade IV - highly weathered 130

Grade V - completely weathered 130

Grade VI - residual soil 131

3.5 Deep Weathering Examples from II. Nigeria

General 133

Basement evolution 133

Deep weathering - example A 139

Deep weathering - example B 139

Deep weathering - example C 143

3.6 Soil Characteristics

General 145

3.7 Summary 148

4. GEOPHYSICAL INVESTIGATION TECHNIQUES

Introduction 151

4.1 Electrical Resistivity Theory

Introduction 155 

Electrical conduction in the weathering environment 155 

Theory of current flow 157

4.2 Electrical Resistivity Profiling

Introduction 160

Theoretical considerations 160

Resistivity profile results 165

Field method 167

Data processing 170

Electromagnetic profiling 170

Summary 174

4.3 Electrical Resistivity Sounding

Introduction 175



Theoretical considerations 175

Resistivity sounding results 176

Summary l8l

4.4 Electrical Resistivity Profile Sections

Introduction 182

Resistivity profile sections 182

Finite difference algorithm 183

Description of algorithm graphical output 185

Description of profile section field method 186

Offset profiling 18?

Profile section field data 190

Summary 198

4.5 Seismic Refraction Techniques

General 202 

Weathering grade seismic velocities 203 

Seismic refraction results 204 

Discussion 212

4.6 Summary 213

5. AQUIFER GEOMETRY AKtD CHARACTERISTICS

Introduction 215

5.1 Description of the Aquifer

General 217 

V/eathering grade porosities 218 

Weathering grade hydraulic conductivities 218 

Aquifer boundaries 220

5.2 Groundwater Hydrographs

General 224 

Records available 224 

Description of the hydrographs 226

5.3 Recharge Mechanisms

Introduction 230 

Soil moisture characteristics 230 

Soil moisture potential 235 

Root constants 240



Page T?

Conventional recharge analysis 243

Assessment of conventional analysis results 244

i'^odel of recharge used for study 249

Asssssment of model analysis results 257

5»4 Aquifer Response to Abstraction

Introduction 260

General 260

Pump test results 261

Example (l) 262

Example (2) 262

Example (3) 263

Example (4) 265

Pump test interpretation 269

Pump test design 270

5.5 Summary 271

6. RESOURCE ASSESSMENT

Introduction 274

6.1 Resource Distribution

General 276 

Importance of recharge areas 276 

Resource location 278

6.2 Size of the Resource

General 280 

Apparent resistivity profiling results 280 

Apparent resistivity profile section results 28l

6.3 Small Catchment IVater Balance

Introduction 285

Description of the model 285

Initial conditions 288

Observed water balance results 290

Presentation of model results 292

Results for Bauchi during the period 1969-1974 293

Model sensitivity to changes in root constant 298



rage i-o

"odel sensitivity to changes in specific yield 299 

Specific yield assessment 301

6.4 Assessment of Annual Yield

Introduction 304 

Observed borehole yields 304 

Assessment of storage required 304 

Assessment of recharge area required 305 

Annual yield 306

6.5 Resource Assessment

Introduction 308 

Abstraction by dug well 308 

Abstraction by boreholes 309

6.6 Further Research Required

General 312 

Data collection 312 

Hydrochemical study 313 

Geophysical study 314

CONCLUSIONS 315

Appendix A - Evaporation + evapotranspiration algorithm 

Appendix B - Description of borehole samples 

Appendic C - Resistivity profile section algorithm 

Appendix D - Travel time data from seismic refraction surveys 

Appendix E - Description of the water balance algorithm



Number

List o p Figures

Page Uo,

1.1 Map of Nigeria showing location of towns referred 2 
	to in the text

1-2 Geological map of Nigeria showing areas of 3 
	crystalline basement + structure

2.1 Hadley cell circulation 18

2.2 Schematic cross section of the atmosphere 18

2.3 Diagrammatic vertical section of air circulation 22 
	within the ITCZ

2.4 ITCZ cloud system as observed during GATE - 22 
	10 July 1974

2.5 Streamline analysis - September 7 - 1974 25

2.6 Streamline analysis - Day 240 - 1974 27

2.7 Cloud cover - Day 240 - 1974 28

2.8 Cloud cover - Day 182, 1974 28

2.9 Streamline analysis - Day 182 - 1974 29

2.10 Rainfall in the Gombe Area - 22 April, 1978 31

2.11 Rainfall stations in the Gombe Area 33

2.12 Annual total rainfall - Gombe Area 39

2.13 Annual rainfall totals at Bauchi 40

2.14 Annual rainfall - Bauchi, normal probability 41 
	distribution

2.15 24 hour rainfall - August 21, 1978, Gombe 44

2.16 24 hour rainfall - October 29, 1978, Gombe 45

2.17 Spectral distribution of incoming radiation 49

2.18 Spectral distribution of outgoing radiation 49

2.19 Rainfall and evaporation summary - Bauchi, 1973 72

2.20 Rainfall and evaporation summary - Bauchi, 1974 73

2.21 Rainfall and evaporation summary - Bauchi, 1979 74

2.22 Evaporation sensitivity to observed sun hours 76

2.23 Evaporation sensitivity to average temperature 77

2.24 Evaporation sensitivity to relative humidity 78

2.25 Evaporation sensitivity to wind speed 79

2.26 Evaporation sensitivity to incoming radiation 8l

2.27 Estimates of evapotranspiration 89

2.28 Monteith evapotranspiration 90



Figure No. page i:o.

o3.1 Deep weathering profile from the Jos Plateau 11

3.2 Semi quantitative estimates of minerals in the 121 
clay, silt and sand fractions

3.3 Weathering grades 127

3.4 Schematic cross section along a weathering trough 140

4.1 Electrode configurations described in the text 162

4.2 Map showing apparent resistivity contours over a 166 
part of deep weathering area A

4.3 Map showing apparent resistivity contours over a 168 
part of deep weathering area B

4.4 Tripotential profile data 171

4.5 Alpha profile and EM31 data across deep weathering 173 
area A

4.6 Tripctential sounding results 177

4.7 Family of sounding curves produced by varying 180 
fourth layer depth

4.8 Offset profiling electrode configurations 188

4.9 Resistivity profile section - Area A 192

4.10 Resistivity model for profile section - Area A 193

4.11 Resistivity profile section - D 194

4.12 Resistivity model for profile section - D 195

4.13 Resistivity profile section - Area B 196

4.14 Resistivity model for profile section - B 197

4.15 Tripotential profile data produced by resistivity 199 
distribution shown in Figure 4* 16

4.16 Near surface lateral inhomogeneity 200

4.17 Seismic refraction profile 1 206

4.18 Seismic refraction profile 2 207

4.19 Seismic refraction profile 3 210

4.20 Seismic refraction profile 4 211

5.1 Conceptual model showing porosity and hydraulic 219 
conductivity changes with depth

5.2(i) Sketch sections showing various hydrogeo logical 219 
environments

222

5.3 Borehole No. 10 hydrograph (Area A) 225

5.4 Rainfall and borehole hydrographs at Samaru 227

5.5 Dimensions of a uniform soil block 232

5.6 Typical pF curves for a savanna soil 232

5.7 Modification of evapotranspiration when soil 242 
moisture is limiting

5.8 Soil moisture changes for various drying curves 242



Figure No. Page "o

5-9 Seasonal changes in soil moisture potential 250

5.10 Flow diagram for water balance algorithm 255

5.11 Pump test recovery data 264

5*12 Pump test drawdov/n and residual drawdown data for 266 
three boreholes in the Bauchi area

5.13 Pump test drawdown and residual drawdown data 267

5.14 Drawdown and residual drawdown data for three 268 
pumping rates

6.1 Isometric diagram to illustrate relationship 277 
between recharge areas and a weathering trough

6.2 Profile section results over a narrow weathering 283 
trough

6.3 Development of laterite over section similar to 2°4 
that in Figure 4*9

6.4 "7/ater balance model conditions during early dry 2 P>7 
season

6.5 Water balance model conditions during the early 289 
wet season

6.6 Y/ater balance at Bauchi 1969-1970 294

6.7 Water balance at Bauchi 1971-1972 295

6.8 V/ater balance at Bauchi 1973-1974 296

6.9 Sensitivity of the predicted groundv;ater hydrograph 300 
to changes in the specific yield value

6.10 V/ater balance at Bauchi 197P<-1979 302

6.11 Basement borehole design 311



List of Plates

Plate 1-To. Page !*o.

2.1 Nigerian Government Meteorological Station - 59 
Bauchi

2.2 Gunn Bellani distillator - Bauchi 59

2.3 Crop residue and nearby grass cover burnt surface 66

2.4 Woodland in December showing results of firing 66

2.5 Type A evaporation pan at Bauchi 83

2.6 Dry season land surface close to Bauchi ^3

3.1 A typical migmatite from the area of Bauchi 101

3.2 A meta-sedimentary relict within migmatite 101

3.3 Inselberg of migmatite at Gubi, close to Bauchi 104

3.4 Enlargement of 3.3 104

3.5 Spheroidal boulders formed by weathering 108

3.6 Outcrop of grus in road cutting 111

3-7 Grade V weathering material 132

3«'D Grade III, IV and V material in road cutting 132

3^9 SLAR image of Bauchi Area 136

3.10 Older granite outcrop 137

3-11 Older granite inselberg 137

3.12 Gneiss showing folding and intrusion 138

3.13 Dyke cutting edge of older granite inselberg 138

3.14 Deep weathering - example A location 141

3.15 Deep weathering - example B location 141

3.16 Drill cuttings from deep weathering area B 142

3.17 Extensive grade V + VI material from deep 142 
weathering area C

 5 -| O

Drill samples from deep weathering area C 144
3.19

3.20 A weathering profile close to Kano 147

3.21 A weathering profile close to Kano 147

4.1 Investigation borehole core in deep weathering 209 
area C



List of -Tables

Table Page 
Number No.

1.1 Typical borehole characteristics from a granite area
of South Africa 9

2.1 Cross correlation matrix for G.A.D.P. rainfall station
- 1978 rainy season 35

2.2 Correlation between daily rainfall at Gombe CAP and other
stations - 1978 April-October 36

2.3 Daily rainfall for July 1978 at 17 stations in the
Gombe area (mm) 37

2.4 Annual rainfall (mm) 1946-54 for two Tanzanian stations
(after Jackson (1978)) 36

2.5 Average monthly and 10 day rainfall for Bauchi
1941-1979 38

2.6 Seasonal variations of solar radiation outside the
atmosphere at latitude 10* 30° N - Bauchi 51

2.7 Dispersion of solar radiation 52

2.8 Albedo of some typical surfaces 53

2.9 Albedo of maize and millet crops at Samara 54

2.10 Average daily radiation at Samaru 56

2.11 Measured and calculated values of net radiation 58

2.12 Monthly correlations between calculated net radiation
and Gunn-Bellani data for Bauchi 60

2.13 Correlation between net radiation, sunshine hours and
vapour pressure for 1978 61

2.14 Calculated monthly net radiation for varying albedo 62

2.15 Monthly variation in albedo 62

2.16 Rn for different Angstrom equation values 63

2.17 Average monthly net radiation for Bauchi 64

2.18 Distribution of net radiation components 65

2.19 Evaporation totals for Bauchi 71

2.20 Correlation between Piche data and the aerodynamic term
in Penman's equation 82

2.21 Relation between soil cover "L and diffusion resistance to
water dependent upon fraction of soil covered 86

2.22 Penman evapotranspiration for a surface with constant 
albedo, compared with an albedo varied to reflect the 
seasonal changes

2.23 Modified Penman equation Zo values 87



2.24 Values of Rs used in the Monteith calculation 91

3.1 Selected physio-chemical properties of a deeply
weathered profile in Malaysia 120

3.2 Analyses of groundwater from the North Nigerian
Basement Complex 123

3.3 Generalised geochronology for the metamorphic
rocks of Nigeria 134

4.1 Tripotential profile results over a fracture zone
shown in Figure 4.4 169

4.2 Resistivities of weathering grades 178

4.3 Inferred depth of weathering from sounding data 179

4.4 Potentials due to a point source of current 191

4.5 Seismic velocities of weathering grades 204

5.1 Rainfall and hydrograph data 228

5.2 Bulk density and porosity of three soil profiles from
Afaka forestry reserve, near Kaduna 233

5.3 Range of available water in two ferruginous soils
developed under natural conditions at Afaka 237

5.4 Values of matrix potential at various soil water
conditions 238

5.5 Hydraulic conductivity and matrix potential for a soil
with varying volume water content 239

5.6 Water budget for Bauchi (1979) using data from
Table 2.22 245

5.7 Effects of surface treatment on profile water loss 
during the dry season

5.8 Maximum soil moisture defecit for various plant canopies 251

5.9 Comparison of recharge results for 1979 258

5.10 Predicted annual recharge 259

5.11 Geological log of test well 263

6.1 Areas of weathering grades calculated from resistivity
profile sections 281

6.2 Water balance for the Samara catchment 291

6.3 Comparison of Samara and Bauchi data 297

6.4 Sensitivity of water balance to changes in the root
constant 298

6.5 Sensitivity of water balance to changes in specific
yield 299

6.6 Observed and predicted values for the Bauchi groundwater
hydrograph shown in Figure 5.3 303

6.7 Recharge for a root constant of 150 mm



1. INTRODUCTION

The object of this thesis is to make a general assessment of 

the available groundwater resources from an area of Pre6ambrian 

and Early Palaeozoic basement complex rocks in Northern Nigeria. 

The area of particular reference for this study is that of Bauchi 

in North East Nigeria, however, the analysis is also believed to 

be generally applicable to any region with a similar geological 

and climatological environment. In the final section of the thesis 

the results of the work around Bauchi are summarised and a general 

ised methodology of approach described for the evaluation of ground- 

water resources in this environment.

The location of Bauchi, and a number of other towns in Nigeria 

mentioned in the text, is shown in Figure 1.1.

Bauchi is situated to the east of the Jos Plateau, on a large 

area of crystalline basement outcrop. The areas of basement out 

crop are shown in Figure 1.2. The Basement Complex in Northern 

Nigeria consists predominantly of an undifferentiated suite of gneiss, 

migmatite and granite which was mobilised most recently in the Pan 

African orogeny (ca 600my). Relict meta-sedimentary pendants are 

widespread throughout the area.

Groundwater is only found in this geological environment where 

fracturing and weathering have occurred. It is therefore necessary 

to understand the weathering mechanisms involved before the occurr 

ence and extent of groundwater can be predicted.

Bauchi lies within the savanna climatic zone. Climatic condi 

tions within this zone have a pronounced effect upon the groundwater 

resources and are therefore discussed in detail. The socio-economic 

conditions within the savanna are also of importance as they deter 

mine the optimum size of the groundwater supply required. These 

conditions are briefly described below.

Geophysical methods, such as electrical resistivity and seismic 

refraction have been used with varied rates of success to locate 

areas of weathering on the basement. These methods are examined in 

detail and the reason for their indifferent success rate examined. 

A new electrical resistivity method is presented which is based upon 

an interpretational method capable of analysing the complicated 

geological conditions encountered within the weathering environment.
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Figure 1-1 Map of Nigeria showing location of
towns referred to in the text.
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A general water "balance model for aquifers developed in areas 

of deep weathering is described as a part of the resource assess 

ment. The results from this nodel are compared with observations 

from Bauchi and the results of a small catchment water balance 

experiment conducted by Kowal at Samaru*



1.1 Research Location.

The field work for this research was carried out during the 

period commencing in January 1976 and lasting until May 1979   

During this time a large number of relatively small hydrogeological 

investigations were conducted located throughout Northern Nigeria. 

The majority of the work involved siting boreholes in areas of 

crystalline basement outcrop. However, a more general resource 

analysis of groundwater on the basement was also undertaken (*,'/ater 

Surveys, 1978) and several engineering geology investigations for 

major dam sites on the basement carried out.

More than 5&° of "the field work was carried out in the general 

vicinity of Bauchi in Bauchi State, (see Figure l.l). However, 

the research that is presented below represents the compilation of 

a large number of individual investigations, and for this reason 

is not related to one particular locality. The research represents 

an appreciation of conditions -.vithin a general geological and clim- 

atological environment, for which the particular locality of Bauchi 

is representative. In some of the discussions which follow, data 

from other areas in Northern Nigeria are analysed and the assumption 

is also made that these areas are representative of the same general 

environment .

"Wherever possible, the discussion is limited to that of the 

particular area of reference, however, it is recognised that the 

method of analysis presented here has a general applicability to 

any area within the same general geological and climatological en 

vironment. Similar areas ar;: Tr ind throughout the rest of Africa, 

in South America, India and Northern Australia. Where information 

for the particular area of Bauchi is insufficient or unavailable, 

the discussion is presented in terms applicable to the general en 

vironment. For example, in Section 3> the geological environment 

is discussed first in general terms and a model of weathering dev 

eloped which is then expressed in terms of examples from the Bauchi 

area. Similarly, in Sections 5 and- 6, the analysis of recharge 

and the water balance are first made in general terms for the savanna 

environment and the results then compared with observations from 

Bauchi and Samaru (see Figure l.l).

It should also be noted that several components of the analysis 

are applicable to environments outside those of the general analysis.



In particular, the geophysical methods developed for this study 

have a general application for any complex geological environment, 

Similarly, the lumped parameter water balance model developed for 

this study may be applied, with appropriate modifications, to 

climates other than the savanna climate.



1.2 Savanna environment. 

Introduction.

The savanna environment, in which Bauchi lies, directly affects 

the groundwater resource analysis in a number of interrelated ways. 

The most obvious of these is the climatic variability. However, 

the combination of the climatic factors and the savanna grassland 

vegetation have far reaching effects upon the hydrological cycle, 

which in turn determines the availability of recharge to ground- 

water storage.

Throughout the savanna there is a rapidly increasing demand 

for small scale (< 1m /hr) supplies of water for individual villages 

(World Bank, 1916} and for larger supplies (~10m /hr) for schools 

and hospitals etc. The preferred resource, for both these scales 

of supply is groundwater (WHO, 1973).

Climatic characteristics.

The dominant climatic characteristic of the savanna is the 

annual alternation between the wet season and the dry season.

In Bauchi, the wet season lasts for approximately 5 months, 

from May to September inclusive. During this time, an average quan 

tity of 1075mm rainfall is received from a relatively small number 

of intense storms. This quantity of rainfall is equivalent to the 

annual rainfall of large parts of N.VI. Europe.

The dry season lasts from October to April. During this time 

little or no rainfall occurs. Although from the annual quantity of 

rainfall received, the savanna climate would not be clasified as 

semi-arid, the evaporation and evapotranspiration during the first 

part of the seven month dry season are sufficiently high that almost 

all water lying at the surface, or in the soil zone, is exhausted. 

The availability of water after this time becomes a major restriction 

to plant growth and human or animal movement. During the latter 

part of the dry season and the first part of the wet season, ground- 

water is often the only available source of water.

Although the average rainfall within the savanna is relatively 

high, a dominant characteristic of the rainfall is its poor distri 

bution, both in time and space. Climatologists used to working in 

more predictable temperate climates, have used values of mean annual 

rainfall as representing conditions throughout large parts of the
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savanna, however, it is shown in Section 2, that the area.1 dis 

tribution of rainfall for one year, and within a small area, can 

vary "by as much as 40/£. Similarly, annual totals vary widely. 

In a recent 6 ye.ir period at Bauchi, the maximum and minimum ann 

ual totals varied by 36%.

An accurate assessment of the quantity of rainfall received 

over a catchment area, together with an assessment of the actual 

evapotranspiration within the area, form the basic components of 

a water balance from which recharge to groundwater is usually cal 

culated. Actual evapotranspiration is a function of the available 

moisture and the vegetation cover throughout an area. A brief des 

cription of the vegetation is also therefore required.

Savanna vegetation.

The vegetation around Bauchi corresponds to typical accacia - 

tall grass savanna which is common throughout a wide belt of Africa 

which stretches from Gambia in the west through to the south eastern 

Sudan. The dominant plants are tussock grasses which form an almost 

continuous cover over the ground, even beneath the trees. During 

the growing season, the grasses attain a height of between 0.5 and 

1.5m. The trees may be either deciduous or evergreen.

During the early part of the dry season, transpiration by the 

extensive cover of grasses rapidly depletes the moisture held in 

the upper parts of the soil profile; wit-: the result that the grasses 

wilt and die. It is the common practice of subsistence farmers 

throughout the savanna to set fire to the dead grass cover, with the 

result that extensive bush fires occur each year in December and 

January. It has been argued (Eyre, 1968) that the practice of burn 

ing the grasses has had a dominant effect on the development of sav 

anna vegetation types.

After the burning of dead grass has occurred, the vegetation is 

dominated by the remaining trees. The ground between the trees re 

mains bare until the following wet season when germination of the 

grasses occurs rapidly following the first rains.

The changes in both the height and character of the vegetation 

have a pronounced effect upon the quantity of evapotranspiration 

which occurs.



1.3 The Hydrogeological Problem. 

Introduction.

Groundwater is the preferred type of resource for small scale 

supplies in the rural and the urban environment, however, it is 

recognised that only limited supplies of groundwater are available 

from the weathered profile developed upon gneiss, migmatite and 

granite. The success rate of boreholes or dug wells in the weather 

ed basement environment varies widely, and the yields of successful 

boreholes also show a wide variation. Data from South Africa re 

ported by Brown (1975) are shown in Table 1.1. These results are 

also typical of the Bauchi area but unfortunately no such detailed 

results exist for Bauchi.

Table 1.1 Typical borehole characteristics from a granite area 
of South Africa. (Brown, 19750.

J?ea

1

2

3

4

5
6

7

Number 
of 

boreholes

62

497
130

404

202

136

16

Total 
depth 
(m)

40

47
61

37
51
48

56

Depth of 
water 
(m)

21

34
51
26

35

35

43

Average 
yield

5-0
5.0
3.9

5-9
4.6

3.7
1.0

Failure 
rate

14
25

50
10

35
27
31

Whether a borehole is a success or a failure depends in many 

cases upon the purpose for which the water supply is required. To 

this extent, the failure rate of boreholes is partly subjective. 

However, it is clear that a considerable potential exists for im 

proving the success rate of boreholes.

Although the cost of a dry borehole is far greater than the 

cost of a dry dug well, the social impart of the latter is probably 

the greater.

The failure of boreholes or wells is principally caused by 

siting them where an insufficient depth of weathered material ex 

ists. However, in both cases, an initially encouraging yield may 

later become significantly reduced or may dry up completely.
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The hydrogeological problem in this geological and climatol- 

ogical environment is two fold, viz,

1) The groundwater must be located. The occurrence of a 

large number of dry boreholes and wells indicate that ground-water 

does not exist everywhere in the weathered profile.

2) Once the presence of groundwater has been established, 

some estimate of the available quantity of water must be made.

Method of analysis adopted.

The method of analysis adopted for this thesis may be broadly 

divided into 5 sections. These sections form the subsections of 

the thesis and are as follows :

a) A study of the climatic environment of the savanna.

b) A discussion of the development of the weathered profile 
on crystalline basement rocks.

c) The development of geophysical techniques with which to 
locate areas of deep weathering.

d) A study of the hydrogeological characteristics associated 
with areas of deep weathering.

and e) An analysis of the groundwater resources available on 
areas of crystalline basement.

In Sections 3 and 4 a method of analysis is developed from 

which a volume estimate of the aquifer can be made. In Sections 

2 and 5, the necessary inputs to a lumped parameter water balance 

model are analysed. From the water balance model, an estimate of 

annual recharge is made. In Section 6, the two estimates are com 

bined to produce a value for the safe yield of three weathered zone 

aquifers close to Bauchl.
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1.4 Previous Research. 

General.

A multi disciplinary approach is required for the hydrogeologi- 

cal analysis of ground-water in the weathered environment. Previous 

research in many interrelated disciplines is therefore of signifi 

cance to the present analysis. However, the author is not aware of 

any previous attempt to present an analysis along the lines described 

in this thesis.

Sections 2, 3, 4 and 5 of the thesis each contain references to 

previous work in the respective fields covered by these sections, 

and references are given in the text where appropriate.

In Section 2, the recent work by the V/orld Meteorological Organ 

isation has been particularly useful in explaining the distribution 

in time and space of the rainfall within the savanna. The calcul 

ation of evaporation data for Bauchi is based on the original analysis 

by Penman (l94°)» however, the work of Monteith, (1965), has also 

been used to provide a method of calculating actual evapotranspiration 

for the climate data from Bauchi.

In Section 3 5 results from a large number of studies on granite 

weathering have been consulted. The weathering model detailed by 

Dear-man (197^) and based upon the weathering of granites from the 

Cornish Peninsular in the U.K. has been used as a basis for the des 

cription of weathering profiles on granites + gneiss in general, and 

around Bauchi in particular.

In Section 4> geophysical research from a number of authors has 

been consulted, but, by far the most important has been the work of 

Dey + L.orrison (l97^b) who have produced a mathematical model for 

the analysis of the electrical resistivity response over inhomogeneous 

resistivity ground.

In Sections 5 and 6, the results of work by Kov:al (Kowal + Kassam, 

1978) at the Institute of Agricultural Research in Nigeria, are gen 

erally referred to. In particular, the results from a small catch 

ment water balance study have "been invaluable as a comparison for the 

lumped parameter water balance model developed for this study.
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1.5 Available Information. 

General.

In general terms very little data are available concerning 

this environment. In addition, the records which have been kept 

are often uncorrelated and therefore of little use.

Specific sources of data are described below. 

Remote sensing data.

Laudsat II and III products are readily available for all 

areas. Although computer interpretation of these products is not 

generally available, an examination of the colour and false colour 

images at a scale of 1:250,000 provides a very useful basis refer 

ence for an area. Geological and land use factors can be inter 

preted from the imagery.

Side Looking Airborne Radar (SLAR).

SLAR images for Nigeria at a scale of 1:250,000 are available 

for interpretation at the Federal Forestry Research Station at 

Ibandan. The SLAR products are particularly useful for geological 

interpretation and fracture analysis. In addition, the products 

give a clear indication of the geo-norphology.

Aerial photography.

Various scales of aerial photography are available for inspect 

ion at the State Survey Department. The w.iole of Northern Nigeria 

has been flown at a scale of 1:40,000, although larger scale photo 

graphy is usually available around towns. Bauchi, for instance has 

been flown at 1:4000, 1:10,000 and 1:40,000.

Contour maps of the majority of the area around Bauchi are 

available at a scale of 1:50,000, produced from the available aerial 

photography.

Climate Data.

A meteorological observation station has existed at Bauchi 

Airport since 1940, and monthly rainfall data is available from 1916 

The records of parameters other than rainfall are o^ten incomplete 

however.

Daily observations of maximum + -minimum temperature, relative



humidity, observed sunshine hours, daily wind run and rainfall 

were obtained for this study, for the period 1969-1974 and 1978- 

1979 from the Nigerian Government Federal Meteorological Station 

at Bauchi. During 1978-1979 the station was manned on a 24 hour 

basis and all measurments^where applicable3 are averages of at least 

8 daily readings. In addition, measurements of ground tempera 

tures, piche evaporimeter, gunn-bellani radiometer and type A pan 

evaporation data were obtained.

Geological Data.

Very little published geological information exists for the 

basement areas. At Bauchi, several occurrences of a fayalite quartz 

monzonite have been described (Eborall, 1976). However, the majority 

of the basement is listed as 'undifferential basement complex 1 on 

existing geological sheets.

The drillers logs of a large number of boreholes are available 

from the Government Geological Survey, or from the offices of in 

dividual drilling companies, hov/ever, these are usually of little 

direct use as conditions change very rapidly within a small area.
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2. CLF'ATIC St:VIROi;?:EKT. 

Introduction.

In order to assess groundwater recharge within the savanna regions, 

it is necessary to examine in detail the savanna climate. I r ost of the 

research concerning groundwater recharge has been carried out in tera- 

porate latitudes and it is important to assess the effects of the more 

extreme savanna climate upon the models of recharge commonly used in tem- 

porate latitudes. The recharge assessment for the savanna is made in 

Section 5 of this thesis, however, major climate elements such as rainfall 

evaporation and evapotranspiration are discussed below.

The savanna climate may be divided distinctly into two seasons. Dur 

ing the dry season, which may last from the end of October through until 

the following March or April, the wind blows predominantly from the HE. 

The 1"E Trade over V/est Africa has a very low humidity and often carries 

considerable dust south west from the Sahara. The wet season, which char 

acteristically lasts for five months from June to October, is dominated 

by surface S~" winds which have a high humidity. During the wet season, 

P00-1000mm of rainfall are received, almost entirely from cumulonimbus 

storm cells. The intervening period at the beginning of the wet season 

is characterised by an alternation between the two air mass types, which 

can give rise to false starts to the rainy season. Such false starts to 

the growing season (wet season) have particular significance to the agri 

cultural industry where early planting is encouraged.

The alternation between the two air masses throughout the year can 

only be understood in terms of the overall tropical circulation. As 

the character of the air masses plays such a significant part in deter 

mining the various parts of the hydrological cycle within the savanna, 

the tropical circulation is described in detail below.

The rainfall mechanisms which operate throughout the savanna are a 

direct result of the tropical circulation. Localised cumulonimbus storm 

cell activity is generated in the adiabatically unstable S'7 trades. 

As tropical storm cells have very intense air circulations within them, 

and operate within moist air conditions, the energy released by the lat 

ent heat of condensation is very large. A result of this is that



rainfall from these cells is intense ( > 40mm/hour) and also, poorly 

distributed both in time and space.This is in complete contrast to the 

rainfall mechanisms which produce rainfall in temperate latitudes. 

For this reason it is not possible to extrapolate rainfall totals from 

point gauge readings in the same way in which the extrapolation is 

possible at higher latitudes. This basic characteristic of the savanna 

rainfall has important implications for factors such as interception, 

infiltration and run off, which become especially significant during 

recharge calculations. For this reason, the temporal and spatial dis 

tribution for a number of stations within the study area are examined 

in detail below.

The radiation input within the tropics is the main source of energy 

which drives the tropical circulation. The large amount of input is 

responsible for the intensity of the storms and also produces high le 

vels of potential evaporation. Characteristically, the potential evap 

oration is double the annual rainfall. It is this imbalance which en 

hances the contrast between the wet and dry seasons. The change from 

moist SW winds to dry NE winds causes a very rapid drying of the soil 

and vegetation at the beginning of the dry season, and usually within 

six weeks of the last rains, the crops have been harvested, all shallow 

rooted vegetation has died and most smaller rivers are reduced to negli 

gible flows.

The quantification of evapotranspiration is essential if a mean 

ingful ground water balance is to be attempted. Therefore, the levels 

of radiation input and output are examined in detail in the third part 

of this section, as small changes in radiation input are reflected in 

reduced potential evaporation.

As soil moisture is almost entirely depleted by the end of the dry 

season, actual evapotranspiration falls considerably below the potential 

evaporative demand of the air. The first rains of the wet season fall 

on dried out ground and shallow rooted vegetation can only become est 

ablished as the soil moisture produced by these rains percolates down 

wards. As evaporative demand is also very high at the beginning of the 

rains, a break of ten days between storms results in a complete drying 

of the soil again and the death of any crops that have been sown.

These points are made to illustrate the differences between poten 

tial and actual evapotranspiration that exist between temperate and 

savanna latitudes. The differences are highly significant and require
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considerable modifications to the methods of computing a water "balance 

that were employed in temperate latitudes.

In the fourth part of this section the Penman (l94 Pi ) calculation 

is used to produce values for potential evaporation of the air. The 

calculation is shown to "be particularly sensitive to incoming radia 

tion and albedo variations. Data have also been calculated for the 

1'onteith (1965) evapotranspiration equation and it is suggested that 

this model is more representative of conditions during the year for the 

savanna.

Data for a number of years from the Bauchi climate station are 

used to produce daily values of evaporation and evapotranspiration. 

An algorithm is presented in Appendix A which performs the calculation 

based upon the Penman and T'onteith equations. This data demonstrates 

that the actual evapotranspiration is a complex function of the vege 

tation height and soil moisture deficit and can only be calculated as 

a part of a larger soil moisture and recharge balance. This balance 

is described in section six of the thesis.



2.1 ATMOSPHERIC CIRCULATION OVER Y.'EST AFRICA 

General.

The atmospheric circulation within the tropics may be approxi 

mately represented for a stationary, or non-rotating earth, by the 

Hadley Cell shown in Figure 2.1. The circulation approaches a simple 

convective system driven by the unequal heating of the ground surface 

at the equator. The air rises towards the troposphere and falls away 

north and south to form the sub-tropical high pressure zones at approx 

imately 30 north and south of the equator.

The rotation of the earth, both about its own axis and around the 

sun, considerably complicates the simple model. The inclination of the 

earth's axis of rotation, (23J?0 ) to the plane of the elliptical orbit 

around the sun, causes the apparent migration of the sun between the 

tropics of cancer (23f°N) and Capricorn (23ir°S) during the year. This 

has the result that the axis of greatest heating at the ground surface 

also moves north and south throughout the year. This axis of heating 

is known as the thermal equator.

The air which is heated at the thermal equator rises in the ascen 

ding limb of the convection cell towards the troposphere. The differ 

ence in angular momentum between the ground surface and the troposphere, 

associated with the easterly rotating earth, causes the rising air to be 

deflected westwards, giving rise to the band of equatorial easterlies 

shown in Figure 2.2. This easterly flow of air is dynamically unstable 

and tends to form waves, moving first slightly north west then south 

west. The waves have a significant effect on the temporal pattern of 

rainfall distribution as will be discussed below.

The continued supply of air from low levels at the thermal equator, 

to the belt of easterlies is compensated by a slow spread of air north 

wards and southwards at the top of the troposphere. As the air moves 

away from the equator it is increasingly affected "by the coriolis force. 

The coriolis force is a function of the earth's rotation and may be 

described mathematically as :-

F = 2 co sin<p ————— 2-1

where F = Coriolis force

to = angular velocity of the earth

p = latitude
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It may be seen from Equation 2.1 that the coriolis force is zero at 

the equator, increasing to a maximum at the poles. The force acts, 

in the northern hemisphere, to deflect a northerly moving air mass to 

the east and a southerly moving air mass to the west. The situation 

is reversed in the southern hemisphere (Harvey,1976).

The air moving northwards enters a zone of lower angular velocity, 

where it tends to accumulate and form a high pressure zone. Air sub 

sides within this zone to form the sub-tropical high pressure zones 

referred to in Figures 2.1 and 2.2.

In the northern hemisphere, air in the lower troposphere moves 

outward from an area of high pressure in a clockwise direction, the 

result of the coriolis force. A component of this circulation moves 

back at low troposphere levels towards the equator. It is deflected 

westwards and approaches the equator from the north-east, forming the 

north-east trade wind. A similar process south of the equator produces 

the south-east trades. Figure 2.2 depicts a schematic north-south 

cross section of the troposphere with the easterly and westerly air 

motions indicated.

The north-east trades and the south-west trades converge at the 

thermal equator in a zone termed the Intertropical Convergence Zone 

(ITCZ). Heating within the area of the ITCZ produces uplift and comple 

tes the basic pattern of circulation within the tropics.

The distribution of land and sea within the vicinity of V/est Africa 

produces a further complication to the patterns described above, which 

may be thought of as existing over a uniform rotating earth. The north 

east trade wind originates over the eastern Sahara from subsiding air 

at the edge of the sub-tropical high pressure zone. As subsiding air 

is adiabatically stable, no rainfall occurs within this zone and the air 

that arrives over West Africa has a very low humidity at all levels with 

a large decrease in temperature with height (lapse rate). The humidity 

at Eauchi during January is 35$ at 06.00 and 10$ at 16.00. The low 

humidity results in a large diurnal temperature range, with an average 

maximum of 21.6 C and an average minimum of 13.1 C at Bauchi in January. 

In addition, this air mass often carries dust caused by low level tur 

bulence in the Sahara. Satellite imagery has been used by Martin (1975) 

to locate several areas of dust origin. The western slopes of the 

Ahaggar in particular have been isolated as an area where dust tounges 

are produced, typically in the houre just after sunrise. The local
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name for the dusty air in V,r est Africa is the Harmattan, and the air 

mass is also sometimes referred to as the harmattan. Visibility can 

be reduced to a few hundred metres with an associated reduction in 

the net radiation received at the land surface. Plate 2.1 shows the 

effect of harmattan dust on a day in February, 1980.

By contrast, the south east trade wind originates around the 

South Atlantic high pressure zone, and has a long ocean path before 

reaching West Africa. The air mass is deflected to the east, by the 

change in sense of the coriolis force as it crosses the equator, and 

approaches West Africa as a south westerly wind. This deflection is 

well demonstrated by the low level wind stream lines shown in Figure 

2.10. The south west air mass is saturated with water vapour, and 

Warri, in the Niger delta, which lies under this air mass throughout 

the year, has mean monthly relative humidities at 06.00 of 95-99/^ and 

65-B5^ at 12.00. The relative humidity remains constant with increas 

ing altitude to about 2000m, but falls off sharply above this level. 

The decrease in temperature with height (lapse rate) is small in the 

saturated air, and the air mass is therefore adiabatically unstable. 

This instability gives rise to cloud formation and rainfall. The cloud 

cover and high humidity reduce the radiation from the earth and there 

fore the diurnal temperature range is small compared to that which ex 

ists under north east trade wind conditions.

The ITCZ, the zone where the two air masses converge, moves north 

and south across the geographical equator in response to the sun's 

zenithal position. The ITCZ lags behind the passage of the overhead 

sun by a period of from four to six weeks.

The Intertropical Convergence Zone (ITCZ)

The two trade winds converge within the ITCZ which runs around 

the earth within the tropics. The nature of the meteorological con 

ditions prevailing within the ITCZ is very much determined by the nature 

of the converging air masses. The ITCZ over the Pacific Ocean is less 

well defined than that over West Africa, for this reason.

It is only as continuous coverage of the tropical weather condit 

ions has become available from satellite imagery that many of the major 

features of the ITCZ have become established. Before this time, models 

of equatorial meteorology were constructed based upon ground observations
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from widely separated positions.

From the position of an observer in Northern Nigeria, it was seen 

that an intermittant belt of localised convective storms moves north into 

the area during the period April to October, with a maximum of cloudi 

ness in August and September. This belt of storms lies to the south of 

the savanna for the rest of the year, and hot dry conditions prevail 

throughout the north. It was recognised from an early date that these 

conditions could be related to the interaction of the two trade wind 

belts and the existence of an intertropical front, separating the air 

masses^or disturbance zone was proposed. The analogy of a front was ba 

sed on the observed conditions through a warm front in temperate lati 

tudes. The tropical front was thought to move north and south in re 

sponse to the sun, and as described above.

Figure 2.3 is a schematic vertical section through the Intertropi 

cal disturbance, or front after Kowal (l97 p ). A number of zones were 

thought to exist behind the front, and in gross forms these are still use 

ful concepts.

Zone 1 - At the actual boundary of the air masses on the surface, 

there is no rainfall because the air being lifted is too dry to cause 

precipitation. The dry north east trade air mass rides over the heavier 

moist south west trade to form a wedge which increases in thickness south 

westwards. No rainfall occurs until the depth of moist air within the 

wedge is greater than 2000m, some several hundred kilometres to the south 

of the interface between the air masses at the ground surface. Although 

no rainfall occurs, the presence of humid air at ground level causes a 

rise in humidity from dry season values of 20 or 30$ up to 70$.

Zone 2 - Further south, a zone of 400-500 kilometres occurs where 

the humid air is sufficiently deep for the development of localised cum 

ulonimbus cells. Rainfall occurs within the zone with storms of medium 

intensity but limited extent, leading to widely varied times for the com 

mencement of the rainy season within comparatively small areas.

Zone 3 - A zone of about 1000km occurs to the south of zone two 

where disturbance lines predominate. These are discussed in section 2.3. 

Storm cells build to heights of 8000-lOOOm and occasionally as high as 

12000m (Burpee,1975). These cells are associated with areas of intense 

rainfall and electrical discharge. It is these storm cells which provide 

the main convective mechanism for lifting air from ground level towards
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the troposphere, and thus to drive the Hadley cell circulation.

Zone 4 - Lying to the south of zone 3 and "beyond the limit of the 

convergence zone is a belt some 300-400km wide, characterised by more 

prolonged intermittant precipitation. This zone does not usually ex 

tend as far north as the savanna.

Recent Developments

The World Meteorological Organisation (VftTO), as a part of its 

global atmospheric research programme (GARP) carried out an extensive 

series of observations over West Africa and the Eastern Atlantic in the 

summer of 1974. The experiment is known as the GARP Atlantic Tropical 

Experiment (GATE). Although Bauchi lies on the far east boundary of the 

experimental area (10 E), the results are directly applicable to the sav 

anna as a whole.

During GATE, large numbers of upper air observations were made, 

and it is the combination of these, along with the satellite imagery, 

that has enabled a better understanding of the ITCZ.

The principal result of GATE is perhaps a more comprehensive view of 

the three dimensional processes operating within the tropical atmosphere, 

and in particular the significance of the upper troposphere easterly 

winds. Wave disturbances in the easterlies are related in a complex 

way to shallow cyclonic depressions in the lower troposphere.Where the 

easterlies do not show wave disturbances, then low level disturbances 

are also absent. It is the presence of low level cyclonic disturbances 

which is most at variance with the simple sectional model discussed ab 

ove. Figure 2.5 shows the satellite infra-red image and a number of wind 

streamline analyses for September 7th 1974  A shallow cyclonic circul 

ation at 800mb can be seen to exist over the V/est African coast. Below 

this are the surface south westerly trades, while above are the upper 

easterly winds. The shallow disturbance can be seen to lie to the west 

of the upper easterly wave, which is especially well marked on the 700mb 

streamline. The SMS image shows the cloudiness associated with this 

shallow disturbance. Bands of cloud can be seen converging on the dis 

turbance centre, which although would appear discrete to a ground ob 

server, can be seen to represent part of a disturbance covering a large 

proportion of West Africa from the coast to the sahel.

Satellite pictures sometimes show two or three different shallow 

cyclonic centres in front of a single wave in the 700rab streamline. The
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average period of the easterly waves during the GATZ was 3-5 days with 

an average wavelength of 2500km and a typical speed of 8ms" 1 . Consid 

erable variation was observed both in the wavelength and the periodicity.

The intensity, amount and latitude of the convective activity was 

related to the passage of easterly waves. In general, the convection 

was most intense before or at the time of the trough passage at 700mb. 

The least amount of convection occurred about one day after the trough 

passed overhead. This periodicity can be seen in the rainfall totals 

presented for the Gombe area in Table 2.14. Although the period is in 

general longer than three days, there is a definite tendency for the 

grouping of raindays with intervening dry periods.

Figure 2.4, by comparison with Figure 2.3, is a sketch of an actual 

cloud system associated with the ITCZ on 10 July 1974. The sketch was 

made by Weickman (l975)> flying in an observation aircraft across the 

ITCZ. The high cirrus outflow to the north represents the flow in the 

upper troposphere away from the top of the cumulo nimbus towers at the 

centre of the ITCZ. Smaller cumulus towers flank the two main towers 

both to the north and to the south. Several different layers of stratus 

are seen, indicating a complex situation with more than one cloud base 

layer. This sketch was made in the East Atlantic when the converging 

air mass conditions were possibly more uniform than over the savanna. 

However, it does show an example of a cloud vertical section, whereas the 

satellite imagery only shows the cloud tops. A layer of high cirrus out 

flow can often mask significant cloud forms below.

Although the GATE data is still being collated and correlated, 

when the work is completed, it is likely that there will be a signifi 

cant increase in the understanding of tropical meteorological processes.
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2.2 RAINFALL 

General.

As discussed in the introduction, the nature of the rainfall mech 

anisms and the distribution of rainfall vary markedly from those within 

temperate latitudes. As rainfall is such a basic parameter to any att 

empted water balance, it is of importance to examine the ways in which 

tropical rainfall characteristics vary and to assess whether any allow 

ances or adjustments must be made to methods of computing the water bal 

ance.

Rainfall Mechanisms.

The most common rainfall producing mechanism is that of thermal 

instability, produced by intense heating of the ground and near surface 

air, initiating convective instability in the adiabatically unstable 

low level south westerlies. The turbulence develops most fully where 

the depth of saturated air exceeds several thousand metres. The tops 

of the cumulomcLmbus storm cells which develop as a result of the adia- 

batic instability reach 10,000 metres in height, and upper tropospheric 

conditions influence markedly the development of these cells. If con 

vergent conditions exist in the upper troposphere, the development of 

the cells is effectively inhibited. If divergent conditions exist, how 

ever, then the necessary outflow from the cumulus tower can be accomo- 

dated and the storm cell grows to maturity. The upper level conditions 

are controlled by the waves in the upper easterlies described above. 

Convergent conditions are created by the upper easterly flow tending to 

wards the north west, while divergent conditions are formed as this upper 

flow moves towards the south west. The conditions are the result of ang 

ular momentum changes and have the opposite sense in the southern hemi 

sphere.

The dependence of storm cell formation upon upper air conditions is 

shown in the series of Figures 2.6 to 2.9. Figure 2.6 shows the wind 

streamline analyses for day 240 (August 28, 1974). The ITCZ can be seen, 

from the surface wind streamline, to lie at approximately 20 N. The 

700mb wind streamline indicates a series of well developed waves in the 

upper easterlies. Shallow cyclonic disturbances can be seen located in 

front of and at the crests of each wave. The satellite image presented 

in Figure 2.7, shows a major north south band of cloudiness associated 

with the first wave, and more diffuse cloudiness associated with the more 

westward wave.
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Figure 2-7 Cloud cover Day 240 1974
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Figure 2-9 Streamline analysis Day 182
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By contrast, Figure 2,9 shows the streamline analysis for an earlier 

period, day 182 (1st July, 1974). The I.T.C.Z. can be seen at approx 

imately 151T over Northern Nigeria. The 700mb streamline analysis shows 

no wave disturbance, while the surface streamline shows no shallow dis 

turbance. Correspondingly, the satellite image indicates very little 

cloudiness (Figure 2. p ).

Figure 2.20 shows a histogram of rainfall at Bauchi during 1974. 

An examination of this demonstrates that while day 182 and the period of 

days around that time was also mainly dry, day 240 occurred in a wet 

spell.

Satellite imagery has been used to demonstrate that the majority of 

cloud clusters appear between 14.00 and 16.00 local time over West Africa. 

This represents the time of maximum ground surface heating and associated 

turbulence. The average lifetime of a cluster is less than 24 hours and 

frequently, individual areas of active cumulus convection have lifetimes 

of three to four hours. The analysis of radar echoes under cirrus cloud 

shields or cloud clusters, indicates that individual areas of rain are 

limited in extent, and that there is only a slight tendency for the ar^a^s 

of rain to move westwards, while all other directions of movement are 

commonly encountered. Cloud systems which build up from a number of co 

alescing storm cells frequently contain up to eight stratiform layers.

Squall lines.

The line squall or disturbance line is characterised by violent 

thunderstorms and squall winds, resembling the phenomena associated with 

a cold front in temperate latitudes. The squall line is the only rain 

producing mechanism which brings rainfall to a large area at the same time,

Squall lines are formed between 7 and. 17 North and are some 200 to 

500 kilometres in length (Burpee, 1975)- The life cycle of several 

squall lines over West Africa was plotted during GATE, using the images 

supplied by a number of satellites. There appears to be an initial per 

iod of very rapid growth of cumulus, often in isolation from the other 

systems, and often in the late afternoon. Many thunderstorms develop 

and coalesce with the development of a secondary system some 800km fur 

ther east. The cirrus outflow from all the convective storms merges in 

to an extensive cirrus shield by late evening. The squall lines have a 

typical lifetime of 12-24 hours.
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Viewed from the ground, the passage of a squall line is impressive 

and represents the most extreme weather type experienced in the savanna. 

Reed (1975) and Ojo (1979) have both described the passage of a squall 

line. ,

The squall line approaches from the east. Ahead of the line, the 

surface winds are normal south westerlies. As the disturbance line ap 

proaches, dark heavy cumulus clouds develop, extending up to 1000m. 

As this low roll of cloud passes rapidly over, there is a very intense 

fall of rain, associated with a 10°C drop in temperature and a squall 

wind from the east. The rainfall intensity commences at 1mm per minute. 

This rate lasts for the first twenty minutes, after which time the rate 

slowly diminishes. The disturbance line usually has a depth of 50 kilo 

metres.

The passage of a squall line was recorded by the raingauge network 

in the Gombe area on 22nd April 1978. Although rain fell in most parts 

for only two hours, the total fall was sufficient to produce early rainy 

season flooding in many places. Figure 2.10 shows the isohyets for the 

storm.

Line squalls are thought (Burpee, (1975)) "to be generated in some way 

by wave disturbances in the upper easterlies. If this is so, then they 

move quickly ahead of the wave away from the area of genesis. The mech 

anism by which they are formed, and by which they maintain their intensity 

and linear nature over great distances are not understood.

Rainfall distribution in space.

In March 1977, a report was submitted to the Gombe Agricultural Dev 

elopment Project (GADP) (GAD? Water Resources Report, 1977), in which it 

was recommended that rainfall gauges be set up at as many sites as poss 

ible throughout the project area of 6400 sq. km. This was acted upon, 

and for the 1978 rainy season, rainfall records are available for twenty- 

five stations within the area. The complete record for 17 stations from 

April to October 1978 was analysed in detail by the author, in order to 

examine the spatial variabilities suggested by the rainfall mechanisms 

described above.

The gauge density, excluding some of the remoter areas, is one gauge 

per 250 sq. km.

The area and gauge locations are shown in Figure 2.11. Although 

Gombe lies 150 kilometres to the east of Bauchi and at an elevation some



Rainfall stations 
the Gombe Area,

Figure 2-11

+D Rainfall station (Notation as in Table 2-2 )
D

+K Rainfall intensity gauge station

Scale 1 •• 250,000

9,....... , 5

+DGO/«BE +?A
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200ra lower than Bauchi, the general pattern of rainfall distribution is 

generally applicable not only to Bauchi, Taut to the savanna in general.

A cross correlation analysis was carried out for the 1? stations. 

The results are p reduced in Table 2.1.

For rainfall area analysis and rain gauge network design, a value 

of 'r 1 (the correlation coefficient) "between two adjacent stations should 

be greater than 0.85. To estimate rainfall over an area of 6000 sq. km to 

an accuracy of 10$, a gauge density of 1 per 250 sq. km. is required 

(Weisner, JS^. , 1970). It may be seen from Table 2.1 and figure 2.11 

that this gauge density is entirely insufficient to predict rainfall 

across the GADP area. Even for a storm event such as the passage of a 

squall line, the rainfall totals vary markedly as shown in Figure 2.10.

In Table 2.2, the correlations for Gombe CAP are presented against 

other stations. Although Gombe CAP is some 1000m from an area of hills 

to the northwest, which are some 200m higher than the surrounding area, 

the area to the south and east is predominantly flat. Gombe CAP has the 

highest correlation with nearby stations as might be expected, however, 

the degree of correlation is very poor.

The correlation coefficients strongly indicate that it is not poss 

ible to extrapolate rainfall from one station to a nearby station even 

less than 1000m away. For the 300 m separation between Bogo FSC and 

Gombe CAP there is a 15$ difference in the annual totals.

V/ithin the comparatively small area of the GAHP, the smallest ann 

ual total is only 60$ of the largest. This wide difference in total 

rainfall, measured over a small area, and for any period of time from 

an hour to a year is a dominant feature of the savanna climate. As the 

period of time increases then the total rainfall over an area does become 

less poorly distributed. However, for any one rainy season there are 

very significant departures from long term averages, on a scale which 

does not appear to have been comprehended previously. The departures from 

average are so large, that water balance calculations can vary signifi 

cantly over a small area.

Table 2.3 is a record of the daily rainfall for the 17 stations dur 

ing the month of July 1978. The tendency for raindays to be grouped in 

to rainy periods of 5 "to 6 days followed by shorter dry spells, is well 

demonstrated, and reflects the fluctuation and intensity of upper easterly 

waves as discussed above.



Table 2.1 Cross correlation matrix for G.A.D.P. rainfall stations - 1978 rainy season

Stat 
ion No 
Fig.2J1 Name

*

I. A GOMBE C.A.P. 1.00

9. J KDMO C.A.P. 0.20 1.00

II. L KEMBU F.S.C. 0.25 0.58 1.00

3. C GOMEE G.R.A. 0.54 0.43 0.41 1.00

12. M KURI F.S.C. 0.17 0.27 0.39 0.23 1-00

10. K BULA F.S.C. 0.33 0.22 0.31 0.25 0.12 1.00

5.E KALSEENGI F.S.C. 0.09 0.18 0.27 0.14 0.21 0.13 1.00

8. H TUKULMA F.S.C. 0.13 0.46 0.28 0.22 0.22 0.19 0.35 LOO
x

6. F ZAMBUK F.S.C. 0.42 0.11 0.01 0.13 0.07 0.29 0.02 0.05 1.000
15. Q TUMU F.S.C. 0.02 0.05 0.06 0.08 0.07 0.05 0.08 0.06 0.02 1.000

4. D STIRLING A.S.T. 0.21 0.33 0.20 0.29 0.19 0.18 0.22 0.21 0.08 0.03 1.000
17. S TALASSE F.S.C. 0.21 0.28 0.40 0.29 0.51 0.12 0.22 0.34 0.04 0.05 0.18 1.000
2. B BOGO F.S.C. 0.75 0.29 0.34 0.52 0.35 0.30 0.16 0.25 0.30 0.01 0.25 0.44 1.000
7. G DKBA F.S.C. 0.06 0.08 0.18 0.08 0.16 0.05 0.44 0.19 0.02 0.09 0.01 0.14 0.00 1.000
14. P LAWANTI F.S.C. 0.17 0.22 0.17 0.18 0.08 0.29 0.04 0.09 0.16 0.04 0.13 0.16 0.23 0.03 1.000
13. N DADIN KOWA F.S.C. 0.83 0.25 0.31 0.39 0.33 0.11 0.13 0.08 0.13 0.04 0.14 0.35 0.27 0.13 0.13 LOO
16. R BILLIRI F.S.C. 0.11 0.18 0.16 0.10 0.14 0.01 0.34 0.27 0.07 0.09 0.12 0.17 0.22 0.35 0.03 0.01 1.00
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Table 2.2 Correlation between daily rainfall at Gombe CAP and other 
stations - 197^ April-October.

Station Distance Correlation Total annual
(km) (r) (mm)

1(A) Gombe CAP 0.0 1.00 1118.8

2(B) Bogo FSC 0.3 0.75 962.1

2(C) Gombe GRA 3.7 0.54 874.3

4(D) Gombe SA 5.6 0.21 1162.8

5(E) Kalshingi FSC 6.2 0.09 P9°.8

6(F) Zambuk FSC 8.7 0.42 919.7

7(G) Deba FSC 10.7 -0.06 732.3

8(H) Tukalma FSC n.2 0.13 729.7

9(J) Kumo CAP 12.2 0.20 780.5

10(K) Bula FSC 13.5 0.33 1108.1

ll(L) Kembu FSC 13.7 0.25 1061.6

12(K) Kuri FSC 14.7 0.17 710.3

13(N) Dadin Kowa FSC 16.6 0.33 871.2

14(P) Lawanti FSC 17.2 0.17 1051.6

15(Q) Tumu FSC 18.4 0.02 706.4

16(R) Billiri FSC 21.7 0.11 785.!

17(S) Talasse FSC 31-5 0.21 972.1

(Letters refer to later diagrams 2-12, 2-15 and 2-16)

The spatial variation between stations has been reported by other 

workers in Southern Nigeria (Nwa, 1977) and East Africa (Jackson, 1978). 

The extent of the variations appears to be more marked in the Gombe area 

than in either of the other studies. Jackson presents data for two sta 

tions 8km apart in Tanzania. This data is reproduced in Table 2.4

Table 2.4 Annual rainfall(mm) 1946-54 for "two Tanzahian stations 
(After Jackson (1978))

Station 1946 1947 1948 1949 1950 1951 1952 1953 1954 Average

A 754.6 973.1 966.5 790.1 1069.6 1188.7 755-1 1108.7 930.7 948.6
B 859-8 1248.4 1420.9 619.8 1127.0 1127.0 564.5 859.8 869.8 966.4

(A + B) -105.2 '-275.3 -454.4 +170.3 +61.7 +61.7 189.7 248.9 +61.0 -17.8
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Table 2.3 Daily rainfall for July 1978 at 17 stations in the 
Gombe area (mm)

Day Station

1 2 3 4 5 6 7 e 9 10 11 12 13 14 15 16 17
1 ' 13.5 5.1 6.6 16.5 22.8 31.0 44.0 25.4 48.0
2- 17.3 13.0 6.9 28.4 9.4 54.9 38.0
3- 26.0 14.7 33.0
4- 21.3 21.2 11.9 6.6 12.7 26.7 37.3 19.0 23.6 20.4 41.9 10.0
5- 33.0 15.5 38.6 17.8 20.1
6.

7- 36.1 46.2 32.2
0. 18.8 20.4 20.0 24.6 9.7 23.4 44.9 20.5 70.3 14.0 11.7 43.7
9. 20.3 9.8 25.2 1.0 10.4 24.4 38.0
10. 5.6 40.1 29.5 22J.8 6.6 34.0
11. 44.9 14.0
12. 40.6 31.7 36.7 27.3 18.0 37.6
13. 25.4 31.0 27.6 15.7 22.8 23.6 15.0 24.1 20.3 38.0 25.6 10.0
14. 21.8 28.7 28.4
15. 1.8 36.7 20.3 3.0 17.8 33.0 62.7 22.0
16. 2.3 0.5 20.6 25.6 8.9 6.3 3.5 1.8 8.4 6.3 47.5
17. 2.3 28.7 28.4 8.4 1.0 29.5 12.0 7.9 0.8
18. 8.6 4.6 4.1 4.8 10.7 17.3 33.3 17.3 6>B 16.0 33.3 12.5
19. 4.6
20.

21.

22. 3.1
23. 4.3 4.8 40.4 2.6 26.0
24. 8.6 2.8 80.9 10.7 1.5 26.7 11.2 2.3 4.6 J.O 3.6
25- 16.8 9.8 8.8 3.3 0.8 1.0 7J.6 7.6 33.0 12.2 25.0
26. 4.8 9-4 6.3 ' 2.6 1.3 6.3
27. 0.8
28.

29. 10.1
30.

31. 64.0 58.9 33.9 16.5 20.3 18.5 34.4 3^.1 35-3 22.5



The average of the nine year period for each station in Table 2.4 

converges markedly, but marks a very considerable variability.

Figure 2.12 indicates the annual totals for the GADP region and 

represents clearly the local variability.

Rainfall distribution in time.

The daily rainfall records for the years 1941 to 1979 have been 

obtained from the Nigerian Meteorological Service. With the exception of 

the period October 1966 to September 1968, the time of the Nigerian civil 

war, the record is complete. This period has been completed by a con 

trolled data estimation method.

The data was summed to produce 10 day, monthly and annual totals, 

of which the average monthly and 10 daily data are presented in Table 2.5,

Table 2.5 Average monthly and 10 day rainfall for Bauchi, 1941-79.

January

February

March

April

May

June

1-10 

11-20 

21-31

1-10 

11-20 

21-28

1-10 

11-20 

21-31

1-10 

11-20 

21-30

1-10 

11-20

21-31 

1-10

11-20 

21-30

0.0

0.0 0.0

0.0

1.1

0.0 1.9

0.8

0.1

1.5 3.8

2.2

4.8

11.0 30.7 

14-9 

24-4 

25.2 85.2

35-6 

44.0 

49.4 148.0

54.6

1-10 69.8
July 11-20 82.0 270.1

21-31 118,3

1-10 109.a

August 11-20 104.6 319.0

21-31 104.6

1-10 70.9
September 1120 64.8 177.5

21-30 41.8

1-10 26.9

October 11-20 8.0 38.7

21-31 3.8

1-10 1.0

November 11-20 0.0 1.0

21-10 0.0

1-10 0.0

December 11-20 0.0

21-31 0.0

The mean annual rainfall for the period was 1074mm (sd = l65mm). 

Figure 2.13 shows the annual data, and the data filtered with a five point 

running mean. There appears to be a declining trend evident although 

Figure 2.14 indicates the data to be normally distributed.



Figure2-12 Annual Total Rainfall —GOMBE Area
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Tropical rainfall has been reported (Griffiths, 1960,1966) to have 

a normal distribution in about 75$ of cases and a log normal distribu 

tion in the remainder of cases. Kowal and Kassam (1975) report a normal 

distribution for the 1905-1973 rainfall record at Kano, Northern Nig 

eria.

The reliability of rainfall expressed in terms of confidence limits 

or standard deviations about a mean can be in doubt if the observed 

rainfall pattern is representative of a changing climate (Lamb, 1972). 

The evidence for the Bauchi rainfall record is in conflict in that the 

probability plot indicates a normal distribution, while the graph of 

annual totals shows a declining trend. The 1972 low rainfall total of 

730mm had a probability of 12$ or a return time of once every 83 years. 

Extrapolation of the annual rainfall plot suggests that 1984 may have a 

lower rainfall than 1973, thus indicating a much smaller return time. 

However, in the aftermath of the sahelian drought of the early seventies, 

Bunting et al (1976) carried out a statistical analysis of the available 

long term records of the region. Their conclusion was that the success 

ion of drought years in the early seventies fell within statistical ex 

pectation and did not indicate a changing climate in the area. Figure 

2.14 tends to confirm this, in that annual totals fall very closely about 

a normal probability distribution.

Some concern has been expressed, particularly in view of the sahelian 

drought, that various desertification procedures are causing a change of 

climate (Howard, W.J., 1976). The lack of firewood in the savanna is 

resulting in an increased rate of felling of the few trees which do exist. 

Overgrazing is also leading to a marked deterioration in soil structure. 

It is argued that both these factors result in a change of the albedo 

(reflectivity of the surface) and that this results in a changed net rad 

iation budget. The loss of vegetation results in an increased albedo 

which, in turn produces a decrease in the net radiation received at the 

surface. This loss of net radiation produces less instability in the 

lower troposphere and therefore less rainfall. The process is one of pos 

itive feedback. These topics are discussed further by Otterman (1974), 

Charney (1975), and \Valker-Rowntree (1976).

The variation of rainfall in the spatial dimension is reflected by 

an equivalent variation in the time dimension. The Bauchi rainfall re 

cord indicates that rain/falls on an average for P>1 days each year. A 

rainday is defined as a 24 hour period, (usually 10.00 to 10.00) when



43

measurable rainfall is recorded. The standard deviation arouni the mean 

number of raindays is only 9»6- Years with low annual totals do not 

necessarily correspond with years when a low number of raindays occurred. 

In 1976, 81 raindays produced 1238mm rainfall, whereas in 1977, 80 rain- 

days produced only 809mm.

The daily totals for each rainday were ranked and cumulative per- y* 

centage figures calculated for each year. Fifty percent of the annual 

rainfall falls on less than 17$ of the raindays. Typically some 500mm 

of rainfall falls in only 14 daily periods. These raindays may occur at 

any time from April to October.

The poor distribution of rainfall can be traced to a small number 

of intense bursts associated with individual storm cells. Within the 

GADP area, two rainfall intensity gauges were set up. The locations of 

the gauges are shown in Figure 2.11. One gauge was relocated at the 

beginning of the 1978 rainy season. The gauges were of the 24-hour-tip- 

ping bucket type and were operated by GADP staff.

The intensity gauge data correlate poorly with immediately adjacent 

24 hour rain gauge measurements. This may represent the extreme varia 

bility of tropical rainfall, or considerable observer error. The prob 

ability must be that the gauges were incorrectly read on a number of 

occasions, although it would seem unlikely that observer error is respon 

sible for more than a proportion of the dubious readings.

Two days have been selected from the 1977 and 1978 rainy seasons in 

which the intensity gauge data is shown alongside the spatial distribution. 

It is considered that this form of presentation* clearly demonstrates the 

overall structure of the storm event. Figure 2.15 shows the data for 

August 21 1978, while Figure 2.16 represents data for October 27 1978. 

These figures are largely representative of storm events throughout the 

year.

As the temporal structure of a storm event has considerable signifi 

cance when calculating infiltration^runoff (see section 5)? "the stru 

cture of a number of storm records was investigated further. The data 

for a part of the 1978 rainy season was decomposed into fifteen minute 

totals. Fifty events were recorded with a total rainfall of 710mm. The 

total time during which rain fell was 93 hours, however, a large propor 

tion of this total time was the result of light rainfall at the end of a

*Note. The contours have been calculated and drawn using a computer centre 
software package called Ginosurf.
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24 Hour Total Rainfall (mm)

Station Station K

Figure'2-15 COM BE— Bauchi State
Isohyets of 24 hour rainfall for August 21 - 1976 

The station letters refer to Table 2-2

Intensity gauge data for two stations indicates the 
of the event.

time structure
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24 Hour Total Rainfall (mm)

Station C Station K
25

15

10

- 5

0 1234
HOURS —————————>

0 1 3 4

Figure 2-16 COM BE— Bauchi State
Jsohyets of 24 hour rainfall for October 29 1978



46

storm cell passage. 3l£ of the total fall occurred in bursts of intensity 

greater than 10mm in fifteen minutes, with a maximum fifteen minute in 

tensity of 16.3mm. The rainfall intensities shown in figures 2.15 and 

2.16 are typical of the total record.

As the rainfall intensity gauge data for GADP headquarters in Combe 

was used, a comparison with the GADP rainfall gauge data for 1978 was 

possible. An examination of the records suggests that only 15 events 

were missing from the intensity gauge data. Assuming that the sample of 

recorded data fairly represents the missing data, it may be calculated 

that rain fell for a total time of 120 hours during 1978.

Energy Load of Rainstorms.

The bursts of high intensity rainfall which characterise the sav 

anna record, as discussed above, are caused by circulation within very 

large cumulonimbus cells. The energies released by the latent heat of 

water are sufficient to build up very strong air circulation within the 

cells. The result of this is that the raindrops can attain a large size 

before falling out of the system.

Kowal and Kassam (1976) have analysed a number of storms at Samaru, 

recording parameters such.as drop size distribution, instantaneous in 

tensity, energy load and drop number. Ellison (1944) demonstrated the 

erosive nature of raindrop splashes and the effects of individual large 

raindrops on the soil surface. These characteristics of tropical rain 

fall, and particularly the large drop size, result in the breaking up 

of the soil aggregates, compaation, and the sealing of the soil surface. 

The sealing effect on the soil surface produces a decrease in infiltra 

tion and an increase in runoff and soil erosion.

Kowal (l970c ?1970d) describing the results from a small experimental 

catchment at Samaru, found that out of an average of 85 rain days, 32 

rainstorms (30/o) produced runoff. The water from the remaining 53 rain 

storms was wholly accepted by the soil. All rainstorms producing more 

than 20mm of rainfall caused some runoff, although the amount of runoff 

was a complicated function of rainfall duration, intensity, and antice- 

dent soil moisture conditions.

Kowal reported that natural vegetation had the lowest runoff percent 

age of total rainfall, due to the more efficient root structure for all 

owing infiltration to penetrate, and the intercepting qualities of the 

canopy and ground mat of decaying vegetation.



47

The Institute of Hydrology (197?) in a regional study of the Gon- 

gola River, which flows through savanna areas in Bauchi state, suggested 

the use of a 10$ runoff factor for Basement rock types in the savanna.
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2.3 SOLAR RADIATION BALANCE 

General

Solar radiation is the single most important factor of the sav 

anna environment. The energy input is responsible for causing rainfall
j

and evaporation, and therefore has a dominant influence on the water 

balance, on crop production and the whole ecology of the savanna. It 

is important to quantify the radiation and to measure the net radiation 

which is taken up by the surface as accurately as possible. Unfortunately, 

measurement of net radiation is very scarce in the savanna and the cal 

culation has to be approached from an empirical manner.

Solar Radiation.

The sun is assumed to act as a black body, with a surface tempera 

ture of 6,000 k (Harvey, 1976.) The total electro-magnetic radia 

tion, per unit surface area, emitted by the sun is described by Stefan's 

Law which may be represented mathematically as :-

E = a T 4 ———————— 2-2
-i o_8 

where fj- = Stefan's constant 5*<-M
ZNm-V:7

E = Energy /" rm J

T = Temperature of surface k

The electro-magnetic energy is spread through a wide range of wave 

lengths and is shown graphically in Figure 2.17. Approximately 99$ of 

the sun's radiation is of wavelengths between 0.15/urn and 4»0/um . The 

maximum emission is of a wavelength of about 0.5^/m (blue-green light) 

(Harvey, 1976).

The sun radiates in all directions, and therefore the earth only 

receives a small fraction of that energy. The amount of energy produced 

by the sun in unit time is thought to be approximately constant. It may 

vary slightly due to sun spot activity, however the variation is too 

small to measure with the techniques currently available. A variation 

of five precent has been suggested however, and although this seems small, 

it is demonstrated to have a measurable effect upon evaporation calcul 

ations discussed later.

A quantity known as the solar constant has been defined to represent 

the amount of energy that a surface would receive, which is perpendi 

cular to the sun's rays and, exposed at the mean distance of the earth 

from the sun, with no atmosphere to cause distortion. This quantity has



49

Figure 2-17 Spectral distribution
radiation.

of incoming

wavelength

SHOWING THE SOLAR BEAM BEFORE AND AFTER 
BUSSING THROUGH THE EARTHS ATMOSPHERE

(After LAMB 1972)

Figure 2-18

c
1U

Spectral distribution of outgoing 
radiation
BLACK BODY TEMPERATURE 285 K 

SHOWING ABSORPTION BANDS OF THE

EARTHS ATMOSPHERE (After WRVEY1976)
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wavelength ( p



2 
been found (S.M.T.,1958; Harvey, 1976) to be 1.36 k Wnf .

Three factors modify the amount of radiation actually received at 

a point on the earth's surface. The first is the position of the earth 

in its elliptical orbit around the sun. The second is the inclination 

of the earth's axis of rotation (23g-°) to the plane of the elliptic. 

The third is the latitude of the receiving surface.

The theoretical incoming radiation above the atmosphere may be 

calculated as follows (S.M.T., 1958; H.M.S.O., 1973).

d(R 
dt

COS Z 2-3
*-*

where Ra = incoming radiation Z'.'m _/

Jo = solar constant 1.36/k';rn _J

z = sun's zenithal distance

r = radius vector of the earth

cos z = sm</> sinS + cos cp cosS cosh

where

2-4

S

h

latitude of the observer (rads) 

declination of the sun (rads)

sun's hour angle, the angle 
between the sun's zenith for 
the observer and the 
horizon.

replacing

d(Rj 
dt

in 2.3 and rearranging

J,
= -rr~ sin 9 sin 8 " j c os to cos5 cos hT

Integrating w.r.t. 

. R a =hC  fsin

^-[hx

[ h = f ( t )]

n5 * cosco cos5 sin h'

s\nS + cos S sin h ] 2-5

The value of h may be found by considering the sun's altitude for a given 

observer.

sin (a) = sm</> sin S + cos^o cos S cosh

( cos z = sin a)
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Table 2.6 Seasonal variations of solar radiation outside the atmosphere at latitude 10'3 IT

- Bauchi.

Date

Day Ho

Longitude of 
s the sun

^•'.Declination of 
the sun

i
Incoming 
Iladiation

Incoming 
Iladiation 
for D.?:.

Mar
21

80

0°

Apr
13

103

22 5°

Hay
6

126

._o

May
29

149

67.5°

Jun
22

173

90°

July
15

196

132.5°

Aug
8

220

135°

Aug
31

243

15". 5°

Sep
23

266

180°

Oct
16

289

202.5°

Nov
3

312

225°

ITov
30

334

247.5°

Dec
22

356

270°

Jan
13

13

292.5°

Feb
4

35
315°

Peb
26

57

337.5°

::ar
21

80

^ (

-0.1 V

430

259

0.0

439

342

16.3° 21.4°

437

413

432

460

23-5

428

479

21.8 16.6

-160

.126

261

-0.6° -16.3° -21.5° -2%4° -21.6° -16..'.° -9.0°

407

101

383

116

364

77

356 365

77

307

117

•111

179

-?.1

430

Data computed using algorithm described in appendix A.



7/hen the sun's altitude is zero, sin a = 0 
and therefore :

h=cos [-sm<p smS/cos<pcosS ] = cos~'[- tan <p tan£] ————— 2-6

From Equations 2.5 and 2.6, Ra may be computed from known terms. 

The daily value of declination (<$) and the radius vector (r) may be 

tabulated from observations. Tables of these constants have been pro 

duced by the Smithsonian Institute (S.K.T., 1973)? and the algorithm 

that has been written to calculate daily evaporation, uses daily values 

of these two variables (Appendix A) •

Table 2.6 summarises a number of solar variables and includes values
_2 

of Ra in V/m for Bauchi and for comparison, a U.K. station* To convert
_2 

these values in Wm to the more familiar units of mm equivalent evapor-
o

ation per day, a factor of 3. 4979 x 10 is employed. This data has been 

calculated using the algorithm presented in Appendix A»

Dispersion of Solar Radiation.

Only a portion of the incoming radiation is received at the earth's 

surface as direct radiation, the remainder is reflected, absorbed or 

scattered by the earth's atmosphere and surface. About one third is usu 

ally reflected back to space, mainly from clouds. Table 2.7 after Weisner 

(1970) indicates the dispersion of solar radiation.

Table 2.7 Dispersion of solar radiation.

Type of Day 

Clear Overcast Cloudy

Reflected and scattered „_ 7C. .^ 
back to space.

Absorbed by water vapour 11 -, 11 
Absorbed by gases 2 4

Direct and scattered
radiation reaching the 66 22 43
earth's surface ___ ____ ____

100 100 100

The amount of depletion also depends upon the solar air mass (the 

length of the beam's path through the atmosphere) since the highest 

concentration of dispersing and absorbing materials are found near the



ground level (Kowal - 1978).

Water vapour and carbon dioxide, both highly variable components 

of the atmosphere, absorb varying quantities of radiation depending 

upon the amounts present in any one day. The radiation during the dry 

season is more effective, due to the very low humidity of the north east 

trade wind, than the radiation during the wet season.

Assessment of Albedo.

A proportion of the direct or scattered radiation that reaches the 
earth's surface is reflected back to space. This proportion is known 
as the albedo of the earth's surface, and is strongly dependent upon the 
nature of the surface. Typical albedos for surfaces in Nigeria are re 
ported by Kowal (1978) and are presented in Table 2.8.

Table 2.8 Albedo of some typical surfaces. a

Fresh green tropical vegetation 0.20

Dry soil during the dry season 0.35
Wet bare soil 0.10

Water-depending upon the angle of
incidence and colouration 0.04-0.39

Dark forest 0.05 

Short grass 0.25

Kowal (1978) reports further significant changes in the albedo of a 
crop as the crop grows and matures. These measurements are especially 
important as the radiation balance during the wet season has a particu 

larly marked effect on the evapotranspiration, as discussed later. 

Kowal's values are presented in Table 2.9.



Table 2.9 Albedo (a) of maize and millet crops at Samaru - northern 
Nigeria (After Kowal.(1978))

Period Maize Millet

21-31 May 0.26

I-10 0.25

11-20 June 0.26 0.26

21-30 • 0.21 0.23

1-10 0.19 0.15
II-20 July 0.18 0.15

21-31 0.17 0.13

1-10 0.16 0.14

11-20 August 0.16 0.13

21-31 0.15 0.14
1-10 0.15 0.17

11-20 September 0.14 0.15

21-30 0.14

1-10 October 0.13

Calculation of ITet Radiation.

There are no measurements of actual incoming radiation at Bauchi, 

and for the assessment of incoming radiation received at the surface, 

the Angstrom (1924) empirical formula is used. This takes the form

R c = R Q M-0-a]x[a+ b( n/N)] ————— 2-7
_p

where R = radiation received at surface Win c
<* = albedo

n = observed sunshine hours

IT = maximum possible sunshine hours

a and b are regression constants

The value of observed sunshine hours is taken from measurements made with 

a Campbell-Stokes sunshine recorder. These measurements are made in Bauchi, 

and the recorder can be seen in Plate 2.1. The recorder does not measure 

diffuse light, under cloud cover, or dust haze, and also underestimates 

sunshine at low solar altitudes, however, the recorder is simple to oper 

ate and is widely used throughout the savanna.

The value of IT may be calculated from the following relationship :
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(Chidley.c.Pike, 1968). 
240 .

°' n _______ 2.8

where h is the sun's hour an~le in 
radians from ecuation 2.6.

The calculated values tabulated by the Smithsonian Institution are 

based on the daylight commencing when the disc of the sun first appears 

above the horizon and ending when it disappears below the horizon. 

The above Equation (2.8) is based on the sun's centre. It is necessary 

to add a correcting factor which will vary with latitude. For instance, 

in the limiting case when the latitude is greater than 66 , the sun's 

disc may appear over the horizon for several hours without the centre 

appearing. A figure of 0.11 hours is found to be appropriate for the 

latitude of Bauchi.

Kowal (I972a) has compared incoming radiation measured by a Kipp 

solarimeter and integrator with calculated radiation using the Angstrom 

equation. The results are presented in Table 2.10. Two sets of values 

of a and b, the regression constants in Equation 2.7 were used. The 

values a = 0.15 and b = 0.55 are those recommended for use at Bothamp- 

stead in U.K. Until recently, these values have been used in ITigeria 

to compute the F-c term. As can be seen from Table 2.10, a considerable 

error is introduced. McCulloch, working in East Africa, proposed a 

general form for a and b viz :

a = 0*29 cos <J) 

b = 0-55

For the latitude of Bauchi the value of a is 0.285.

Kowal (I972a) recommends the use of a = 0.235 and b = 0.535 for 

Samaru. These values provide a good assessment of Re as measured at 

Samaru. Davies (19^6) measured He at Ibadan and arrived at twelve diff 

erent monthly values of a and b. The average values were a = 0.125 

and b = 0.733 (see table 2.10).

It can be seen from Table 2.10 that approximately half of the solar 

radiation is absorbed or reflected by the atmosphere. The large error 

bounds for the mid rainy season month of August are due to the effects 

of cloudiness on the measured value. Often, after a storm, the atmosphere
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has low humidity and the absorbtion of solar radiation is less than 

usual. In addition, the atmosphere is less dusty and therefore a great 

er percentage of the radiation is transmitted.

Table 2.10 Average daily radiation at Saniaru (After Kowal, 1972a)

Month Measured Ra Calculated ., -2
Radiation -2 Radiation

2 v/m a = 0.18 b = 0.55 a = 0.235 b = 0-535

J 229-11 36? 21? 223

F 258 - 7 397 245 262
M 265 - 5 425 237 256
A 248 ± 10 437 229 249

M 249 - 9 433 228 247
J 235 - 24 426 218 237
J 216 i 10 427 198 217
A 213 - 36 432 175 196
S 230-13 427 208 227

0 245 - 7 405 235 252
I- 234 - 7 375 230 246
D 222 - 21 356 214 229

Note. A value of a = 0.25 is assumed although this is not stated by Kowal.

The effect of varying the albedo (a), causes a large change in the 

calculated Re term. It is of great importance to estimate the albedo 

correctly if a reliable value of Re is to be obtained. In certain cir 

cumstances the albedo remains constant throughout the year, notably for 

a water surface (a= 0.05). If Re is to be estimated for a land surface, 

then a variation of from 0.10 to 0.35 should be allowed for. Plate 2.1 

shows the dry season ground surface at the meteorological station in Bauchi. 

The dust haze of the I'Torth East trade (Earaattan) is evident.

The earth is warmed by the receipt of radiation from the sun and 

radiates energy itself in much the same way as the sun. The earth is 

assumed to radiate energy as a black body at its mean air temperature at 

the surface. The energy emitted from the earth is also at a longer wave 

length than that from the sun. The long wave radiation is reflected by 

cloud cover and to a lesser extent absorbed by water vapour. Figure 2.18, 

after Harvey (1976), indicates the nature of the back radiation. Apart 

from low absorption within the 0.8 - 1.4/um wavelength, which escapes



freely into space, about 90?' of the earth's radiation is absorbed by 

the atmosphere.

The effective back radiation may be estimated using the empirical 

equation derived by Brunt (1941).

Rb =<rTQ4 I 0-56 + 0-08(ed)^] x [0-1 +0-9{n/N)l _____ 2-9

where a = stefans constant 5-67 x ^ ^ ^ 

Ta = air temperature k 

e^ = vapour pressure mb

% = ratio of observed sunshine hours to 
total possible sun hours

Although Equation 2.9 is an empirical relationship, it does estimate 

the Rb term to a reasonable degree of accuracy and is in general use. 

The occurrence of the vapour pressure term provides an explanation of 

why the land surface cools more efficiently on a clear night in the dry 

season than during the wet season. Frost damage occurs about once every 

ten years on exceptionally clear dry nights in the dry season.

The net radiation received at a surface is described as the diff 

erence between the upward and downward fluxes

R n = R c d-0 - or) ± R b ——————— 2-10

The concept of net radiation (En) serves as a convenient measure of 

the energy available for evaporation, evapotranspiration, heating of the 

soil and rock surfaces, and photosynthesis. The use of the net energy 

varies throughout the year and is examined in more detail below.

There are few measurements of Rn applicable to the savanna. Kowal 

(I972a) and Eassam and Kowal (1975) report measurements made with a Funk 

ventilated radiometer over short grass or crops at Samaru. The results 

are presented in Table 2.11.

The values of Rn (calculated) overestimate the values of Rn (meas 

ured) by varying proportions. No values of Rn were obtained for the dry 

season. However, as a result of the pronounced aridity and changes in 

the land cover that produce bare soil or dried grassland with isolated 

trees, the albedo and the Rb terms increase substantially, resulting in 

very low dry season Rn values.
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Table 2.11 Keasured and calculate;: value- of net radiation 

(after Kowal 19?2a)

Month Measured , Calculated ,•r>^ T. .rxb ^, ^ a ,, bEn „ Rc^ PJU Rb^ Rn - Rn
Vfoi VJm \Jm \Jm \Jm

1
2

3
4
5
6
7
8

9
10

11
12

229

258

265

248

249

235
216

213
230

245
234
222

87

111

119
113
101

109

93

223
262
256
249
247
237
217
196
227

252

246

229

23
37
67

105
117
117
114
106
116
107
53
31

144
159
125
81
68
60
48
41

54
82

131
140

-18

- 6

+ 2

- 1

- 5
- 7
-14

ITotes. The values of Re calculated have been obtained using a = 0.235 

and b = 0.535 in the Angstrom equation. A value of the albedo for short 

green grass is used in Equation 2.7 to calculate Re.

Various instruments have been designed to measure net radiation 

directly, or in terms of some parameter which can be accurately correl 

ated with net radiation. One such instrument which is widely used in 

Nigeria is the Gunn- Bellani distillator. Davies (1965) established a 

good linear relationship between Gunn-Bellani data and flux radiometer 

data for Ibadan and Benin. Both these stations are at approximately 7 

latitude.

The Gunn-Bellani distillator installation at Bauchi is shown in Plate 

2.2. The black sphere is heated by incident radiation which passes through 

the hollow glass sphere. The glass sphere sits on the black metal ring, 

at ground level. The heating causes water to be evaporated from a res 

ervoir beneath the surface, which is condensed and falls to the bottom 

of the lower glass tube. A daily measurement of quantity of distillate 

is correlated with net radiation during an initial calibration. Unfor 

tunately this calibration was not available at Bauchi.

To investigate the relationship between calculated net radiation 

using equations 2.7 and 2.9 (a = 0.235, b = 0.535), and Gunn-Bellani dis 

tillator measurements for Bauchi, a correlation analysis was carried out



Plate 2.1 Nigerian Government Meteorological Station, BAUCHI. 

Note thick harmattan dust haze. No sunshine recorded by Stoke 

Campbell recorder.

Plate 2.2 Gunn Bellani distillator - Bauchi. 

Note very dry ground surface in early February. 

Albedo = 0.35-
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between the two variables. The results were unfortunately poor, being 

significantly better during the rainy season than during the dry season, 

The results are presented in Table 2.12.

Table 2.12 Monthly correlations between calculated net radiation 
and Gunn-Bellani data for Bauchi.

Month 1978 1979 a

1 0.47

2 0.45

3 0.08

4 0.88

5 0.89
6 0.84
7 0.84
8 0.73

9 0.62

10 0.88

11 0.47

12 0.11

The lack of correlation during the dry season is perhaps indicative 

of the significance of the albedo term (<*). However, considerably 

greater correlation is required before distillator measurements can be 

used to accurately reflect net radiation. In the absence of radiometer 

measurements the theorectical net radiation calculation based on Equations 

2.7 and 2.9 is preferred.

-0.49
0.15
0.19
0.25
0.94
0.82
0.87
0.84
0.83
0.85
0.39

-0.35

0.35
0.35
0.35
0.15
0.25
0.25
0.20
0.15
0.15
0.25
0.30
0.35

Equations 2.7 and 2.9 may be combined to form :

R n = R c (1-0-a]x[ Q +b(n/N)l - <7T,J[0-56 + 0 08(ed )1/2]x[0-1 + 0-9 (n/N)] ————— 2-11

with notation as above.

When a is held constant, the main variables are n,ed , and Ta. The 

temperature does not vary greatly throughout the year and therefore the 

variations of Rn should be explained by changes in n (observed sunshine 

hours) or ej (vapour pressure). A cross correlation analysis was per 

formed for data from seven years to investigate the nature of this inter 

relationship. The results for 1978 are presented in Table 2.13.
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Table 2.13 Correlation between net radiation, sunshine hours and 
vapour pressure for 1978 (a = 0.235, b = 0.535)

Month Rn vs n Rn vs(ea-^) a

1 -0.05 0.71 0.35

2 0.27 0.05 0-35

3 0.20 0.56 0.35

^ 0.98 0.^5 0.15

5 0.96 0.5*t 0.25

6 0.99 0.55 0.25

7 1.00 0.82 0.20

8 0.99 0.87 0.15

9 0.98 0.51 ' 0.15
10 0.93 0.^6 0.25

11 0.06 -0.76 0.39

12 0.27 -0.03 0.35

Note. («a~ed ) represents the vapour pressure deficit and therefore includes 

a dependence on Ta.

A high correlation between observed sunshine hours and net radiation 

for the rainy season months April to October is shown in Table 2.13. By 

contrast, the correlation between net radiation and vapour pressure defi 

cit is low throughout the year.

In Table 2.1^, the albedo is varied between 0.07 and 0.35, while the 

net radiation for each month is calculated. It may be seen that the change 

of albedo causes a very significant change in the calculated net radiation.

For any particular period over which Rn is calculated, a simple lin 

ear relationship between Rn and (a) may be found. For high values of a', 

the net radiation becomes negative.

For the calculation of Rn over an open water surface, a value of a 

= 0.07 should be used throughout the year. Similarly, for the calcul 

ation of Rn over an irrigated crop surface, a value of a between 0.18 

and 0.25 should be used depending upon the growing cycle. For the calcul 

ation of Rn over a ntaural vegetation surface, values varying as in Table 

2.15 could be used. The annual variation of albedo over a natural veg 

etation surface is complicated, and the assessment of the change will have 

a significant effect on evapotranspiration calculations presented below.
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- -2- 
Table 2.14. Calculated monthly net radiation for varying albedo /V/m _/

a = 0.235, b = 0.55

onth

1

2

3
**

5
6

7
8

9
10

11
12

'otal

= 0.07

75
88
104
125
127

138
131

120

118

122

101

75

1324

= 0.10

70
82

97
119
122
133
126
115
113

119
96
70

1260

= 0.20

52
63
80
100

103
114
108

99
96

99
79
55

1048

= 0.25

44

53
71
91

94
105
100

91
88
91
70
46

944

= 0.3;
12

33
53
71

75
86
82
76
71

73
53
31

716

However, the values shown in Table 2.15 represent a more accurate assess 

ment of the natural situation than holding the albedo fixed throughout 

the year.

Table 2.15 Monthly variation in albedo (or).

Month 1 2 3 4 5 6 7 8 9 10 11 12

0.35 0.35 0.35 0.15 0.10 0.25 0.20 0.15 0.15 0.25 0.30 0.35

The values suggested in Table 2.15 reflect the changing ground sur 

face conditions throughout the year. Commencing in January with bare, 

burnt ground with isolated trees, the change to young vegetation in April 

and May will be determined by the timing of the early rains. The ground 

surface changes very rapidly after the first rains, with new grass becom 

ing established within seven days. The albedo of bare wet soil is only 

0.10, implying a rapid drying of this surface at the beginning of the rains. 

The fluctuations of albedo during the wet season are based upon Kowal's 

work described above. Finally, the change from wet season albedo to dry 

season conditions is also determined by the timing of the end of the rains, 

and a fixed monthly discretisation must involve error in any particular year.

The assessment of albedo within the savanna is an area that requires
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considerable research. The importance of the correct assessment is de 

monstrated by the figures presented in Table 2.14.

The choice of the regression values 'a 1 and *b f in the Angstrom equa 

tion also significantly effect the net radiation calculation, but not 

as strongly as the choice of albedo. The values that are recommended by 

the author, are also those presented by Kowal (1972). These values are 

a = 0.235, b = 0«535i and are the values used to calculate net radiations 

presented in Tables 2.10 and 2.11. Various other sets of values have been 

used and Table 2.16 shows their relative effects on the net radiation 

value.

Table 2.16 Rn for different Angstrom equation values I Wm \ Data for 
Bauchi, 19?8. ( a= 0.25 throughout)

tonth

1

2

3
4
5
6
7
8
9

10
11
12

(D 
a = 0.180
b = 0.550

38.3

54.3
63.2
78.3
98.3
86.9
72.5
87.2
90.0
9^3
60.0
44.6

(2) 
a = 0.285 
b = 0.520

5^-3

72.6
84.6

102.3
120.3
108.6
94.9

108.6
110.9
118.8
76.9
60.0

(3) 
a = 0.235 
b = 0.535

46.8
64.0
74.6
90.9

110.0
98.3
84.0
98.6

101.2
104.6
68.9
52.9

(4) 
After 
Da vis

45.2

63.2

76.3
83.5

113.5
98.3
86.3
99.8

100.6
104.1
68.3
58.0

(5) 
a = 0.123 
b = 0.732

54.9
74.0
79.2
83.5

113-5
96.9
75-5
96.9

103.2
111.8
78.6
63.2

Totals

Notes. 

1.

867.7 1107.8 994.8 997.1 1031.5

Constants originally devised for Rothampstead U.K. and used by Pen 
man (1948). These values have been used in a number of studies, 
notably by Kowal and Knabbe (1972).

2. Constants from McCulloch (1965)
3. Constants from Kowal (1972a)
4. Twelve different monthly sets of constants devised by Davis (1966)
5. Average values from (4).

The two experimentally verified sets of values after Kowal (3) and 

Davis (4) show very good agreement both in their distribution and in their
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annual totals. The values which have previously been generally used, 

(set 1), show a 12.8$ underestimate of net radiation. The values of 

a and b after McCulloch (set 2) show a 10.2% overestimate. Thene per 

centages are calculated assuming set 3 values to be the most accurate.

Using values of «a' and 'b 1 as recommended above, values of al 

bedo as shown in Table 2.15 and the sets of daily meteorological data 

for Bauchi, values of monthly net radiation were calculated for a num 

ber of years. This data is presented in Table 2.17. The degree of 

annual variation is not insignificant.

Table 2.17 Average monthly net radiation for Bauchi (a = 0.235* b = 0.535*
distributed as in Table 2.15)

[onth

1

2

3
4

5
6
7
8
9

10
11
12

1969 
Wnf2

27-7
33.4
70.6

117.8
117.8
105.8
107.5
109.5
113.2
105.5
67.2
40.6

1970 
Wnf2

33.2
34.9
45.6

105.5
116.3
112.9
102.9
94.1

108.1
91.5
57.5
34.6

197? 
Wm

26.6
33.7
43.7

109.8
108.1
104.9
108.1
106.1
122.1
96.9
50.0
32.0

1974 
Wnf2

31.2
31.4
43.7

115.2
111.8
101.8
91.2

106.1
114.3
101.8
55-2
30.0

1978 
Wnf2

29-7
44.0

54.9

107.2
119-8

98.3
91.2

115-5
118.9
104.6
60.0
35-2

1979 
Wnf2

28.5
36.0
54.6

112.3
105.8
106.9
110.6
109.5
106.5
92.9
63.5
32.6

Total 1016.6 940.1 942.0 933.1 979.3 960.1

_2 
The average annual net radiation is 962 V.'m with a standard deviation

_o 
of 31 Wm . The conditions in 1969 appear to have been exceptionally

clear, particularly during the dry season months. The incidence of har- 

mattan must have been low.

Temperature Distribution.

The energy available at ground level from the net radiation, is ab 

sorbed by a number of different processes which vary significantly through 

out the year.

The use of net radiation may be described by the equation



= G + H + L + P [Wm2 ] —————— 2.12

where G = ground heat flux [ Wm ]

H = atmospheric heat flux [Wm I
_2 

L = evaporation heat flux [ Wm I

P = photochemical heat flux iWm I

Kowal and Kassam (1973&) report seasonal values for the components 

of the energy balance as follows :

Table 2.18 Distribution of net radiation components.

Wm~2 % of Rn

Rn 154 100

Transpiration Ep 84 5^*5

Evaporation from soil (Es) 35 22.7

Evapotranspiration (Ep + Er) 119 77.2

Airflux (H) 26 16.9

Soil heat flux (G) 6 3.9

Net photosynthesis (P) 3 2.0

This data was gathered over a crop of maize during the period 

June to October at Samaru.

It may be seen that during the rainy season, three quarters of the 

net radiation is required by the processes of evapotranspiration and only

20;c is expended by heating the air and the ground. Consequently, the 

day temperatures during the wet season do not show much fluctuation. 

There is also little cooling at night because the Rb term is kept small
<x

by cloud cover and-relatively low surface temperature^cooled by rainfall.
A

During the dry season, vegetation dies and is burnt by the local 

villagers (see Plates 2.3 and 2.4). Therefore little of the net radiation 

can be expended via evapotranspiration and the majority of the energy is 

used to heat the air and soil. Since the skies are clear and daytime air 

and soil temperatures are high, there is a large component of back rad 

iation (Rb) at night with a consequent drop in night temperatures. Plates 

2.3 and 2.4 show typical surfaces which exist throughout the dry season. 

The albedo in each case will be high.

The varying use of net radiation during the year is of practical 

significance during the calculation of evapotranspiration discussed below. 

Within temperate climates the values of H, G and P are assumed to be
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Plate 2.3 Crop residue and nearby grass has been burnt off
in November to reduce the risk of major fire damage to
woodland by a fire started at the end of the dry season.

Plate 2.k Woodland in December showing the results of firing 
the grass during the early dry season.
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zero and all the net radiation is consumed by evapotranspiration. With 

in the savanna this assumption must cause considerable error, most esp 

ecially during the dry season.
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2. EVArORATION AND EVAPOTRAN3PIRATION. 

General.

Evaporation and evapotranspiration are usually considered together 

even though they relate to two distinctly different elements of the 

climate. The combined effect of the two processes has a dominant in 

fluence on the water balance of the savanna. For example, the annual 

evaporation from an open water surface is approximately double the annual 

rainfall, and it is this basic imbalance which causes the marked season- 

ality of the climate throughout the year.

Evaporation, often denoted by the symbol Eo, and synonymous with 

'open water evaporation 1 relates to the evaporative power of the air. 

Eo serves as a standard yardstick for the comparison of the evaporative 

power of the air within different regions, -and as such is regularly mea 

sured or computed during climatol^cal work. The measurement of Eo, 

particularly in the tropical environment has not been found to be very 

reliable and as such Eo is calculated from standard meteorological ober- 

vations.

Svapotranspiration, often denoted by the symbol E^is the combined 

transfer of water by evaporation from the soil and by transpiration from 

plants. The quantity of evapotranspiration depends upon the availability 

of water in the soil, evaporative demand of the atmosphere, crop density 

and cover, and the stage of growth of the crops or vegetation. Evapo 

transpiration is therefore a difficult quantity to calculate. Lysimeters 

have been used to measure evapotranspiration from areas of growing crops 

however, it is more often calculated using a theoretical approach.

The Calculation of Evaporation.

Evaporation commences and continues as long as there is a supply 

of moisture, a vapour pressure gradient between the water surface and the 

atmosphere and a supply of energy. The energy required to supply the 

latent heat is withdrawn from the most convenient source, which may be 

the sun, the overlying air, the ground, or from the water itself (Wesj.ner, 

1970). The principal independent source of energy for evaporation how 

ever is net solar radiation, and the derivation of this quantity has 

been discussed in detail above. The input of net radiation reaches an 

equilibrium with an appropriate rate of water diffusion. If the net 

radiation input changes, for example, if the sun is obscured by clouds,
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there is an immediate drop in net radiation received, but the evaporation 

flux changes more slowly as the existing vapour pressure gradient per 

mits the continued diffusion of water vapour into the air.

Evaporation may also occur when there is no available net radiation, 

by the turbulent transfer of energy from the airmass. Such evaporation 

is determined by the humidity and wind speed of the air passing over the 

water surface. This advective form of evaporation is especially signi 

ficant during the dry season.

The combined energy-balance vapour-transfer method of Penman 

is widely used for the calculation of evaporation. Since 19*+8, when 

Penman published the first theoretically sound treatment of the evapor 

ation process, there has been continued research into the subject and a 

number of significant modifications have been suggested. Thorn and Oli 

ver (1977) have reviewed the evolution of the Penman equation and Weisner 

(1970) gives an anlytical treatment of the combined approach derivation.

Penman's original formula may be written as : 

E =
V+A V+A

where E0 = evaporation in mm :vater per 
day

H = net available energy in mm
equivalent evaporation per day

EQ = aerodynamic term (discussed 
below)

A = slope of the vapour pressure 
vs temperature curve for 
water at the air temperature 
Ta

y = ther-^o dynamic value of the 
psychrometric constant

The equation consists of two terms, the first is commonly referred 

to as the radiation term, while the second is called the aerodynamic term. 

The two terras represent the contribution to Eo from the energy derived 

from net radiation input and the energy derived from the drying power of 

the air.

The net available energy consists of the available net radiation (Rn) 

calculated from equations presented in Section 2.3-» less the energy ex 

pended in heating the water. The latter term is usually considered to be 

insignificant.
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The aerodynamic term is calculated from a number of formula of the 
type :

EQ = f(u)x(es-e) ————— 2-U
where u = v/indspeed

(e$-e) = vapour pressure deficit 

The original Penman relationship was : 

Ea = 0.26 (es -e)x(l + 0.006214 x u) /mm day"^/ ——————— 2.15

where es = vapour pressure [_mbl

e = saturated vapour pressure [mb] 
at Ta the average air temper 
ature [°C]

u = wind run per day [km]

The constants have been adjusted to 
conform to the metric system.

y = 6.574 x io~4 x p ————— 2.16

where p is the average ambient pressure [mb] 

A = slope of the saturation vapour pressure curve at Ta.

Appendix A contains detailed notes on the algorithm that has been 

written to calculate evaporation. The use of a wide range of units has 
led to some confusion in the literature and recent results (Slabbers, 

1977, Bevin, - 1979) have been presented using S.I. Units.

The daily evaporation for a water surfacte with an albedo of 0.07 

has been computed for the years 1969, 1970, 1971, 1973, 197^, 1978 and 
1979, based on the daily climate data available at Bauchi. Values of 
daily wind run at 2 metres height (km), relative humidity (average of 8 

daily readings), average temperature (maximum and minimum readings in C) 
and sunshine hours as measured by a Campbell Stokes recorder, have been 

used in the analysis. Of these data inputs, only the temperature estima 
tion of a 2k hour average from maximum and minimum data is likely to be 

in error, and this has been found to be less than 2 C from an examination 
of hourly measurements. The effect of a 10$ error in Ta is described be 

low.

The average monthly totals, calculated by summing daily values are 
shown in Table 2.19-
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Table 2.19 Evaporation totals for Bauchi (mm day" )

= 0.07, a = 0.235, b = 0.535

Month
1

2

3
4
5
6
7
8
9

10
11
12

Totals

1969

161.4

176.2

225.6

208.6
206.8
180.7
162.6
150.8
152.1
178.5
161.2
166.0

2124.4

1970
163.8
169.7
213.4
211.3
213.2
200.0
158.8
128.0
145.2
171.6
163.4
156.4

2094.7

1971
158.9
169.5
214.6
214.0
218.0
180.2
151.9
141.8
159-7
178.9
159.8
153.8

2101.1

1973
166.2
173.5
211.4
220.1
215.8
193-7
171.8
148.3
166.3
184.0
160.3
160.5

2171.8

1974
149.5
164.5
205.1
213.8
197.5
179.5
138.9
144.2
153.2
176.5
163.7
149.9

2036.2

1978
160.1
172.2
213.4
185.5
206.4
163.8
136.7
155.5
158.1
175-8
I57c8
153.7

2038.9

1979
161.1
167.5
205-3
207.5
202.7
181.2
165.9
155.4
160.9
167.9
158.2
148.3

2082.0

Average
160
170

213
209
209
183
155
146
156
176
161
155

2093

The effect of using the Rothampstead values of a = 0.180 and b = 0.550 

in the Angstrom equation rather than the recommended values is to reduce 

the total evaporation for the year by approximately

The proportion of the total evaporation that is contributed by the 

aerodynamic term varies throughout the year. In general, as the dry sea 

son progresses, the vapour pressure deficit increases substantially and 

therefore the quantity of water that the air can absorb also increases. 

For the mid dry- season months the aerodynamic term contributes more than 

half of the total evaporation. The radiation term is strongly dependent 

on the observed sunshine hours. During the wet season, the vapour pres 
sure deficit is very low and the aerodynamic term is correspondingly small. 

Total evaporation during the wet season is therefore strongly influenced 

by sunshine hours.

A double peak in the total evaporation graphs is the result of a 

double peak in the net radiation term corresponding to the sun's zeni 

thal position.

The components of total evaporation and their interrelationship may 

be best shown diagrammatically. Figures 2.19, 2.20 and 2.21 show total 

evaporation for the years 1973, 1974 and 1979 respectively. Daily rain 

fall is shown as a histogram beneath the plots of daily total evaporation,
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the aerodynamic contribution, and the radiation terra contribution.

The evaporation calculation has been conducted for daily and month .Vv 

periods. The results obtained by summing the data calculated on a daily 

basis and the results obtained by using averaged daily data on a monthly 

basis show very little variation. An error of less than 1.5'- in the 

monthly total during the dry season months is found to occur. This 

error is reduced during the wet season. Penman (1948) originally re 

commended that the evaporation calculation be carried out using data av 

eraged over a ten daily period. This precaution was introduced to com 

pensate for the diurnal variations in evaporation which the empirical 

form of the equation, especially in the aerodynamic term, may wrongly 

estimate.

Sensitivity of the Evaporation Calculation.

Equation 2.13 is comprised of a complex association of measured and 

estimated parameters, all of which affect the accuracy of the evaporation 

estimate. The estimated parameters are contained wholly within the net 

radiation term and the highly significant effects of using poor estimates 

of these parameters has been demonstrated in Section 2.3. The measured 

parameters consist of sunshine hours (n), wind speed (u), average temp 

erature (Ta) and relative humidity, usually derived from wet and dry 

'bulb measurements.

The effect of errors in the measurement of these parameters has been 

studied for a U.K. climate by Howard and Lloyd (l979)» wh° reported that 

calculation of evaporation using the Penman equation is most sensitive to 

wet bulb data.

A sensitivity analysis has been carried out for the data available 

at Bauchi to investigate the effects of errors in measured parameters on 

the evaporation calculation in a savanna environment. The measured par 

ameters have been varied by 2, 5, 10 and 20^, with the results presented 

graphically in Figures 2.22 (variation in n), 2.23 (variation in Ta), 

2.24 (variation in relative humidity), and 2.25 (variation in windspeed,u) 

A five point running mean filter has been used to smooth the data so that 

the considerable daily variations shown earlier do not mask the sensiti 

vities.

It may be seen from Figures 2.22 to 2.25 "that the most sensitive 

measured parameter is the average temperature. The maximum lO^c error in 

average temperature produced by averaging the daily maximum and minimum 

temperatures, will produce a 5»$'' error in the calculated evaporation.
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The seasonality of the sensitivity of the other parameters is 
well demonstrated. The wind run is the most sensitive parameter in 

the dry season. The relative humidity is "by contrast most sensitive 

during the wet season, when a small change in vapour pressure deficit 
can cause considerable evaporation to occur. The measured sunshine 

hours have an even sensitivity throughout the year.

The sensitivity calculations have "been worked assuming a constant 

albedo. It is probable that algal growths during the dry season, and 

the extensive development of vegetation, both floating and peripheral, 

will alter the albedo and thus cause significant departures from the 

estimated values. These effects remain completely unquantified however.

As the radiation input is the controlling factor behind the evap 

oration, the same sensitivity analysis was run for incoming radiation, 

the Ra term in Equation 2.5. In the light of the possible 5$ error in 

estimating Jo (Equation 2.3) (Lamb, 1972), it may be seen from Figure 
2.26 that the associated error in evaporation is

From the above analysis it may be seen that the measurement of temp 

erature is the most significant parameter in which lack of accuracy can 

lead to error. An average daily temperature computed from three hourly 
readings at least is required to maintain accuracy. In addition, a vari 
ation of Ra is seen to significantly influence the evaporation calcul 

ation. If Jo varies by - 5^ as is thought possible (Lamb, 1972 ) , then 
a variation of evaporation by as much as 22Ctem between different years 

could occur. This tends to support the argument that variations of the 
solar constant can influence climate, significantly. However, that subject 
is treated extensively by Lamb (1972), and will not be entered into here.

Estimation of Evaporation.

Very little direct work has been carried out in savanna regions to 

measure evaporation losses from surface water bodies. For this reason, 

there is no direct co-nparison between actual evaporation loss and the 

predicted loss based on Penman type calculations. Estimates of evapora 

tion show a variation which mainly reflects the use of different Angstrom 

equation constants. The lowest estimate of yearly evaporation at pauchi 

is provided by Kowal & Knabbe (1972). The Agroclimatological Atlas of 

Northern ITigeria gives a figure of 1851mm per year. The highest figure 
suggested in the literature is one of 2443mm per year (Consulint, 1976). 

The results provided by the above analysis indicate a figure between these
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two extremes of 2093mm per year (Table 2.18).

In temperate latitudes, the evaporation from pans has provided a 

useful guide to Eo. The Bauchi data for 1978 and 1979 includes evap 

oration for a class A pan shown in plate 2.5. Unfortunately the co 

rrelation analysis carried out for monthly data indicated very low corr 

elations between Eo and the pan data. It is not clear why these results 

were so poor.

Piche evaporimeter measurements have been taken for several years at 

the Bauchi station. The Piche evaporimeter is installed in the Stephen- 

son screen beside the maximum and minimum thermometers. A paper filter 

is attached to a water reservoir and advection of water occurs through 

the filter from the reservoir, A daily measurement of water loss from 

the reservoir provides an estimation of the aerodynamic component of the 

evaporation. The Piche evaporimeter has been used to estimate Eo for a 

number of stations in Israel (Stanhill, -. 1963), where the data is used 

in the absence of wind speed measurements. A high correlation between 

measured evaporation for a large open area of water and calculations of 

the evaporation based on the use of Piche data to estimate the aerodyn 

amic component is reported. In Table 2.20, the correlations between Piche 

data and the aerodynamic term for the Bauchi data are shown. It can be 

seen that throughout the year the correlation is high for a well kept 

instrument. Low correlations tend to occur due to dust, insects or other 

material clogging the filter paper.

Table 2.20 Correlation between Piche data and the aerodynamic term 
in Penman's equation.

Month

1

2

3
4

5
6
7
8
9

10
11
12

1970

0.85

0.76

0.85

0.82

0.88
0.90
0.93
0.88
0.72
0.94
0.68
0.85

1971
0.64

0.77

0.83
0.93
0.92

0.86
0.79

0.91

0.92

0.88
0.63
0.45

1973
0.78
0.88
0.87
0.82
0.85
0.90
0.91
0.88
0.74
0.87
0.72
0.90

1974
0.74
0.75
0.83
0.63
—
—

0.92

0.95

0.82

0.88
0.63
0.79

1978

0.83

0.71

0.62

0.86

0.84

0.88
0.85
0.92
0.92
0.81
0.70
0.59

1979
0.91
0.88
0.85
0.87
0.71
0.58
0.94
-
—
—

0.94
0.86



Plate 2.5 Type A evaporation pan at Bauchi.

Plate 2.6 Dry season land surface close to Bauchi.
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The results of work conducted at the Kakwaye Lake, Samaru (Kowal &

Kassam, 1978) indicate that the average evaporation loss during the dry
_<i 

season is about 7 to 8 mm day" . The estimated rate of evaporation using

the Penman formula and meteorological data collected over the lake was 
_1

6.9mm day . The additional evaporation is thought to occur as a result 

of the advective transfer of energy from the adjacent dry, hot land sur 

face. Kowal & Kassam report that a fetch of 60-75m is necessary before 

the evaporation over the water surface ceases to be influenced by this 

additional energy input. It is this factor which is also the major cause 

of error in evaporation pan measurements.

No allowance was made in the above experiment for the loss of energy 

due to the warming of the lake water. It is assumed that due to diurnal 

convective transfer within a shallow lake that this energy change is in 

significant.

The Calculation of Evapotranspiration.

The original form of the Penman system given in Equation 2.15 was 

modified by Penman (195&) to give a value known as potential evapotrans- 

piration. This was defined as the following. 'The amount of water trans 

pired in unit time by a short green crop completely shading the ground, of 

a uniform height and never short of water. ' The same equation was used to 

compute this value but the albedo was altered from 0.05 to 0.25« This 

modification, assuming all other parameters were held constant, produces 

a value of evapotranspiration (Et) which is 20/J (- 1%) lower than Eo.

The definition of the potential evapotranspiration term is too lim 

ited for the savanna environment. In particular, the crops are not short 

green, growing on average to 2 metres in height, and the ground is not 

often completely covered. Apart from these limitations, a basic incom- 

patability exists between the energy balance term and the aerodynamic term 

(Thorn & Oliver, 1977) in the Penman equation.

Monteith (1965) showed from first principles that the latent heat 

flux from an unsaturated surface can be represented more accurately by 

Equation 2.17»

/?x Cp x(es -e)/rq



where E = evaporation [kg m~2 s'1 ]
f <i

•* = latent heat of vaporisation [ 2.^7 x 10 kg" ]
_2 

A = available energy [ Wm ]
(A = Rn - G - H - P, as in equation 2.12)

_2 
p = density of air [1.2 kg m ]

-7 1 r> 1
c p = specific heat of air [1.01 x 1(r kg" c" ]

es = saturated vapour pressure at Ta [ mb]

e = vapour pressure [mb]

TQ = average air temperature at reference level z [ °C]

A -^ slope of the saturation vapour pressure curve [ mb k]

V = psychrometric constant [mb k ]

rQ = aerodynamic resistance to the trasport of water vapour. — i.from the surface to the reference level z [sm ]

rs = canopy resistance to the transport of water from some 
region within or below the evaporating surface to the 
surface itself. Under wet canopy conditions rs =0-0

It may be appreciated from Equation 2.1? that for wet canopy condit 

ions, the condition for which the Penman equation is limited. This equa 

tion resembles the Penman equation as rs = 0. The radiation term be 

comes identical, but the aerodynamic term is altered somewhat.

The net radiation measured at the reference level has been described 

previously.

One form in which rQ may be calculated is as follows (Bevin,19T9)

rQ = [ ln((z- d)/z 0 )2/ k2x u [sm 1 ] ———————2-18

_ 
where u = mean wind speed [ ms ]

z = reference level of the anemometer (2.0m) [m]

d = zero plane displacement [m]

Z0 = roughness length ( Z 0 = h/100) [m]

k = Von Karman's constant 0.^1

h = vegetation height [m]

This form was originally used by Penman and Long (1960). There is 

evidence (Bevin, - 1979) that d and Z0 are both functions of the wind 

speed u. However, for the purposes of the present study, where an accur 

ate assessment of regional evapotranspiration is required, Equation 2.18 

has been used as modified by Thorn and Oliver (1977K The zero plane dis 

placement is considered insignificant and z is estimated by h/10.0 where 

h is the vegetation height in cms.
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The value of rs represents a complicated interaction of factors, 

and it is in this term that there is scope for representing the sav 

anna environment more accurately. Slathers (1979) suggests an equation 

of the form :

ps = 1*1 + rc + rh [s m'1 ] -———————-2-19

where q = stomatal resistance Qs m"\

rc = resistance depenent upon the degree 
of soil cover (^s^r'l

r^, = resistance dependent upon the
availability of soil moisture and 
on liquid flow in the plant fr'*'3

Slabbers, working in northern and southern Iran, the Lebanon and 

Tunisia reports values of r^ as follows

Table 2.21 Relation between soil cover % and diffusion resistance to, 
water vapour dependent upon fraction of soil covered [sm~ J

Soil cover

sm

10

250
20 

180

30 

120

40 

80

50 

50

60 

30

70 

20

80 

10

90
0

100 

0

The TC parameter is naturally important in the savanna environment, 

especially at the beginning of the rains and during the dry season. The 

value of rL is difficult to quantify but is thought (Slabbers, 1797) to

be of an order of magnitude less than TC or r^. Bevin reports r t to
-2 -1 

vary diurnally, and Monteith reports values of TL of only 10 sm

for leaves in contact with moisture and values of 50 sm f°r forest.

It has been found during runs of the evapotranspiration algorithm 

described in Appendix A , that values of r$ of several thousand are re 

quired in Equation 2.19, "to reduce dry season evapotranspiration to lev 

els of less than 0.5mm day , the levels that are probably operative 

during the dry season.

The complexities inherent in Equation 2.17 were readily recognised 

by Thorn & Oliver (1977) and they suggested a modified form of the aero 

dynamic term in. the Penman equation, v±z

E^ = 13-8 (ej-e)x(1-0+ 0-006214x U ) /[ln(z/zj] 2 [mm day]—————— 2-20
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Identity with Equation 2.15 occurs for z = 2m when z0 = 1.37mm. 

This represents a very small value of the vegetation height corresponding 

to Penman's original emphasis on short green grass. The vegetation 

height in this case would be 1.37cms.

Evapotranspiration Results.

Penman evapotranspiration, using an albedo of 0.25 in equation 2.13 

has been calculated for the year 1979. To investigate the effects of 

varying the albedo within the context of the more familiar Penman equa 

tion, the same algorithm was run with albedos varied as presented in 

Table 2.15. Although the annual total of evapotranspiration remains 

almost unchanged, the distribution within the year is significantly al 

tered. Of a total of l660mm, 75™a extra evapotranspiration occurs dur 

ing the rainy season, compensated by 75mm less during the dry season. 

Such a change of balance will naturally effect the ground water balance. 

The results are presented in Table 2.22.

The figures presented in Table 2.22 represent the. potential Penman 

evapotranspiration, or the evapotranspiration which would occur if the 

soil moisture held in the root zone was never depleted, and the crops 

were of a constant, small height.

Use of the modified Penman equation (Thorn & Oliver, 1977) for the 

1979 data set indicates a figure of E T that is approximately double the 

value obtained using the Penman equation. This difference is accounted 

for by the fact that the vegetation height is always greater than that 

implied by the Penman aerodynamic term. Using monthly values of Z0 as 

indicated in Table 2.23, the annual total ET is 3093mm.

Table 2.23 Modified Penman equation Z 0 values

JFMAMJJ AS OK I) 

4.0 4.0 8.0 12.0 20.0 50.0 100.0 150.0 180.0 150.0 70.0 20.0

The values of Z 0 reflect the seasonal vegetation changes. However, 

as the dry season values are still higher than the Penman values, and 

the aerodynamic roughness of a dry landscape should still be greater than 

that of a short grass crop (ze = 1.37mm), this modification does not 

provide a useful improvement to the ET calculation for a savanna environ 

ment. The equation is recommended for use in a temperate environment 

however.
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Table 2.22 Penman evapotranpiration for a surface with constant albedo
compared with an albedo varied to reflect the seasonal changes

Decade Albedo ET( Albedo

1
2 January

3

4
5 February

6

7
8 March

9
10

11 April

12

13
14 May

15
16
1 7 June

18

19

20 July

21

22

23 August

24
25
26 September

27
28

29 October

30

31
32 November

33

34
35 December

36
Total

38.1

0.25 40.0
48.6
45-6

0.25 48.7
38.3
54-1

0.25 53.4
61.5
55-5

0.25 62.1

53.2
52.5

0.25 50.4
62.9
42,5

0.25 45-6
51-1
40.7

0.25 41-9
48.9
40.6

0.25 40.7
42.6
41.4

0.25 42.7
44.6
43-2

0.25 43-8
45-9
42.8

0.25 40.7
41.6
37.1

0.25 36.4

43-?
1669

32.2

0.35 34.0
41.4
38.6

0.35 41.6
33-0
48.0

0.35 45.8
55.0
61.8

0.15 70.0
59.4
55.6

0.20 53.6

66.9
48.5

0.25 45-6
51.1
43.6

0.20 45.0

52.4

46.5

0.15 46.6
48.3
47.0

0.15 48.6
51.0
43-2

0.25 43-8
45-9
39-8

0.30 37.6
33.6
31.6

0.35 30.8
37.1

1659

-5-9
-6.0
-7-2
-7.0
-7.1
-5-3
-6.1
-7.6
-6.5

+6.3
+7-9
+6.2
+3.1
+3.2
+4.0
0.0

0.0

0.0

+2.9
+3.1
+3.5
+5.9
+5.9
+5.7
+5.6
+5.9
+6.4
0.0
0.0

0.0
-3-1
-3-1
-3.0
-5-5
-5.6
-6.2
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In a similar manner to the sensitivity analysis of the measured 
parameters of evaporation, the sensitivity of Equation 2.17 to variations 
in albedo (ct), TS and z 0 has been investigated. To achieve the low val 

ues of E T in the dry season that are likely from surfaces as indicated 
in Plates 2.1 and 2.2, the Rh term in Equation 2.19 is increased to 
several thousand, and completely dominates the calculation of Rs . This 
is not unreasonable as the resistance dependent upon the availability 
of soil moisture will approach infinity as the soil becomes completely 
dry. It is probable that some deep rooted plants tap the water table 
and that some evaporation occurs direct from this zone even during the 
dry season. For this reason, it is unlikely that E r ever becomes zero.

During the wet season, the crops grow to approximately 2 metres in 
height. The effect of increasing the Z 0 term to reflect this increase 
in aerodynamic roughness (Table 2.2l), and of increasing R5 to 50 ms~ 
is to indicate considerably greater ET during the wet season.

To demonstrate these changes, the values of Er for the Penman and 
Monteith equations are shown in Figure 2.27. A five point running mean 
has been used as a smoothing filter to afford a clearer comparison. 
The Penman value for a fixed albedo of 0.25 is shown on the least vari 
able function (annual total 1669mm). The Penman modified function var 
ies reflecting the changing vegetation height. It is always greater 
than the Penman function. The Monteith value approaches zero during 
the dry season months and increases to become greater than the Penman 
function during the wet season. The values of Rs used are presented 

in Table 2.24.

Table 2.24 Values of R s used in the Monteith calculation.

Month J FMAMJJASOND 

R s 3000 8000 700 200 100 60 50 50 50 70 100 800

The effect of changing R s during the wet season when k 0 is large is in 

significant. Similarly, the effect of altering k0 in the dry season 

when Rs is large is unimportant.

Figure 2.28 shews the contribution of the Monteith aerodynamic and 
radiation term to the total evapotranspiration function shown in Figure 

2.27. The 1979 rainfall is included for comparison.

Considerable error can occur at these transitions between the seasons. 
The values of albedo, k0 (vegetation height) and R s are all dependent
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upon the rains or more directly, upon the soil moisture balance. A 

monthly discretisation of these values is insufficient and a model 

whereby these functions are in some way linked to the soil moisture 

balance is suggested. Possible relationships will be discussed in 

section five.

It is evident from the above that the sensitivity of the Ey cal 

culation to the-measured climatic parameters is of an order of magni 

tude less than that of the estimated parameter, particularly the Rjfun 

ction.

Lastly in this section, it is worth noting that the calculated E T 

function will be reduced further in the dry season as the use of the 

available net radiation is changed. This point has been discussed in 

Section 2.3, although no allowance has been made for it in the calcul 

ations presented in this section. In temperate latitudes, the complete 

net radiation is assumed to be available for evapotranspiration, and it 

is not likely that this causes a significant overestimate of Ef . In the 

savanna however, it is not reasonable to make this assumption. Equation 

2.12 expresses the possible different ways in which net radiation can be 

absorbed, and Table 2.18 presents the results of experiments at Samaru 

(Kowal &Kassam, 1973a).

From Table 2.18 it may be seen that even in the wet season, only 

approximately 75$ of net radiation is used to produce evapotranspiration 

(E),the remainder is used to heat the soil (G), the air (H) and to drive 

the photosynthesis mechanisms (.P). During the dry season, most veg 

etation is dead and therefore evapotranspiration must be small, although 

some direct evaporation from the soil still occurs (as discussed in sec 

tion five). It seems probable therefore that there is a large redistri 

bution of the use of net radiation during the dry season. The increase 

in albedo causes a higher percentage of incident radiation to be reflect 

ed and therefore net radiation will be less in the dry season. Of this 

reduced net radiation it is suggested here that only 25$ is used for 

evaporation, the remainder is used to heat the ground and the air.

In the water balance algorithm, described in section five, and 

presented as Appendix E, the net radiation available for evapotranspir 

ation during the year is modified as described above. The change bet 

ween the 75$ available during the wet season, to the 25$ available dur 

ing the dry season is a function of the increasing soil moisture deficit
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(see section five). While it is accepted that this is not the conven 

tional approach, it is felt that the error produced by any inaccuracy 

in the empirically guided choice of conditions, is more than offset by 

the more realistic approximation of the actual environment.
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2.5 SUMMARY

Research in the whole general area of tropical meteorology has re 

ceived a considerable impetus from the general availability of satellite 

imagery. Before this time, the network of meteorological stations 

throughout the tropics was very sparse and the lack of upper troposphere 

observations was a particular restraint to understanding the tropical 

circulation. In addition to the general availability of satellite imagery, 

the results of the world meteorological observation programme directed at 

the West African and Eastern Atlantic area has provided a wealth of de 

tailed observation of upper and lower troposphere data. When this data 

is finally completely analysed, it is likely to provide a complete re 

assessment of tropical weather systems in general, and perhaps the Inter- 

tropical Convergence Zone in particular.

It is of use to summarise some of the major ways in which the tropi 

cal climate differs from that at temperate latitudes however, as there are 

direct hydrogeological implications arising from these differences.

1. There are no frontal systems producing fairly uniform rainfall 
over a wide area.

2. The high net radiation input creates a large number of localised 
storm cells which are characterised by very high intensity rain 
fall over limited areas. Lateral extrapolation of rainfall from 
a recording station is therefore not possible in time scales of 
less than five years if any order of accuracy of the extrapol 
ation is required.

3. The high net radiation input combined with the very marked sea- 
sonality of the climate produces greatly varying albedos through 
out the year. A background variation of between 0.10 and 0.35 
probably occurs. This variation produces a range of evapotrans 
piration values which are not experienced in temperate latitudes.

4. The concept of potential evapotranspiration based upon Penman's 
equation cannot be applied throughout the year. A more sophis 
ticated model based on an analysis after Monteith is required, 
with particular emphasis being placed on the evaluation of the 
aerodynamic and canopy resistance terms.

A considerable research programme is required before a systematic 

method of calculating actual evapotranspiration can be finalised. However, 

the methods suggested in Section 2.4 indicate a definite path of approach. 

In section six a groundwater balance is presented which attempts to explain 

several features of the groundwater hydrograph. The concepts presented in 

this section are used to control the evapotranspiration function in the 

general water balance. The effect of the variability of rainfall is also



investigated by using a number of different years of data from the Bauchi 

record with the same general evapotranspiration function.

It is necessary to describe the nature and evolution of the weather 

ing basins arid the rocks which are acted upon by the climate before a 

water balance can be attempted however, and the next two sections are 

concerned with this analysis.



3- vi.-*'LOGICAL :v: 

Introduction

The Cambrian and Pre-Cambrian gneisses and granites which compose 

the majority of the Basement Complex of Nigeria are essentially sim 

ilar to those which occur throughout the rest of Africa, and also over 

large areas of the continents of Asia, Australia and l£Ce America^. 

In addition, the climatic conditions discussed in section two of the 

thesis, represent the same general conditions which occur throughout 

the savanna regions of the world. The geological and climatological 

environments of Central South America, India, northern Australia and 

large parts of Africa south of the Sahara, are sufficiently sirilar 

to those of Northern Nigeria that the general discussions in this sec 

tion are valid throughout these areas. For this reason the first part 

of this section is discussed in general terms before specific examples 

from Northern Nigeria are described.

It is the purpose of this section of the thesis to examine the 

geological environment, and in particular the weathered zone, in order 

that a si".ple model of the groundwater resources may be constructed. 

This model will then serve as a basis for the development of the ^eo- 

phj'sical techniques designed to locate groundwater reserves in a spec 

ific area, and will also be used as a basis for the resource a.3se^s;.,ent 

in section six.

Crystalline rocks such as granites and gneisses, when in the un- 

weathered and unfractured state, exhibit very low porosity and are com 

pletely impermeable. By contrast, the weathering residues of these 

rock types are predominantly silty clays and quartz particles. The 

residue therefore has a high porosity, comprised of a large number of 

very small intertices between clay laminae, and negligible permeability. 

At some intermediate stage in the weathering process, a stage is reached 

whereby the crystalline matrix is completely ruptured and yet chemical 

weathering reactions have not produced large amounts of clay minerals.

These horizons within the weathering profile have porosities of 10-20;-'
2 -1 -1and permeabilities of 50 ra day m . It is the latter horizons which

constitute the groundwater resource. Unfortunately, the combination of 

weathering processes which produce these zones is not well understood. 

In the majority of locations the weathered profile is only approximately 

10m thick, and the zone of higher porosity and permeability is not
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sufficiently thick to form a useful resource. In ak'ition, thi ; -one 

lies often above the dry season water table levels.

The existence of areas of deep weathering, where the depth of 

the weathered profile exceeds 30 metres, h^s been reco^nir-ed for some 

time (Ruxton & Berry, 1957, Thomas, 1966, Faniran, 1975). However, 

as information concerning the depth and extent of this deeper weather 

ing is intrinsically difficult to obtain, very little research work 

has been devoted to the problem. The weathering mechanises that pro 

duce these weathering basins or troughs are not well understood.

Deep weathering in the tropics has played a considerable part in 

the protracted geomorphological discussion concerning the origin of 

inselbergs (Oilier, 1975)* and has been studied from the civil engin 

eering approach where deep weathering encountered in tunneling may be 

problematic (Newbery 1971; Irfan & Dearman, 1978). However, no con 

census of opinion has been developed, especially with regard to the 

nature of weathering beneath the permanent water table.

In the following section, various aspects of deep weathering are 

examined with the aim of identifying the significant hydrogeological 

processes. It is recognised that the treatment is in no way complete 

and that a great many questions remain unanswered.

In the first part of the section, the petrographical and chemical 

nature of the granites and gneisses are described with a discussion of 

the tectonic setting in which they have been formed. This may seem of 

little hydrogeological significance, however, the work in Nigeria has 

concentrated almost entirely on S-type (see section 3»1) granite and 

surrounding gneisses, and there is some indication that the I-type 

granites do not weather in quite the same way to produce basins of deep 

weathering.

The locus of deep weathering is probably a fracture or dyke in 

trusion related to a fracture system. If the tectonic style of an area 

can be understood then orientation and location of areas of deep weather 

ing may be predicted. These predictions, usually based upon an analysis 

of the remote sensing data, are of considerable use in restricting the 

areas that are investigated using geophysical techniques. For this 

reason the second part of this section contains a description of the 

various fracture types which may control deep weathering.

The third part of the section contains a discussion of the weathering 

processes and reactions that may occur within the deep weathering



environ :,,>nt. A l'ir (.jc : 'irt of thio discussion is cor. j<-ct,<r;..l .i-id thore 

io : i ::!_pl e sco i -e for /.-;ore detailed research in this ^rc^.

The engineering and peJolo^ical approaches hr^ve been combined in 

the fourth part to produce a geological model of a typical area of deep 

weathering. The concept of engineering grades (De-jrman et al 19?3) 

are of particular use in this respect.

The application of the geological model to areas of Northern Nij- 

eria is described in the fifth part of the section. The results of 

diamond core drilling through shallow weathered zones and the logs of 

a number of water well boreholes are used to substantiate the model.

Lastly, the physical properties of the soil are described in a 

final section as these are of great importance when the wat .r balance 

is considered in section six of the thesis.

It is recognised that the development of a water table within the 

weathered zone is inextricably linked with the chemical reactions v/hich 

occur within the zone, and that the two cannot be separated for hydro- 

geological purposes. However, in order to improve the clarity of the 

discussion, the description of the hydrological and hydrogeological 

implications are delayed, as much as possible, to section five of the 

thesis.



3«1 General Geology

The geological environment which is co:v:.r>n to the stable era- 

tonic areas consists of a complex association of hijh ( ;r'^e r.vita- 

rcurphic rocks, gneisses, migrnati'tes and granites. "he rock associa 

tions are generally the result of a number of little understood ^eo- 

synclinal periods, of Cambrian or Pre-Cambrian a^e. The last such 

orogenesis to effect large parts of Africa was the Fan African (650-

850 i:a).

As the petrogenesis of these rocks has such a long history, it 

is not surprising to find a highly complicated association of rock 

types resulting^ The following discussion is restricted to the weather 

ing of migmatites and granites produced by anatectic processes. Such 

granites are referred to as S-type granites ('.nite L- Chappel ,1977), 

indicating that they have originated from the partial melting of anc 

ient sediments. I-type granites are the products of differentiation 

of gabbroic magmas. The differentiation is significant in hydrogeo- 

logical terms.as the s-type granites show more compositional irregular 

ity than the I-type and are therefore subject tc more v -riable forms 

of chemical weathering (see below).

£-type granites have a number of compositional features which it 

is useful to summarise.

1. They are strongly Deraluminous Al/(Na + k + (Ca/2)) 1^3-
37, P 81

2. They have high initial or / Sr

3. Complex zoned plagioclases

In addition the magmas are more viscous and tend to move as dia- 

pirs in such a way that the restite is carried along with the magma 

producing numbers of xenoliths which are still mostly recognisable as 

meta-sedirnentary types.

The s-type granites have not generally moved very f-'-r from the 

place of origin, and complicated suites of migrr.atites are seen in 

close proximity to the granites. A migmatite is simply a mixture of 

high grade metamorphic rock (gneiss) and granite. Migmatites have 

light coloured layers with portions composed of quartz and feldspar, 

often showing enhedral crystal shapes, and dark coloured layers in 

which biotite predominates (Winkler, 1967). The minerals of the dark 

er coloured layers generally have a preferred orientation. Plates 3»1 

and 3-2 show typical outcrops of migmatite from the Bauchi area. In
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plate 3.2 a rr.eta-sedir.c-ntary pod ha:: enured a local irregularity.

As mentioned above, the following discussion is limited to that 

of gneisses, migrnatites and granites. Although rr.any of the princi 

ples may be extended to less high grade metamorphics, on the one hand, 

and to mafic intrusives and their derivatives on the other, it is 

necessary to restrict the scope of the discussion as in particular 

equigranular crystalline rocks such as the I-type granites fracture 

and weather in such a way as to generally not produce areas of deep 

weathering.
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Plate A typical migmatite from the area of Bauchi. Note the 

lamination of biotite in the dark zones, compared to the 

more euhe'iral crystal development in the light zones. 

Kote also several different phases of granite veining.

Plate 3-2 A rneta-sedimentary relict within migmatite. The relict is 

almost entirely biotite. Note the flow structures strongly 

implying movement as a semi mobile environment. Note also 

the slip plane running top ri~ht to bottom left.
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3.2 Jointing and Fracturing:

Definitions and method of formation.

Joints and faults are structures which result from the brittle 

failure of blocks of rock which are displaced relative to one another 

across narrow and approximately planar discontinuities (Kobbs et al, 

1976). The discontinuities are called joints if the component of dis 

placement parallel to the structure is zero (or toorsmall to be app 

arent to the unaided eye) or faults if the parallel component of dis 

placement is larger.

Most joints or faults form by fracturing, that is, the Develop 

ment of cracks across which the original cohesion is lost. Joints are 

often sealed tight again at a later date by the deposition of secon 

dary minerals or by the recrystallisation of the original minerals.

Joints usually occur as groups in a given rock type.

A joint set is a group of joints, of common origin, which are 

usually parallel or subparallel to each other. The pattern of stresses 

which cause joints to form, most often give rise to more than one set 

of mutually orthogonal joints.

The whole a^sembla^e of joints within an area is referred to as 

a joint system. Typically, the orientation of joints within a sys 

tem varies across contacts between different rock types.

Joints which are small enough to require microscopic observation 

are called microjoints. By contrast, joints which are larger than 

associated joints of the same set are referred to as masterjoints. 

The masterjoints observed in remote sensing data can be traced for dis 

tances of several kilometres.

Origin of Joints.

Joint systems in granites are .often symmetrically related to 

the contacts of the body, suggesting an origin during emplacement and 

cooling. Commonly .rranites are intruded along a particular orientation 

to produce ellipsoidal bodies with the major axis orthogenal to the 

direction of stress. The stress pattern causes a lineation produced 

by feldspar and biotite crystals which inturn acts as a fracture plane 

when the granite is later subject to stress often in the same sense. 

For this reason a major set of joints often exists parallel to the 

principal lineation.
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In tabular boJi-s such as dykes, joints ierffhdicular to the 

contacts are formed due to the cooling zr.d contraction of the basalt 

ma^ma. This joint set may extend to considerable de x 'th and the 

joints act as a main point of entry for water, which initiates chem 

ical weathering. Dykes are often preferentially \veathered out of 

granites and therefore form a locus of weathering in the surrounding 

granite. This is clearly demonstrated by Plates 3.3 and 3.^.

The weathering associated with dykes extends below ground surface 

to form in many cases the axis of an area of deep weathering.

Pressure Release Joints.

An important set of joints forms during the erosional unloading 

of a granite or migmatite area. As material is removed from an area 

by the weathering processes, the initial condition of stress within a 

^iven volume of rock is changed in that the cor.-^onent of stress ortho 

gonal to the surface is reduced. The rock volume reacts to this change 

in stress by a strain in the orthogonal, which may not necessarily be 

the vertical,direction. The strain is accomodated until the point of 

brittle failure is reached and the rock fractures to produce a joint 

in the orthogonal plane to the initial release of stress.

Joint sets form which are parallel to the outcrop morphology, 

and these in turn set up stresses which cause a further pair of verti 

cal and orthogonal joint sets. The result is the exfoliation slab com 

monly observed on many granite inselberg. The joints which are para 

llel to the surface outcrop and therefore commonly subhorizontal, often 

occur separated by as much as 1000mm, whereas the later subvertical 

joints nay be several metres apart.

It is commonly observed that granites and some nrlgrratites, where 

the percentage of granite is high, occur mainly as inselbergs, whereas 

gneisses and high grade meta-sedimentary rocks often occupy deeply 

weathered areas. An explanation for this observation rr.ay lie in the 

different ways in which the rock types react to unloading stress.

Coarse grained rocks are competent as a result of their inter 

locking crystalline fabric. They react to stresses as homogenous bod 

ies and form joint sets at spacings as described above, separating in 

to a number of coherent blocks or slabs. The individual blocks pre 

sent a relatively small total area that can be attacked by chemical 

weathering, and more important, the joint sets are sufficiently wide



3late 3-3 Inselberg of migmatite at Gubi close to B^uchi. This 

plate demonstrates the geomorphological effect of a 

dyke during the weathering trocess. The increased 

fracture density within the dyke has been exploited to 

produce a pronounced modification in the outcrop morphology,

Plate

Close up of 3-3-
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to allow efficient drainage of rainwater. Thio er.Gures i.J-nt the 

blocks remain dry for the majority of the tirr.e.

By contrast, gneisses and amphibolite facies rocks are composed 
of mineral grains of many different sizes and with often an abundence 

of mica which gives the rock a schistosity or at least a pronounced 

lineation. As the rock is very inhomogenous, it reacts to the un 

loading stress by strain which is accomod-ted by fracturing, producing 

microjoints of crystalline dimensions. This density of jointing re 

leases an area of rock of many orders of magnitude greater than that 

of the granite block, to the attack of chemical weathering. Similarly, 

the small size of the joints inhibits drainage and the whole rock mass 

remains damp. The efficiency of the weathering processes is greatly 

increased by this dampness as is well demonstrated in Plate 3.5«

Depth of Jointing.

The depth of jointing in granite is not known with any accuracy. 

Sheet joints and radial joints which are the result of unloading 

probably extend to depths of 10 to 15 metres before becoming tight. 

In the absence of other jointing, the weathering profile is commonly 

an average of 10m depth (Water Surveys 19?8), and this tends to sup 

port the average depth of unloading joint sets.

Sheet like intrusives such as dykes can contain open joints to 

much greater depths. The joints are caused by contraction of the cool 

ing magma. As the existence of the dyke indicates a condition of ten 

sion at depth, at least at the time of intrusion, there is no reason 

for the joint set to be closed until considerable depths are reached. 

Often dykes observed in quarry faces made into fresh rock, will ex 

hibit brown staining on contraction joints, indicating the passage of 

water and the initiation of weathering along the dyke.

joint sets and masterjoints or faults may extend to 

depths of 50 or 60 metres before becoming closed by the compresional 

stress of the surrounding rock mass.

As weathering has been recorded in granites in mines at depths 

of several hundred metres, it appears that major faults may remain 

open to the extent sufficient for the percolation of water to these 

depths. Such occurrences are not common however.

A combination of regional joint sets or masterjoints with an area
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intruded by several dykes can pro luce a deeply w-'-Hlv/red V/.cin which 

holds significant groundwater reserves. The prediction of such a 

location in an area of generally weathered rock is possible in gen 

eral from a detailed observation of the overall joint pattern within 

an area of interest. All the available remote sensing data is anal 

ysed to provide a structural map of the area of interest. There is 

generally available 1:^0,000 or 1:50,000 photography of most places 

and this combined with more recent products such as side looking air 

borne radar (SLAR) imagery (see Plate 3»9) is particularly useful. 

Areas of deep weathered rock are evident on the photography by the 

absence of topography or outcrop. Light st#ong soils usually indicate 

solid rock at depths of less than five metres. Farming is often car 

ried out on marginal soils and is not a reliable indicator. By con 

trast, the presence of phreatophytes, such as the mangoe in Nigeria, 

which fruit late in the dry season, is good evidence of water at depth,
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5.3 Weathering of gneisses, Tii^atites anJ granites.

General.

The weathering processes that occur above the water tab]e Inve 

been investigated in a number of recent studies (Kesbitt, 1979; Led 

ger & Howe, 1980) and is also reported in standard texts such as 

Krauskopf (196?). The end product of the processes is a mixture of 

clay and quartz grains, with the clay chemistry determined by a num 
ber of environmental factors. The clay and quartz sand end product 

has a low permeability, although the porosity may be high. Such depos 

its provide good sites for large diameter wells, but are of no use as 

borehole sites where a higher permeability is required.

In the partially weathered material beneath the water table, a 
part of the rock fabric is removed by weathering reactions, which 

leave the matrix of the rock unaltered. In this way, the porosity and 
permeability of the partially weathered rock is increased markedly. 

Zones where this process has occurred are referred to by Cornish miners 
as grus zones (Brunsden,1964). The reactions which are involved in 

this process are not understood, however, the results produce areas 
of sufficiently high permeability that boreholes producing 10m /hr can 

be successfully completed.

In the following discussion the general weathering processes are 
described and possible mechanisms suggested to describe the feathering 

processes beneath the water table.

Weathering Processes.

The weathering processes may be subdivided into three main groups; 

mechanical, biological and chemical. Although each of the processes 
does operate individually, their concerted effect is the most efficient.

The mechanical processes act to break up the rock mass. Cf these 

processes, the most effective is the jointing associated with pressure 

release as discussed above. Rock mineralogy as much as crystal size appears 

to affect the spacing between joints formed by this process. For exam 

ple, quartz monzonites which crop out around Bauchi, tend to form three 

equidistant orthogonal joint sets which produce spheroidal boulders 

upon weathering^ This effect may be seen in Plate 3«5« In another part 

of Nigeria, the joint pattern is observed to change character as a 

result of a small change in feldspar chemistry, - (Hazell -
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Plate 3-5

Spheroidal "boulders formed by weathering of quartz monzonite. 

Note the advanced chemical v;eathering beneath the soil as compared 

to the comparatively fresh rock on the surface.
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personal communication).

Biological processes are effective in mixing the top soil layer. 

Termites in particular, transport large quantities of soil towards 

termite mounds, which can reach 3 metres in height. At the rock face, 

roots are very effective in loosening the slabs released by jointing. 

Trees and bushes are commonly seen rooted in joint systems and grow 

ing on otherwise bare rock surfaces.

The most important of the three processes is that of chemical 

weathering. Once the rock is broken by jointing, the high temperature 

and ready supply of water produce rapid chemical breakdown of the 

mineral grains within the rock.

Chemical Weathering.

Chemical weathering may be described as an attempt by the rock 

mass to attain an equilibrium with the environment of the atmosphere 

and biosphere. Whereas it has been possible to describe the chemical 

phases within the closed system of a granite melt (Winkler, 19&7)» the 

same order of understanding is not possible in the low temperature, 

open system of the weathering environment.

Most weathering reactions which occur are not reversible and 

therefore do not have equilibrium constants which can be readily cal 

culated. The rates of reaction are determined therefore, by the rate 

at which the products of weathering are removed from the system. In
^

turn, the rate of removal is determined by the solubility of the var 

ious weathering products in water, as percolating groundwater is the 

principal means of removal. In this respect, the warm (23 C) mildly 

acidic ( pH 5*7) rainwater is efficient as a solvent.

The principal component of granites or gneisses are the silicate 

minerals. Microcline, plazioclase and quartz form between 80 and 95/o 

of a typical granite with muscovite, biotite and a few minor access- 

odes such as magnetite, illmenite and sphene forming the rest. The 

weathering of these rock types is therefore principally the weather 

ing of the silicates.

The basic unit of silicate minerals is the silicon oxygen tet- 

rahedra, where a silicon atom is bonded covalently with four adjacent 

oxygen atoms. The tetrahedra may be arranged in discrete groups, such 

as chains (pyroxenes and amphiboles), sheets (micas) or three dimen 

sional structures (quartz and feldspars). In addition, various other
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ions of a similar size to silicon ir.ay be substituted for the silicon 

ion in each tetrahodra. In general terms, the simple three dimen 

sional network of silicon and oxygen (quartz) is the most stable min 

eral. Instability increases both with the degree of isomorphous sub 

stitution of alumina for silicon and with the degree of condensation 

of the silicon oxygen tetrahedra. The subject of silicate weathering 

is discussed at length in several standard texts (Kraupskopf, 196?; 

Oilier, 1975), and will not be described in detail.

The principal chemical reaction involved is that of hydrolysis. 

As an example, the hydrolysis of forstierite by pure water (pH 7.0) 
may be represented (Kraupskopf, 19&7) as:

0 -5=" 2Mg++ + 40H~ + HSiO 3.1

The water disassociates as :

H2O^H*~ + OH 3-2

and the hydrogen ion replaces the magnesium in the forsterite to pro 

duce the very weak sili^cic acid. Note that the reaction leaves the 

solution more basic than before, due to the hydroxyl ion release.

V/ater in the weathering environment does not have a neutral pH 

however. As the rain falls through the atmosphere, the water equil- 

ibriates with atmospheric carbon dioxide to produce a weak carbonic 

acid. As the rainwater percolates through topsoil, a further absorb 

tion of CO- takes place as the soil air partial pressure of C0_ is 

considerably greater than that of the atmosphere. With this greater 

concentration of hydrogen ions the reaction is modified to :

HJD + CO- ; —— * H-CO, 3.3 2 2 23

++Mg2Si02 + ^H2C03 ^=^ 2Mg

The supply of hydrogen ions is further augmented in the vicinity 

of plant roots. The roots produce a supply of hydrogen ions which are 

exchanged for metal ions, and by removing the latter, the reaction is 

kept in imbalance. This reaction may be represented as :

3-5

Similar, but more complicated reactions may be written for the 

more common minerals in the weathering environment, such as :
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Plate 3.6,

Note:

This plate shows an example of grus from Northern 

Nigeria in a recently made road cutting. The cutting 

face stands at an angle of 60 although it was constructed 

by repeated passes with a D9 caterpillar excavator.

1. The granular disintegration sand of the base of the 
cutting

2. The constant volume weathering indicated by the 
undisturbed quartz stringers (veins)

3« The basalt dyke weathered to clay within the less 
weathered granite.

k. The very thin soil zone with almost no clay development,



** KAl Si Og +

K-feldspar Kaolinite ^K+ + 20H~ 3.6

This reaction is a simplification however, and a more complex 

process occurs in reality. It is possible that the hydrolysis does 

not take place directly but in a series of steps. The feldspar may 

first break down to form gibbsite (Al(OH)O setting silica free as 

dissolved silicic acid, and then kaolinite forms by a later reaction 

between gibbsite and silicic acid.

Berner (1971) has emphasised the importance of water flow as a 

controlling factor in weathering. At moderate flow rates albite 

(NaAlSi,Og) is changed to gibbsite as described by Equation 3.7.

NaAlSi Og + H+ + 7^0 ̂ Na+ + 3H/fSiO/f + Al(OH) 3.7 

Na-feldspar gibbsite

'./hen flow rates are very slow and providing magnesium is pre 

sent, the product is montmorillonite.

3-8

Bauxite minerals such as gibbsite tend to form in areas of high 

rainfall and high relief. Montmorillonite tends to form in conditions 

of low rainfall and low relief. The formation of kaolinite is inter 

mediate between the two.

A red brown limonite staining on otherwise fresh joint surfaces 

is usually the first indication of weathering. As limonite is a 

complex oxide of iron, the first weathering reaction must involve an 

iron bearing silicate or oxide. Of the coo^on silicates found in 

granites and gneisses, only biotite contains appreciable iron. Mag 

netite and the iron bearing amphiboles or pyroxenes are considerably 

less common than biotite.

The mica biotite has a sheet like structure, with iron, magnes 

ium and potassium held in octahedral co-ordination sites between the 

sheets. The chemical formula of biotite may be written :-
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The cations in the octahedral sites are only weakly held and may 

easily be replaced by hydrogen. Although the hydrolysis reaction 

is complicated, biotite first alters to the clay mineral halloysite 

which pseudomorphs the biotite. Halloysite has the chemical formula

The inter sheet octahedral cations are replaced by a layer of orien 
tated water molecules. The cations are released into solution, 

where iron is oxidised to form limonite and precipitated out to pro 
duce the red brown staining.

Ledger and Rowe (1980) have presented results which confirm the 

early weathering of biotite. Working upon the change of radioactivity 
in granite weathering associated with the removal of uranium, they 

found that uranium was held in two principal sites in granite. The 
first is in small inclusions of zircon. These are held along bio 

tite grain boundaries, or within the inter sheet octahedral co-ordin 
ation sites, and are responsible for the pleochroic haloes of biotite 

(Deer, et al, 1975)» The second is within resistant grains such as 
zircon and sphene adjacent to quartz and feldspar grains. The uran 

ium associated with biotite is lost very early in granite weathering, 
presumably due to the hydrolysis of biotite. The radio-activity over 

a weathering profile therefore shows a stepped decrease. There is an 

initial rapid fall coincidal with the weathering of biotite, and the 
release of the very small grains of zircon. This is followed by a 

period of constant radio-activity as the larger zircon and sphene cry 
stals are held in position until the final disaggregation and removal 

of the completely weathered rock.

The initial replacement of iron by hydrogen in the biotite allows 
sufficient room for access by water to the surrounding grains so that 

hydrolysis reactions may continue. Where the rock lies above the 
water table, the weathering reactions are comparatively rapid. Rain 

water percolating downwards provides a constant source of hydrogen 

ions. The pH may be as low as *+-5 (Eswaran & Bin, 19?8). Water also 

removes the products of hydrolysis. The final breakdown products of 
all the silicates are clays, principally kaolinite and gibbsite, but 

often modified by environmental factors as discussed above. These 

clays can be seen in deeply weathered areas forming the top few metres 

of the regolith. On exposed sites at outcrop, where weathering is
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occurring, there exists a mixture of fresh rock, partially weathered 

rock and clay, the proportions of which are a function of the ori 

ginal chemistry, fabric and fracturing.

It is suggested here that rocks which do not contain dissemin 

ated mica, will not weather as readily as those which contain mica 

throughout. Without an initial means of access to the rock matrix 

over a sufficiently large crystal surface area, the weathering reac 

tions slow down or stop. This is because each crystal surface which 

is being exposed to hydrolysis, becomes coated with a layer of hydro 

gen ions. These ions tend to repel other ions still in solution, and 

therefore form a protective coating (Kraupskopf, 1967) around the 

silicate crystal. The process is particularly evident in coarse 

grained rocks which have relatively small total crystal surface areas. 

The result is that coarse grained equigrannular rocks predominantly 

composed of quartz, feldspar and localised areas of biotite, are more 

resistant to weathering than gneisses, which are typically fine grained 

and contain abundant disseminated mica. This suggestion is given 

strong support by the observation that granites typically occur as 

inselbergs.

Constant Volume Weathering.

As has been described above, the significant horizon in the 

weathering profile for hydrogeological purposes is the partly decom 

posed and fractured zone that occurs above fresh rock and below the 

high clay content more weathered surface zone, feathering in this 

zone is often considered to be constant volume weathering (Oilier, 

1975) although the term may be misleading.

The evidence for constant volurr.e weathering is essentially that 

the fabric of the rock appears to be undisturbed. In particular, 

small quartz veins and joint orientations are preserved in such a 

way that any form of large scale movement during weathering is not 

possible. Plate 3«6 demonstrates a number of these features.

Apart from the apparently undisturbed fabric of this zone, there 

are two other important modifications. The porosity is increased 

from zero to approximately 10%, and the crystal grains become loose 

and parted from each other.

The zones which this stage in the weathering process produces have 

been given a number of names; grus, or granular disintegration sand
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or saproiite (Oilier, 1975). In outcrops above the water table, in 

dividual crystals can be rubbed off the surface, as can be seen in

Plate 3.6. V/hen this grade of weathering is encountered in bore-
2 holes, the drill cuttings are a disaggregated crystal sand , with no

trace of the original intergranular components.

The problem of identifying grus in boreholes is further exacer 

bated by the common use of down-hole-hammer pneumatic rotary rigs for 

drilling boreholes in hard rock areas. The hammer action of the 

drilling bit on the allready disaggregated matrix ensures that no trace 

of any remaining intergranular components remain in the drill cuttings. 

The drill cuttings often contain perfect crystals showing prism ends 

and no signs of weathering. However, the penetration rate of a rot 

ary rig through this material is very slow, indicating that the origi 

nal interlocking crystalline texture is not disturbed. This fact com 

pliments that indicated in Plate 3-6 of a stable and steep cutting 

slope in the road section.

Vhen attempts are made to obtain an undisturbed sample of grus 

for examination, for example by diamond coring, it is found that the 

material has no tensile strength and falls out of the bottom of the 

core barrel, especially if water is used as a flushing agent.

It is difficult to account for the formation of grus within a 

constant volume weathering environment. The through-put of water ess 

ential to continued hydrolysis cannot be sustained within a constant 

volume, and the weathering reactions would be reduced to the rate at 

which ionic diffusion could carry away the released cations and supply 

hydrogen icns. Such a process is considered here to be prohibitively 

slow within a constant volume environment.

What is required therefore, is a set of processes which appear 

to leave the fabric undisturbed yet do not rely upon weathering with 

in a constant volume. It is suggested below that pressure release 

jointing provides the background in which such a set of processes 

could operate.

Pressure release jointing has been discussed above. However, it

Notes. 1. Grades of weathering are defined and described in the foll 
owing section.

2; The mistaken identification of grus as sandstone fragments 
is common in drill logs from crystalline basement areas.
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is important to appreciate that the stress which causes the joint 

ing is continuous, in such a way that the joint will continue to 

open after the point at which brittle failure causes the joint form 

ation. However, except in coarsely crystalline rocks, widely opened 

joints are not observed at the surface. Only the trace of these 

joints remains, helping to give the impression of little disruption.

In medium to fine grained rocks it has been noted above that 

joint sets are likely to be closely spaced (of the order of 1000mm). 

In such circumstances, the following sequence of events could lead 

to grus formation without marked disruption of the fabric.

(i) Initiation of a joint through which a flow of water may 
commence.

(ii) Hydrolysis of biotite and release of iron which forms 
limonite staining.

(iii) Conversion of outer part of biotite to halloysite and 
the release of inter sheet components (e.g. zircons).

(iv) Disruption of biotite causes loosening of adjacent 
crystals and further penetration of water.

(v) Hydrolysis of plagioclases, especially if calcium content 
is high. The water will be highly undersaturated in 
calcium and silica if pH is as low as 4.8 (Eswaren & Bin, 
1978).

(vi) Removal of silicon as HpSiO, and calcium, potassium and 
sodium as hydroxides.

(vii) Expansion of the weathered rim of the jointed block, due 
to crystal parting, until flow of water decreases, when 
reaction rates will also decrease.

(viii) Joint expands due to further unloading caused by erosion, 
and the process is regenerated.

(ix) Complete extinction and solution of crytocrystalline 
intergranular phases will occur in the active rim at 
anytime, thus increasing the porosity.

(x) Process continues until the centre of the jointed block, 
also referred to as core stone, is finally penetrated.

The genesis and distribution of the clay minerals is described 

below. However, if the flow of water through the joint becomes suff 

icient to convert all the mica, plagioclase and some orthoclase to 

halloysite then an important second stage commences. The halloysite 

is altered to kaolinite. This change affects the porosity of the 

zone significantly. The halloysite has formed as pseudomorphs of the 

original silicate (Eswaren & Bin, 19?8) and the original texture is 

retained. However the kaolinite forms as clay sheets and these block 

the pathways between grains thus reducing the permeability. Core



117

stones may thus become isolated and remain intact to a riuch higher 

level in the weathering profile.

As much of the weathering within the grus zone produces pseudora- 

orphs of the original crystals, the texture of the zone remains un 

altered, thus giving the impression that the weathering has occurred 
within a zone of constant volume.

The sequence of events described above is by necessity hypo 

thetical. However, there are several implications which it is possi 

ble to test by general observation. These are listed and discussed 

below.

(1) Coarsely crystalline rocks with limited biotite should not 

form grus zones. Most of the coarse grained granites or granitic 

migmatites found in Northern Nigeria occur as inselbergs and not as 

areas of deeper weathering. The converse is equally true, that no 

gneisses with disseminated biotite are found as inselbergs.

(ii) The distribution of biotite in an s-type granite will be 

determined by the nature of the original metamorphic material, and 

will show considerable variation both horizontally and laterally. 

If grus formation is a function of biotite content then it may be 

expected to show a similar variation. This appears to be so in North 

ern Nigeria, the pockets of deeper weathering occur around fault zones 

with a limited zone of disaggregation in coarse grained rocks, and 

only develop extensively in areas of gneiss.

It is not possible to prove or disprove the proposed sequence 

of events with the available data but the proposed model does explain 

a number of the observed facts.

Deep V/eathering Profiles.

The geological practice of mapping from outcrop to outcrop and 
extrapolating the geology between outcrop has allowed deep weather 

ings to go undetected in many areas. It is only when mapping has 

been carried out for soil or sub-surface features that the extent of 

deep weathering becomes apparent. More recently, a number of deep 

weathering occurrences have been detailed. (Ruxton & Berry, 1957; 

Brunsden, 196*f; Thomas, 1966; Newberry, 1971)

Thomas (1966) reported weathering to 90m depth on the Jos plateau 

of Nigeria, and his sections have been reproduced in figure 3-1.
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Oilier (1975) reports weathering to 350™ in gneiss encountered dur 

ing tunneling in Victoria. Such depths of weathering are only assoc 

iated with fault zones, where the necessary water flow and reactions 

can be accomodated. The weathering reactions cease in these zones 

when there is no further expansion about the fault zone, in the way 

that probably rejuvinates weathering in the pressure release joints 

described above.

Eswaran and Bin (1978) have used scanning electron microscopy 

(3EM) techniques to make a detailed physio-chemical and micromor-

phological study of a 20m deep weathering profile developed on a
1 coarse grained granite in peninsular Malaysia . Although the climatic

conditions are not savanna type, but tropical rain forest type (see 

Note 1), the chemical reactions are likely to be similar to those in 

other parts. The granite has k*\% quartz, 10;^ orthoclase, 32;,"- plagio- 

clase and 13/- minor constituents (Niggli Norms), however, no chemical 

analyses is given.

A number of selected physio-chemical parameters from the profile 

are listed in Table 3«1» Note in particular the low pH, which can only 

be maintained by continual removal of cations released by hydrolysis 

and supply of hydrogen ions.

The detailed results of the study can best be summarised dia- 

grammatically. Figure 3-2 shows the percentage composition through 

out the profile of the six basic components viz," quartz, feldspar + 

mica, goethite + ammorphous iron, kaolinite, gibbsite and halloysite. 

Similarly, the percentage composition of the six components in each 

of the clay, silt and sand particle sizes is shown.

It may be seen from Figure 3.2 that halloysite is the only clay 

mineral present in all grades other than V and VI. The SEM studies 

indicated that halloysite formed pseudoraorphs after the principle 

silicates in these zones, rather than individual clay flakes. The 

effect of this is to retain the texture of the original rock. Kaol 

inite only forms in zone V by alteration of halloysite and by primary 

alteration of silicates. It is suggested (Eswaran & Bin, 1978) that 

the pH may be a controlling factor in kaolinite and gibbsite formation.

Note 1. The profile is from Kuantan in Malaysia. Annual rainfall of 
3257mm and potential evapotranspiration of 1130mm are given. 
In such a climate, the rock surface will be continually wet 
and the tendency for the larger joints in the granite to dry 
out and prevent weathering will be negated.
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Table 3.1 Selected physio-chemical properties of a deeply weathered 
profile in Malaysia (after Eswaran . Bin, 197'S)

Soil Depth Weathering Clay Silt Sand pH CEC Base Sat 
Horizon (m) Grade % % % HpO meg/1 OOg %

A1-3 0-0.1 vi 36.7 7.9 55-4 4.36 10.51 6.1

B21ox 0.1-0.4 VI 37.5 10.8 51.7 4.40 9.94 5.0

B22ox 0.4-0.6 VI 36.7 12.2 51.1 4.20 6.58 4.0

B23ox 0.6-1.0 VI 32.5 5-7 61.8 4.20 5.33 3.9

B3 1.0-1.5 vi 37.6 7.9 54.5 n.d 3.86 8.8

C2 1.5-2.8 v 18.1 13.8 68.1 4.40 2.60 1.5

C3 2.8-5.0 v 20.1 27.9 52.0 4.60 4.47 1.6

C4 5-0-8.0 v 10.2 35.5 54.3 4.65 6.18 1.6

C5 8.0-9.5 IV 18.4 32.5 59.1 4.70 8.91 1.2

C6 9-5-12.5 IV 15.5 25.9 58.6 4.84 8.98 1.3

C7 12.5-13.6 IV 11.7 22.5 65.8 4.80 9.10 1.5

C8 13.6-15.0 IV 8.5 21.7 69.8 4.85 8.62 1.5

R1 15.0-16.0 in 10.5 24.7 59.8 4.90 8.29 1.6

R2 16.0-16.6 III n.d n.d n.d 4.90 7.66 1.8

Note The weathering grades refer to terms defined in section 3-4,
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The result is that clay plates are formed instead of pseudomorphs 

and as the clay flakes block the interstitial pores, the permeab 

ility is reduced.

Many deep weathering profiles appear to be weathered below the 

local base level of ephemeral stream channels. The weathering has 

occurred around fault zones and formed closed basins of weathered 

material within fresh rock. It has been suggested (Oilier, 1975) 

that such basins will contain zones of stagnant water with relatively 

high salinity. This, however, does not appear to be true. Of more 

than 100 boreholes sunk for water supply purposes in Northern Nigeria, 

and sited so as to penetrate the deepest part of the weathered zone, 

there was no record of high salinity. All the boreholes produced good 

quality potable water. Similarly, without a flow of groundwater at 

depth, the weathering reactions will stop, and this is contradictory 

to the evidence of great ( > 100m) depths of weathering reported ab 

ove.

Experiments have recently been made in the Hydrogeological section 

of the University of Birmingham Geology Department with a Kele-shaw 

viscosity model. The model has been used to demonstrate that a depth 

of J>00m of saline water lying in an aquifer mostly below current sea 

level can be flushed out by surface recharge and discharge, as long 

as a hydraulic head is maintained over the length of the aquifer. A 

similar run of the model, but without the density contrast between fresh 

and salt water, indicated that a groundwater flow would be maintained 

to the bottom of a closed basin of weathering, where the depth of the 

basin is only 50m and the hydraulic head is approximately 5m. In 

this way, the hydrolysis reactions described above would be maintained.

Groundwater Chemistry.

The chemical composition of groundwater should provide useful evi 

dence concerning the weathering reactions. Unfortunately, however, 

very few accurate analyses have been reported. In Table 3.2, data 

published by the Nigerian Geological Survey is presented. Only two 

of the analyses, numbers 9^6 and 175& show a reasonable balance be 

tween the cations and anions which are the major species in water. 

However, there are a number of points of interest.
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Table 3.2 Analyses of groundwater from the North Nigerian Basement 

Complex (Nigerian Geological Survey).
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Tote 1. The conic 'balance between major cations and aniors is poor for each of the above 
analyses and therefore they are not presented graphically.

ZTote 2. The pH will not represent accurately conditions at the borehole as the 
determination is nade in the laboratory.
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O) The silica content is much higher than in waters from 

sedimentary rocks. This would be expected in an environment where 

the predominant chemical reaction is hydrolysis. Silicic acid

) is released into solution in all the reactions noted above.

(ii) The level of total dissolved solids is low for any ground- 

water, indicating that the waters do not have a long residence time, 

and tending to confirm the idea of rapid and efficient flushing from 

the base of the basin.

(iii) Aluminium is low in all the samples. It is held in the 

grade V and IV material as gibbsite.

(iv) Sulphate is low, indicating the very low sulphate concen 

tration in the primary material.

(v) The sample from Kano indicates bacterial pollution with 

high ammonia and nitrate.

(vi) Although the primary silicates do not contain a high prop 

ortion of calcium, it can be seen that the calcium that is available 

in plagioclases is readily dissolved by the pH *t-5 groundwater. The 

observation above that plagioclase crystals often show solution pits 

whereas orthoclase crystals do not, also supports this idea.

Further detailed analytical work combined with tritium dating 

would provide very useful evidence concerning the weathering reactions. 

^owever the chemical data available does support the general model of 

weathering described above and also suggests a rapid flushing of the 

active weathering zone. This, in turn, implies that the depth of 

weathering is controlled primarily by rock chemistry and grain size 

which is reflected in the nature of the pressure release jointing.
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3.** Deep Weathering Model. 

General

Deep weathering has been described by scientists working in 

the fields of geochemistry, pedology, civil engineering, geomorphology 

and geology. It is not therefore surprising to find a number of 

classification schemes proposed to describe the sequence of materials 

between soil and fresh rock. In general however, six zones or grades 

can be recognised. As the grades reflect basic geochemical changes, 

they can be recognised from areas throughout the tropics, and also 

in areas which have experienced tropical weathering in the past, i.e. 

Europe in Tertiary times.

Moye (1955) classified weathered granite for civil engineering 

purposes during investigation for the Snowy Mountains Hydro-electric 

scheme. Ruxton & Berry (1957) described similar profiles developed 

upon granite in Hong Kong. These classifications were combined by 

Little (1969) and also Newberry (197D- The literature has been ex 

tensively reviewed recently (Dearman et al, 1978) and a comprehensive 

classification system proposed. It is this system which will be used 

as a basis for a model of deep weathering.

Definitions of terms,

Many terms used in the description of weathered rock are used 

only in a poorly defined manner. The descriptions proposed by Dear 

man have been adopted for this work and are presented below.

Fresh No visible sign of weathering of rock material

Discoloured The colour of the original fresh rock mater 
ial is changed and is evidence of weathering

Weakened The rock is weathered to the extent that it
is noticeably weakened.

Decomposed The rock is weathered to the condition of a
soil in which the original fabric is still 
intact, but some or all of the mineral grains 
are decomposed.

Disintegrated The rock is weathered to the condition of a
soil in which the original material fabric 
is still intact. The rock is friable, but 
the mineral grains are not decomposed.
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Relict, usually spherical or elliptical 
bodies of fresh or discoloured rock found 
in the soil zone.

The six grades of weathering are shown in Figure 3.3 against 

some typical particle size analyses after Fitzpatrick (1971). The 

weathering grades may be defined as follows (Dearman, 1978).

VI Residual 
Soil

IV

Completely 
weathered

Highly 
weathered

III Moderately 
weathered

II Slightly 
weathered

I Fresh

All rock material is converted to soil. The 
mass structure and material fabric are des 
troyed. There is a large change in volume, 
but the soil has not been significantly trans 
ported. Can be divided into an upper A hori 
zon of eluviated soil and a lower B horizon 
of illuviated soil.

All rock material is decomposed and/or dis 
integrated to soil. The original mass stru 
cture and material fabric are still largely 
intact.

Some of the rock material is decomposed and/ 
or disintegrated to a soil. Fresh or dis 
coloured or weakened rock is present either 
as a discontinuous framework or as corestones 
within the soil.

The rock material is discoloured and some of 
the rock is appreciably weakened. Discoloured 
but unweakened rock is present either as a 
discontinuous framework or as corestones.

Discolouration indicates weathering of rock 
material and discontinuity surfaces. Some 
of the rock material may be discoloured by 
weathering, yet it is not noticeably weakened.

No visible signs of rock material weathering, 
perhaps slight discolouration on major dis 
continuity surfaces.

The degree of alteration of silicates within the weathering pro 

file has a direct influence on porosity, permeability, seismic veloc 

ity and electrical resistivity. Irfan & Dearman (1970) have made a 

detailed petrographic analysis of thin sections of weathered material 

taken from an s-type granite in Cornwall, U.K. They included as a 

part of this work a description of the microfracturing and void con 

tent of each section. Similarly, Onadera et al (197*0 used the number 

and width of microcracks as an index of granite weathering, and found 

a linear relationship between effective porosity and density of micro- 

cracks defined as :
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pcr _ 100 x Total width of cracks 
length of measuring line

They found that the mechanical strength of granite decreases rapidly 

as Pcr increases from about 1.5 to ^.0 per cent. Porosity increases 

with physical weathering by an increase in crack number and openness.

The descriptions of Irfan & Dearman are combined with the SEM an 

alyses below to provide a detailed description of each of the weather 

ing grades. These descriptions may be related back to the general 

discussion of chemical weathering above.

As the geochemical reactions throughout the profile are progress 

ive from fresh rock to residual soil, the separate grades are discussed 

in ascending order.

Grade I - Fresh Rock.

Included within this section are all types of alterations which 

may have occurred post magmatically, but still at depth below the 

surface. Eggler et al (19&9) refer for example, to the post magmatic 

oxidation of biotite which results in a slight expansion and ruptur 

ing of surrounding grains.

Plagioclase feldspars often have a cloudy appearance in thin 

section and show alteration to sericite, particularly at the centre of 

crystals and along cleavage planes. Potassium feldspars are usually 

fresh, but often containing a number of inclusions. Quartz is fresh 

and unfractured except for short hair-like cracks which show no stain 

ing. Partial alteration of biotite to chlorite is most likely post- 

magmatic.

Grqde I rock is separated from Grade II rock by the weathering 

front (Oilier, 1975)• This front represents the greatest extent of 

groundwater percolation in any one direction, and as such is often a 

complex three-dimensional surface, which encloses grade I rock to form 

core stones.

Grade II - Slightly Weathered.

Irfan subdivides this zone into three subzones based upon the 

percentage of microfracturing and staining.

(1) The rock is iron-stained only along the joint faces. 

No penetration of iron-staining.



129

(ii) Penetration of iron-staining inwards from the joint 

faces along microcracks. Formation of simple, branched microcracks; 

tight and partially stained. Slight alteration of the centres of 

plagioclases. Occasional staining along quartz-quartz and quartz- 

feldspar grain boundaries. Grain boundaries are sharp.

(iii) More inward penetration of brown iron-staining along 

microcracks and partial staining of plagioclases. Micro-fracturing 

of feldspars and quartz by inter-granular but sometimes trans- 

granular microcracks.

The only secondary mineral present in this zone is halloysite, 

as may be seen from Figure 3«3» SEM analyses indicates that after 

formation the halloysite is not dislodged from the original mineral 

but forms a pseuiomorphic coating around the mineral. Some solution 

of the feldspars occurs along cleavage planes.

Interlocking corestones of unweathered rock are common in this 

zone. The size and shape of the core stones is a function of the 

jointing as discussed above.

Grade III - Moderately Weathered.

In this grade the discolouration of the rock is complete. Par 

tial alteration of the plagioclases has produced solution pores and 

the formation of complete pseudomorphs of halloysite. Similar alter 

ation of biotite has occurred but orthoclase and microcline feldspars 

are often unaltered, or with limited halloysite coating. The plagio- 

clase pseudomorphs have a speckled appearance in thin section.

Some alteration of feldspar to gibbsite occurs in the top part 

of this zone. Similarly alteration to kaolinite also commences in 

the upper part of this zone and it is not uncommon (Eswaran & Bin, 

1978) to find kaolinite flakes in between tubes of halloysite on the 

surface of the pseudomorph. This suggests a transitional environ 

ment, probably dictated by decreased pH, between the formation of 

halloysite and kaolinite.

Grain boundaries remain tight but stained brown by iron oxides. 

The rock fabric is highly micro-fractured by complex branched, trans- 

granular microcracks.

This zone has also been called the pallid zone, due to the in 

complete degree of iron staining throughout the matrix, in contrast
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to the mottled and stained fabric of grade IV material.

Grade IV - Highly Weathered.

The halloysite content decreases in this zone, presumably as 

it is converted to kaolinite or gibbsite. Alteration of the smaller 

grains of feldspar to kaolinite is direct in this zone, although lar 

ger grains alter to gibbsite. The biotites alter to a mixture of 

kaolinite and goethite.

In this section, interconnected pores can be seen to have formed 

in plagioclases, while orthoclase feldspar only shov/s slight altera 

tion. Quartz grain boundaries show slight rounding indicating sol 

ution of silica. Biotite is bleached to different degrees and altered 

along grain boundaries.

Intense microfracturing of the rock fabric by a complex branched 

and dendritic pattern of microcracks is seen. Dearman (19?8) re 

ports that this zone has the highest permeability. Although the por 
osity continues to increase in the higher zones, there is more cry 

stallisation of kaolinite as flakes which tend to block the pores. 
Similarly, the rock matrix begins to collapse with the alteration of 

orthoclase.

Grade V - Completely Weathered.

Plagioclases are completely altered to kaolinite and gibbsite, 

with some residual halloysite remaining. Orthoclase and microcline 

are highly microfractured and partial alteration to kaolinite has occ 

urred along microcracks and cleavage planes. Quartz is intensely 

microfractured and has been reduced in grain size by open, branched 

microcracks. Some biotite still persists in a near fresh state, 

presumably effectively protected by a thin coating of halloysite or 
goethite. Some grains of biotite show alteration along grain bound 

aries and cleavages, and some expansion to vermicullite is noted.

The fabric is highly broken by micro and macrocracks, forming a 

reticulate pattern; most are open, clean or partially filled; some 

are wider and parallel sided forming macrocracks () 1.0mm). The 

material is very much weakened in strength, and is also highly porous, 

although the permeability is decreased by the kaolinite formation.

Halloysite is actively replaced by kaolinite as can be seen in 

Figure 3.3. Once the secondary mineral is reduced to extinction size,



further weathering results in its destruction : silica is lost in 

the groundwater and alumina precipitates as gibbsite.

Grade VI - Residual Soil.

Orthoclase and microcline feldspars are partially decomposed to 

gritty aggregates and extremely microfractured. Kaolinite and 

gibbsite are present throughout the matrix as recrystallised plates 

or pseudomorphs of the feldspars. Quartz shows extensive micro- 

fracturing and some solution. Microfractures and macrofractures are 

abundant throughout the matrix. The material has lost all cohesive- 

ness and may be dug into with a pick axe.

The permeability of this zone is low. In areas of deep weather 

ing, all trace of rock matrix is removed and the material becomes a 

silty clay containing relict crystals as a dispersed sand fraction.

Lying above this grade of weathering are the typical A and B 

soil horizons which are developed on any rock material. The A hori 

zon is particularly coarse, a reflection of the raindrop energy, as 

all the clay is either carried away as runoff, or illuviated down 

wards to the B horizon. The base of the B horizon is defined as the 

limit of bioturbation.

Plate 3«7 shows an example of grade V material where the rock 

texture can still be clearly seen. The material has a very low per 

meability as may be seen.

Plate 3»8 shows a further (Plate 3-6) example of grade IV weather 

ing, indicating the effect of different lithology.

It is important to point out that the grades may be truncated in 

any particular sequence. Either grades II to V may be missing, rep 

resenting the weathering out of an inselberg, as in Plate 3-20 and 

Plate 3.21. Or grades IV, V, and VI may be missing at the edge of 

an area of outcrop. The former occurrence represents an area that 

may be successfully investigated using seismic refraction techniques 

and will be returned to in section *f. The latter represents an area 

of considerable groundwater recharge and will be discussed in Section
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Plate 3.7 Grade V weathering "material above the water table in a

pit dug for road construction purposes. Note the intact 

rock texture and kaolinisation of the feldspar.

Plate 3-8

Grade III, IV and V weathered 

material in a recent rock 

cutting. The difference in 

grade is the result of 

differing rock chemistry.
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3«5 Deep "Weathering Examples from Northern Nigeria

General

The deep weathering observed by Thomas (1966) on the Jos Plateau 

(see Figure 1. ) has been shown diagramrnatically in Figure 3»2. In 

this section, the general geology of Northern Nigeria, and the area 

around Bauchi in particular, is briefly reviewed. This review in 

cludes descriptions of the major fracture trends and petrological 

descriptions of some of the common rock types, so that the geological 

background to deep weathering in this area is established.

Basement Evolution.

There has been very little general geological mapping of the basement 

complex rocks where they crop out to the east of the Jos Plateau. 

McCurry working in the area around Zaria has established the succession 

shown in Table 3»3» The Katangan metasediments which crop out in the 

Zaria area in a wide north-south trough, are not seen to the east of 

the Jos Plateau, and it seems pcobable that the basement to the east 

of the plateau represents a lower level of erosion than that to the 

west.

Nigeria lies completely within a mobile belt of the Pan African 

orogeny, with the stable areas of the Congo craton to the south and 

east, and the West African craton to the west. Ficure 1 .£ shows a sim 

plified geological map of Nigeria. Bauchi is seen to lie to the east 

of the line of Jurassic granites which extend through the Jos Plateau 

area, and to the west of the Benue Trough of Cretaceous sedimentation. 

An area of Tertiary sandstone deposition masks the boundary between the 

basement and the Cretaceous deposits in the east. Many of these fea 

tures can be seen on Plate 3-9i which is a side scan radar image of the 

Bauchi area.

The structure within the Pan African typically shows a 030° line- 

ation. This can be clearly seen in the older granite inselbergs visible 

in Plate 3»9 J and which are typically ellipsoidal and elongated in this 

direction. The younger granite shows this lineation, although the line 

of younger granite intrusions from the Jos Plateau to the Air Massif 

in Niger, has an orientation of 005 • This later orientation can be 

seen also in fracture analyses of Lands^t products as occurring widely 

throughout the basement areas. A third lineation with an orientation
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Table 3»3 Generalised -eochronology for the metamorphic rocks of 
Nigeria (after KcCurry, 1973)

Age 

m.y

Period/Event

Mid Cambrian

650-580 Lower Cambrian

850-650 Pan African

1000-800 Katangan

1900(^250) Eburnian

2500 Birrimian

2800(^200) Liberian(?)

Geologic History

uplift, coding, fracturing 
and faulting

granite intrusion, pegmatite 
and aplite development

orogenesis - deformation, 
metamorphism, migmatisation 
and reactivation of pre 
existing rocks.

geosynclinal deposition

granite intrusion

orogonesis-folding 
metamorphism and 
reactivation of pre 
existing rocks

geosynclinal deposition

formation(?) of banded 
gneiss complex near 
Ibadan

Rock Type

Older Granite

Katangan 
Metasediments

Eburnian 
Granites

Birrimian 
Metasediments

>2800 Dahomeyan Crystalline Basement
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of 80 can be seen controlling valley development and erosion within 
( the older granite outcrop areas.

Both older and younger granites are present in the Bauchi area, 
and both occur mainly as areas of hills or inselbergs. The large ellip 

tical hill called Zaranda which can be seen in Plate 3.9, lies some 

600m above the surrounding plain, and is a younger granite complex 

which has not been mapped in detail. More typically, older granites 

occur as smooth sided inselbergs throughout the area and can be seen 
as the smaller hill areas on Plate 3.9. Plates 3.10 and 11 show typical 

older granite morphology close to Bauchi.

Eborall (1976) reports the occurrence of an intermediate suite of 

quartz monzonites developed within older granite intrusions in and ar 

ound Bauchi. As Bauchi Old Town is situated on this outcrop, the rock 
type was called bauchite by Oyawoye (1965). Eborall lists four occurr 

ences of this rock type, however a number of other areas of outcrop were 
identified during water resource investigations, and some of these have 

been marked on the overlay to Plate 3»9» Bauchite occurs associated 
with biotite granite and quartz diorite in elliptical areas of outcrop. 

Fresh specimens of bauchite are dark green due to the green colour of 
quartz and feldspar, the most conspicuous crystals being twinned alkali 

feldspars up to ^>0mm long. Bauchite consists of extremely coarse micro- 
perthite and oligoclase, with eulite, ferroaugite, ferrohastingsite and 

small amounts of quartz, fayalite and ilrnenite or magnetite (Eborall, 

1976).

The older granites more typically consist of phorphyritic rcicro- 

cline and plagioclase (An25) with subordinate quartz. Biotite, hornblende, 
apatite, sphene and zircon occur as secondary minerals. The feldspar 

megacrysts are dominantly microline perthite and usually contain inclu 
sions of the other major rock-forming minerals. The presence of the 

inclusions strongly suggests a metasomatic origin for the megacrysts, 

and not crystallisation from a granite melt.

The migmatites commonly occur as pavement outcrops close to the 

base of inselbergs. Plate 3.12 shows a typical migmatite from an area 

close to the base of inselbergs. The gneiss can be seen clearly in this 

plate.

A series of basalt dykes of unknown age were intruded along a strike 

direction of 080°, and weathering down these dykes is often responsible
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Plate 3»9» Side looking airborne radar (S.L.A.R.) image of Bauchi 
area. (Courtesy, Federal Forestry Office in Ibadan)

Notes. 1. Younger granite ring complexes.

2. Zaranda - Younger granite

3. Bauchi airfield. North south line is reflection 
from tin roofs in Bauchi old town.

k. Boundary of Tertiary Keri Kuri sediments and 
crystalline basement rocks.

5« Elliptical intrusions of Bauchite (Older granite)

6. Road and Rail bridges over the River Gongola 
east of Bauchi.

The image extends from 9° - 10°30" east and 10° - 11° North. 

The approximate scale is 1 : 1,000,000 1cm = 10 kilometres.
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Plate 3»10 Older Granite outcrop close to Bauchi.

Note the coarse grained porphrytic texture, the large pressure release 

exfoliation slabs and the predominant gulleys which are defined by 

later age (?) basalt dykes.

Plate

Older Granite inselberg, 
north of Bauchi at Gubi.

The sides are almost sheer, 
with the formation of 
exfoliation slabs of several 
hundred square metres extent.

Note - all season water hole 
at the base of the inselberg,
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Plate 3.12 Gneiss showing folding and intrusion by aplite veins, 

Pavement outcrop close to Bauchi.

Plate 3«13» Dyke cutting edge of older granite inselbergo
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for the geomorphological evolution of the older granite inselbergs. 

The dykes cut cleanly through the granites and cross onto areas of 

gneiss where they often form the locus for areas of deep weathering. 

Plate 3.13 shows a basalt dyke cutting through the edge of a granite, 

close to Bauchi. A borehole producing 10m /hr was sited in an extension 

of the valley associated with this dyke some 5OOm onto an area of flat, 

weathered ground.

Deep Weathering - Example A.

Plate 3«1^ shows a part of the trough of weathering discovered by 

electrical resistivity geophysical techniques to extend for a minimum
0

of ten kilometres in a 005 orientation through Bauchi. A number of
i

boreholes have been successfully sited on this fracture zone where it 

runs through gneisses. A section compiled from the borehole records and 

covering 2 km length is shown in Figure 3»^« The section is drawn to 

show the different grades of weathering, and two of the original geol 

ogical logs of the boreholes are presented in Appendix B.

The hydrology of this fracture is considered in detail in section 

five of the thesis, as the borehole location described in Plate 3»1^ 

is the location of the groundwater hydrograph presented in Figure 5»^«

The apparent resistivity anomaly over a part of this fracture zone 

is shown in Figure 4.7. As can be seen from Plate 3«1^» there is no 

surface indication of the deep weathering profile, and it is thought to 

have been caused by a combination of faulting and pressure release joint 

ing in an area of biotite gneiss (see Appendix B) .

Deep Weathering - Example B.

Plate 3*15 shows a part of a complex area of deep weathering to the 

south east of Bauchi, The photograph is taken from an older granite in- 

selberg which falls almost vertically to the level of the plain. The 

weathering appears to be located about a number of fractures, or more 

probably dykes in gneiss which belong to the 080 orientation seto 

Seismic refraction was used to locate the boreholes, and this area was 

then covered again by electrical resistivity profiling techniques. The 

combined results are discussed in Section 4. The apparent resistivity 

anomaly over a part of this zone is shown in Figure 4.8

The pits that can be seen in the middle distance have been dug into 

grade V weathered material using a pick axe. The material is shown in



rwr
BMC

I

h590

0
O

h-550

0 O 
Q Q O

Schematic cross section along a 
weathering trough.

Section compiled from borehole data. 
Weathering grades as defined in text.

KEY

vertical 1:500 
horizontal 1:10,000

K. K

/.



141

Plate 3«1^« Deep weathering - example A location.
The weathered zone runs from the direction indicated. The photograph 
is taken from an inselberg of granite, which can be seen in the right 
foreground. At centre right, two pavement outcrops of gneiss and mig- 
matite similar to plate 3«12 can be seen.'A borehole has been drilled 
to 60m depth by the tree at left centre (an orage air compressor can 
be seen under the tree).

Plate 3-15 Deep weathering - example B location. A diffuse area of deep 
weathering associated with 080 jointing crosses the picture from right 
to left. The picture of grade V weathering material shown in plate 3»7 
was taken in the road construction pits that can be seen in the middle 
distance.

GRADE " V

GRADE
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Plate 3»16. Drill cuttings from deep weathering area B.
The hole has been drilled using a pneumatic down-hole-hammer rig,
with the result that the more compact the rock, the finer ground is
the sample. The rock dust in the final pocket represents fresh grade
I material.
The samples are arranged 'book fashion'.
Note the absence of grade IV and V material, with a very thin grade VI,

Plate 3-17* Extensive grade V and Vi material from deep weathering 
area C. Cores have been obtained using dry drilling techniques. S*W.L,

15.5m.

. * - r
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Plate 3»7« Note also the trees rooted into the pressure release joints 

within the older granite in the foreground of Plate 3«15»

Plate 3«l6 shows the drill samples from a borehole at the edge 

of this area. Only grade I, II and III material is present in any 

significant quantity,with no evidence of grade IV, V and VI material. 

The individual boxes hold a composite sample from a 2.7m (9 1 ) length 

of hole, and are arranged 'book fashion 1 . The particular significance 

of such areas as recharge zones is further discussed in section 5*2.

Deep Weathering - Example C.

This example is taken from the engineering geology investigations 

for a major dam site. Resistivity profile data, EM31 data and seismic 

refraction data were all collected as a part of the centre line survey 

for the dam. Diamond core drilling at points of interest selected from 

the geophysical data was later carried out, and good core recovery was 

obtained from a number of holes. Plate 3»17 illustrates a deep dev 

elopment of grade V and VI material, where the complete alteration of 

the silicate minerals to clay is well illustrated. The division be 

tween grade V and grade.VI material is also shown.

Plates 3-18 and 3»19 show an unusually complete section from a 

borehole on the dam line. The seismic refraction data from this line 

is shown in Figure ^.23» with the resistivity profile data included 

for comparison. As the standing water level was at 19m in the bore 

hole, the whole section is usually unsaturated.



Box

Box 3

Box 2

3ox 1

Plates 3.18 + 3.19 An almost complete sequence of samples through a 
weathering profile (deep weathering - example C) obtained using a 
site investigation rig. Note the clay material (Grade VI) close to 
the surface, the pressure release sub-horizontal joints and the pre 
sence of grade I material above grade III material in the top core 
box. After drilling, the standing water level was recorded at 19.0m,

The sample box should have 1.5m of core in each run. 
In box 2 there are 10m of core.
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3.6 Soil Characteristics.

General

The grade VI weathered rock represents the C horizon of the soil 

profile in normal pedological terms. The limit of bioturbation marks 

the change from C to B horizon, although extensive clay bands found 

in the upper part of grade VI material may represent fossil B horizons. 

The change from A to B horizons is marked by the presence of illuviated 

clay in the normal pedological sense.

The high kinetic energy of the rainfall associated with tropical 

storms has the effect of breaking up the soil particles, particularly 

the clay aggregates, and removing them from the profile in suspension, 

either by infiltration, or by surface runoff. River water in the savanna 

is never clean, as the clay content carried in suspension is always very 

high.

The soil which is developed on agricultural land can become very sa 

ndy, with a high porosity. Intereeption is particularly efficient, in 

reducing the kinetic energy of the raindrops, and the removal of the 

natural vegetation cover may quickly lead to erosion problems.

The consistency of the surface soil is non-sticky and non-plastic 

when wet and friable when moist. Savanna soils also show a marked de 

gree of hardening and cementation with decrease in soil moisture. 

The process of increased cohesion and hardening does not start until 

about half of the moisture content at field capacity had been lost, 

but it then continues for as long as evaporation continues (Kowal, 

1978).
C. t».tj

The &£$ fraction of the soil (35/-0 is either colloidal or colloid 

al like and is principally kaolinite (?8r.) with the remainder as goe- 

thite and gibbsite. The sand fraction (60?o) of the soil is dorainantly 

quartz and relict orthoclase or microcline grains with some mica frag 

ments. The micas are preserved in the weathering environment by a pro 

tective goethite sheet (Eswaran, 1976).

The soil profile developed over crystalline rock in a savanna en 

vironment is known as a Krasnozem (Fitzpatrick, 1971). A problem as 

sociated with the profile development which is not well understood is 

that of lateritisation. The essential requirements for laterite form 

ation are high rainfall, and intense leaching in an oxidising environ 

ment. The result of the process is the formation of an iron oxide rich
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layer some 300 - 800mm in thickness at the too of the soil profile. 

The layer is dominantly pisolithic and may develop to form almost 

solid iron oxide.

The principle significance of laterite formation to this study 

is that it produces a shallow, very high electrically resistant layer 

which causes severe problems during geophysical work described in the 

following section. A typical occurrence of laterite is shown in Elates 

3.20 and 3»21. A sheet of laterite can be seen beneath the A horizon 

of the soil throughout the section.

Laterite formation has received extensive discussion in the lit 

erature (McFarlane, 1976) and the method of formation is not signi 

ficant within the context of the present study.

The bulk physical properties of the soil, the moisture retention 

and field capacity are discussed in Section five of the thesis.



Plate 3.21.

Plate 3»20. A weathering profile close to Kano, • 
Northern Nigeria. Grade I and II weathering can 
be seen in the 'exhumed' inselberg at centre right
Grade Vi weathering material is being used to make 
bricks, indicating high clay content, and occurs 
close to but at the same level as the grade I mat 
erial. The high porosity and low permeability of 
the grade V material is well demonstrated by the 
presence of water slowly released well into the 
dry season.

A weathering profile in a different part 
of the same location as 3«1« 
Note the same general features and the 
1-1-5 metre thick laterite sheet close to 
the surface.
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3*7 Summary

The weathered zone developed upon gneiss, migmatite and gran 

ite is the result of interaction between four basic factors, viz:

1) Composition of the rock, crystal type and size.

2) Joints formed as a result of pressure release.

3) Presence of dyke intrusion.

*0 Presence of faulting or jointing formation at depth.

The most important of these four is the composition of the rock 

and the size of the various crystal phases present. Although con 

siderable further research is required in this field, it seems prob 

able that coarse grained granites with quartz, orthoclase or micro- 

cline and subordinate plagioclase, with only minor biotite, will re 

act to pressure release by forming joints at regular and widely spaced 

intervals. These joints produce large exfoliation slabs which are 

only reduced by chemical weathering very slowly. In this way such 

rocks tend to form inselbergs.

The size and spacing of pressure release joints appears to be a 

complex interaction between rock chemistry and crystal size. For ex 

ample, a small change in feldspar chemistry may result in a pronounced 

change in the density of jointing, and therefore the rate of weather 

ing. In contrast to granite, a medium grained gneiss with usually 

abundant biotite and a pronounced lineation, appears to react to pre 

ssure release jointing by forming a larger number of more closely 

spaced joints which may be rapidly weathered to produce a grus, or 

disaggregated crystal sand. At the far end of the scale a schist re 

acts to pressure release jointing by microfracturing between adjacent 

crystals, and therefore does not form joint blocks. As the total sur 

face area opened up by microfracturing is very large, chemical weather 

ing is correspondingly more active.

The presence of basalt dykes often forms a locus for a greater 

depth of weathering. Groundwater percolation down the contraction 

joints within the dykes allows greater access to the rock walls; if 

these are gneissic then weathering may extend outwards from the dyke. 

If the wall rock is granite then the different weathering rate of the 

basalt may still have a pronounced effect on the morphology of the 

inselberg.'-

Where a major fault is present which can allow groundwater access
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to a depth of 75m or more, then deep weathering on either side of 

the fault may occur. If the fault runs through granite the extent 

of the weathering is likely to be less than that would occur if the 

fault line runs through a gneiss. In all the above instances, the 

behaviour of migmatites is somewhat intermediate.

Major joint systems associated with the cooling and contraction 

of emplaced granite magmas may allow deep weathering in granite, 

however the older granite suite around Bauchi is most probably pre- 

dominatnly formed by metasomatism, and this process does not produce 

such contraction jointing. The metasomatic origin of at least the 

major feldspar megacrysts is indicated by the large number of inclu 

sions found within these crystals, and by their zoned nature.

The predominant chemical reaction is hydrolysis. The silicates 

are hydolysed by percolating groundwater with a pH of ̂ 5«0 in the 

grade II weathered material. The hydrolysis reaction increases the 

pH due to the release of hydroxyl ions. Halloysite is the first clay 

mineral to be formed and typically plagioclase and biotite are altered 

to halloysite which forms as pseudoraorphs around the original crystal. 

The calcium contained in plagioclase is dissolved out by the acidic 

groundwater. The initial alteration causes a microfracturing of the 

surrounding crystalline matrix. As this microfracturing in turn re 

quires an element of expansion, the amount of weathering is controlled 

by the space made available by joint formation, or the fracturing 

associated with faulting.

The products of weathering in the grade II and III material are 

efficiently re moved by groundwater flow, even through closed basins 

of weathering. This has been indicated by the results of a hele-shaw 

viscosity model, and is also strongly inferred by the fact that base 

ment groundwaters are invariably very pure with negligible dissolved 

matter and very low salinity. (Feth,

The grade IV weathered zone marks a change between predominantly 

halloysite clay in lower zones, and kaolinite and gibbsite as alter 

ation products in higher zones. It seems probable, although there is 

no conclusive evidence, that the production of large amounts of kaolin 

ite, begins to reduce the permeability of the higher zones although the 

porosity continues to increase. This factor is significant for both 

geophysical and hydrogeological reasons, and is the most important 

single factor identified in this section.
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Three examples of deep weathering are introduced in this sec 

tion with a number of plates showing the actual areas under study. 

From these plates it may be seen that there is no reliable surface 

indication of deep weathering in the savanna, and considerable geo 

physical effort is required to accurately locate positions for bore 

holes in order that they may intercept the greatest depth of weather 

ing.
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4. GEOPHYSICAL ETV^TI^ATION TECHNIQUES. 

Introduction.

The genesis of weathering basins has been described in Section 3. 

The development of ground'.vater reserves contained within these basins 

is obstructed by the fact that their existence is not reliably indi 

cated by any criteria observable at the surface. Although the exist 

ence of basins can be predicted from an examination of the surrounding 

geology, it is necessary to use geophysical techniques to determine their 

actual existence and extent.

The sequence of materials encountered within a weathering profile 

has been described in Section 3. Each of these subdivisions is devel 

oped to an increased extent within a weathering basin developed over 

homogeneous material. However, grades III and IV material may be absent 

when a change in the lithology has halted the downward progression of 

the weathering front. Plate 3.20 indicates such an instance.

Significant groundwater reserves are found in the grades II, III 

and IV weathered material, where the porosity and hydraulic conductivity 

are relatively high compared to the underlying solid rock or the over 

lying high clay content material. The variation of hydraulic conductiv 

ity within the weathering grades is discussed in detail in Section 5 °? 

the thesis. The geophysical problem is therefore resolved into the dev 

elopment of techniques which can reliably identify the presence of grades 

II, III and IV weathered material, and subsequently the depth at which 

this material lies.

Seismic refraction and electrical resistivity techniques are both 

used at present in geophysical surveys designed to detect weathering 

basins. For this reason the results obtained by both methods are des 

cribed below and a critical assessment made of tneir general applicabil 

ity. Ilore recently, electro-magnetic (EM) instrumentation and techniques 

have become available and a combination of electro-magnetic and electri 

cal resistivity methods which greatly decreases the geophysical survey 

time required is described in this section.

The geological descriptions of the various weathered layers allows 

the physical properties of both grade I and grade V + VI material to be 

reasonably identified. Grade I material is unfathered rock with a low 

porosity and no hydraulic conductivity. Consequently, the electrical 

resistivity is high (>/ 4000Jlm) and the seismic velocity is similarly 

high (4.0-6.0 m/ms^. Grade VI material in completely weathered rock with
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no structure intact and a high proportion of the rock components cor - 

pletely converted to clay. The porosity of this material is high, 

but the hydraulic conductivity is lov; due to the high clay content. 

The electrical resistivity of the da-rip material is lov; **20QJtn, but as 

the surface material dries out, this increases to above lOOQjlm. As this 

material is uncompacted, the seismic velocity is lov; at 0.4-2.0 m/ms, 

depending upon the degree of saturation.

Both seismic refraction and electrical resistivity interpretation 

techniques, in their moc 4: generally used form, are based upon an assum 

ption that the subsurfaces may be discretised into sections of homogen 

eous material separated by abrupt planar interfaces. Ho-.vever, the 

weathering profile is most often gradational with no easily identified 

interfaces, (see for example Plates 3.17> 3.18 and 3.19)? and it is 

this gradational characteristic, both in the horizontal and the vertical 

planes, which is responsible for the interpretation problems which com 

monly arise in this environment.

During the work in TTigeria, the electrical resistivity and ELI method 

proved to be the most successful for locating areas of deep weather 

ing. Several developments of this technique are described below and 

therefore in the first part of this section the relevant theoretical 

aspects of the electrical resistivity method are discussed.

The electrical resistivity method comprises tv/o separate methods 

of investigation. The continuous separation traverse or profiling 

technique is used to establish the presence of lateral variations of 

resistivity. This method is the most useful technique in the basement 

environment where the depth of weathering is a function of faulting 

and fracturing and therefore changes over short distances. It is not 

possible to interpret profile results at a single electrode separation 

in terms of a depth, however the method was used extensively for this 

study in Nigeria and is described and discussed in part two of this 

section*

The electrical resistivity sounding method can be successfully 

employed where a sequence of plane layered homogeneous media are to be 

resolved into depths and resistivities of the component layers. The 

interpretation techniques depend upon there being very little lateral 

variation along the layering over an area of 500m by 2|30rn necessary 

for the field measurements. This constraint is seldom satisfied v/ithin 

the weathering environment due to the basic inhonogeneity or the .Tneioc?
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and granite material being -.voathered. Despite this constraint , depth 

sounding interpretation results are widely reported in the literature, 

with generally poor correlations between interpreted depths and re 

sults from nearby boreholes (Verma, et al, 19 p.O) . The attraction of 

this method is that a value for the depth of weathering is produced 

by the interpretation, even though it may not be very accurate. In 

the third part of this section, the resistivity sounding method is 

discussed.

In the fourth part o r this section, the resistivity techniques of 

profiling and sounding are combined to produce a new method developed 

for this study. A resistivity profile section comprises the results 

from a number of profiles conducted at different electrode separations. 

A finite difference approximation of the potential distribution is used 

as the basis for a computer based interpretation technique which per 

mits the modelling of field data in terms of a discrete resistivity 

distribution. The resistivity distribution within the model is varied 

at a number of nodes (-v3000) which allows the required lateral and 

vertical variation of resistivity in the weathering environment to be 

interpreted. Three examples of the use of this technique are presented.

Seismic refraction methods rely on the presence of an interface 

between materials of sufficiently contrasting physical properties. 

The interface generates refracted waves which may be identified on a 

graph of travel time vs distance as various straight line segments. 

The assumption is made during the interpretation that the material ly 

ing between the interface is of a uniform homogeneous nature. Although 

plane layering is not required, an increase of seisr.ic velocity with 

de^th is necessary otherwise layers of lower velocity material beneath 

layers of higher velocity material are not identified.

""ithin the weathering environment seismic refraction can be used 

successfully to identify shallow lying grade I or II materials but 

considerable error occurs when interpretations are mrde over gradaticn- 

ally weathered sequences. For this reason, the conditions which lead 

to satisfactory interpretations of seismic refraction data are also 

those which would not yield supplies of groundvnter. In the fifth 

part of this section the seismic refraction methgd is discussed and a 

number of examples presented*

use o^ E' techniques are considered here to be an extension 

of electrical resistivity methods and a?, such are incite;! in the
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discussion in Section 4»2 and 4«4<
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4.1 Electrical Resistivity Theory. 

Introduction.

Electrical resistivity techniques are shown t<elo\v to be the most 

successful method by which weathering basins can be delineated. For 

this reason, electrical resistivity theory is described in some det 

ail in this section.

The method by which current is propagated through the weathering 

environment varies significantly in the different weathering grades. 

Therefore, if a successful interpretation of the resistivity results 

is to be made, the different methods of electrical conduction require 

description.

The interpretation of electrical resistivity results is often 

based upon an analytical solution to the equations which describe 

electric current flow. The analytical solution is constrained how 

ever by the requirement that the subsurface can be divided into plane 

layered homogeneous media. The weathering environment can rarely be 

so described and for this reason a finite difference solution to the 

equation of current flow is also considered.

Electrical conduction in the weathering environment.

Electric current may be propagated through rocks or weathered 

material in three basic ways; electronic, electrolytic and dielectric 

conduction (Telford, et al,

Dielectric conduction takes place in poor conductors and insul 

ators, which have very fev; free ions to act as carriers. Under the 

influence of an external varying field, the atomic electrons are dis 

placed slightly with respect to their nuclei, and this slight displace 

ment represents a small current flov.'. As direct current is used in 

almost all the following work, the contribution to the total conducti 

vity of the rock mass by dielectric conduction is very small.

Electrolytic conduction occurs through the solution contained 

within the pore space of a material. If this solution contains a hi.~h 

proportion of dissolved ions, then the ion will move in response to an 

applied potential difference. The flow of ions, which are either posi 

tively or negatively charged, constitute an electric current.

Electrolytic conduction can only occur where the pore space is
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interconnected. Grade I and grade VI weathering material have very 

low hydraulic conductivities and therefore the electrolytic conduct 

ion in these weathering grades is also small.

The chemical composition of groundwater obtained from "basement 

boreholes has been described in Section 3.4. From these analyses it 

may be seen that the waters have a very low dissolved solids level, 

and are usually very pure. Electrolytic conduction in waters of this 

type will not be very significant.

Electronic conduction is the normal way in which current flows 

through metals. As metals are however, relatively rare in the base 

ment environment, the contribution to the bulk conductivity of the 

rock mass by electronic conduction is very small.

From the above discussion it is clear that the three basic me 

thods of conduction do not produce high values of electrical conduc 

tivity within the weathering environment. Hov/ever, it is commonly 

observed, and results -.vill be presented below, that weathering 

troughs produce major conductivity anomalies. A contrast of from 

>100Qfl-m to <5Q-rtJn is often observed over the weathering trough. Al 

though no experimental evidence is available it is probable that a 

combination of matrix conductivity and electrolytic conductivity 

within the secondary clay minerals is responsible for this increase 

in bulk conductivity.

The process of matrix conductivity is not clearly understood. 

However, it is probable that, in saturated material, conduction oc 

curs by transfer of charge along the surface of, or along inter- 

sheet sites of clay minerals. Where clay minerals are linked to 

gether to form a network throughout the weathering environment, then 

conduction by this process can occur widely.

In grade V + VI material, where kaolinite is extensively devel 

oped, matrix conduction through the kaolinite will produce a high 

value of bulk conductivity. The proportions of clay in the weather- 

in.? environment has been discussed in Section 3.4. Clay content in 

creases from grade II material to grade VI material. On the joint 

faces of grade II material it is probable that a thin sheet of clay 

produces the conduction observed. Hoy/ever, the bulk conductivity in 

grade II material is low as the volume of fracture porosity is low 

( see Section 5»

Note 1. The units of conductivity and resistivity are defined bolov;.
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It is probable that a direct relationship exists bet-veen the c] ny 

content and the electrical conductivity of the -veathering material, 

and that the porosity of the various grades does not of itself affect 

conductivity, due to the very low electrolyte concentration in t" e 

groundwater.

The electrical conductivity ( a ) of a material may be defined a3

4-1

_2 
where j = current density (amp m )

—1 
E = electric field (Vm )

The conductivity is measured in mhos/m. The reciprocal of con 

ductivity is resistivity.

P= Va 4.2

v;here p - resistivity (ohm-in)

Although conductivity is probably not related to r;orosity in the 

weathering environment, matrix conductivity can only occur in clays 

which are saturated. Therefore, a h:; gh value of conductivity (lov; 

resistivity) must also indicate satu^c.tion.

Theory of current flow.

Although the previous discussion has been in terms of electrical 

conductivity, it is more usual to measure in the field . electrical 

resistivity. In the majority of the discussion below, this convention 

will be followed, although for the mathematical derivation below, units 

of conductivity have been used for convenience.

The apparent electrical resistivity of an inhomo-eneous half space 

may be calculated by measuring the electrical potential developed ab 

out a current source. The theory is briefly developed so that the 

main difference between the analytical and the finite difference inter- 

pretational methods can be appreciated.

The electric field is the gradient of a scalar potential where 

the potential ( <X>) is measured in volts.
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v/here £ = electric field

V = i 1- * i X i 1 X- ^* - 3-3 T-»-

d> = electric potential 

From Equation 4.1 it may "be seen that

I = -o V <D 4.4

The divergence of the current density (v- j ) must be zero every 

where except within volumes enclosing a current source or sink, there 

fore :-

?'i = ° 4.5 

and from 4.4 -V-[o- V <D ] = 0 4.6

Equation 4«6 may be expanded to produce

9 crV-V(D + tr? d> = 0 4.7

If ff~ is a constant, for example, if the half space is homogeneous, 

then V a =» o

and Equation 4-7 reduces to 

a V2 <b = o 4.8

As o — -^ o the equation further reduces to the Laplace equation

V 2 0> -=o 4.9

The solution to Equation 4»9 has been studied in detail (Xoefoed, 

1^ 70,) anci the theory -/ill not be developed further here. The resis 

tivity sounding interpretation methods vrhich are based on an analyti 

cal solution to Equation 4. 9 have been used extensively in the weather 

ing environment (Palacky, 19^0) o^ten with poor results. In Section 

4.3 resistivity sounding curves for the basement are presented and dis 

cussed.
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The electrical resistivity of the weathering environment is a 

function of the clay content as discussed above. From the geolo 0;- 

ical description of trie weathering environment it is evident th^t 

the resistivity distribution is unlikely to be homogeneous. In 

fact any interpretation which is based only on this assumption will 

produce results which are mostly erroneous.

Therefore, if an interpretational technique which is applicable 

to the weathering environment is to be developed it must be based 

upon a solution to Equation 4.6, where the conductivity is a function 

of the space co-ordinates.

In practise, no analytical solution to Equation 4-6 exists. How 

ever, equations of a similar form have been solved using a finite 

difference approximation, and Dey + Morrison (l979b) report a method 

for a similar solution to Equation 4*6, In this solution, the ass 

umption is made that the resistivity does not vary in the y direction.

This is equivalent to considering.resistivity distribution which 

has an infinite extent along its strike. The advantage of this ass 

umption is that the finite difference approximation may be made in 

two-dimensional space (x-z plane). Hov/ever, the resistivity dis 

tribution within the x-z plane may be varied as finely or as coarse 

ly as the finite difference approximation allows, and therefore the 

potentials developed over inhcmogeneous resistivity distributions 

can be analysed.

The mathematical treatment of the solution is described by 

Dey + !' rorrison (l979a, 1979b) , and relevent descriptions of the sol 

ution of similar equations may be found in Cheng (l97p ) and Rushton 

+ Ward (1979).

A computer program which is based upon this method of solution 

has been written for this study and is presented in Appendix C. 

The results from the program are described in Section 4»4 where a 

new investigation method is described.
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4.2 Electrical Resistivity Profiling 

Introduction.

The electrical resistivity profiling technique is used to id 

entify lateral variations of resistivity. Various electrode con 

figurations have been employed, however, for all the work in Nigeria, 

a colinear equispaced quadripole of electrodes was used. The profil 

ing method, also known as continuous separation traversing (CST) or 

resistivity mapping, involves repeated measurements of the potential 

difference developed between the two central electrodes by a current 

passed between two outer electrodes, as the electrode set is moved 

across an area of interest.

I.lore recently, electro-magnetic methods have been developed 

which produce similar results to the conventional resistivity profil 

ing technique, and which result in a very considerable saving of 

field time.

From the discussion in Section 3, it may be seen that a resist 

ivity profile, conducted across the edge of a weathering basin, will 

detect a significant contrast in resistivity associated with the 

increased clay content in the basin (grades V + VI material) as opp 

osed to the lower clay content in the shallow weathered profile out 

side the basin. The resistivity profiling method can be used there 

fore to identify areas of deep weathering.

Theoretical consideration.

It may be shown that (Telford, et al, 1971) "the potential mea 

sured at some distance (r) frorr. a current source situated over an 

homogeneous resistivity distribution can be expressed as

tf> =- P* 4.10
27TT ^

where <P = electrical potential (volts)

1 = current (amps)

r = distance (m)

p = resistivity of the half space

As the resistivity of an homogeneous half space is constant, it

may be seen from Lquation 4.10 that hemispherical shells representing
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surfaces of equi: otential c::n be constructed around the current 

source, and that the size of the potential decreer,es inversely with 

distance from the current source, becoming zero at infinite distance.

In the more general case of an inhomogeneous half space, where 

the resistivity is a function of the space coordinates, the surfaces 

of equipotential are no longer hemispherical, but assume a compli 

cated three dimensional shape which is a function of the resistivity 

distribution. Similarly, the potential, as defined by Equation 4-10 

will therefore also vary as a function of the space coordinates 

(x,y,z) and it is then necessary to specify the location of the cur 

rent source and the point at which the potential is measured with re 

spect to the resistivity distribution to define the rotential com 

pletely. A change in the location of these points over an inhomo 

geneous resistivity distribution will cause a change in the measured 

value of potential, even if the separation remains constant.

For a generalised set o 1" four electrodes at the surface of an 

inhomogeneous half space, as shown in Figure 4«l»a,'the potential 

difference between P, (at electrode l) and P~ (at electrode 2) raay 

be expressed as

0123 '1,0 '1,3 ' ^20 '2.3 H '

In Equation 4«11» the first suffix refers to the potential elec 

trode and the second suffix to the current electrode. By measuring 

A(b and I and knowing the electrode configuration, Equations 4«10 

and 4•!! may ^e combined as shown in Equation 4-12.

4.12

where pa = apparent resistivity 

and P = ______I________

The apparent resistivity term in Zbuation 4.12 will be clearly 

a function of the electrode configuration and the measured value of 

potential difference between electrodes at points 1 and 2. This lat 

ter term, as discussed above is a function of the resistivity distri 

bution throughout the hair space. The ^e-.sured value of apparent re 

sistivity is therefore di-r-nostic, to some extent, of the actual
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Figure 4-1 Electrode configurations described
in the text.
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resistivity in the vicinity of the electrode army, 1 nt in :J so 

affected to a lesser extent by the resistivity distribution renote 
from the array.

During resistivity profiling, it is convenient to arrange the 
electrode configuration as an equispaced colinear array. A number 

of equispaced electrodes can then oe placed in trie ground prior to 

the survey. Four electrodes of such a set are shown in Figure 4-1- 

numbered 0,1,2 and 3. If the spacing between the electrodes is 'a 1 

metres, then the spacing parameter (p) in Equation 4.12 reduces to 

'a 1 and the measured value of apparent resistivity becomes

PB = 27CaA®_ 4.13

In many sets of field equipment the ratio &Q>/\ is measured dir 

ectly as a resistance and then Equation 4-13 becomes

Pa = 27raR 4.14

where R = A<J^ (ohms)

In any configuration of four electrodes, a change in the order of 

the current and potential electrodes without a change in the electrode 

positions, can only produce three independent values of potential 
difference. The same value of potential is obtained if the current 
and potential electrodes are reversed* Therefore <p = ̂ Q1 in 

Equation 4«H.

The three independent values of AQ> are shown in Figures 4-l> 

"b,c and d.

The potential differences measured for these tliree" configurations, 

the Yu'enner alpha, beta and gamma configurations, will always have the 

relationship that the sum of the beta and garma potentials is equal 

to that of the alpha potential. This may be shown mathernati cally as

415
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This sirr.ple relationship m-y be used in the field a^ a checl: 

of equipment and wiring. If the three readings obtained do not 

agree within 1$ accuracy, then an observation error has occurred and 

its cause should be investigated before preceding v/ith the survey.

It may be shown from Equations 4.11 and 4.15 that if the resis 

tivity distribution is homogeneous, the alpha, gamma and beta read 

ings vary as the ratios a: y : /} = 3:2:1. Over inhomogeneous 

;-round the departure from this ratio, for a fixed set of electrodes, 

provides information on the resistivity distribution. It has been 

demonstrated by Barker (1979)? that the three configurations react 

to a near surface lateral variation in resistivity in a character 

istic manner. The presence of near surface luteral inhomogeneity can 

be detected therefore if measurements of the three configurations are 

made at each position occupied by the electrode set.

It has been noted above that the measured apparent resistivity 

is both a function of the electrode configuration and the resistivity 

distribution within the volume of material beneath the electrodes. 

A complicating factor in the interpretation of any investigation me 

thod based upon measurements of a potential field, is that it is not 

possible to relate the measurement to a specific location. For con 

venience, measurements of apparent resistivity are assumed to refer 

to a volume of ground beneath the mid point of the electrode array, 

although it is appreciated that all the material within the vicinity 

of the array will have contributed to the measured value. The depth 

of investigation of a particular configuration is similarly subject 

to this uncertainty.

Hoy + Apparo (l9?l) have defined the depth of investigation of 

a colinear electrode configu -ation as that depth at which a thin hori 

zontal layer of ground contributes the maximum amount to the total 

measured signal at the ground surface. For a V/enner alpha array, 

this depth of penetration, in homogeneous ground, is given by "Roy + 

Apparo as 0.11 x L, where L is the distance between the current elec 

trodes. For example, if the electrode spacing is 30m, then the depth 

of penetration is approximately 10m.

Over inhomogeneous ground, the concept of penetration depth is 

more complicated. Current will preferentially flow through low res 

istivity (high conductivity) material and therefore if low resistivity
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material is present at depth, the signal contribution from that 

iepth will be more significant than in the case of homogeneous 

ground. Therefore, in the weathering environment where low resis 

tivity material occurs at depth, often adjacent to high resistivity 

material, the depth of penetration will increase over a '.veathering 

trough. Similarly, although it is convenient to think of the depth 

of penetration in terms of a definite figure, the material both be 

low, to the side, and a~bove this level, also contributes signifi 

cantly.

The overall depth of penetration increases as the electrode 

separation is increased, although in some resistivity distributions 

this effect is limited. For example, a lov; resistivity layer close 

to or at the surface will cause the current to be more confined in 

this layer, and increasing the electrode separation will not mater 

ially increase the depth of penetration. In Section 4*4 an algorithm 

is presented based upon a finite difference solution to the equations 

of current flow discussed in Section 4-1 Tsing this algorithm, it 

is possible to change the resistivity distribution by a known amount 

and to then observe the change in apparent resistivity predicted by 

the algorithm. In this way a clearer idea of the depth of penetra 

tion concept can be achieved.

Resistivity Profile Results.

The electrical resistivity profiling technique with measure 

ments of Wenner alpha apparent resistivity was used to ottain in 

excess of 100km of profile data during the period 197& "to 1979. The 

data was gathered either as a part of a water well site investigation 

or as a part of a dam site investigation. In both cases, the geo 

physical data v;as supported by the results obtained from later drill 

ing investigations.

There is no point in cataloging all the data for this thesis: 

rather, a number of examples are presented which demonstrate the 

nature of the results. The results which are presented have been 

taken from investigations carried out in the three areas discussed 

in Section 3.5-

Figure 4»2 shows the results of a large number of profiles car 

ried out over area A and shown in Plate 3.14» Values of equal appar 

ent resistivity have been extrapolated and contoured, based upon the
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profile data, to produce an iso-resistivity map, for an electrode
2separation of 30m, over an area of approximately 3 km . Ten succ 

essful boreholes were drilled into the apparent resistivity low an 

omaly and the drill cuttings obtained have been used to prepare the 

section shown in Figure 3.4. The lo-,v anomaly continued both north 

and south of the area shown in Figure 4.2 for a proven length of 
10 km.

The resistivity anomaly passes v/ithin 100m of an inselberg where 

the boundary between grades I and II + III weathering are as steep 

as those shown by Thomas (1966) and presented in Figure 3.1.

Figure 4.3 shows iso-resistivity contours from a part of area 

B shown in Plate 3.15« The anomaly is seen to be considerably wider 

than that shown in Figure 4«2, and is related to weathering along 

what is probably an older fracture trend. The boreholes sited close 

to the offset in the resistivity anomaly gave higher than average 

yields (> 15m /hr) for the area, although boreholes sited on the 

broad anomaly to the south-west dried up a^ter several months of 

pumping (see Section 6.3).

Readings of V/enner alpha, beta and gamma resistivity (also known 

as tripotential readings) were obtained for all the profile lines 

shown in Figure 4*2. The data for one of these lines is shown in 

Figure 4*4 and- tabulated in Table 4.1. According to Barker (1979) 

the beta and gamma profiles show a characteristic response as the 

electrode set passes over a shallow resistivity inhomogeneity, such 

as a shallow buried boulder. The beta profile shows a negative move 

ment whereas the gamma profile shows a similar positive displacement. 

Several such fractures are marked by the letters 'LI' on Figure 4.4? 

indicating near surface lateral inhornogeneities.

The resistivity profile results show clearly that the method 

successfully delineates weathering troughs.

Field method.

A GTE Rhometer w-is used for the majority of the profiling work. 

This push button, digital display instrument produced results in a 

quick and convenient manner.

Between 70 and 100 short (75cms) steel electrodes were placed in 

the ground at measured intervals of 15 or 30 m along the profile line
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Tripotential profile results over a fracture zone 
shown in Figure 4.4. (Data in ohm metres) 
Electrode spacing = 30m. Station spacing = 15^.

Station

0

1

2

3

4
5
6
7
R

9
10

11
12

13
14
15
16
17
18
19
20

21

22

23

24
25
26

27

28
29

30

31
32

33
34

a

150

150

119
65
76
82
88
93
130
147
127
172
206
200
142

181
240
249
153
189
283
243
181
161
212
237

195
147
141
175
192
153

0

28

45
45
23
23

45
28

45
62
90
130
130
141
147
164
158
147
136
187
181
181
141
158
147
119
107
141
164
170
130
102

96

V

122

115
81

47
49
51
62

77
109
115
132
160
185
L°7

187
179
207
213
181
196
234
215

173
164

177
190
179
154
153
151
15°>

132

Offset 
a

101

81
65

49
55
64
85
96
120

137
158
173
186
183
197
196
194
204
207
205
203
189

175
177
178
172
166
152
155
141
134

Station

35
36

37
38
35
40
41
42

43
44
45
46

47
48
49
50
51
52

53
54
55
56

57
58

59
60
61
62
63
64
65
66
67
6-°.

69
70

a

121

102

93

99
102

82

124

187
135
110

119
121

113
107
107
P7

237
178
144
452

933
4^0

367
283

481
452

557
537
537
678
792
763
622

/*

85
73
56
45
40
40
51
51
73

107

79
68
51

45
45
39
51

102

107

277

124

350

136

339
209
198
271

339
401
463
418

447
447

V

111

90
81
83
83
68
83

117
117
104
105
104
89
87
87
72

175
175
138
396
660
433
243
320

415
396

434
471
509
622

640
660

565

Offset 
a

111

96
86
82

75
83
92
100

110

111
104
9795 '

88

79
131
123
1 56
285

399
414
451
376
329
358
424
432
471
546
574
641
602

565
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Tripotential profile results over .1 fracture zone 
shown in Figure 4»4« (Data in ohm metres) 
Electrode spacing = 30m. Station spacing = 15^-

Station

0

1

2

3

4
5
6
7
8

9
10

11
12

13

14

15
16
17
18
19
20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

a

150

150

119

65
76
82
°8

93
130
147
127
172
206

200

142

181
240

249

153
189
283

243

181

161

212

237

195

147

141
175
192
153

A

28

45
45
23
23

45
28

45
62
90
130
130
141
147
164
158
147
136
187
181
181
141
158
147
119
107
141
164
170
130

102

96

V

122

115
81

47
49
51
62

77
109
115
132

160

185
IP 7
187
179
207
213
181
196
234

215

173

164

177
190
179
154
153
151
15°

132

Offset 
a

101

81

65

49
55
64
85
96
120

137
158

173
186
183
197
196
194
204
207
205
203

189

175
177
178
172
166
152

155
141
134

Station

35
36

37
38

35
40
41
42

43
44
45
46

47
48

49
50
51
52

53
54
55
56

57
58

59
60
61
62
63
64
65
66
67
6.°>

69
70

a

121

102

93

99
102

82

124

187

135
110

119
121

113
107

107
P7

237

178

144
452

933
4°<0

367
2R3

48!
452

557
537
537
678
792
763
622

ft

85

73
56

45
40
40
51
51
73

107

79
68
51
^5
45
39
51

102

107

277

124

350

136

339
209

198

271

339
401
463
418

447
4-17

V

111

20

81

83

83
68
P-3

117
117
104
105
104
89
87
87

72

175
175
138
396
660

433
243
320
415
396

434
471
509
622

640

660

565

Offset 
a

111

96
86
82

75
83
92
100

110

111
104
9795 '

88

79
131
123
156
285

399
414
451
376
329
358
424
432

471
546

574
641
602

565
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selected. Tho ground around the electrodes -van moistened v:ith a 

dilute saline solution v/hen conditions warranted this treatment. 

In practise, this was necessary for the entire dry season cormencing 

within 10 days of the last rains of the wet season.

Domestic 3 core 13 amp flex was found to be a convenient cable 

for profiling. As the cable is continuously dragged along the ground 

it does not last for more than 6-8 weeks of work, and a continuous 

supply of cable is therefore required.

The members of a four man team move synchronously along the pro 

file line connecting the required conductor of the three core cable 

to an electrode. A switch box carried alongside the measuring in 

strument allows the required configuration of electrodes to be sel 

ected.

Data processing.

Due to the uncertainty associated with establishing the res 

ponse of the potential field to variations in resistivity, it is 

sometimes possible to confuse the response created by a small near 

surface inhomogeneity with that of a deeper and more important lat 

eral variation in resistivity. The suppression of 'noise' associated 

with near surface effects is therefore important. Barker (1981) has 

recently shown that the average of two adjacent alpha readings effi 

ciently suppresses near surface effects.

A two point running mean of the field data collected during a 

resistivity profile exercise can significantly improve the data qual 

ity. In Figure 4»4» "the offset filter has been applied to' the ori 

ginal data and can be seen to be particularly efficient at suppress 

ing the effects created by the areas of ne~r surface lateral inhomo 

geneity discussed above.

Lateral resistivity variations at depth cannot produce short 

wavelength anomalies in the profile data. Therefore if a profile 

does show extensive wavelength ncise, this is due to conditions v:ith 

in the t?p l-2m of ground.

Zlectromagnotic profiling.

I'any of the problems arising from poor contact or excessive near 

surface variation can be overcome using electromagnetic methods 'vhich



Figure 4-4 Tripotential profile data
1170

Areas showing pronounced lateral variation are marked LI
The effect of using an offset filter to smooth the data is shown by the red line.
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do not require ground contact. I'clJeil (19^0) describes t.vo nev; 

instruments, the E-.131 and the E.I34-3, which can be used to obtain 

resistivity profile data over a range of exploration depths. The 

E31 is a one man portable device with a nominal depth of penetra 

tion of 6m, while the 2'34-3 has four penetration depths, 7«5> 15> 

30 and 60m, although tv;o men are required to operate the system.

An H.C31 was used extensively in TTigeria to obtain resistivity 

profile data. It was found that this instrument could be used very 

quickly to delineate areas where grade I rock lies close to the sur 

face.

The E T31 consists of a transmitting coil and a receiving coil 

separated from each other along a boom 3.?m in length. The time- 

virying magnetic field arising from the alternating current in the 

transmitter coil induces small eddy currents in the earth. These 

currents gener.ite a secondary magnetic field, which is sensed, to 

gether with the primary field at the receiver coil. Under certain 

conditions, satisfied in the design of the K!31 (? Tc^eil, 1980) , 

the ratio of the secondary to the primary magnetic field is linearly 

proportional to ground resistivity. The S31 gives a continuous 

readout in millimhos per metre, which may be converted directly to 

ohm metres.

This instrumentation provides a method by which profile data 

may be accurately and rapidly collected by one man rather than by 

four.

The depth of penetration of an alpha array (a = 30m) has been 

given above as 10m. The 2TI31 penetration depth is reported as 6m 

and the two systems should provide broadly comparable data. This 

hypothesis was tested by operating the two systems over approximately 

10 km of profile line with measurement intervals every 5 or 10m.

In general the two profiles parallel each other when plotted 

on semi log paper, and no features identified on the alpha profile 

data were missed on the E31 results. In Figure 4.5 the results 

over borehole 10 on Figure 3.4 and also corresponding to the profile 

section discussed in Section 4»4 in area A (Figure 4.9) are presented. 

The E T31 profiles alv/ays showed lower values of apparent resistivity. 

This corresponds v/ith the slightly lesser depth of penetration which 

would therefore be affected to a greater degree by the low resistivity
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clay materials closer to the surface.

Summary.

The apparent resistivity profiling method provides a rari^ 

method of establishing the presence of areas of deep v/eathering. 

Hov/ever, due to the complexities involved in interpreting potential 

field data, it is not possible to make a quantitative interpretation 

of weathering depths, or v/eathering ,^-rade thicknesses from a single 

profile line. In any particular ar ;a however, it is possible to 

select an electrode spacing fror experience and interpret profile 

data qualitively. For example, in the area around Eauchi, and in 

several other similar areas, it was found that a resistivity anomaly 

similar to those shown in Figures 4»2 and 4.3 could be loosely cor 

related with a depth to fresh rock of between 4^ and 50 metres.
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4.3 Electrical Jiu.ii.stivi ̂ j o. 

Introduction.

The electrical resistivity sounding technique is used to re 

solve a series of plane layered homogeneous resistivity layers into 

the individual resistivities and thicknesses which comprise the lay 

ering; A number of electrode configurations have been proposed to 

achieve this end (Telford, et al, 1976), although the method used 

for this work in Nigeria was based upon a colinear set of four equi- 

spaced electrodes. This configuration, which is the same as that 

used for the profiling method discussed in Section 4«2, has been 

called the Y/enner sounding method.

A set of four electrodes are expanded about a common centre in 

such a manner that the spacing between the electrodes remains equal. 

A sounding curve is obtained by plotting the log of the spacing (a/ 

against the log of the alpha apparent resistivity ( Pa] obtained at 

that spacing. This method has been described in the literature (Gri 

ffiths + King, 19655 Telford, et al, 1976; Koefoed, 1979). The in 

terpretation procedure, described in detail by Koefoed, is based upon 

an analytical solution to the Laplace equation discussed in Section 

4.1.
•

Theoretical Considerations.

As the interpretation procedure for a resistivity sounding is 

based upon an assumption of plane layering, it is useful to be able 

to establish that this condition exists over an area in which a sound 

ing is to be carried out. This can be effectively and rapidly ach 

ieved by the use of one of the W< instruments described in Section 4.2

The assumption of plane layering implies that the resistivity 

distribution is not a function of the x and y space co-ordinates, i.e.

^?w - ° and * ftv - °
bx ' by

Therefore, for a colinear set of electrodes, as shown in Figure 

4.1.b, the potential developed at electrode 1 (P ) due to a current 

at electrode 0 (C ) will be equivalent to the potential develcped at 

electrode 2 (P0 ) due to a current at electrode 3 (C 0 ). This may be 

expressed as '
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and similarly

The dependence of the potential term upon the x and y co-ordin 

ates is released by an assumption of plane layering, and the poten 

tial term then depends only upon the electrode spacing (a) and the 

resistivity distribution with depth (Px,yz = f(z) ) • For any 

given spacing (a) the results from a resistivity profile v;ill there 

fore show no change.

It is important to note therefore that resistivity soundings 

can only be successfully and accurately interpreted if they have been 

carried out in areas where resistivity profile results would show no 

change in value of measured apparent resistivity. In practice, such 

areas are uncommon in the basement weathering environment as discussed 

above.

Resistivity sounding results.

Vftiatever restrictions are placed upon the accuracy of the inter 

pretation by the assumptions discussed above, the resistivity sound 

ing method remained the principal method for obtaining formation re 

sistivities which can be associated v/ith the different weathering 

grades. Also, as it has been long recognised that the most successful 

boreholes are usually located where the greatest depth of weathering 

is developed, the sounding method has been used to produce a value 

for the depth of weathering. In many instances (Verma, et al, I960), 

the predicted depths of weathering have not agreed with borehole re 

sults and the error in interpretation can be ascribed to the lack of 

plane layering.

In Figure 4»6 three soundings are shown from the area around 

Bauchi. Tripotential measurements have been made at each electrode 

separation and in sounding 02 the^e measurements in particular shov; 

the presence of lateral variations.

Sounding 01 shows an area of almost homogeneous ground: although 

the latter part of the curve rises at a rate which cannot be analysed 

assuming plane layering. Sounding 02 shov;s typical data from an area 

where grade III \veathcrin~ is close to the surface, with graler- IV to
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VI weathering missing. The 'L 1 ^oil horizon ic also poorly ievel- 

oped. Sounding 03 is from an area of deep weathering v;here zones 

V and VI v;eathering are well developed. The depth of penetration of 

this sounding is not sufficient to produce data on the deeper grades 

of weathering;

The three sounding curves are basically all of a similar shape, 

and are also similar to those described by Palacky (1979) in Brazil 

and Vermar et al (19^0) from India. Plane layer interpretations 

(Koefoed, 1979) give resistivities as shown in T^ble 4.2.

Table 4.2. Resistivities of weathering grades.

Layer Resistivity T,"eathering Grade

1 160-200 (wet) 2000-4000 (dry) Soil 'A 1 horizon

2 15 (if present) Soil 'E 1 horizon

3 30-90 (usually da™p) V + VI

A 60-300 (v;et) 300-800 (dry) III + IV

5 600-3000 II
6 2000-6000 I

In areas where laterite has been formed the 'A 1 horizon resisti 

vity may exceed ^>000 On. In these areas, electrode contact is very 

difficult to establish successfully, and the sounding, or profile 

data is often uninterpretable due to excessive lateral variation near 

surface ("but see also Figure 6.4).

The 'A' horizon resistivity may change substantially during the 

year as a result of the reduction in soil m .isture throughout the dry 

season.

The resistivity data presented in Table 4.2 and derived from a 

number of sounding curves in addition to those pres ;nted in figure 

4.6, is similar to that described by Palaclry, but includes a greater 

number of layers. This increased number of layers is required by the 

weathering model described in Section 3.4. It is probable that they 

have not been previously recognised because their resistivities are 

intermediate betv;een those of the high clay content grade V + VI mat 

erial and the fresh grade I rock.
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Zones with resistivities intermediate between t'.vo others ^cr;.. 

supressed layers on a sounding curve, and their detection airi accu 

rate interpretation becomes very difficult. To illustrate thin point, 

a family of curves have been generated, using methods described "by 

Koefoed (1979) with resistivities as described by Table 4.2 and lay 

ering thicknesses derived from a typical borehole section. The 

thickness of the fourth layer, representing the aquifer material, is 

varied between 5 and 30 m in increments of 5ra « The resistivity sound 

ing curves are presented in Figure 4-7•

From the curves shown in Figure 4.7 it may be seen that, in the 

presence of lateral variations as shown in Figure 4.6 an accurate 

interpretation of the section would not be possible.

A large number of curves have been generated using the resisti 

vities in Table 4.2 as a form of standard. These values are only 

approximate, however, the range of values represents a reasonable 

approximation, given the data and quality of the data available. 

Asking the further generalising assumption that plane layering does 

exist, a sensitivity analysis of the depth of each layer was carried 

out, in order to assess the combination of layers which would produce 

the apparent resistivity low anaomaly, at a = 30m, observed in the 

profile data. From this work a minimum .depth of weathered section is 

suggested for such an anomaly as shown in Table 4.3.

Table 4.3 Inferred depth of weathering from sounding data.

Layer

1

2

3

4
5
6

Resistivity 
(Dm)

175

15

40

100

800

4000

Thickness 
(m)

0.5

2.5

27.0

20.0

10.0

Depth 
(m)

0.0

0.5
3.0

30.0

50.0

60.0

feathering 
Grade

Soil A

Soil B

V + VI

III + IV

II

I

It is apparent from this work that unless the fourth layer hris 

a lov; resistivity, indicating saturation, the required anomaly may 

not be produced. Similarly, therefore, i" the fourth layer is absent 

this anomaly is not possible.
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Summary.

The resistivity sounding technique \i\s been widely used in 

basement areas with mixed, and often poor results. These results 

may be explained in terms of the presence of lateral variations in 

resistivity which depart from the basic theoretical interpretation 

assumption of plane layering. Despite this fact, the resistivity 

sounding method can provide useful information, although it cannot 

be recommended for siting boreholes.

The presence of lateral variation can be detected by a profile 

across the area in which a sounding is to be conducted. A resisti 

vity sounding should be orientated so that the minimum possible lat 

eral variation is crossed by the line occupied by the sounding.
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4.4 Electrical Resistivity Profile Sections. 

Introduction.

Resistivity profiling is used to examine lateral variations in 

resistivity. However, only profile results produced "by simple tv.-o 

dimensional anomalies have been calculated analytically (Telford, 

et al, 1976) and in more complicated resistivity distributions, the
r<

quanttative interpretation of the profile results "becomes impossible 

using the analytical approach. Similarly, resistivity soundings can 

be used to investigate changes in resistivity with depth, as long as 

there is no lateral variation. As has been discussed above, the 

weathering profile varies both laterally and vertically, and therefore 

both the generally used techniques are unsatisfactory in a number of 

ways.

The main drawback of the conventional methods of analysis is 

that insufficient data is produced by the interpretation. In the 

case of profiling, the presence o~ lateral variation is established, 

but not the depth or variation v/ithin the weathered section. Thr 

contrast, the sounding method produces information on the changes 

of resistivity with depth, at the expense of the assumption that there 

is no lateral variation. A combination of the tv/o methods would en 

able a more complete interpretation to be cade.

Resistivity Profile Sections.

During resistivity profiling, the value of apparent resistivity 

for a particular position of the electrode array is, by convention, 

plotted at the mid point of the electrode array. The exact depth of 

penetration for a given electrode spacing is not known, however, if 

the electrode spacing is increased and measurements repeated along 

the same profile, then the value of apparent resistivity associated 

with the same mid point as before relates to a greater depth of pene 

tration and can be plotted belov: the initial value.

If measurements are repeated along the same profile line with a 

number (} 4) of electrode spacings, and the apparent resistivity re- 

cults plotted as described above, a section of readings is obtained. 

This section represents both lateral and vertical changes in resisti 

vity. The section is called a 'profile section 1 here to di^erenti- 

ate it from the pseudo section results produced by the dipole dirole
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method, although the prefix 'pse-:do' could be equal}"' ap'lic'l to 

either section*

The distance between the plotting positions, of the different 

profile linen is entirely arbitrary, as to assign an actual position, 

beneath the ground, to any reading of apparent resistivity is itsolf 

unwarranted.

Figures 4.9>4.H and 4.13 are examples of resistivity profile 

section data obtained around Bauchi. The figures are referred to 

here only as examples of the method results and will be discussed 

belov;. The electrode spacings used are shown in the figures.

From the sensitivity analysis shown in Figure 4»6> it may be 

seen that the significant part of the data for a sounding carried 

out over an area of deep weathering is contained within the spacing 

(a) log cycle of from 10-100m. It is only the resistivity distri 

bution which produces a response in this range which is significant 

for the purposes o^ interpreting the depth of weathering; Therefore 

the spacings for the profile section should be chosen between 10 and 

100m.

The profile sections can be interpreted qualitatively as they 

stand, hov;ever, the major advance provided by the finite difference 

discretisation method of Dey + I'orrison (l979"b) is that the sections 

can also be modelled, and a model resistivity distribution changed 

until the model produces results similar to the field data.

Finite Difference Algorithm.

Equation 4.7 in Section 4»1 represents the potential distribution 

in an inhomogeneous half space. This equation may be written for the 

most general case as

-V- (tfV<P) = d<$(xs)S{ys)<$lzs) 4-16
dt

where dl — is the differential of the current 
density with time at the point 
defined by the dirac delta 
functions 5(Xs ) 8(ys ) S(z& )

The inclusion of a right hand side term enables the equation to 

represent volumes of space which enclose a source or sink of current, 

that is, volumes where the divergence of the vector field is not zero.
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It is possible to draw a three dimensional grid through the 

resistivity distribution and to assign an independent value of 

resistivity to each volume element of the grid. The finite diff 

erence approximation to Equation 4«16 may then be made as accurate 

as is required by defining the grid in the area of interest as fine 

ly as necessary. Although this method is the simplest to write an 

algorithm for, the quantity of computer storage rapidly becomes pro- 

hibitative, and the time to arrive at a stable solution to the pot 

ential field similarly becomes excessive, even lor a comparitively 

advanced machine such as the CDC 7600.

Dey + Morrison (l979"b) have reported a modification of the three 

dimensional approach. It is worth outlining this approach here, as 

the algorithm presented in Appendix C is based on this method. How 

ever, for details,the reader is referred to the original reference.

The electric potential, unlike the hydraulic potential (Rushton+ 

Redshav;, 1979) cannot be modelled in two dimensions. A t;vo dimension 

al repre.ientation of a point source of current becomes a line source, 

and this produces an entirely different potential field to the point 

source.

As a compromise between computing resources and accuracy of the 

three dimensional solution, the assumption is made that the resisti 

vity does not vary in the one dimension. The justification for this 

assumption is discussed in Section 6.2.

"U.y.z ) ' = ° 4.17

vdth this assumption, Equation 4-16 may be -written

4.18

The algorithm presented by Dey (l9?6) involves a fourier trans 

form of the potential in 3D space to 2D v:ave number space -.vhere the 

finite difference approximation to the equation is made. The 3D pot 

ential distribution <p(x,y,z) due to a point source of current at 

(x ?y > z s) over a 2I) conductivity distribution CT(X,Z) is reduced 

in this v;ay to a 2D transformed potential 0>(x,ky,z).
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The fouricr transform of Equation 4.18 subject to those constraints 

is given by Dey as

4-19

where a is defined as the constant steady state 
current density in (x,ky,z) space.

Equation 4»19 is solved for a number of source positions in 

(x,ky,z) space using a finite difference approximation.

The solution is repeated for a sufficient number of values of 

ky so that the reverse fourier transformation of the potentials can 

be made from x,ky,z space to x,y,z space, with sufficient accuracy 

(Dey + I-Tor-rison, 1979b).

A matrix inversion technique is used to invert the capacitance 

matrix which results from the finite difference discretisation.

The algorithm which has been v/ritten for this study is presented 

in Appendix C.

The algorithm produces the values of the potential at a number 

of pre-selected nodes on the surface of the half space, due to a 

current source of each of the selected surface nodes. A symmetric 

matrix of potentials is thus created whose order is determined by 

the number of surface nodes selected. Since these potentials are 

scalars, they may be combined in exactly the same manner as described 

in Section 4.2 for resistivity profiling.

Graphical routines have been used to output a profile section 

computed over a given resistivity model section.

Description of algorithm graphical output.

For general use in modelling profile sections obtained in the 

field, a 185 x 16 array of nodes is used. This allows a control area 

of the mesh to be modelled linearly, and the potential at 41 nodes, 

due to a source at each of the 41 nodes in turn is calculated by the 

algorithm. A 41 x 41 matrix of potentials is thus obtained with the 

potential in the node surrounding the source position in each case
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The fourior transform of Equation 4.1fl subject to these constraints 

is given by Dey as

) 4.19

where Q is defined as the constant steady state 
current density in (x,ky,z) space.

Equation 4*19 is solved for a number of source positions in 
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of pre-selected nodes on the surface of the half space, due to a 

current source of each of the selected surface nodes. A symmetric 

matrix of potentials is thus created whose order is determined by 

the number of surface nodes selected. Since these potentials are 

scalars, they may be combined in exactly the same manner as described 

in Section 4.2 for resistivity profiling.

Graphical routines have been usei to output a profile section 

computed over a given resistivity model section.

Description of algorithm graphical output.

For general use in modelling profile sections obtained in the 

field, a 185 x 16 array of nodes is used. This allows a control area 

of the mesh to be modelled linearly, and the potential at 41 nodes, 

due to a source at each of the 41 nodes in turn is calculated by the 

algorithm. A 41 x 41 matrix of potentials is thus obtained with the 

potential in the node surrounding the source position in each case
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occupying the principal diagonal element of the rritrix.

Data input to the algorithm includes scaling information v:hich 

sets the source/potential position nodes at 10m apart. The profile 

section is thus 400m long in this scaling mode.

The apparent resistivity response for electrode sracings of 10, 

20,30,40,50,60 and 70m is shown in the graphical output. The resis 

tivity value is shown plotted at the mid point of the electrode 

(source/potential position) configuration and approximately 1cm be 

low the previous reading, although this distance is arbitrary as 

discussed above.

The vertical scaling information for the model is shown at the 

lower right hand side of the graphical output. A non-linear scaling 

is adopted, with the lower boundary effectively resprc.:enting infin 

ity in the z-direction.

The resistivity distribution shown in the lower part of the 

output represents coded data. Each code element represents an area 

of resistivity between four nodes. The area is 2.5m long in the 

x-direction, a varied length in the z-direction as shown in the scal 

ing information on the right, and an infinite length in the y dir 

ection. ITote therefore that an element in the coded distribution 

close to the base represents a larger area than one close to the sur 

face. The reason for such a grading of the mesh may be explained in 

terms of potential theory as discussed in Section 4«1-

Each element of the resistivity distribution may be assigned 

one of 10 coded values of resistivity. The code values are shown in 

the middle right of the output. These ten values may represent any 

value of resistivity, however, the code values used in the analysis 

below are those shown in Table 4.2, and therefore refer to specific 

grades of weathering*

Examples of the graphical output are shown in Figures 4.10, 4.12 

and 4.14 below.

Description of profile section field method.

The field technique for the collection of profile section data 

is very similar to that of ordinary profiling.

An area of interest is selected from a study of the remote sens 

ing data and an appropriate number of electrodes placed in the ground
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at 10m intervals. The area of ground around the electrodes is 

moistened with a dilute saline solution if necessary.

A four man team makes repeated traverses up and down this line 

of electrodes varying the electrode spacing each time, until suffi 

cient dita has been collected. A maximum separation of 7Op". was used 

in the results presented below.

The majority of field time is expended travelling to an area 

and establishing the line of electrodes in the ground, and therefore 

the collection of the extra data docs not represent tr e equivalent 

of five or six new profile lines.

At the smallest spacing adapted, the collection of tripotential 

data is advised, as this will provide valuable information on the 

near surface lateral variation, as discussed above. However, there 

is no point in repeating these measurements at larger spacings.

An Sf'31 can be usefully employed when the line of electrodes is 

laid out. An £•' survey over the area of interest will delineate the 

basin of weathering and the results can be used to orientate the line 

so that it is orthogonal to the strike direction. It is good field 

practice to number the electrodes (beginning with zero) and to note 

any features of interest or points which may help with later location 

during the initial stage.

Offset profiling.

The collection of the extra field data can take a considerable 

time. In Nigeria it was found that approximately 100 minutes was 

required to measure one profile line along 40 electrodes. The total 

time can be reduced, and the quality of the overall data set improved 

if the offset profiling method is used. 'This has the disadvantage 

that an extra field man is required, but the advantages that by one 

pass along the li.ie of electrodes, two electrode separations are coll 

ected, thus reducing the total n-.imber of passes required.

It is suggested here that the offset profiling method be used 

where ever profiling is carried out as for little extra effort, the 

data output is doubled. In the savanna environment, there is usually 

no problem in finding an extra field crow for the day.

The offset profiling configuration is shown in Figure 4»8. 'The 

method recommended here is a development of the tripotential method
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discussed in Section 4.2 v/here a simple summation o° measurements \v 

used as a field check.

For a set of 7 equispaced electrodes as shown in Figure 4.8 

the apparent resistivity at 2a for the electrode set 0-2-4-6, may 

"be measured as

4.20

This potential difference can also be measured by a combination 

of alpha (C-P-P-C) and offset gamma (C-P- - C-P) measurements as 

shown in Figure 4.7. The advantage gained is that the cable length 

is only increased from 3a to 4a, instead of to 6a as would be re 

quired for the alpha 2a measurement, and that by taking two measure 

ments at each electrode during one traverse^ the measurements alpha 

'a' and alpha '2a ! are collected,

The potentials for the calculation are shov;n in Equations 4.21, 

4.22, 4.23 and 4.24, viz

Alpha a

Alpha a

0-1-2-3 

3-4-5-6

)

Offset gamma 0-1- - 3-4 

Offset gamma 2-3- - 5-6 (V>32- ^3.5) ~ ^6,2" ̂ 6,5)

4-21 

4.22

4-23 

4.24

By adding Equations 4-23 and 4.24 ? then subtracting from the 

sum, Equations 4*21 and 4.23 > the required potentials for Equation 

4.20 are produced.

The accuracy of the predicted value of alpha 2a is controlled 

by the accuracy of the four measurements used to produce this value. 

However, it should be noted that the value of alpha 2a is not an 

estimate based upon any assumption of p]ane layering, or an extra 

polation from the measurements at smaller electrode spacings. The
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be measured as

?46 ) 4.20

This potential difference can also be measured by a combination 

of alpha (C-P-P-C) and offset gamma (C-P- - C-P) measurements as 

shorni in Figure 4.7. The advantage gained is that the cable length 

is only increased from 3a to 4a, instead of to 6a as would be re 

quired for the alpha 2a measurement, and that by taking two measure 

ments at each electrode during one traverse,, the measurements alpha 

'a' and alpha '2a' are collected.

The potentials for the calculation are sho:vn in Equations 4*21, 

4.22, 4.23 and 4.24, viz

Alpha a 0-1-2-3 A4am - (<fy - <fy) - (fy,-^ ) 4.21

Alpha a 3-4-5-6 ^O&a -Ifl^-^) - fe^-.p56 ) 4.22

Offset gamma 0-1- - 3-4 A®Va H^to' ̂ V ~ (^4,0 "^4.3 ) 4-23

Offset gamma 2-3- - 5-6 A®ya -(^~ ̂3,5) ~(V6,2~%>) 4-24

By adding Equations 4-23 and 4.24, then subtracting from the 

sum, Equations 4.21 and 4.23, the required potentials for Equation 

4.20 are produced.

The accuracy of the predicted value of alpha 2a is controlled 

by the accuracy of the four measurements used to produce this value. 

However, it should be noted that the value of alpha 2a is not an 

estimate based upon any assumption of p"ane layering, or an extra 

polation from the measurements at smaller electrode spacin^s. The
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information contained in the four measurements reprr sented by Equa 

tions 4-21 to 4.24 includes the exact potentials nece^s-iry to cal 

culate alpha 2a over an inhomogeneous distribution. The potential 

differences measured at the smaller spacings, are also larger than 

those that would be measured at trie larger spacing and may be there 

fore more easily measured.

In Table 4.4, the potentials calculated by the finite differ 

ence algorithm over an area o° near surface lateral inhomogeneity, 

and for a 7 electrode set are shown. Note that the matrix (7 x 7) 

is symmetric and that therefore potential (p . =(pba etc. From this 

matrix the potential differonce calculated by the method described 

can be shown to be exactly equivalent to that measured. The figure 

of 20.90 is obtained by both methods.

The method has been tested in the TT.T. and found to be accurate 

to within 5/^» which is a sufficient accuracy in profiling over large 

resistivity contrasts.

By chosing an initial electrode separation of lOm^profile data 

at 10, 20 and /.'O, and 30 and 60^i can be obtained by three passes 

along the electrodes.

Profile section field data.

Three resistivity profile section;-:, are presented in Figures 4-9? 

4.11 and 4.13. Each section represents an area of deep weathering 

close to Bauchi. The section in Figure 4.9 is from weathering area 

A and passes through borehole TTo. 10 on Figure 3»4» but at 90 to the 

line of the trough. Figure 4.11 shows an area of weathering where 

grade V material occurred to a depth of 28m in a borehole. The 

groundwater was confined by this clay and had a final standing water 

level of only 3m. Figure 4.13 shows a section from a part of weather 

ing area B and also corresponds to the seismic refraction line shown 

in Figure 4.20 The drill samples shown in Plate 3.16 are from a 

borehole drilled into this anomaly.

The three profile sections each show a trough of weathering 

against a higher resistivity shoulder. Each section also shows pro 

nounced lateral variations which would -produce anomalous sounding 

results.

The finite difference algorithm hr.s been used to ^•;1 el thcoe



Tahle 4«4 Potentials due to a point source of current, at seven
equispaced electrodes, over near surface lateral 
inhomogeneity. Value in volts.
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TTote 1. The electrodes are equispaced with a separation of 'a 1 metres.

2. That potential 5-6 = potential 6-5 etc.

3. The values are in volts

4. The principle diagonal of the matrix contains the values of potential close to the 
current electrodes.

5. The values for 41 source terms are shown in a 41 x 41 matrix in the results presented in 
Appendic C.
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RESIST WHY PROFILF SECTION
Calculated Frc^i the -nodeI resistivity distribution shown beloui
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Figure 4-10 Resistivity model for profile section - Area A
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RESISTWITY PROFILE SECTION
Calculated From the model resistivity distribution shown below
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Figure 4-12 Resistivity model for profile section - D
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RES 1ST WI.TY PROFILE SECT I OH.
Calculated From the. model, resistivity, distribution shown, below
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three profile sections in term.:; of the re^intivitic:.; s'.iC/.vn in 

Table 4-3. The best resuJtc a^e shown in Figures /1.10, /.I? end 

4.14. This graphical output gives a good impression o~ the extent 

of the weathering basins in each case. The remits are also fur 

ther used in Section 6.2.

'Vithout the benefit of the computed model sections, the resis 

tivity profile section provides a good qualitative impression of 

the depth of weathering \vhich is a significant improvement upon 

a single profile line, or a number of soundings, the interpretation 

of which world be highly suspect over such an area.

Summary.

The resistivity profile section method is a useful extension of 

conventional resistivity techniques and is particularly suitable to 

the basement weathering environment where the resistivitv varies ex-^-^ i/

tensively both laterally and vertically.

A new method of collecting the renu'red profile data has been 

described. Although this has had only limited -rials at present, 

it seems that a considerable improvement in the quality c p field data 

can be achieved using this method.

Epr techniques could also be possibly used to collect resisti 

vity profile section data. The Ur 34-3 would appear to be well 

suited to the task, however no trials have been carried out with this 

equipment.

The major interpretational advance that has been achieved is the 

ability to model the re3istivity profile section in terms of an in- 

homogeneous 2D resistivity distribution. This advance means that 

the collection of the extra field data is worthwhile, whereas possi 

bly before, it was not. The algorithm presented in Appendix C re 

presents a versatile interpretational method. In Figures 4-15 and 

4.16, the profile results produced over an area of nenr surface lat 

eral inhomogeneity are presented to demonstrate the potential that 

the algorithm has to improve understanding of the apparent resisti 

vity response to a given resistivity distribution.

One run of the program on a fast computer such ac the CDC 7600

requires 60 seconds. Therefore it is not reasonable to use such a

model to calculate the response for a single profile line. However,
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it is envisaged that a limited library of such solutions could be 

built up and an extrapolation of field data between these models 

used in the field.
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4.5 Seismic Refraction Technique. 

General.

The seismic refraction investigation technique may be used to deli 

neate areas within the earth which have different seismic velocities. 

The different velocities may then be associated with rock types, either 

by comparing the seismic section with local borehole control, or by lab 
oratory studies of rock samples.

The basic technique consists of generating seismic waves in a con 

trolled manner, and then measuring the time taken for these waves to 

reach a line of geophones. A plot of travel time against distance of 

the geophone from the source (T-X graph) is then prepared. Straight line 

segments on the T-X graph may then be interpreted in terms of velocities 
and depths.

The seismic refraction method is described in detail by Telford et 

al (1976), and a number of engineering geology applications have been 
described in the literature (Alien, I960, Burke, 1967). Depth to bed 

rock surveys have been successfully carried out in many areas and it is 

this type of application that most resembles the granite weathering 

problem. The plus-minus method of interpretation (Hagedorn, 19595 Cum- 

mings, 1979) is most often used to analyse the data from this type of 

investigation, where an undulating bedrock is overlain by variable depths 

of less compacted, lower velocity material.

The seismic refraction interpretation is constrained by a number of 

theoretical limitations. It is of use to summarise these before pro- 

ceding to a description of the field technique and the results obtained.

In the simplest form of interpretation the ground is assumed to con 

sist of homogeneous and isotropic layers, which have a uniform seismic 

velocity, separated by planar horizontal or dipping interfaces. This 

model seismic section produces a straight line segmented T-X graph.

Layers which have a lower seismic velocity, lying beneath layers 

with a higher seismic velocity cannot be resolved and the presence of 

such layers leads to considerable error in interpreted depths. This 

difficulty is known as the blind layer problem.

Thin layers of material with seismic velocity intermediate between 

two thicker layers, and lying between these layers are suppressed on 

the T-X graph, and an interpretation that does not take account of such
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layers also produces incorrect depth estimates. This difficulty is known 

as the hidden layer problem.

A gradational increase in velocity throughout a layer can be re 

solved. However, the layer must extend laterally over the length of 

the investigation. If a depth of 30m is being investigated, then the 

maximum source to geophone distance will be approximately 300m, and 

uniformity over this distance is required.

A large number of shallow seismic investigations v;ere carried out 

in the North of Nigeria, principally for dam site investigation work, 

although, as will be described below, some refraction lines were carr 

ied out for hydrogeological purposes. A six channel Bison signal en 

hancement seismograph was used for the majority of this work. Due to 

the administration difficulties associated with using explosives on a 

large number of small, highly dispersed, surveys, a hammer was used as 

the energy source. The signal enhancement facility was used to stack 

successive signals until a satisfactory seismic signal was obtained. A 

chart recorder was then used to produce a permanent copy of the signal.

The hammer source proved sufficient to generate a satisfactory sig 

nal at distances between 50 and 150m from the source. Depending upon 

the source distance and the subsurface material, a maximum number of 20 

hammer blows was most often required. This maximum distance was insuf 

ficient to receive refracted waves from the base of a weathered trough 

some 4Cto deep. For studies of this type overlapping profiles were ob 

tained with source positions every 50 °r 75m > ^e overlapping sections 

of the T-X plot were then used to complete a reversed refraction line 

of up to 300m length (see Appendix D4 and D5).

Weathering Grade Seismic Velocities.

The limitations of the refraction technique have been briefly dis 

cussed above, and it is evident from this discussion and that presented 

in section three, that the weathering environment does not often pro 

duce uniform layers which may be simply interpreted. However, in gen 

eral, four velocity layers may be recognised, although the interface be 

tween them is rarely sharp (see example 2). Table 4-5 lists the seismic 

velocities that may be assigned to the different grades of weathering.
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Table 4.5 Seismic velocities of weathering grades.

V/eathering 
Grade

Soil 

VI 

V 

IV 

III 

II

Seismic Velocity 
(m/ms)

0.25-0.8

0.5 - 2.0

1.5 - 4.0

3.0 - 5.0

4.0 - 6.0

"Mote!

Velocity may be 
higher if saturated

Velocity depends 
upon degree of 
fracturing.

A distinct velocity contrast is often found between grades II and 

III weathering. The disagregation caused by micro-fracturing of the 

crystal fabric, the increase in velocity and the alteration of clay 

minerals, all act to reduce the seismic velocity. In areas where grades 

II, III and IV weathering are very thin or absent, such as in the area 

shown by Plate 3.20, the interface is abrupt and produces an easily 

identified range of slope on the T-X graph. The plus-minus method may 

then be used to obtain the depths to fresh rock along the profile line 

(•as in example l).

In areas of deeper weathering, such as those shown in Plates 3.1?» 

3.18 and 3«19j the interfaces between the various grades are not abrupt 

and do not therefore give rise to straight line segments on the T-X 

graph; instead, a continuous curve is produced. It is not possible to 

interpret this data if the rate of change of velocity with depth is not 

constant over the profile line. The interface between grade II and grade 

III weathering can be seen in core box No 4 in Plate 3.18. This inter 

face lies at approximately 23.5m depth. Above this depth the changes 

are gradational.

Seismic Refraction Results.

Examples of refraction data from four localities are presented 

below. In each case, borehole evidence is available to gauge the accuracy
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of the seismic interpretation, where an interpretation has been att 

empted. The examples are presented in order of increasing depth of 

weathering. The travel time data is presented in Appendix D.

Example 1. This data was obtained as a part of a long profile line, 

with shot (hammer) points every 50m. Plate 4.1 shows the core taken

from an investigation hole drilled into this line.
.-i

The travel time data, the T-X data (Hagedorn, 1959) and the inter 

preted seismic section are shown in Figure 4.17.

In this example, the boundary between grade II and grade III mat 

erial can be seen approximately at 3.2m in Plate 4.1. Grade II weather 

ing continues to a depth of approximately 9.2m with zones of grade I 

material separated from the completely unaltered rock by a number of 

subhorizontal fractures where grade III weathering has occurred. The 

lack of an absolutely clear boundary is demonstrated by the considerable 

scatter of the points shown on the T-X plot.

The plus-minus interpretation shows a depth of approximately four 

metres to the main refractor at the borehole site. VJhile this figure 

is a reasonable measure of the depth to Grade II weathering it should 

be noted that important fractures which would contain water, occur be 

low this level.

Example 2. This data was obtained over a dry river bed. The geo- 

phones were placed in clay to hold them firm, just above the water table 

in the saturated coarse sand alluvium. The travel time data is presented 

in Appendix D 2, and Figure 4. 18 shows the T-X data, and the depth inter 

pretation. Borehole investigation proved this profile to be accurate 

within 5^. A varying depth of coarse sand alluvium combined with grade 

IV and V weathered material was found to have a velocity varying between 

1.3 and 1.7 m/ms. Grade III weathered material, encountered in the 

boreholes as the first horizon from which core would be taken, was found 

to have a velocity of 3.8m/ms. The travel time distance plot shows seg 

ments representing a fourth velocity layer at approximately 6m/ms al 

though it was not possible to obtain a depth for this layer. A borehole 

in the centre of the section was drilled to 35m depth without encount 

ering grade I material.

The accuracy of this profile was possible only because the top 

layer of coarse alluvium was homogeneous, completely unlike the top
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weathered layer. However, the data is presented here -.is an example of 

the use of the technique under good conditions. The data in exa-iple 3 

indicates the problems caused by a deep lov; velocity layer at the surface.

Example 3. In contrast to the data shown in the previous example, 

this data has been taken from a profile carried out over the borehole 

section shown in Plates 3.IB and 3.19- The water table in this bore 

hole was recorded at 19m and the majority of the material above the wat 

er table can be seen to be loose. The thick low velocity layer produced 

by this dry grade IV, V and VI weathering, and the considerable varia 

bility within the zone has obscured any arrivals from lower refractors, 

although it is doubful from the plates whether a clear refractor exists 

in this situation.

The T-X data is listed in Appendix 4.3 and the travel time distance 

plot is shown in Figure 4.19- From the interpretation which wis possi 

ble from this data set, it was found that the low velocity layer was 

some 5 to 8 metres thick, overlying material with a velocity of 2.1m/ms.

Example 4» Despite the difficulty encountered with the interpret 

ation of the data from the previous example, it was thought probable that 

seismic refraction represents one of the few methods available from which 

an estimate of the volume of material occupied by grade III and IV mat 

erial may be made. For this reason, a refraction profile was carried 

out using a 5m geophone separation over parts of deep weathering areas 

A and B. The profiles were along the same lines as those of the resis 

tivity profile sections shown in Figures 4«9 and 4»H»

The travel time data for these two profiles are listed in Appendi 

ces D 4 and D 5 respectively.

Although it was possible to complete the travel time data set for 

deep weathering area A, it was not possible to interpret the data in 

terms of a coherent seismic section. Borehole 10 in Figure 3.4 passes 

through this section and encountered grade II and III weathering to a 

depth of 60m with no well defined interface present throughout the sect 

ion. By contrast, the data set for deep weathering area B was more read 

ily interpretable, and the data is presented in Figure 4.2Q-. Ii is F.H ~ni- 

ficant that the samples from this borehole, shown in Plate 3.16 show a 

very sharp interface between grade II and grade III weathering, and it 

is the presence of this interface that has given rise to the straight
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Plate 4.1 Investigation borehole core in deep weathering area C
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line portions on the T-X graph.

The interpretation of the travel time data shows that the grade 

III material has a velocity varying "between 2.7 and 3.1 m/ms, with the 

grade II material showing a velocity variation between 4.0 and 4.7 m/ 

ms. The higher velocity may represent grade I material. The three 

layer plus-minus interpretation gave depths to grade II rock in reason 

able agreement with the borehole results.

Discussion.

A number of relevant points arise from a consideration of the ex 

amples described above, viz.

1) It is evident that the lateral and horizontal variations within 

the weathering profiles are as difficult to resolve using the seismic 

method as the resistivity sounding method. In particular, the lack of 

definite interfaces within the profile, make a layered velocity inter 

pretation impossible, even in terms of an undulating boundary. VJhile 

methods exist to model these conditions (such as ray tracing), they have 

not been applied to small scale problems such as those under consider 

ation.

2) To investigate areas of deep weathering, it is necessary to 

use explosives to produce a sufficient seismic signal at distances up 

to 400m. The use of explosions would also overcome the problem of the 

very low velocity top soil, which can absorb a large proportion of the 

hammer blow energy. Signal enhancement combined with the use of deton 

ators placed 15-20 cms beneath the soil is also a possible alternative.

3) With the exception of the detailed profile described in example 

4 from deep weathering area B, the seismic method was not successful in 

providing data on the thickness of the grade II, III and IV material. 

It is possible that the use of more sophisticated techniques, using ex 

plosives, signal recording and later digital analysis would produce more 

satisfactory results, although such an investigation represents a vast 

ly increased investment in resources and interpretational effort.
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4.6 Summary.

In the introduction to this section it was stated th.-it the use 

of geophysics was necessary for two purposes, vis,

1) To establish the presence of deep weathering.

2) To quantify the volume of grade III and IV material present 
at depth.

It is of use therefore to summarise the extent to which these two 

objectives have been satisfied.

Both electrical resistivities and seismic velocities have been 

successfully assigned to each of the weathering grades listed in Sec 

tion 3-4» and these are shown in Tables 4/2 and 4-5 respectively. How 

ever, a basic difficulty to both the electrical resistivity and the 

seismic refraction techniques is the lack of a clearly defined inter 

face, or interfaces, between the various grades of weathering;

The electrical resistivity method, or a derivative of this method, 

may be used to very quickly establish the presence or absence of deep 

weathering. An electromagnetic survey using a one man portable E.'I31 

can delineate areas where grade I material lies close to the surface. 

Within a few hours, data covering an area of a square kilometre can be 

produced. This reconnaissance survey can immediately satisfy the first 

of the two objectives, and in the situation where only a limited ground- 

water supply ( 1m /hr) is required, it is not necessary to proceed to 

the second objective. It should be noted that the seismic method can 

equally well be used to establish the presence of near surface grade I 

material, and can in addition provide depths and velocities of this 

section. However, if the criteria is simply to establish areas where 

grade I material is not near surface, then the seismic method provides 

data which is not required and is in addition very much more time con 

suming to acquire.

The second objective is very much more difficult to satisfy and 

it should be said that there is no entirely satisfactory method avail 

able. While the resistivity technique provides information of a quali 

tative nature very rapidly, it is not po -sible in the field to produce 

accurate data representing the depth to which a borehole should be 

drilled. The use of the offset profiling technique and the preparation 

of resistivity profile sections overcomes many of the previously exper 

ienced difficulties with thi:- method, such as noise due to near surface
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inhomogeneity and distortions produced by deep lateral resistivity 

contrast. Furthermore, the availability of a computing algorithm to 

model resistivity profiles provides the possibility of .liscretising the 

profile section data into a realistic model which completely satisfies 

the second objective. However, the availability of the computing pow 

er required for this process is strictly limited and not yet at all 

available to field crews, although this restriction will probably be 

removed in the future. The preparation of resistivity profile sections 

is however not as time consuming as the prep .ration of seismic refract 

ion sections covering the same area and with the use of a limited lib 

rary of computed solutions it is considered that this method is the 

most effective available.

The seismic refraction method can in many instances be used to re 

solve the layering, if present, within the weathering profile. How 

ever, over comparitively narrow and deep troughs, the amount of data 

collation and interpretation required to resolve the layering begins to 

approach that required for the resistivity modelling; In addition the 

time required for the data collection is several times that for a resis 

tivity profile section; the equipment required is substantially more 

complicated and prelevant to breakdown; and, lastly, the field data 

available as a travel-time distance plot may not be qualitatively in 

terpreted in the same way that a resistivity profile section allows.

In the absence of resistivity profile sections, where resistivity 

profile data is available for only one separation, considerable ambig 

uity remains in the qualitative interpretation, '"here an apparent res 

istivity of less than 6QAm occurs in a well defined trough, then a sub 

stantial (>30m) thickness of weathered material was found to be present 

in all the surveys carried out in Northern Nigeria. Therefore, if this 

value of apparent resistivity is used as a criteria for drilling (see 

also Section 6), the number of dry boreholes will be kept to a minimum. 

However, this method relies on the presence of substantial grade V and 

VI material, with well developed soil B horizons to provide lov/ resis 

tivity material which will combine to produce a low apparent resistivity, 

If this material has been removed by erosion in recent times, then there 

is the possibility that deep weathering, represented by thick grade III 

and IV material, exists which will not be located if all areas with an 

apparent resistivity of >60JZ.m are discarded. It is necessary to carry 

out a full profile section to detect these areas.
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5. AQUIFER GEC1JETRY AND CHARACT3RrJTICS

Introduction.

The development of areas of deep weathering has been discussed 

in the third section of the thesis. The location of deep weathering 

zones using geophysical techniques has been described in Section 4. 

It is the purpose of this section to identify those parts of the wea 

thering profile which may be considered as aquifers or aquicludes and 

to demonstrate as fully as possible the hydrogeological parameters 

associated with each part.

The identification of grades II, III and IV material as potential 

aquifers has been necessarily anticipated in previous sections. In 

the first part of this section, a more detailed description of the 

aquifer and its boundaries is given. The presence or absence of vari 

ous grades of weathering may then be seen to give rise to confined or 

unconfined conditions, and also to lead to an identification of areas 

where recharge to the aquifer is possible.

In order to achieve an understanding of the aquifer response to 

recharge or abstraction, it is essential to obtain a borehole hydro- 

graph. Unfortunately, due to the socio-economic conditions discussed 

in the general introduction, boreholes are invariably developed as 

abstraction sites, and no water level measurements are taken after the 

initial pump test; which itself is often unsatisfactory. In recogni 

tion of the deficiency of this type of data, water level measurements 

from deep weathering area A were collected for 14 months, at intervals 

which were as regular as possible. In addition, Kowal (Kowal + Kassam, 

1978) has produced wet season hydrographs for three years from an area 

close to Samaru. These two sets of data represent the only groundv/ater 

hydrographs available to the author.

The hydrographs are all basically similar and indicate a number of 

distinct phases within the annual hydrological balance of the savanna. 

These phases are described and discussed in the second part of this 

section.

From the groundwater hydrograph in Bauchi, a small component of 

direct recharge is seen to occur early in the wet season, although the 

major recharge must occur by infiltration into the unconfined parts of 

the aquifer. The quantity of such indirect recharge is controlled by
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the balance between rainfall and evapotranspiration in the soil zone.

The estimation of annual recharge is an important part of any 

hydrogeological study. In the savanna zone, and upon basement rocks, 

this estimate is particularly important as many of the weathering 

aquifers have only limited storage, probably only capable of supporting 

abstraction, in the absence of recharge, for one or two years.

In the third part of this section two methods of calculating re 

charge are described. The first method corresponds to the conventional 

analysis used in previous studies (Lloyd, 1966; Kowal + Knabbe, 1972). 

However, the results predicted by this analysis do not satisfactorily 

explain the observed conditions within the savanna, and for this reason 

a second method has been developed for this study.

Lastly in this section, the response of weathering zone aquifers 

to abstraction is assessed. Pump testing techniques are commonly used 

for this purpose, however, the pronounced lateral and vertical varia 

tions in hydraulic conductivity produce similar problems for pump test 

interpretation to those already described for the geophysical inter 

pretation. The general methods of pump test interpretation are based 

upon analytical solutions to the equations describing laminar flow in 

an aquifer of constant depth and possessing intergranular porosity. 

The weathering aquifers are not of a constant depth, and more signifi 

cantly, the porosity varies between predominantly fracture controlled 

in grade II weathering to predominantly intergranular controlled in 

grade IV weathering. For these reasons, the general methods of pump 

test interpretation are not applicable to this environment.

The combination of fracture and intergranular controlled hydraulic 

conductivity produces a characteristic drawdown response. Several ex 

amples of this response are described and discussed.
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5.1 Description of the aquifer.

General.

The following discussion refers in general terms to any area of 

basement where the progression of weathering grades can be recognised. 

Recent evidence (Ternan + Williams, 1979; T "oore + Gribble, 1980) in 

dicates that weathering of granites is occurring in temperate climates 

at the present time and that therefore, deep weathering features are 

not necessarily only relicts of weathering from previous warmer clim 

atic periods. However, the area of particular reference remains that 

of the Nigerian savanna.

An aquifer has been defined (Brown, et al, 1975) as a water 

bearing formation having a porous or fissured structure that permits 

water to move through it under ordinary field conditions. 'Vhile it is 

evident that weathered material may permit water to move through it, 

the depth of weathering is nowhere sufficient to produce large uniform 

areas which can be considered as aquifers in the sense that a sedimen 

tary sandstone forms an aquifer. As the weathering processes are pri 

marily controlled by the presence of jointing or fracturing, it follows 

that the aquifers produced by weathering are only developed in zones 

where jointing or fracturing have a higher than normal incidence. 

Therefore, aquifers produced by weathering are normally developed as 

isolated zones, often completely hydraulically isolated from one an 

other.

In general, only the topographically low areas contain aquifers. 

Although an inselberg may contain a complex and interconnecting set of 

exfoliation joints which give rise to perennial springs or seepages at 

the base of the inselberg, quantities of groundwater which are sufficient 

to support abstraction by pumping from boreholes, are only found in the 

low lying areas.

If the area of basement outcrop is considered as a whole, then 

probably in excess of 90$ of the basement does not contain weathering 

sufficiently deep to form an aquifer. Over the majority of the area, 

the depth of weathering is either insufficient, or the water is lost 

as baseflow to ephemeral streams at the end of the dry season. The re 

maining 10$ of the total area however, is composed of a large number of 

highly dispersed zones of deeper weathering which do form aquifers. It 

is these zones which are considered in detail below.
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Weathering grade porosities.

The chemical reactions and physical processes by wv ich fresh 

rock is altered to residual soil have been described in Section 3.3. 

The porosity of the profile increases from zero to approximately 50^ 
in the 'A 1 horizon of the soil. This increase represents a complex 

interaction of pressure release jointing and chemical solution as 

described above. It is not possible to quantify the changes in poro 

sity through the weathering grades exactly, mainly because it is diffi 

cult to obtain an undisturbed sample. However, the generalised changes 
are presented in Figure 5.1.

In grade II weathered material, the porosity is almost entirely 

represented by the open areas between joint faces. The intervening 

material still has zero porosity. In coarse grained rocks, the joints 

are usually widely spaced, but have a joint width which varies from <lmm 

to ;> 50mm depending upon the depth of burial.

The porosity steadily increases upwards as first the micro-crys 
talline components of the matrix are removed, and then the major crys 

talline components. The effectiveness of this process is reflected in 

the very high silica content of the groundwater.

The raTdd increase in porosity between the 'A 1 and 'B' soil hori 

zons reflects the almost complete removal of clay from the soil 'A 1 

horizon by leaching caused by the intense rainfall.

Weathering grade hydraulic conductivities.

It is possible to measure the weathering grade hydraulic conducti 

vities by a number of indirect methods, such as packer testing (Pearson 

+ Money, 1977). Dearman (1978) has collated all the published values 

and these have been included in Figure 5*1» There are a number of im 
portant implications arising from the hydraulic conductivity variations.

The hydraulic conductivity in the grade II weathered material is 

more anisotropic than that in the higher v/eathering zones. Brown (1975) 

reports a value of 60 m/day hydraulic conductivity for a rock contain 

ing a 1mm wide fracture occurring every metre (bulk porosity of 0.1^). 

However, this value is representative of conditions in the plane con 

taining the fracturing. The hydraulic conductivity in a direction or 

thogonal to this plane would be zero. Considerable anisotropy in hy 

draulic conductivity will result from the orientation of fractures in
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the grade II material, and the bulk value of hydraulic conductivity 

will depend principally upon the degree of interconnection betv/een the 

various joint systems. As the predominant jointing should be sub hori 

zontal, caused by pressure release, it is probable that the value of 

hydraulic conductivity in the plane parallel to the surface will be 

considerably higher than in the orthogonal planes.

Thehydraulic conductivity becomes less anisotropic as the weather 

ing processes remove more material in solution. By the time grade IV 

weathering has been reached the conditions most nearly resemble an 

intergranular sand conductivity. This is the grus zone referred to 
above.

Recent evidence (Eswarian + Bin, 197^) indicates that the change 

in the formation of the predominant clay mineral from halloysite to 

kaolinite, which occurs in grades V and VI of the weathering profile, 

is responsible for the general reduction in hydraulic conductivity to 

wards the top of the profile. The clay bands developed in grade VI 

material have a very low hydraulic conductivity and form an aquiclude.

The aquifer within the weathered profile exists where grade II, 

III and IV material remain permanently saturated.

Aquifer boundaries.

As the term implies, aquifer boundaries are used to define the 

flow conditions at the boundaries of the aquifer. As such, aquifer 

boundaries may be constant head, recharge, leaky or zero flow bound 

aries.

The lower boundary of the weathering aquifer is always formed by 

the interface between grade I and grade II weathering. It has been 

noted above that this interface is usually a complicated three dimen 

sional surface and as such, flow will occur in the grade II material 

often completely around an isolated block of grade I material. The 

lower boundary, and often the side boundaries of the aquifer are there 

fore zero flow boundaries.

The upper boundary is usually formed by the grade V and VI mater 

ial. As this material has a very low hydraulic conductivity it may 

also become effectively a zero flow boundary and produce confining con 

ditions.
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In the majority of the boreholes drilled into areas with consider 

able (>10n) thickness of grade V + VI material, the piezonetric head 

was often within four metres of the surface and in a fev; instances, 

was artesian. The drilling records for two typical boreholes drilled 

iidto deep weathering area A are presented in Appendix "p . These rec 

ords show that water was first encountered during drilling at the top 

of grade IV material.

To illustrate the various ways in which the weathering processes 

may combine to form an aquifer, and to produce confining conditions, 

two sketch sections are presented in Figure 5.2. The purpose of these 

sketch sections is to provide a graphical illustration of the aquifer 

location and in particular the inr, ortance of lateral variations in 

weathering grades in controlling flow within the aquifer.

The significance of the various combinations of weathering grades 

is discussed below, and relates to the number* shown in Figure 5-2, viz;

(1) The soil cover on inselbergs is either limited or absent, 

therefore the high intensity rainfall collects as sheet run off and 

flows down the surface of the rock. As there are exfoliation joints 

occurring every few metres, which are often several centimetres wide, 

a proportion of the run off enters the joint system and percolates to 

wards the base of the inselberg, within the shell of grade II weather 

ing. The majority of the run off flows over the surface until the 

base of the inselberg is reached, where it infiltrates into the grade 

III weathered material at the base, or enters ephemeral drainage chan 

nels.

(2) A proportion of the v;ater contained in the grade II weather 

ing zone fractures issues as seepages and springs from the base of the 

inselberg. Plate 3.11 shows such a seepage which has been artificially 

deepened. The storage v/ithin the fracture zone is sufficient to main 

tain these seepages often throughout the dry season.

(3+4) Although the ground surface is approxirately flat in the area 

between points 3 and 4j the two lodations wo-;ld provide completely 

different borehole results. Point 3 marks the location of an apparent 

resistivity anomaly which would be created by the deep fracture zone. 

A borehole drilled at this location would encounter water at the top of 

the grade IV weathering. The quantity of water would continue to increase
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until fresh rock wa- encountered. The final standing v/ater level v;ould 

show a sub artesian rise tc the piezcmetric surface. 3,y contract, a 

"borehole sited at location 4 would encounter water at a shallow depth 

and then soon pass into grade I material. The depth of aquifer would 

"be insufficient to maintain abstraction.

(5) A stream at this location wouli be maintained by groundv/ater 

seepage until the piezometric surface fell below the base level of the 

stream during the dry season. This characteristically occurs sometime 

in December.

Locations 6 to 9 are on Figure 5-2 (ii)»

(6) Vfhere there is little outcrop, an extensive laterite capping 

is often formed on a deep weathered profile. Grade V and VI material 

is laterally continuous over the surface. In several areas of Northern 

Nigeria, particularly around Kaduna, mature, flat erosion surfaces are 

now being actively eroded. The eroded section is often of the general 

form shown in Figure 5»2 (ii). A laterite capping forms the flat, often 

mesa like, hill top, with eroded blocks of laterite scattered below the 

scarp.

(7) Under the extensive laterite there often exists a thick zone 

'A' soil profile. This may form a small aquifer of limited extent.

(8) Spring discharge occurs at the interface between the soil A 

and B horizons. Streams flow from these springs throughout the dry 

season as the lov; hydraulic conductivity material only slowly releases 

water. The streams do not increase in size as they flow towards the 

flood plain, as the thick grade V + VI material is effectively impermea 

ble.

(9) The rivers often have a large flood plain due to the high run 

off caused by the low hydraulic conductivity surface material. Grade I 

material often occurs in the river beds or at a shallow depth beneath 

the flood plain.
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5»2 Groundwater hydrographs. 

General.

Measurements of the groundwater level in a well or borehole, 

plotted against time,form a groundwater hydrograph. Changes in the 

level of the hydrograph throughout the ye?.r reflect gross changes in 

the water flow to the aquifer in the area around the observation point.

The change in flux is caused by changes in flows into or from the 

aquifer. Input to a small and discrete aquifer can only be recharge 

as a result of infiltration from rainfall. Output from such an aquifer 

is composed of losses by transpiration and or evaporation, and losses 

by seepage to the local surface drainage.

The groundwater hydrograph provides a valuable measurement of the 

response of the aquifer to recharge, and to losses by seepage and evapo- 

transpiration. Therefore, if the flucuation of the hydrograph can be 

reproduced mathematically, by a consideration of the balance betv.-een 

these flows, it is possible to quantify the individual flows.

Records available.

Although an extensive search was c rried out, no records of ground- 

water levels were found for the Bauchi area. A number of observation 

wells were drilled as a part of an urban groundwater development plan 

for Bauchi Town. However, it was found that several production bore 

holes either dried up, or their yields dropped substantially soon after 

they were completed, and in order to maintain the combined yield of the 

boreholes, the observation boreholes were converted to production bore 

holes.

The boreholes drilled into deep weathering area A in Bauchi (see 

section 3.5 and Plate 3-14)» were not used for production for some time 

after their completion, and the opportunity was taken to measure ground- 

water levels in this area over a period of 14 months. The boreholes 

were monitered as often as possible using an electric v;ater level in 

dicator. In practice the regularity achieved was two measurements per 

week during the wet season, and one per month during the dry season.

The borehole hydrograph presented in figure 5*3 is taken from the 

record of borehole 10 (see Figure 3.4). The geological log of this 

borehole is given in Appendix B, and from the log it can be seen that a 

sub artesian rice in water level was recorded during drilling, and that



Hydrograph

6 ro

60

40

BAUCHI AERODROME

20

i ll 1
N M N

Figure 5-3 Borehole No 10 Hydrograph (Area A) and Bauchi 1978 Rainfall



226

therefore the aquifer at this location is confined. However, the resis 

tivity profile section given in Figure 4-9 , which also passes through 

this borehole, shows that the grade V and VI material which confines 

the aquifer at the borehole is not laterally continuous.

Kowal + Omolokun (l9yO) have published groundwater hydrographs 

for three boreholes from the small catchment basin study at Samaru. 

The hydrographs represent boreholes at three positions on a slope above 

the valley bottom of the catchment.

The catchments at Bauchi and Samaru are broadly comparable, they 

are of a similar size, slope, vegetation cover and also receive the 

same seasonal rainfall.

In the original presentation (Kowal + Omolo.kun, 19?0\ only the 

wet season hydrographs were shown, however, in Figure 5-4> the hydrographs 

have been rearranged and plotted over a full twelve month period. The 

dry season part of the hydrograph has been extrapolated from December 

to June.

In Figure 5»3? the rainfall data shown has been taken from the re 

cord at Bauchi aerodrome. This measurement station is not on the catch 

ment, but lies some 5 km away. For the reasons discussed in Section 

2.2, the rainfall over the catchment is likely to have varied signi 

ficantly from that at the aerodrome. By contrast, the rainfall shown 

plotted on Figure 5»4 is an average of 5 rain gauges on the catchment, 

and must therefore be more representative of conditions within the 

catchment.

Description of the hydrograph.

The three hydrographs are very similar and may be conveniently 

subdivided into four stages, viz:

(1) A rising stage

(2) A constant level stage

(3) A rapidly declining stage

(4) A gradually declining stage

The four stages are described below, and an assessment of the 

implied changes in recharge, seepage and evapotranspiration is made.
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(l) The rising sta,~e. The rise in th hydrograph Tinrkr. t v e 

"beginning of recharge to the water table. This occurs come tine after 

the beginning of the rains, depending upon the frequency and intercity 

of the early wet season storms. Kowal + Cmolokun (l9yO) report the rise 

in the water table at Saraaru to occur some time during July. Their 

observations are reproduced in Table 5.1.

Table 5.1 Rainfall + Hydrograph Data.

Year Annual Date of rise Cumulative rainfall
Rainfall on hydrograph ' before rise
(mm) (mm)

389

457
503

404

515

This data confirms that the rise in the water table does not sim 

ply o^cur after a given amount of rainfall has been received over the 

catchment. For example, during 19^8, more than half the total rainfall 

had fallen before the water table began to rise. The implication is 

that recharge is controlled by a complicated interaction between rain 

fall and evapotranspiration.

After the initial rise in the water table, the hydrograph shows a 

continued rise in response to the increasing frequency and intensity of 

rainfall.

1964
1965
1966
1967
1968

1054
978

1333
967
998

198
207
192
196
208

(17-7)
(26-7)
(11-7)
(15-7)
(22-7)

(2) The constant level stage, '."ith the exception of the 

hydrograph at Samaru, a constant level stage is reached at the peak of 

the rains. This is particularly v/ell marked at Samaru during 1966, an 

exceptionally wet year.

During this time, the ground-water level is close to the surface, 

the soil above the water table is close to saturation and further rain 

fall is rejected as surface runoff. Seepage is occurring at this tine 

so that the baseflow component of the stream is also at a maximum.

Note 1. Kowal reports (l970b) that v;-.ry little runoff occurs before 
the dry season rise in the water table.
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(3) The rapidly declining stage. As soon as the rains begin to 

diminish, the hydrograph shows a rapid fall in the v/iter table. '.Yater 

is being lost from the aquifer both to seepage and to continuing high 

evapotranspiration. Transpiration continues at a high level until the 

moisture within the rooting depth of the vegetation becomes limiting- 

after this time much of the vegetation begins to wilt, and later, die.

Depending upon the height reached by the groundwater table during 

the wet season, which in turn reflects the annual rainfall received,the 

baseflow to streams ceases at some time betv/een mid-October and mid-Dec 

ember. There is no further surface flow in the streams from this time 

until, usually, the following July. The cessation of seepage causes 

the hydrograph to show a definite change of slope, and this marks the 
end of this stage.

(4) 'The gradually declining stage. This stage lasts from December 

until some time in June or July as discussed above. It is important to 

note that the hydrograph shows a continuing fall at approximately the 

same rate up to the time the first recharge is received. The water 

table continues to fall during the early part of the wet season.

The water table falls between one and three metres depending upon 

the position of a borehole on the slope and the extent of the preceding 

rains and recharge. For example, the fall is considerably more marked 

at Samaru after the limited rains of 19^5> than after the above average 

rains of the following year.

The loss of water from the aquifer during the dry season, as 

measured in a borehole at the bottom of the slope and close to a dry 

stream bed. can only be attributed to the effects of evaporation from 

the water table. This is clear evidence that evaporation, rather than 

transpiration occurs direct from the water table even when it lies at 

a depth of 6 m. The fact that this evaporation continues at depth 

after saturated conditions are again established at the surface at the 

beginning of the rains is of significance in the discussion of recharge 

which follows.
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5.3 Recharge Mechanisms. 

Introduction.

In the small and often isolated aquifers that occur within the 

weathering environment, two factors control the quantity of water 

available for abstraction by pumping. These are the volume of avail 

able storage within the aquifer and the quantity of recharge that occurs, 

or which may be induced to occur each year.

It is probable that the volume of available storage is less than 

that of available recharge in many areas. In such cases there is the 

possibility that the aquifer can be used as a storage reservoir and 

overpumped each dry season with the assumption that sufficient recharge 

water is available the following wet season to completely replace the 

abstraction and other losses. It is also probable that very few base 

ment aquifers are of a sufficient size to support continual abstraction 

without recharge, for more than two or three years. The quantity of 

available recharge is therefore a basic parameter in the determination 

of any development policy, and therefore deserves considerably more 

attention than it has so far received.

In the following section, two methods of calculating recharge are 

examined. The first is the conventional analysis based upon the work 

of Penman (1948, 1949, 1950) and Grindley (1967, 1969) and developed 

for use in temperate latitudes. The results of this analysis, when used 

to estimate recharge in the savanna, are described, and it is demon 

strated that the method leads to considerable inaccuracy, mainly caused 

by the extreme climatic variation between the seasons. The second 

method of analysis has been developed for this study and is based upon 

the Monteith (1965) method of calculating evapotranspiration.

A major component of both recharge analyses is the balance between 

rainfall and actual evapotranspiration which occurs within the soil 

zone. It is therefore necessary to examine and define the moisture re 

tention characteristics of the savanna soils before preceding to the 

recharge analysis.

Soil moisture characteristics.

A number of parameters have been used to define the quantity of 

moisture held in the soil. Concepts such as witting pc^nt, field cap 

acity or soil moisture deficit have been defined specifically in order
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that soil moisture conditions can be related to the moisture re 

quirements of plants. However, they do not have a strict physical 

basis and their use has led to come confusion. In the discussion 

which follows, a number of these terms are critically assessed.

The ability of a soil to store water is a function of the fraction 

of the total soil volume that is occupied by solid, the fraction occu 

pied "by pore space and the size and distribution of the pores. The 

ability of a soil to release water is a function of the pore size and 

shape. If the pores are very small, then a high proportion of the water 

held within the soil is retained, held in position by capillary forces.

Soil water, porosity and density terms can be most readily defined 

by considering the soil as a reservoir, with the soil, air and water 

volumes separated out as shown in Figure 5»5» In terms of the dimen 

sions shown in Figure 5«5» "the following parameters may be defined.

Soil bulk density p

mass dry soil____ 
n> ~~ bulk volume of soil

c A 5.1

where p =

Volume water content ft

c

A

D

soil particle density

depth of soil

area of soil

total depth of sample

n _ volume water
bulk volume of soil

b A 
A D

5.2

where b = depth of water

The soil porosity may be defined as

E - 5.3

The values of bulk density are widely used for converting moisture 

percentage by weight to moisture content by volume and for then
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calculating the soil porosity when the particle density is known. 

The technique has been recently reviewed by Hanks "• Ashcroft (1980).

In the savanna soils, poor structure, compaction and a small total 

volume of poor space are reflected by high values of bulk density. 

Kowal + Kassam (1973) present data from several soil profiles taken 

from uncultWed land close to Kaduna. The data for bulk density and 

porosity is shown in Table 5.2. A figure of 2.65g cm has been used 

for the soil particle density in equation 5.2 to give values of soil 

porosity (Kowal + Kassam,

Table 5.2 Bulk density and porosity o^ three soil profiles from 
Afaka forestry reserve, near Kaduna.

Profile Depth Bulk density Porosity 
(nn) (gm cm"3 ) E

123123

0-150 

150-300 

300-450 

450-600 

600-750 

750-900 

900-1050 

1050-1200 

1200-1350 

1350-1500 

1500-1650 

1650-1800 

1800-1950 

1950-2100 

2100-2250 

2250-2400 

2400-2550 

2550-2700 

2700-2850 

2850-3000

Note. + denotes a laterite layer with values ranging from 2.05-2.37

1.53
1.49
1.43
1.46
1.45
1.39
1.39
1.35
1.41
1.48
1.63
1.65
1.77
1.61
1.65
1.67
1.65
1.66
1.73

—

1.61
1.69
1.62
1.56
1.53
1.77
1.74
1.73
1.66
1.74
1.75
1.64
1.68
1.65
1.68
1.65
1.55
1.65
1.67
1.57

1.52
1.48
1.59
1.54
1.57
1.44
1.44
1.48
1.42
1.43
1.57
1.55
1.55
1.53
1.69
1.72
1.79

+
+
+

0.42
0.44
0.46
0.45
0.45
0.47
0.47
0.49
0.47
0.44
0.38
0.38
0.33
0.39
0.38
0.37
0.38
0.37
0.35

—

0.39
0.36
0.39
0.41
0.42
0.33
0.34
0.35
0.37
0.34
0.34
0.38
0.37
0.38
0.37
0.3*
0.41
0.38
0.39
0.41

0.43
0.44
0.40
0.42
0.41
0.46
0.46
0.44
0.46
0.46
0.41
0.41
0.41
0.42
0.36
0.35
0.32



254

The high values of "bulk density affects the rooting depth of 

crops adversely. It has been found at Samaru that 75-30,^ of maize 

roots have depths of less than 300mm and approximately 90? have root 

ing depths of less than 450mm.

Water is retained in the soil "by physical absorption on surface 

and by capillary forces as noted above. The effective porosity may 

be defined therefore as the ratio of the volume of water released by 

drainage from a soil to the volume of the total sample. This value 

of porosity may be significantly lower than that of the total bulk por 

osity, and is also difficult to measure, as any disturbance of the 

sample will change the pore geometry.

The field capacity of a soil is defined as a unique water content 

that a given soil reaches and maintains after it has been thoroughly 

wetted and allowed to drain freely for two days. This value will vary 

for soils of different textures. The field capacity represents the 

moisture content of a soil after the water which is held in the volume 

defined by the effective porosity, has been removed by drainage. A 

soil at field capacity therefore contains moisture equivalent to the 

difference between the bulk porosity and the effective porosity of the 

soil.

A soil which is at field capacity is considered to be freely 

draining. Therefore, if any extra moisture is added to the top of the 

soil, an equivalent volume will be released from the base of the soil.

The permanent wilting point of the soil is the unique moisture 

content that the soil reaches when plants are no longer able to abstract 

water from the soil by suction. The plants therefore wilt due to water 

defficiency.

The available water in a soil profile is defined as the difference 

between the water content at field capacity and the water content at 

the permanent wilting point, and represents the v:ater available for 

transpiration by the plant canopy.

A soil moisture deficit (SMD) exists in the soil if it is nec 

essary to add water to the soil before it becomes freely draining. 

Plant life therefore creates an SMD by transpiration. The quantity 

of water which it is necessary to add to the soil to replace that lost 

by transpiration is the SMD. If soil moisture is reduced to the extent 

that plants wilt, then the SLID is equal to the available moisture
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within the soil.

These concepts explain in a qualitative manner the effects of soil 

moisture changes caused by transpiration. However, implicit in all 

the definitions is an assumption of the depth of soil from which the 

transpiration is occurring, or the depth of soil to which the ST.:D re 

fers. This aspect of the discussion is returned to later.

Soil moisture potential.

The concepts defined in the preceding section are based upon ob 

servation of moisture changes within the soil profile, and they lack 

a physical basis. I.^ore recently, attempts have been made to explain 

the changes in moisture content in physical terms, and a useful des 

cription of this approach is given by Hanks & Ashcroft (1980).

The availability of water to the plant canopy corresponds to the 

v/ork which the plant must expend to move water from the soil to the 

plant. This can be expressed as a difference in hydraulic potential 

between the plant roots and the soil.

The hydraulic potential within the soil may be expressed as a sum 

of a number of potentials as described by equation 5«4»

5 ' 4

where y. = hydraulic potential

ij/z = gravitational potential

tf/m = matric potential

if/ = pressure potential

The gravitational potential is independent of soil properties and 

only depends upon the vertical distance between the reference point and 

the data point.

The pressure potential applies to saturated soils. If the quantity

of water is expressed as a \veight, then \yp is the vertical distance from

the data point to the water surface.

1. If the quantity of water is expressed ac a mass, the units of 
potential are Joules kgm . If expressed as a pressure, the 
units are Pascals (nt m ; . If expressed ar> a '.veight, the units 
of potential are metres (or centimetres') of wit-r.



The matric potential is related to the absorptive forces of the 

soil matrix and hence is a function of the pore size and distribution 

within the soil. In saturated soil the matric potential is zero. If 

the unit of potential is expressed as a weight, the matric potential 

of the data point is the vertical distance between that point in the 
soil and the water surface of a manometer filled with water and con 

nected to the data point in the soil by a ceramic cup.

Measurements of soil water potential are useful in that they in 
dicate the potential a plant must overcome to remove water from the 

soil. They also indicate the direction of movement of water in the 

unsaturated zone. A negative potential gradient indicates water movement 
upwards, whereas a positive gradient represents downward movement of 
water. A zero flux plane exists where the gradient of the potential is 
zero. There is no flux of water either upward or downward. These con 

cepts are employed below in the discussion of the second recharge model.

Measurements of matric potential may be made by a number of methods 
(Milburn, 1979)* The permanent wilting point and the field capacity 

may therefore be expressed in terms of matric potential for any given 

soil.

A partial vacuum equivalent to 0.34 atmospheres is approximetely 
equivalent to the matric potential of a soil at field capacity (Hanks + 
Ashcroft, 1980). Similarly, a partial vacuum of approximately 15 atmos 
pheres represents the matric potential at the permanent wilting point. 

The difference in the quantity of water abstracted from a soil at these 
two different suctions is a convenient measure of the available water 

in the soil.

Based upon the concept of available water at different matric pot 

entials, experiments have been performed to find the water held in 

soils at different tensions. The results of this work for two soils, 

beneath uncultivated land, developed upon basement rocks in Northern 

Nigeria are given by Kowal + Kassan (19?8) and reproduced here in 

Table 5.3.
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Table 5.3 Range of available \v-ter in two ferruginous soils developed 
under natural conditions at Afaka, Nigeria (Data from 
Kowal + Kassam, 1978).

Depth of
Profile
(mm)

0-150 

150-380 

3^0-1220 

1220-1520 

1520-1780 

17 P0-2560 

2560-3050

Total

0-120 

120-400 

400-910 

910-2340 

2340-3040

Total

Bulk 
Densit
(gmcn

y J

1.52

1.52

1.48

1.43
1.56
1.62
1.79

1.73
1.64
1.59
1.78
1.6*

Water content at tension 
0.34 atm 15 ate 

(mm) (mm)

29
61

277

93
77

249
168

26
66

146
485
257

18

45
197
67

57
180
122

14

45
107
384
181

Available 
Y'ater 
(mm)

11

16

80

26

20

69
46

268

12
21

39
101
76

249

The range of available water for two typical soil profiles, shown 

in Table 5*3, may be approximated as 80mm of water for each 1000mm 

soil. A relatively high proportion of the total water content of the 

soil, represented by the bulk porosity, is still held in the soil at 

a tension equivalent to 15 atmospheres.

In Table 5»4> val\:es of matric potential for a typical soil at 

various soil vfrater conditions are shown. A number of different param 

eters have been used to measure soil matric potential and these are 

listed in Table 5*4. It should be stressed however that these values 

represent one particular soil, and that they will change for soils of 

different textures. However, they do illustrate the approximate con 

ditions for all soils.
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Table 5.4 Values of matric potential at various soil v;atcr conditions 
(Data after Ranks + Ashcroft, 1980)

Soil water 
condition

Saturation 
approximate)

-1

Matric Potential ij/n

(Joules.. (pF) (Atmospheres)

-0.098 0 -1x10
-3

Field capacity 
(approximate)

-100 -9.8 2.0 -0.1

V/ilting point of 
many plants -1.5x104 -1470 4.2 -14.9

Air dry
(relative humidity
= 0.85)

-2.2xl05 -2.l6xl04 5.4 -218

Notes. pF refers to the log of the matric potential expressed as centi 
metres of water.

The hydraulic conductivity of the soil is a function of the matric 

potential. As the matric potential decreases, hydraulic conductivity 

also decreases (Hanks + Ashcroft, 1980). To illustrate this effect, the 

change in hydraulic conductivity with matric potential is shown for a 

soil at various water contents in Table 5«5« These values refer to a 

soil of a particular texture, and will vary for soils of different 

textures.
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Table 5.5 Hydraulic conductivity and matric potential for a soil 
v/ith varying volume v:ater content. (Data after Hanhs + 
Ashcroft, I960).

Volume water 
content

0.05

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.41

Hydraulic 
conductivity 
Kw

(cm/day)

4.5x10

6.7xlO~5 

4.1xlO""4 

4.8x10

2.6x10 

5.2x10 

7.8x10 

1.1x10 

2.7x10 

7.4x10

1.6

3.6

4.7

7.4
11
19 

34 

69 r 
1.1x10'

f

1.2x10'

Matric 
Potential 
^m 
(cms)

-6,975

-3,365
-1,255

-447
-330
-259
-209
-168
-134
-106

-78
-64
-53
-43
-34
-26
-18
-10
-3 

0

Soil Moisture
State

wilting 
point

f i eld 
capacity

Saturation

The results presented in Table 5*5 are important as they have 

an effect upon infiltration rates. For a soil with volume water con 

tent close to the wilting point, the hydraulic conductivity of the 

soil is greatly reduced. '-Then infiltration commences therefore, at 

the beginning of the wet season, a wetting front is produced which 

only moves slowly down through the profile. Above the wetting front 

the volume v/ater content is close to saturation, below this level the 

so: 1 is still dry. Kowal + Kasc-arn (1978) report that savanna soils
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have hydraulic conductivities between 720 cm day" and 2900 cm day" 

for values of matric potential close to zero.

Root constants.

To quantitatively assess the soil moisture deficit it is necessary 

to estimate the depth of soil from which transpiration and or evap 

oration has occurred. As plants abstract moisture from the soil via 

their root networks, it is therefore necessary to measure or make an 

assumption regarding the depth of rooting beneath the plant canopy in 

question. A second, and major, complicating factor is that plants en 

counter difficulty in abstracting water from a soil some time before 

the permanent wilting point is reached. Plant growth is then slowed 

and transpiration correspondingly reduced.

The assessment of the actual transpiration of a plant canopy re 

quires a comprehensive overview of biological factors. For example, 

crop water requirements differ throughout the growth cycle of the crops, 

and the requirements of one crop differ from those of another. However, 

there is strong evidence that crop growth is directly related to net 

radiation, assuming that there is no restriction in the quantity of 

soil water available. As an approximation therefore, Penman (1956) 

suggested that for a short green crop, completely shading the ground 

and not short of water, evapotranspiration is determined by the capac 

ity of the atmosphere to accept water by evaporation, also known as the 

evaporative demand of the atmosphere (see Section 2.4). This concept 

is applicable to temperate latitudes where the crop growth cycle cor 

responds to the evaporative demand of the atmosphere, both being con 

trolled by net radiation. However, in the savanna environment, the 

plant growth cycle is not determined by net radiation as considerable 

quantities are received throughout the year. In this environment the 

limiting factor is the availability of soil moisture.

Rooting depth varies considerably between plant types. Maize in 

Kenya was observed to root to a depth of 2m, kikuya grass to a depth 

of 6m and evergreen forest to more than 13m (Jackson, 1977)• The water 

available to each of these plant canopies will vary considerably. 

Where moisture is limiting, xerophytes develop root systems which extend 

to 20 or 30m depth (Milburn, 1979)• Mangoes in Northern Nigeria have 

rooting systems which extend to the permanent water table and thus are 

able to fruit towards the end of the dry season. Faced \vith such a
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diversity of rooting depths it is necessary to assume an aver-ge depth 

for a natural plant canopy. If a specific area of one crop is under 

study then the rooting depth may be more accurately specified.

The available moisture within the profile under the plant canopy 

may be defined therefore as the total available moisture above the 

rooting depth selected. This value of available moisture also repre 

sents the maximum soil moisture deficit that may be created by trans 

piration. The maximum SMD has also been called the I) value (Lloyd et 

al, 1966).

Although the available moisture within a certain rooting depth 

may be determined for a particular soil type, this quantity of water 

is not equally available to a plant canopy. At some moisture content 

between field capacity and the D value, transpiration by the plant 

becomes restricted by the availability of water.

At high potential evapotranspiration rates, transpiration falls 

below the potential rate at an earlier stage of moisture tension than 

in the case of low potential evapotranspiration rates. Similarly, as 

root density increases, the potential evapotranspiration rate is main 

tained until much greater soil moisture tensions are reached (Jackson, 

1977) • In an area where little information is available upon plant 

physiology, rooting depths, or rooting densities, it is necessary to 

assume a proportion of the available moisture, below which evapotrans 

piration becomes reduced due to moisture deficiency. This level has 

been defined as the C value, or the root constant. Lloyd et al (1966) 

working in the semi arid environment of Jordan recommended a value of 

C equivalent to 5^$ OI% ^e available moisture.

The rate at which the actual evapotranspiration falls beneath the 

level of potential evapotranspiration as the SMD increases from the C 

value to the D value is a controversial issue and a number of models 

have been proposed. In Figure 5'7> the ratio of potential evapotrans 

piration (Etp) to actual evapotranspiration (Eta) is shown plotted against 

water content (0V ) . I.'uch field work has shown (Hanks + Ashcroft, 1980) 

that the most correct field situation lies between the extremes of 

Thorn thwaite + Mather, and Veihmeyer + Hendrickson as shown by Penman + 

Pierre (Refer to Figure 5«7)« In reality, this simplification is com 

plicated in a number of ways as discussed above.

Figure 5.8 shows the data in Figure 5»7 expressed in an alternative
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Water content (Ov )

Veihmeyer & 
Hendrickson 
Penman
Pierce
Thornthwaite & 
Mother

ftvfc

Figure 5-7 Modification of evapotronspiration
when soil moisture is limiting.

( After Hanks and Ash croft, 1%0)

SMD SMDC ""••" D

Potential change in storage

Figure 5-8 Soil moisture changes for various
drying curves.

( After Rush ton and Ward, 1979 )
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form (Rushton + Y/ard, 1979) '.vhich includes the concepts of C and D 
values and the probable changes in soil moisture storage which result.

Conventional recharge analysis.

Recharge is usually calculated as the balance between input, in 
the form of rainfall, and output, in the form of losses to runoff, 
seepage and evapotranspiration. The relationship may be expressed 
mathematically, viz:

AS - P -Eta-R

5.5

where P = precipitation (mm)

Eta = actual evapotranspiration (irm)
R = Runoff, expressed as (mm) 

depth over the catchment

As = increase in stored water (mm)

A negative value of As represents an increase in the SLID, while 
a positive value indicates water available for reducing the SLID, or, 
if the soil is at field capacity (SLID = 0), water available for re 
charge to the permanent water table.

The conventional method assumes that no recharge can occur unless 
the soil moisture level is above the field capacity. Similarly, it is 
assumed that no further reduction in soil moisture can occur when the 
permanent wilting point is reached.

The accuracy of the estimate of As is determined by the accuracy 
with which the inputs and outputs can be assessed. Of these three 
functions, the estimate of Eta is the most difficult to assess accur 
ately. The choice of C and D values, and the choice of the function 
describing the change of Eta/Etp between C and D may be seen from Fig 
ure 5»8 to significantly affect the estimated value of Eta.

Kowal + Knabbe (1972) have produced a water budget for Bauchi 
using rainfall and Etp averaged over a period of six years and grouped 
into decades. For this analysis they have used the relationship between 
Etp and Eta after Veihmeyer and Hendrickson (see Figure 5«7)» In 
effect, this relationship does not specify a C value but assumes evapo 
transpiration continues at the full rate until the D value is reached, 
after which evapotranspiration ceases. For the sandy savanna soils,
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this relationship is reasonable. Figure 5*6 indicates that tho 

moisture content up to a raatric potential of < 500cms is lost very 

easily, after which little extra moisture is lost.

The results produced by Kowal + Knabbe form a part of their Agro- 

climatological Atlas of the Northern States of Nigeria (l9?2), and as 

such, have been widely quoted and used by various organisations, (see 

for example Land Resources Division, 1976). The calculation for Bauchi 

is reproduced in Table 5.6 using data from Table 2.22. The presenta 

tion of the results has been modified to reflect the previous discussion.

Assessment of conventional analysis results.

The estimate of Etp by the Penman method will cause considerable 

error when used in the savanna environment, if no modification is in 

cluded to account for the differing savanna conditions from those in 

the U.K. It is not possible to include the effects of the pronounced 

seasonality o° the savanna climate in the standard analysis. A number 

of factors in particular lead to errors in the assessment of Etp and 

these are briefly discussed below, viz;

1) The albedo changes between 0.15 and. 0.35 during the year in 

the savanna. The effects of such a change have been des 

cribed in Section 2.3.

2) Y/hen soil moisture becomes limiting, the use of net radiation 

changes. In the wet season Kowal + Kassa^ report that 75^ 

of net radiation is used for evapotranspiration. During the 

dry season this quantity must decrease substantially, although 

no experimental evidence is available. However, to assume 

that 100^ of net radiation is available for evapotranspira 

tion throughout the year will cause a substantial overestimate 

of Etp. Figure 2.26 indicates the sensitivity of Etp to this 

parameter.

3) The Penman equation is designed to estimate potential evapo 

transpiration from a short crop. During the wet season the 

crops grow to between two and three metres in height, and 

this will cause considerable loss of moisture due to turbulence, 

and an underestimate of Etp at the time.

4) The Penman equation assumes that the surface is covered by 

the crop. During the early part of the wet season, the
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Table 5.6 Y.'ater Budget for Bauchi (1979) using d-.ta frcrn Table 
2.22.

Decade

1

2

3

4
5
6

7

8

9
10
11
12

13
14
15
16
17
18
19
20

21

22

23

24

25

26

27
28

29

30

31
32

33

Etp

(mm)

38.1
40.0
4^.6
45.6
48.7
38.3
54.1

53.4
61.5
55.5
62.1
53.2
52.5
50.4
62.9
42.9
45-6
51.1
40.7
41.9
48.9
40.6
40.7
42.6
41.4
42.7
44.6
43.2
43.8
45.9
42.8
40.7
41.6

Rainfall

(mm)

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4.9
32.3
49-3
10.0
15.8
40.9
23-4
19.2
95-3

165.5
68.6
74.7
83.2

100.8
77.4
12.0
76.3
41-7
0.0
0.0

0.0

0.0

0.0

Eta

(mm)

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4.9
32.3
-19.3
10.0
15- R
40.9
23.4
19.2
40.7
41.9
48.9
40.6
40.7
42.6
41.4
42.7
•14.6
43.2
43.8
45^9
8.8
0.0

0.0

AS

(mm)

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

+54.6
+123.6

+19 = 9
+34.1
+42.5
+58.2
+36.0
-30.7
+31.7
-1.5

-43.8
-45.9
-*.p
0.0

0.0

S!'D

(mm)

-100.0

-100.0

-100.0

-1CO.O

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-100.0

-45.4
0.0

0.0

0.0

0.0

0.0

0.0

-30.7
0.0

-1.5
-45.3
-91.2

-100.0

-100.0

-100.0

Percolation to
ground v;at or 

(mrr.)

78.2

19-7 
34.1
42.5
58.2
36.0

1.0

Total Etp = 1669.1 

Rainfall = 991.3 

Eta = 721.6 

Ground'.vatcr=269-7



246

Decade

33

34

35
36

-tp

(mm)

41.6

37.1

36.4

43.3

Rainfall

(mm)

0.0

0.0

0.0

0.0

Eta

(mm)

0.0

0.0

0.0

0.0

As

(mm)

0.0

0.0

0.0

0.0

^T rD

(mm)

-100.0

-100.0

-100.0

-100.0

Percolation to 
grruni'.vater 

(mm)

Kotes l) Etp calculated using values of = 0.25, a = 0.235 
b = 0.535 in equation 2.7

2) An initial SMD of 100mm is assumed, equiavlent to a 
rooting depth of 60cm (see Table 5»3)

3) Ho allowance is made for runoff (K = 0 in equation 5-3)



247

surface is not covered completely, and during the dry season 

the majority of the surface is bare. This will cause an 

overestimate of Etp.

The combined effect of these errors is that the Penman equation 

overestimates Etp considerably during the majority of the year, and 

underestimates it during the wet season. The balance between these 

two sets of errors may produce an approximately accurate figure for 

the year as a whole however.

Further errors are encountered when computing the soil water bal 

ance. In particular, as the rainfall events are both intense and of 

short duration, and as the infiltration rate of the soil is in general 

high, the practice of using ten daily data periods to compute the bal 

ance v/ill cause a significant underestimate of recharge. This will be 

particularly marked during the early part of the ;vet season when much 

of the ground is still bare. Evaporation from bare soil quickly dries 

out the top soil thus reducing significantly the subsequent rite of 

evaporation. Rainfall that can pass below the top soil therefore be 

comes protected from later evaporation.

Although all the factors described above can cause errors in the 

recharge calculation, the most severe restriction on the general use 

of the method in calculating a catchment water balance is that of the 

prediction of no evapotranspiration when the soil moisture deficit is 

equal to or greater than the permanent wilting point. V/hatever modifi 

cations are made to the Penman analysis, the soil moisture balance in 

dicates that the D value is reached some time during the dry season. 

After this time no evapotranspiration is predicted.

Transpiration by plants stops when the soil moisture is reduced 

to the permanent wilting point, however, there is evidence that evap 

oration continues from the soil. As described in Section 5.2, the 

groundwater level continues to fall throughout the dry season and the 

only process by which water can be lost from the water table during 

this time, after seepage has stopped, is by direct evaporation. Fur 

ther evidence is also forthcoming from an experiment conducted by Jones 

(1975) at Samaru. The results are particularly relevant and aro re 

produced in Table 5«7»

Jones calculated the losses of soil moisture that occurred from
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"beneath three soil profiles at Sanaru, between mid-October 1973 and 
raid-March 1974. The three surfaces each carried a crop of maize 
during the wet season, then in mid-October the soil profiles were sam 
pled and the three plots treated as follows:

1) left undisturbed

2) covered with a paraquet based weed killer

3) ploughed to a shallow depth - producing a mulch

The moisture profiles "beneath the three plots were again measured 
in mid-March

Table 5*7 Effects of surface treatment on profile water loss during 
the dry season (after ^aiinai-y, 1975).~

Sampling Depth (mm)

150-300 300-450 450-600 600-750 Total

Total moisture content 

October 1973

Total moisture content 

March 1974

33.4 42.' 46.1 45.5

Moisture loss

Note l) Plot A = weed growth on a natural surface

B = surface with weeds killed by paraquet 

C = ploughed

167.8

A .rt.

B

C

A

B

C

15

19

22

18

13
11

.0

.6

.3

.4

.8

.1

23

21

34

19
11

8

.1
,p

.7

.7

.0

.1

27
31

39

1«

7
7

.2

.R

.1

.9

.2

.0

27

38
38

18

5
7

• 5
.9
.1

.0

.7

.4

92
130
134

75
37
33

.8

.1

.2

.0

.7

.6

It may be seen from Table 5.7 that a significant soil moisture 
loss is recorded for a"1 three treatments at a time when the conven 
tional analysis predicts no evapotranspiration for plots B and C. The 
C and D values for these plots would both be zero as the rooting depth 

was zero.

A proportion of the inaccuracy in the recharge estimate may be 
rectified by computing the soil moisture balance on a daily basis
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(Ho'vard + Lloyd, 1979) • Ho'vev r, the mjcr r.ource of erro^ lieu i;. 

the use of potential evapotranspiration and r.ornc form of root con 

stant to estimate actual evapotranspiration. An improved method of 

calculating actual evapotranspiration would allow a more accurate 

assessment of recharge. In the following discussion, the :.:onteith 

equation (equation 2.17) is used to calculate Eta anrl it is demonstrated 

that this method provides an improved estimate of recharge.

Model of recharge used for study.

The recharge model used for this study forms a part of the '"black 

box' model of a catchment water balance which is described in Section 

6.3. The validation of the recharge model is only possible therefore 

in the context of the larger model, however, in this section the deri 

vation of recharge is described in detail and some model results pre 

sented.

Actual evapotranspiration in a savanna environment is controlled 

by the availability of moisture within the soil. In order to predict 

the Eta therefore, a detailed understanding of soil moisture availa 

bility throughout the year is necessary. It is also necessary to under 

stand the soil moisture distribution within the profile and the way in 

which this changes throughout the year. If a satisfactory model of mois 

ture availability can be constructed, then the "onteith equation I equ 

ation 2.17) can be used to calculate Eta and the two combined to form a 

predictive system.

Soil moisture potentials have been discussed above. If measure 

ments of the soil moisture potential were available for a savanna pro 

file it would be possible to predict the movement of moisture within 

the profile and to assess when soil moisture becomes limiting to evapo 

transpiration. In the absence of such measurements however, it is 

necessary to construct a model of soil moisture movement based upon ob 

served data from the environment.

In the following discussion, the probable changes in soil moisture 

potential, and the implications for the measurement of Eta, are des 

cribed based upon the profiles presented in Figure 5»9» In this dis 

cussion it is assumed that the water table remains at a constant depth, 

although in the description of the catchment water balance in Section 

6.3 this restriction is removed, allowing a prediction of runol)ff.
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l) Dry season - During the dry season, an S"P is developed 

which reflects the combined evaporation and transpiration that has 

occurred since the previous wet season. The size cf this S!rD is a 

function of the rooting depth of the plant canopy, as discussed above 

Kowal + Kassara report the following maximum SMD values for savanna 

profiles.

Table 5.8 Maximum soil moisture deficit for various plant canopies 
(after Kowal + Kassam, 19?8).

Crop Type 3L'D
(mm)

Bare fallow 100

Sorghum 140

Groundwater 160

Cotton 200

Grass 240

Natural vegetation 270

Conditions at the end of the dry season indicate the following, 
viz:

a) An albedo of approximately 0.35 (Kowal + Kassam, 197°)

b) A substantially decreased proportion of net radiation 
available for evapotranspiration. The ground flux com 
ponent probably increases to approximately 75^

c) That no transpiration is occurring

d) That the gradient of the soil moisture potential is negative 
throughout the profile (Figure 5-9)

The negative soil moisture potential gradient implies that mois 

ture is moving upwards throughout the profile and being lost at the 

surface, or beneath the surface by evaporation. The soil close to 

the surface at this time approaches air dryness (refer to Table 5-4)- 

Ground temperature profiles provide a useful confirmation of this pre 

diction. From approximetly November to February there exists a daily 

average positive ground temperature gradient at Bauchi. The temper 

ature at a depth of 300mm is consistently less than that at 1200mm by 

approximately 2 C. This indicates an upward flow of heat, and there 

fore water movement fro-n the water table to the atmosphere.
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2) Early wet season. The rains which f all at the beginning 

of the wet season, fall on bare ground, or upon dead vegetation. V/ith 

the exception of very heavy storms f> 40mm), no runoff occurs, an'l the 

rainfall infiltrates into the soil. Downward percolation in the soil 

is very slow due to the low hydraulic conductivity of the dry soil 

discussed above. A wetting front is formed therefore with conditions 

close to field capacity in the soil above the wetting front, and dry 
beneath it.

The soil moisture profile indicates the presence of the \vetting 

front by a zero flux plane (ZFP). There is no moisture movement at 
the ZFP.

As conditions above the ZFP are close to field capacity, plant 

seed germination occurs and grasses in particular, rapidly begin to 

grow. Transpiration and evaporation therefore commence, at a rate which 

is determined by the degree of plant cover and the transpiration require 

ment of the vegetation. Evaporation from the bare soil initially is 

high after a storm, but the reduction of soil moisture in the top fev: 

centimetres of soil immediately causes this component of evapotrans- 

piration to fall below the evaporative demand of the air.

If evapotranspiration completely exhausts the moisture held above 

the ZFP, then dry season conditions are again initiated. Such a failure 

of the early wet season rains is a commonly encountered problem in the 

savanna, and due to the rainfall distribution described in Section 2.2, 

it is probable that this condition varies very widely.

Beneath the ZFP, the soil moisture potential gradient remains neg 

ative, in effect, isolated from conditions above. Although moisture 

can no longer escape to the surface there is a continued redistribution 

of moisture from the water table to the soil profile in response to 

this gradient. The soil moisture deficit beneath the ZF? is therefore 

reduced marginally.

As the ZFP becomes established, the quantity of net radiation used 

in heating the ground decreases sharply. A similar reduction in albodo 

is also initiated as the grass cover extends widely.

3) ?.:id wet season. As the frequency of rain-storms increases, 

the ZFP moves downward. Transpiration at the surface increases due to 

the increased leaf area available from growing plants. Evapotranspir 

ation also increases due to the extra turbulence caused by the growing
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plant canopy. Deeper rooted plants an:i trees be^in to transpire and r-rov; 

as moisture becomes available to their root systems.

At some point in the middle of the wet season, determined by the 

frequency and quantity of the preceding rainfall, the quantity of mois 

ture held above the ZFP becomes greater than the dry season soil moisture 

deficit. At this time, recharge to the water table occurs, and any 

subsequent excess of rainfall over evapotranspiration passes through 

the high hydraulic conductivity soil to the water table.

4) Early dry season. Evapotranspiration continues at a high 

level determined by the plant requirements, and the evaporative demand 

of the atmosphere until soil moisture becomes limiting. At this time, 

which will vary for different root constants, the transition to dry 

season conditions commences. During a range of moisture contents, 

which span the root constant, albedo v;ill change, ground flux will in 

crease, transpiration will cease and evaporation from the soil profile 

will increase. It is probable that evaporation commences from the soil 

profile at some considerable time before the root constant is reached, 

especially in areas where the '.vater table is close to the surface. 

The evaporative demand of the atmosphere during this time is met both 

by transpiration and by evaporation from the soil profile.

It is clear from the preceding discussion that the presence of a 

zero flux plane modifies Eta. It is therefore necessary to construct 

a model which takes account of this, and the various other changes id 

entified above.

The following list represents the assumptions made in the con 

struction of a soil water balance over a period of one calendar year. 

A flow diagram representing the logic in a form convenient for the 

construction of a computer algorithm is shown in Figure 5.IQ.

1) The albedo, the percentage net radiation available for evapo 

transpiration and the r, term in the Konteith. equation (see balow) are 

all assumed to change from their v/et season values to their dry season 

values over a range determined by the root constants. The changes com 

mence as the SMD approaches a value of the root constant, (RC - X) and 

are completed as the SMD passes the root constant (as RC + A). The 

constant X is < 3!;«0.

2) A maximum soil moj. stare deficit, equivalent to a D value, is 

assumed equal to IvC + £5» The value of 35"™ is taken from the data in
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Table 5«7 and represents the amount of evaporation that occurs from a 

bare surface with no transpiration. The maximum soil moisture defi 

cit is composed therefore of two components, a transpiration component 

and an evaporation component.

3) If the SMD is greater than half the root constant, any moisture 

available after subtracting Eta from rainfall is assumed to enter a 

soil moisture store (SMS), representing the presence of a ZFP. On the 

following day Eta is calculated assuming moisture is not limiting, and 

with values of albedo and ground flux adjusted accordingly. A second 

soil moisture deficit (SMD 2 in Figure 5.10) is allowed to build up 

within the soil moisture store. If on subsequent days, there is no fur 

ther rainfall, the moisture in the SMS is depleted, and eventually re 

moved, signifying a return to dry season conditions.

\ hi4) The SMS is added to^any subsequent rainfall. A balance is

computed for the zone above the ZFP, while the original SMD (STrDl in 

Figure 5-1°) remains unchanged by conditions at the surface.

5) Tiflien the moisture contained in the SMS is equal to the mois 

ture deficit represented by SMD1 the ZFP is assumed to have reached 

the water table. After this time the soil moisture store ceases to 

exist, the original SMD returns to zero and the soil profile above the 

water table is at field capacity.

6) Any further rainfall in excess of Eta is transferred directly 

to the water table.

7) As the dry season commences, a soil moisture deficit is formed. 

However, this does not affect transpiration rates until the SIID app 

roaches the root constant as described above.

8) When the SMD reaches a percentage of EC (^50$) a part of the 

evaporative demand is assumed to be met by evaporation from the water 

table. This increases until all the demand is met by evaporation when 

the SLID is equal to the D value. This condition anticipates the dis 

cussion in Section 6.3 and is not explained further here.

The changing moisture conditions can be included in the calculation 

of Eta by the Monteith equation described in Section 2.4. Apart from 

the measured climatic parameters assessed in Section 2.4, two resistance 

terms are included in this equation. These resistance terms are de 

fined again here, viz:
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Figure 5-10 Flow diagram for water balance
Details of subroutines in Appendix E)



r = r + r + r. 
s L c h 5.6

where r, = resistance due to moisture flov; 
within the plant

= resistance due to soil cover

= resistance due to moisture content 
of the soil

2 A 2ln((z-d)/Zo)Vk u 5.7

where z = reference level of anemometer

d = zero pJane displacement

Zo = roughness length = h/100

k = Voft'karman's constant

L = vegetation height

The terms in Equation 5«6 have been discussed in Section 2.4. 

The rT term is approximately 50 sm and the r term is given in Table
J-J O

2.21. The r. term represents the resistance dependent upon the avail 

ability of soil moisture. From the sensitivity analysis presented in 

Section 2.4, it was found that if r approached ^000 sm during the
S

dry season, then the estimated value of Eta was approximately 0.5mm 

day. In the recharge analysis therefore, the value of r, is allowed to 

change from 0 to ^000 as the S":D passes between RL - x and RC + x as 

discussed a"bove.

At the beginning of the rains, the r term again becomes zero,

but the rT term only decreases slowly as the ZFP advances, as descri- L
bed by the values in Table 2.21. In this manner, the actual evapo- 

transpipation is modified to represent the slowly increasing moisture 

demand of the growing plants.

Equation 5.7 specifies the relation between the v:ind speed, and 

the vegetation height. A sensitivity analysis has also indicated the 

significance of Zo to the Eta value; as Zo increases, then Eta increases, 

This parameter represents the increasing roughness of the canopy and 

the aerodynamic transfer of water vapour produced. The size of the Zo 

term can be empirically related to the length of the growing season, 

which itself is a function of the number of days that moisture has been 

available at the top of the profile. The Zo term is allowed to increase 

to a limiting value before decreasing again at the end o p the -.vet season
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Although the recharge model described above luav seer? corr.plicited 

it provides an assessment of recharge which requires only the daily 

values of rainfall, observed sunshine hours, wind speed, relative 

humidity, and average temperature as input. The remaining parameters 

may be estimated and their sensitivity to the calculation established 

as necessary.

Assessment of model analysis results.

The recharge model forms a part of the catchment balance model 

which is described in Section 6.3. The recharge results calculated 

by the model can therefore be verified as a part of the overall bal 

ance. However, to facilitate a comparison of the results with those of 

the conventional analysis, the data for 1979? summed on a ten day ba 

sis are presented in Table 5-9- The results for the conventional an 

alysis listed in Table 5»6 are shown combined with the results produced 

by the water balance algorithm.

The model predicts a value of Eta which is Y\rl higher than the 

conventional analysis. Approximately half the estimated increase is 

accounted for by evaporation occurring during the dry season, however, 

the remainder arises from the changed assumption made about the soil 

moisture balance during the wet season. Column 4 of Table 5«9» shows 

the complicated variation during the wet season between the two pre 

dicted values of Eta.

In general terms, a redistribution of actual evapotranspiration 

is predicted by the model, with less occurring during the early part 

of the wet season, and more in the later part of the season than is 

predicted by the conventional analysis.

The value of recharge predicted by the model is approximately 

15^ lower than that of the conventional analysis.

In Table 5.10 the recharge results predicted by the model for the 

years 1969, 1970, 1971, 1972, 1973, 1974, 1978 and 1979 are presented. 

A root constant of 100m hc.s been used in these calculations so that a 

comparison can be made with the average value predicted for Bauchi by 

Kowal + Knabbe (l9?2). The sensitivity of the calculation to the root 

constant is presented in Section 6.3.

Note 1. Figure 5.10 illustrates a flow diagram for the water balance 
algorithm. In Figures 6.4 and 6.5 the variations in the parameters 
which control recharge in the water balance algorithm are presented.
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Table 5.9 Comparison of recharge results for 1979 

Hoot constant = 100m.

cade

1

2

3

4
5
6
7
8
9
10

11
12

13

14

15
16
17
18
19
20

21

22

23

24
25

26

27
28
29
30
31
32

33
34
35
36

J Rainfall

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4.9
32.3

49-3
10.0

15.8
40.9
23.4
19.2
95-3
165-5
68.6
74.7
83.2
100.8
77-4
12.0

76.3

41-7
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Eta

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

4.9
32.3

49.3
10.0

15.8
40.9

23-4
19.2

40.7

41-9

48.9

40.6

40.7

42.6

41.4
42.7
44.6
43.2
43.8
45-9
8.8
0.0

0.0

0.0

0.0

0.0

Eta (Eta -3ta ) Recharge

4.8

4-5
5-2
4.9
5.1
4.0

4.9
5.0
5-3
4.7
11.6
14.8
38.6
37-9
17.1
26.1

28.5

34.3
29.8
37.2

46.7

37^9
42.9

54-7
54.1
54.8
59-7
52.8
44.7
33.2
25.1
13.2
8.7
5-3
5-1'

5.4

4.8
4.5
5-2
4-9
5.1
4.0
4.9
5.0
5-3
4.7
6.7

-17.5
-10.7
27.9
1.3

-14.8
5-1

15-1
-10.9
-4.7 78.2
-2.2 19.7

-2.7 34.1

2.2 42.5
12.1 58.2

12.7 36.0
12.1 0.0

15.1 i.o
9-6

0.9

-12.7

16.3

13.2

8.7
5-3
5.1
5-4

Recharg

56.4

23.0

31.8

40.3

50.6

24.0

Total 991.3 721.6 869.0 +147 -4 269.7 22*

Notes. Eta and recharge are data produced by the conventional anal 
ysis. Eta* and recharge are roduced by the model described 
above.
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5.10 Predicted an ual recharge (Pioot constant = ICOm)

9Kowal 1969 1970 1971 1972 1973 1974 1978 197

Rainfall (ram) 1131 1067 946 1102 929 739 1154 11<32 991

Ita (mm) 701 835 652 676 795 729 766 777 869
Recharge (mir.) 400 348 405 531 257 128 485 498 228

The average of the calculated recharge values is 40rnn less than 

that reported by Kowal + Knabbe. Given the uncertainty which is ass 

ociated with both analyses the degree of agreement between the means 

is good. The conventional analysis predicts an extra 15$ recharge.

The major advantage of the recharge analysis presented above is 

that it can be incorporated in a model o^ the water balance which is 

valid for the whole year. The inaccuracy of the conventional analysis 

during the early and late parts of the wet season is clearly shown in 

Table 5.9.

The recharge results are not greatly different as the inaccuracy 

in the calculation of Eta by the conventional analysis is for the most 

part offset by the concentration of rainfall in the two months that 

recharge occurs. The distribution and timing of the rainfall clearly 

has a very significant effect upon the recharge. The standard devia 

tion about the mean of recharge in Table 5«1° is 145mm, with a maximum 

value of 531mm in 1971 and a minimum of 128mm in 1973. These figures 

represent 48^' and 17'?' of rainfall respectively.

The timing between rain storms in any one wet season has a signi 

ficant effect upon recharge. For example, 197° and 1972 received simi 

lar quantities of rainfall, yet the recharge for 1972 was only 62^. of 

that predicted for 1970. This degree of variation is significant as a 

basic parameter in the resource evaluation presented in Section 6.
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5.4 Aquifer response to abstraction. 

Introduction.

From the analysis of recharge presented in the preceding section, 

an estimate of the annual quantity of water available as recharge may 

"be made. Similarly, from the geophysical work discussed in Section 

4, an estimate may be made of the aquifer volume. However, before 

the yield of the system can be analysed, it is necessary to consider 

the response of the aquifer to abstraction.

In Section 5«1» "the hydraulic conductivity of the grade II, III 

and Pr material was described. The change of hydraulic conductivity 

from fracture controlled in the grade II material to intergranular 

flow controlled in the grade IV material produces a characteristic 

drawdown response, the implications of which are described below.

General.

For an aquifer formed from alluvial or sedimentary deposits, the 

pump test is the accepted method for establishing values of transmis- 

sivity and specific yield. If the aquifer can be considered as homogen 

eous, then the general differential equations of unsteady flow in an 

unconfined environment may be represented by Equation 5»8.

s y 4 5-8

where K - hydraulic conductivity in x(m day )

K = hydraulic conductivity in y( " )

h = hydraulic head (m)

Sy = specific yield

The specific yield Sy is defined as the ratio of the volume of 

water that the aquifer yields by gravity drainage to the volume of its 

dewatered part. The specific yield has a value very close to that of 

the effective porosity.

If the hydraulic conductivity of the aquifer is assumed to be 

homogeneous and isotropic, Equation 5-8 reduces to :

) = TVh = Sy jb- 5.9
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where T = transmissivity (h x k)

V*" = Laplacian Operator = i ,T *j «?'

Solutions to Equation 5»8 may be found in analytical terms sub 

ject to the restriction that the aquifer may be considered isotropic 

and inhomogeneous. However, as has been discussed above this degree 

of uniformity is seldom found in weathering aquifers.

In Section 4» a finite difference discretisation was used to 

solve the equations of current flow in an inhomogeneous electrical 

conductivity distribution. Equation $.6 may be solved in a similar 

manner, however, for three reasons this was not attempted here. These 

reasons may be summarised briefly as :

1) Ho detailed knowledge of the boundary conditions.

2) Probability of turbulent flow in grade II material close 
to the abstraction well (Uhl + Sharma, 1978)

3) A lack of good quality pumping test data (Hushton, 1978).

Straltsova + Adams (197°) have produced a summary of analytical 

techniques for heterogeneous aquifer formations, where the hydraulic 

conductivity is a combination of fracture and intergranular flow. 

However, these analytical techniques all assume a constant value of 

transmissivity and therefore may not be used here.

Pump test results.

The difficulties of analysing weathering environment aquifers has 

been described briefly above. However, it is still necessary to carry 

out a pump test upon a successful borehole in order that the pump sett 

ing may be determined and an operating regime for the borehole specified. 

It is important that this pump test should adequately reflect the oper 

ating conditions required of the borehole.

The results of four pump test are described below. In the follow 

ing section, these results are qualatatively interpreted.

Three of the four tests are from the area around Bauchi. Examples 

1 and 2 are from boreholes sited using the apparent resistivity pro 

filing techniques described in Section 4. Example 3 shows the results 

from three boreholes sited using seismic investigations. Example 4 

is from the area of Takum in Eastern Nigeria. The geological conditions 

are similar to those around Bauchi.
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Example (l)

A number of "boreholes were drilled into the weathering trough 

delineated in Area A. Borehole 5 (Figure 3.4) was air lifted with a 

continuous yield of approximately 10m /hr for 12 hours with no sign 

of any fall in yield. Drawdown measurements v/ere not available. The 
success of this "borehole prompted the possibility of carrying out a 

longer term test using boreholes on either side of the abstraction 
borehole as observation boreholes.

In June 1976, borehole 5 w.-s tested for 36 hours at a constant 

rate o r 12.5 m /hr. The pumped -vater was carried away by pipes to a 
stream some 300m distant and to the side of the weathering trough. 

The water level in the pumped well 16 days before the test was 2.60m 
below datum, while on the morning of the test, this had risen to 2.31m. 
From the discussion in Section 5»3 it may be seen that these water 
levels indicate that recharge to the aquifer had begun for this wet 
season, and that therefore there was no soil moisture deficit.

Measurements of drawdown were made in boreholes 4 and 6 during 
the test, and initially at boreholes 3 and 7 in addition. As the 
pumping was carried out by the air lift method, it was not possible to 
measure drawdown in the abstraction boreholes. The observation bore 
holes were situated approximately 100m uphill (no 4) and 100m downhill 
(no 6) from the abstraction borehole. The gradients may be seen on 

Figure 3-4«

Although approximately 450m of water was removed from the abstra 
ction borehole. ITo drawdown was observed at the observation boreholes.

Both borehole No 4 and borehole TTo 6 showed a slight rise during 
the test, of 120mm and 60mTn respectively. Although a number of theories 
may be proposed to explain the lack of response, the only clear impli 
cation is that this borehole is capable of producing greater than 

12.5 m3/nr.

Example (2)

A borehole was sited on a resistivity low anomaly adjacent to deep 

weathering Area B. The geological log is shown in Table 5«10 The 

standing water level in the borehole was 2.65m, and the test was car 

ried cr:t during February.

The borehole was air lifted at a rate of 6.3 m /hr for 330 ^inutes.
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At the end of air lifting, the hose v;as disconnected as quickly as 

possible and measurements -/ere then made of the v/ater table recovery 

(residual drawdown). The maximum drawdown in the borehole measured at 

three minutes after the end of pumping wns 1.16m.

Table 5.1 "> Geological log of test well.

Depth 
(m)

0-2.7

2.7-5.5 

5-5-8.2

8.2-10.9

10.9-13.7 

13.7-16.4 

16.4-19*1

19.1-21.9 

21.9-^4.6

24.6-27.4 

27.4-35.6

Description

Top soil + clay 

Clay loam 

Silty clay 

Fine sand/silt 

Fine sand 

Medium sand

Sand with granite chipping 
and some basalt fragments

Coarse gravel with large granite 
chippings

Coarse gravel/sand with basalt 
+ granite chippings

Compact medium sand 

Basic dyke material

Weathering Grade

VI

VI

V

V

IV

IV

III

III 

III

III 

II

The resistivity anomaly and the recovery data are shown in Fig 

ure 5»11« From this figure it can be seen that at this low pumping rate, 

the recovery data shows a linear relationship when plotted against the

log of time. This indicates that within the area of response, the
2 analytical solution may be used, and a value of transmissivity of 80m

day has been calculated from the data.

The quantity of v/ater pumped from the borehole was only 35 m 

and this was not sufficient to effectively test the aquifer for bound 

ary conditions. However, the test does show that the transmissicity of 

the aquifer in the immediate vicinity of the borehole is quite high.

Example (3)

A number of boreholes were sited around Bauchi by the Bauchi State 

",'ater Board during 1977 and 19?B. Upon completion, each borehole \vas 

pump tested for a period of three hours using a submersible pump.
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Drawdown and recovery measurements were made in each borehole.

Each borehole was constructed with 6-^-" casing and 6" Johnson 

stainless steel screen. The more productive boreholes were gravel packed

The drawdown and recovery measurements from thr.-e of these boreholes 

are shown in Figure 5 *12.

The yields of the boreholes vary considerably, although the:/ are 

sited within a few hundred metres of each other. The first test in 

dicates dewatering of the complete borehole, to what was probably a 

fracture at depth. The flow from this fracture was then sufficient to 

maintain the yield of the borehole.

The second and third tests indicate high yielding boreholes.

Example (4)

"any of the boreholes around Bauchi, drilled as a part of the 

above exercise, later either dried up, or showed a substantial decrease 

in yield. This is not surprising if their flow is, in some cases, dom 

inated by a single fracture.

To investigate the longer term pumping response of aquifers of 

this t- rpe, a series of tests was carri?d out in another area. The 

geological conditions in this area are similar to those around Bauchi.

In Figure 5»13 the resistivity profile data is shown above the 

drawdown and recovery data for a borehole pumped at 15 m /hr for a 

period of 6500 minutes (4.5 days).

In Figure 5«^4 and by contrast to the previous data set, three 

drawdown and recovery plots are shown for a borehole some 200m distant 

from the former borehole. A pumping rate of 11.4 m /hr was first used

to test this borehole, and after 200 minutes the drawdown in the bore 's
hole became excessive. A rate of 9*1 m /hr was then tried and after

300 minutes the drawdown again became excessive. A pumping rate of 

6.8 m /hr produced a drawdown which tended to stabilize sifter 1000 min 

utes.

The lack of a regular drawdown response at the higher pumping rates 

is typical of a large number of pump tests from basement weathering 

aquifers. Similarly, a high yielding initial stage is also character 

istic. The pump test are qualatively interpreted below.
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Pump set at 27m
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Figure 5-12 Pump test drawdown and residual draw 
down data for three boreholes in
the BAUCHI area. (Data fremEdok EterMcndilas Nig. Ltd.)
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Figure 5-13 Pump test drawdown and residual
location resistivity profile data.

drawdown data showing borehole
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Figure 5-14 Drawdown and residual drawdown
The 16 hour maintainable yeitd is 7 m/hr

data for three pumping rates.
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Pump test interpretation.

A number of dominant characteristics may "be identified from the 

pump test results presented above, viz;

1) Borehole yields are very variable within a small area.

2) For a wide range of pumping rates, the initial drawdown 

response is small, although this response may only last for 10 or 20 

minutes.

3) The time drawdown response when plotted on a semi log scale 

shows a complicated response. This is particularly well marked in 

Figure 5»12 and 5-14-

4) The recovery at the same borehole from different pumping rates 

is often very similar. Figure 5.1^ indicates this feature, and results 

from several other boreholes not described here showed a similar re 

sponse.

As all the boreholes which were pump tested were sited using 

either resistivity or seismic refraction techniques it is probable that 

they all passed through a full succession of weathering grades and were 

terminated in grade I material. The difference in drawdown response 

and yield can therefore only be explained by differences in the extent 

of the weathering grades and by different values of hydraulic conducti 

vity encountered.

It has been noted above that the grade II material will have pre 

dominantly fracture controlled hydraulic conductivity. Although the 

fracture porosity is less than that of the intergranular porosity, the 

fracture hydraulic conductivity is several orders of magnitude greater 

than the intergranular hydraulic conductivity. For boreholes which 

penetrate the grade II material therefore, a limited quantity of water, 

contained in the fractures, can flow rapidly into the borehole. "hen 

this quantity of water has been abstracted however, the drawdown in 

creases reflecting the lower rate at which water is released from the 

intergranular material.

This dual response may be identified on several of the drawdown and 

recovery plots.

Although further work could be carried out to analyse the response 

at a particular site, the variability of conditions within a very 

small distance means that the extra work is not justified. However, 

if the volume of grade II material is limited, the:) it is possible that
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a short pump test of 3 or 4 hour:; v/i.11 not cause dc\vatorin~ of the 

fracture zone. If an oper ,tintr" regime of 12 hours pur.- irr- and 12 

hours rest is recommended, the dewatering may occur after 8 hours, 

causing the yield to fail and the pump to stop. A pump testing sequ 

ence related to the operating regime is therefore required.

Pump test design.

It has been demonstrated above that the weathering aquifers have 

a variable response to abstraction. The dual nature of the hydraulic 

conductivity produces typically a complicated drvwdown response, -.vhich 

generally shows a rapid drawdown and dewatering of the borehole after 

a varied time period. Recovery is often rapid however, indicating the 

complexity of the system.

For such a heterogeneous system, there is little purpose in car 

rying out a detailed analysis of pump test results. Values of trans- 

missivity obtained only represent very localised conditions. Plowever, 

there is a danger that a short pumping te^t will only produce a res 

ponse from the fracture part of the system, which cannot be maintained 

for more than a few hours.

The maintainable operating yield is in general considerably less 

than the initial, higher yield.

The operating regime o p the borehole is likely to be 12 or 16 

hours pumping with 12 or °- hours rest when demand is low- The pump 

test therefore should be designed to produce the maximum pumping rate 

which corresponds to a reasonable drawdown over the pumping period. 

To achieve this objective in a reasonable period of time, a reverse 

form of step test is suggested here. The borehole should be first 

pumped at a high rate. If excessive drawdown occurs within 12 or 16 

hours, then the borehole should be allowed to recover and a reduced 

pumping rate attempted. This process should be repeated until an acc 

eptable drawdown yield relationship is maintained for the recommended 

operating period.

The recovery rate after the breakaway, or successive drawdown 

occurs is usually very rapid, indicating seepage from the overlying 

grade IV material. Therefore this method of testing does not entail 

a long period of time between phases. The results of such a test are 

shown in Figure 5.14.
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5»5 Summary.

From a consideration of the porosity and hydraulic conductivity 
of the various weathering grades, a potential aquifer his been iden 
tified in the grade II to IV weathering zones. In areas where these 

grades of weathering are developed below the base level of local 
drainage, an aquifer exists which retains groundwater throughout the 
dry season.

The aquifer may be locally confined where grade V and Vi weathering 
is developed. In the limiting case where an unbroken cover of these 
weathering grades extends for a distance of several kilometres, recharge 
to the underlying zones will be very small. It follows therefore, 
that outcrop areas of grade II to IV weathering are necessary in the 
vicinity of a weathering trough to act as recharge zones. Annual re 
charge is required to support abstraction as the total volume of each 
aquifer is limited to the area of deep weathering The storage is 
therefore limited and the aquifer hydraulically isolated.

Groundwater hydrographs were presented which indicated a number of 
important features viz:

1) ITo recharge occurs to the water table before the dry season 
soil moisture deficit is eliminated.

2) The groundwater level continues to fall until the S'TD is elim 
inated, at some time after the beginning of the rains.

3) The groundwater level continues to fall after local drainage 

channels have completely dried up.

An assessment of the annual quantity of recharge to the aquifer 
forms an essential part of the aquifer evaluation. Traditional methods 
of calculating the recharge based upon 'C' and 'D 1 values were assess 
ed, and rejected as they do not adequately represent the savanna en 
vironment. In particular, the complete drying out of the near surface 
soil, to soil moisture values below the permanent vd.lting point implies 
that no further evapotranspiration occurs during the dry season, if the 
conventional model is assumed. However, the continued fall of the dry 
season water table after base flow to streams has ceased suggests that 

evaporation continues, albeit at a reduced rate, throughout the dry 

season.

"Pour conceptual soil moisture profiles were presented which re 

present soil moisture changes throughout the yenr. These profiles \vere



272

described in detail and used as the basis for the construction of a 
one dimensional model of recharge.

A description of the model is given in Appendix E where the algor 
ithm is presented.

A number of the more important features of the recharge model are 
listed below.

1) The Monteith equation in calculating Eta is used.

2) The resistance terms r^ and r in this equation are pre-o a
dieted based upon a soil moisture deficit model.

3) Net radiation, albedo and the r, term in the '"onteith equa 
tion are all modified as the SMD increases from a value of 
RC - x to RC + x, where PC represents the root constant 
and x is approximately equal to 20mm.

4) A maximum SI'D equivalent to RC + 35 is assumed.

5) Evaporation occurs from the v;ater table at an increasing 
rate commencing when the SO is equal to half the rooting 
depth. The evaporation demand is completely satisfied by 
losses from the water table when the 3"D reaches the maxi 
mum value.

6) A zero flux plane at the beginning of the wet season is 
represented by accumulating excess rainfall over evapo- 
transpiration in a soil moisture store. A soil moisture 
deficit is allowed to develop in the soil moisture store,
which controls the prediction of the r, and rT terms in then Ju
Monteith equation. Y/hen the quantity of water held in the 
soil moisture store is greater than the dry season deficit, 
then this deficit is eliminated and recharge occurs to the 

water table.

Lastly in this section, a review of available pump test data was 
made. The response to abstraction indicates a variation of hydraulic 
conductivity between fracture flow and intergranular flow.

The highly variable conditions around each borehole make any ass 
essment of transraissivity meaningless. For this reason, no detailed 
pump test interpretation was attempted. However, a testing regime de 
signed to establish the greatest rate of abstraction that can be main 
tained for the operational pumping period (12 or 16 hours) is recornncn lei
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A period of pump testing of this ty^e would identify those bore 

holes which were unable to maintain their initial pumping rates and 

would therefore result in a great reduction in the number of bore 

holes which are reported to dry up some time after pump installation
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Introduction.

The purpose of this final section of the thesis is to drav; to 

gether the various aspects of the grounds at er resource -Hscussed in 

the preceding four sections, and to present both an overall assess 

ment of the resource and a simple methodology for the development 

of that resource.

In the first tv/o parts of this section, the ground'.-ater resource 

distribution and size are discussed.

To obtain an assessment of the resource yield, an approximate 

v^lue of specific yield is required* This may only be obtained in 

practise by observing the fall in groundv;ater level that is caused 

by a kno\vn abstraction or loss of \vater. It was demonstrated in the 

preceding section that the pump testing method could not be used due 

to the extensive variation in hydraulic conductivity within -.vcather- 

ing aquifers. A second possibility exists i^ the grounds/at er hydro- 

graph response can be modelled by a sufficiently accurate assessment 

of the inputs and outputs as discussed in Section 5*3. The predict 

ion of recharge has been discussed above. In the third part of this 

section, the recharge assessment is used as a part of a simple black 

box model of a small catchment water balance. The sensitivity of 

this v/ater balance to changes in root constant and specific yield is 

assessed. From this assessment a method for adjusting the values of 

root constant and specific yield so that a match is achieved between 

the model data and the observed data is suggested.

The values of resource size and specific yield are combined in 

the fourth part of this section to produce an assessment of the ann 

ual yield of the resource. The order of accuracy of such an assess 

ment is discussed and the implications for a resource development pol- 

icy analysed.

In the fifth part of this section a generalised methodology for 

the location and development of the resource is discussed. Two levels 

of development are appropriate. The lower level (^ 0.5 m /hr) corre 

sponds to that of abstraction by simple means from hand dug wells, 

while the second (> 5 m /hr) represents abstraction by mechanical 

p-imps from boreholes.
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A number of the aspects of the resource ^33es3~ci:t unal;y~-io 

presented in this thesis require further research, therefore in the 

penultimate part of this section a number of research priorities 

are discussed.

Finally, in the last part of this section, the various aspects 

of the complete work are summarised.
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6.1 Resource Distribution. 

General.

It has been found in the study area that tv/o conditions must 

be satisfied before an area of wcathirincr may be considered as a 

potentially useful resource, viz;

1) The area of weathering must extend for a considerable 

( > 15m) depth belov; that of the local drainage base level, and

2) An area where grade II and III weathering occurs nt the 

surface must be in hydraulic continuity with the more deeply weathered 

zone.

The first condition represents the fact that an area of storage 

must be available to satisfy dry season abstraction. The second c: n- 

dition represents the important conclusion that, as basement -feather 

ing aquifers are of limited extent, a means of recharging them ann 

ually is required.

Ther.e two preconditions significantly restrict the areas of 

basement outcrop in which groundwater resources are located. Of the 

two conditions however, it is the second which has the widest impli 

cations.

Importance of recharge areas.

It has been noted above, and has been commented upon by a num 

ber of authors (Brown, 1975 j Uhl + Sharma, 1978; Ternan + Tvilliams, 

1979)> that the highest hydraulic conductivity and the greatest 

yields, occur in grade II and III weathered material, towards the 

base of the weathered profile. In addition, in the grent majority 

of boreholes drilled into the centre of weathered zones, a consider 

able sub-artesian rise is encountered, typically of the order of 10- 

15m. In a limited number of occurrences, a small artesian flow is 

noted.

These observations strongly imply that no recharge is possible 

through the overlying more weathered zones.

Recharge must therefore occur laterally, where the grade II and 

III material outcrops around the edge of the "Gathered trough. Sim 

ilarly, it is in the^e areas that the recharge model, described in 

Section 5, is operative. In Figure 6.1, this principal is illustrated
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Figure 6-1 Isometric diagram to illustrate relationship between recharge
areas and a-weathering trough.
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diatraumatically. "Recharge are ̂  can "be seer, in a rnmlcr of the 

Platc-s included above, but are best illustrated in Plates 2.6, 3»£ 

and 3.14.

If it is accepted that recharge ~<Uot occur laterally, then it 

must also "be accepted that \vhere gri.de V and IV weathering grades 

(of low hydraulic conductivity) become laterally extensive, then 

little or no recharge is possible to the underlying more hydraulica- 

lly conductive horizon.

Over large areas of the basement outcrop, a mature erosion sur 

face, or peneplain, has been formed as a result of stable conditions 

over long periods of time. In these areas, the weathering i s often

deep ( > 20in) with the grade V and VI material laterally extensive
2 over large areas ( ^ 10 km). Extensive lateritisation has occurred

(see Figure 5»2(ii) ) with often an inversion of topography occurr 

ing (Oilier, 1975)» The deep weathering encountered in these areas 

is often considered to have occurred in the geological past, and the 

profiles have been thought of as fossil weathering profiles. The 

area around Kaduna in ITorthern Nigeria is a typical example of such 

conditions. In these areas, few successful boreholes have been drilled 

and the yields of these boreholes are usually very small.

Possible weathering reactions were discussed in Section 3? and 

it was concluded there that a flow of water was necessary at depth 

to remove the products of hydrolysis formed during weathering. It 

was further suggested that in the absence of any groundwater flow, 

these reactions would attain a state of equilibrium and effectively, 

stop. In areas where no recharge is possible therefore, it seeTis 

that active v,7eathering is also not possible. The weathering in such 

an area will continue, guided by faulting, fracturing and rod: miner- 

ology, until the weathering products (grade V + VI material) accumu 

late in sufficient depth at the surface to cut off recharge (and dis 

charge) .

One important implication of the above analysis is that recharge 

areas, and therefore, groundwater resources, are only to be found on 

basement rocks which are undergoing active erosion.
\

Resource Location.

From an examination of the remote sensing data, areas of basement
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which are being actively eroled may be readily identified, "n part 

icular, from the SLAR products ( see Cections 1 and 3), it is possi 

ble to rapidly identify areas of outcrop, fracture traces and drain 

age lines controlled by fracturing, "any examples of these features 

may be identified on Plate 3.9, indicating that the 3auc?.i Plains 

area is being actively eroded.

In general terms, it is therefore possible to restrict the area 

of probable groundwater occurrence from an informed study of the 

remote sensing data. Large areas may be discarded if there i s no 

indication of shallow weathering profiles, however, the notes re 

lating to Figure 5*2(ii) are also relevent in this raspect.

Localised areas of deeper weathering within regions which are 

being actively eroded, may be identified on remote sensing data as 

usually having an even tone. It is in these areas that further in 

vestigation should be concentrated.

There is some evidence to indicate that areas of deeper weather 

ing developed about fractures of a specific orientation are likely 

to produce better yields of groundwater. Both in the Bauchi and 

Takum areas of northern Tigeria, an orientation of approximately 

north south (o - 10 ) produced high yielding zones. Bourguet + 

Camerlo (19BO) report a similar orientation from the Cote d'lvoire. 

In either case it is probable that the fracture orientation formed 

by the most recent deformation is likely to produce the most exten 

sive recent weathering. The weathering associated with fractures 

formed by older deformations is more likely to have been removed by 

erosion, or to have reached a point where no further weathering is 

occurring. The removal of the weathering products associated with 

older fractures leaves them more clearly visible on aerial photography 

or SLAR, however, for the reasons outlined a~bove, the most clearly 

visible fracture set is not necessarily likely to be associated with 

the greatest depth of recent weathering.
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6.2 Size of the Resource. 

General.

Groundwater resources have been associated in the previous 

part of this section with areas of basement undergoing active ero 

sion. V/ithin these areas, small localised aquifers are likely to 

be widely distributed, and fairly common. For reasons discussed 

above, each area of deeper weathering is isolated hydraulically, 

and it is important therefore to obtain an estimate of the size of 

these zones, before their usefulness as a separate resource can be 
assessed.

\7ith the exception of a detailed programme of site investigation 

drilling, geophysical techniques provide the only available means for 
obtaining a measure of the size of an individual area of v: Gathering.

Apparent resistivity profiling results.

Electrical resistivity profiling methods have "been described 
in Section 4- Profiles obtained with the KI-31 electromagnetic sys 

tem can very rapidly establish the limits of an area of weathering.

For the siting of hand dug wells (see Section l) or improved 

wells (V/ater Surveys, 197°) > "the results from the H r-31 are suffi 

cient.

In Figures 4*7 and 4»8, which show apparent resistivity contours 

over two areas, the extent of weathering may be clearly seen. The 

area contained within the 150$^ apparent resistivity contour approx 
imately represents the extent of the aquifer. The predominant lin 

earity of the anomaly is clearly seen and is further evidence of the 

influence of fracturing on the development of weathering zones.

The width of the anomaly is typically 250m (- 150), and is 

bounded laterally by a rapidly increasing apparent resistivity. The 

ratio of the length to v;idth of the anomaly is generally >5 and nay 

exceed 15.

Hand dug wells can be sited anywhere within the anomaly, although 

sites towards the margins are likely to encounter water at shallower 

depths then those in the centre of the anomaly.

Sites for boreholes, where a yield of 5-l°m AL** J- s required, 

need to be selected with greater care as it is possible that the
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total annual abstraction may exceed the qrnntity of \vater contained 

within the aquifer. It is advisable therefore, to cor^'dle profile 

section data for the investigation of such sites.

Apparent resistivity profile section results.

The three resistivity profile sections presented in Figures 

4.9) 4.11 and 4.13 provide an indication of the cross sectional area 

of the weathering trough. The model (see Appendix C) rcpras-nts 

an infinitely long trough with no resistivity variation in the y 

or strike direction. This approximation will not lead to signifi 

cant error if the trough is of an order of magnitude longer in the 

y direction than in the x direction, and as has been shown above, 

this is generally the case. The models therefore provide a method 

of assessing the cross sectional area per unit length of trough.

Code values 3 and 4 represent weathering grades (ill + IV) and 

II respectively. As the grade II material represents I'rnctureo. roc^, 

ohe porosity of this zone will be lower than the grade II + Iir zones, 

however the permeability will be several orders of magnitudes great 

er (Streltsova-Adams, 197°). The tv/o areas may not therefore be 

amalgamated, as the combination of fracture flow and intergrannular 

flow is responsible for a number of the characteristic features of 

the aquifer.

The depth of each model element of the completed resistivity 

profile section is shown in each of the figures. The width of each 

element is 2.5m. From these measurements the areas occupied by the 

various grades of weathering may be evaluated. In Table 6.1, these 

areas are listed, obtained from Figures 4.13, 4.19 and 4.20.

Table 6.1 Areas of weathering grades calculated from resistivity
profile sections.

pop 
Area A(m ) Area B(m'~) Area D(m )

Grade III+IV
weathering (Code 3) 6.0 x 1CT 4.3 x 1CT 2.0 x 1CT

Grade II ~> -j -3 
weathering (Code 2) 8.9 x 1CT 4.1 x 1CT 3.2 x 1CT

The markedly greater size of the grade II material in Area A is 

the result of the weathering extending to the greater th?.n usual depth
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of approximately

It is appreciated that the values shown in Ta"ble 6.1 are based 

upon a number of assumptions , however the models do represent a 

possible solution which may be supported by other data and therefore

the average values are used in the following analysis of yields,
32 72

viz 5.0 x 10 m for grade II weathering and 4.0 x 10 m for the

grade III + IV weathering.

The approximate volume of weathering per metre of weathering
33 33 trough is therefore 5.0 x 10 m of grade II material and 4.0 x 10 m

of grade III + IV material. The margin of error of these estimates 

is difficult to quantify, but - 1.5 x 10 m seems probable.

Two further examples of resistivity profile sections for situa 

tions of hydrogeological importance are shown in Figures 6.2 and 6.3. 

Figure 6.2 represents the profile produced over a relatively narrow 

fracture zone with little grade III + IV material present. This sit 

uation may correspond to a fracture in granite with little additional 

weathering. Figure 6,3 corresponds to a more extensive weathering 

development with some development of laterite in the top of the soil 

profile. The section is very similar to that shown for deep weather 

ing area A and the two may therefore be compared to analyse the effect 

of a discontinuous 0.5-1.Om layer of laterite developed at the sur 

face.

The results shown in Figure 6.3 indicate that the presence of a 

thin layer of laterite does not have a significant effect upon the 

resistivity profile results. The poor readings that are often ob 

tained in this situation must therefore be the results of high con 

tact resistances at the surface.

Note 1. In particular no allowance has been made for the effects 
of equivalence (Koefoed, 1979) in the profile sections. It is prob 
able that several solutions could be constructed to fit the field 
data by varying the apparent resistivities selected.
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6.3 Small catchment water balance. 

Introduction.

A method for predicting daily evapotranspiration and rccliar^e 

has been described in Section 5»3« In this section a limped parameter 
model of a water balance is presented and the results predicted by 

the model, compared with those of a small catchment study at San- 
aru (Kowal, 19?0b).

Description of the model.

The analysis of the water balance is based on the assumption 

that all rain received over the catchment basin leaves the catchment 

either by evaporation, transpiration, or by the combined flow of 
seepage and surface runoff. The weathering profile has been dis 
cussed in detail above, and from this description it may be seen 
that there is no loss of groundwater flow at depth. The water bal 

ance at the catchment can therefore be estimated from the equation

R - Q - S - W - Eta = 0 6.1

where E = rainfall

Q = surface runoff

S = seepage to streanflow

V; = change in soil moisture

Eta = evapotranspiration

Rainfall is measured by a rain gauge on a 24 hour, or less, 
basis, and a description of this parameter has been given in Section 
2.2.

The estimation of evapotranspiration by the I'onteith equation 

has been described in Section 5*3.

The remaining parameters in Equation 6.1 can be esti~r.ited from 

the recharge and Eta predicted by the analysis described in Section 

5.3, in the following manner.

Hecharge which occurs when the soil profile above the water 
table is at field capacity passes through the soil to the water table. 

The water table will rise by an amount which depends upon the speci 

fic yield of the aquifer and the hydraulic gradient at this horizon. 

To simplify the analysis, the specific yield is assumed to be a
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constant value, and the hydraulic gradient across the area to be

As the water tattle continues to rise it will pass the elevation 

at which discharge occurs "by seepage to stream flov:. The quantity 

of this discharge \vill depend upon the hydraulic conductivity of 

the material, and upon the elevation difference between the \vater 

table and the stream base level. The quantity of seepage will in 

crease therefore as the water table rises.

During years with average rainfall, the recharge will be suffi 

cient to bring the water table close to the surface. As further re 

charge would raise the water table above the surface, any recharge in 

excess of that required to bring the water table close to the sur 

face is assumed to be lost as surface runoff. A storm producing 30- 

40mm of rainfall on a catchment which already has a high water table 

produces an almost immediate flood spate in the local drainage.

During the dry season, it is assumed that evaporation occurs 

directly from the water table, and that the process does not alter 

the soil moisture deficit created by previous evapotranspiration in 

the soil profile. The water table falls therefore by an amount con 

trolled by the predicted evapotranspiration and the specific yield.

A complicated situation occurs as the wet season conditions 

change to dry season conditions. For the purposes of this study, 

the variables are assumed to change as shown in Figure 6.4. The 

change in albedo, ground flux of net radiation and the Rs term have 

been described in Section 5»3> however, it is the partition of eva 

poration between the soil profile and the water table which is of 

significance here.

It is assumed that evapotranspiration, represented entirely by 

transpiration, occurs at a rate unrestricted by soil moisture until 

the SMD is greater than 8 Omm. This level of deficit represents loss 

of all the available moisture within the top metre of soil, and there 

fore the wilting of a number of short rooted plants. After this time 

evaporation commences from the soil profile as a large area of the 

soil is no longer covered by vegetation. Also at this time it is 

assumed that the soil moisture potential gradient becomes negative 

throughout the profile and a loss of water is induced from the v;ater 

table. The proportion of Eta which is assumed to be replaced by loss 

of moisture from the water table changes as shown in Figure 6.4. ,



-sT: /M :
—Wilting -points- for reetet*- vegetation

Partition of evaporation loss 100-* 
Groundwater 

loss100% Soil moisture 
loss

235

CD

0-0
WET SEASON SMD 200 220 DRY SEASON

Changes in Model para/we ers 
as soil Moisture defecit increases

Rh-0 
Rl --0

ALBEPO.—0-J5.. 

GFLUX-0-25

I
Rr250

.* x'"'

1-0 Rh-0

Figure 6-4 Water balance model conditions during early dry season.
Root constant = 200mm.



288

When the S'.CD reaches the maximum value permitted ( Tioot constant + 
35^^) » all the predicted Eta is assumed to be represented by noist- 
ure loss from the -vater table. It should be noted that .13 the 51 IP 
passes through the range of values about the root constant, the pre 
dicted value of Eta is greatly reduced, therefore the quantity of 
evaporation from the water table remains approximately the sar^e.

The partition of Eta between the SMD and the vater table has 
the result that the maximum soil moisture deficit is only very slow 
ly approached, and may not be reached in some years.

From the end of the dry season and during the period before re 
charge reaches the water table, the soil moisture potential gradient 
remains negative beneath the zero flux plane (ZFP). Voisture con 
tinues to move from the water table until the ZFP reaches the water 
table. It is assumed here that the rate of movement continues at 
a value predicted by the lowest It a estimated during the dry season. 
In this way the v/ater table continues to fall until recharge is re 
ceived. T|roisture cannot however pass through the ZFP and therefore 
the moisture loss from the '.vater table is redistributed in the soil 
above the water table. In effect the SIT) below the ZFP is reduced 
marginally at this time.

^
The conditions which occur during the early --vet season are ill 

ustrated in Figure 6.5.

An algorithm has been written to perform the catchment water 
balance, based upon daily input of the cimatic variable, wind speed, 
rainfall, relative humidity, observed sun hours and average temper 
ature. The algorithm is presented in Appendix E. A part of this 
algorithm uses a library of graphical subroutines (GINO-F) to pro 
duce the data for the balance in the form of a diagram. Some exam 
ples of this output are included below.

Initial conditions.

In model studies of the kind outlined above, it is necessary to 
start the model from a set of known conditions. There is only one 
time during the year when all the conditions can be stipulated, and 
that is after a rainfall event which has produced runoff. At this 
time the S?.!D is known to be zero, and the height of the water table 
is also known. However, without working the balance it is not possible 
to say when exactly it will occur. It is also possible that if there
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Figure 6-5 Water balance model conditions during the early wet season.
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is insufficient rainfall in a particular year then no runoff -,'ilJ 

be produced.

As there is a large measure of uncertainty in specifyin~ the 

wet season conditions, the balance has been startei for e.ich of the 

following studies on January 1st. At this time it is ssrumed that 

the SMD is approximately 10mm greater than the root constant, and 

that the water table is at a level similar to those observed on the 

groundwater hydrograph at this time. Although the predicted v/ater 

balance for the initial year may be in error due to these initial 

condition assumptions, as long as runoff occurs during the first 

year the model conditions are set correctly for the second and sub 

sequent years of data.

Observed water balance results.

Before presenting the rosults of the model analysis, it is of 

use to present the observed data from a small catchment. In this 

manner the predicted results may be compared with the observed rc- 

sul t s.

Kowal (l970b) has presented the results from six years of ob 

servations at Samaru. A small dan v/as built at Samaru and a curved 

venturi flume weir installed into the dam crest. In this manner, 

the quantity of runoff + seepage lost from the catchment was meas 

ured. Rainfall was measured from 25 gauges installed over the catch 

ment (640 ha ), and evapotranspiration v/as estimated from an equation 

of the form shown in Equation 6.1.

The results from this experiment are reproduced in Table 6.2.

From Table 6.2 a number of points of importance should be noted 

viz;

1) The results for individual years shew considerable variation, 

To adopt the mean value as representative of the catchment ^esponse 

disguises the underlying variability. This is also the case for 

years with similar rainfall. The years 196? and 1968 illustrate this 

point well.

2) Seepage commences approximately 1 month after the rine in 

the dry season v/ater table, and lasts for 60 to 120 days.

3) Runoff varies widely and is not highly correlated to rain 

fall (r = 0.81).
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4) Bctv/een 40 and 5^ of the annual rainfall occu-v. before 

the rise in the dry season water table.

5) Kowal reports a root constant for the catchment of lOOrm.

6) The groundwater hydrographs for tv;o -.veils v;ithin tMc 

catchment are presented in Figure 5«4»

The daily climate data for the Samaru catchment is not avail 

able to the author, and therefore the model balance algorithm re 

sults cannot be compared directly with the observed data. However, 

the catchment size, land use and rainfall parameters are similar 

to those around Bauchi and therefore the results are broadly com 

parable.

Presentation of model results.

The results from a comparatively complex computer model are of 

ten difficult to present in a concise form. For this reason, a 

graphical package ( GUTO-F + GH70GRAF) has been used to prasent the 

results for two years data in a convenient form. As several sots 

of model results are presented belov; it is of use to briefly summar 

ise the salient points on these dia.<?rams.

1) All results are presented on a daily basis.

2) Rainfall is shown as a histo-ra-^ with the scale shown an 

the left hand axis.

3) Evapotranspiration is shown listed as a daily variable with 

the scale indicated on the right hand axis.

4) Combined seepage and runoff are shown in the middle of the 

figure with a scale on the left hand side (y +ve) .

5) The groundv.'ater hydrograph is shown plotted below (y -ve) ? 

•the middle x-axis with a scale shown on the left hand side.

6) Recharge is shown on the same x-axis and shown as a histo 

gram plotted with a -ve y-axis, the scale of which is shown on the 

right hand side.

7) The soil moisture deficit which exists beneath a zero flux 

plane (SMD1), if present, and throughout the rest of the year is 

plotted with a -ve y-axis at the top of the figure.

H) The existence of a ZFP is shown by the quantity of moisture 

in the soil moisture store (SMS). This is depicted by the red line
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plotted on the same axes as S'.ri.

9) The ST 'D which is developed above the ZFF is also s__own 
plotted on the same axes as S>rD2.

In this manner the relative changes betweo^ the model para-n 
et ers can be readily comprehended, and in addition the -l^tos of the 
groundwater table rise, the beginning and the end of seepage can 
be displayed.

The totals for each year are shown displayed above the position 
of 'January 1 for each year.

The values for the root constant and the specific yield are 
shown at the top of the diagram. The sensitivity of the balance to 
these parameters is discussed below.

Results for Bauchi during the period 1969-1974.

The results for Bauchi climate station data are shown in Fig 
ures 6.6, 6.7 and 6.R. A root constant value of lOO/im has been used 
for this model run to coincide with the value interpreted for the 
Sarnaru catchment by Koval + Kassam (197°). The only difference 
therefore lies in the daily variation of the rainfall and evapotrans- 
piration for thetv;o stations. As discussed above, they represent 
similar areas within the same climatic belt. The average rainfalls 
for the two areas during the six year periods are 1039mm f°r Samaru 
and for Bauchi, 990nim.

In Table 6.3, two sets of data from Samaru, representing ob 
served results, and two sets of data from Bauchi representing the 
model results are compared. All four sets of data have very similar 
annual rainfall totals.

The results predicted by the model are very similar in most 
respects to those observed at Samaru. The only major difference is 
seen in the quantity of rainfall received before the groundwater be 
gins to rise, and this factor is the result of the difference in 
regional location between the two stations in as much as Bauchi does 
not receive as many early season storms as Samaru due to the blocking 
action of the Jos Plateau (see Section 1 for location maps).

The major cause of variability in water balances computed for 
areas within the savanna is th- distribution of rainfall. The re 
sults presented in Table 6.3 clearly indicate this point. The d
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Table 6.3 Comparison of Gamaru and Bauchi data*

	1967 1968 1970 1979

	Samaru Samaru Bauclii Lauchi
Rainfall 990 998 946 991

Number of rain days P3 77 67 83

Data of rise in water table 196 203 198 193

Cum-dative rainfall before rise 419 516 262 391

Start of seepage flow 198 227 209 200

End of seepage flow 315 2 Q9 321 323

Total runoff + seepage 269 160 305 174

Runoff 168 8 205 4
Seepage 101 152 99 170

Eta 721 838 652 825

for 1967 and 196° at Samaru, although for alrost identical annual 
rainfall totals show considerable differences in the quantity of 

Eta, and the distribution of runoff and seepage.

The similarity between the observed and predicted results, even 
though they do refer to different areas, confirm that the assumptions 

made in the water balance model are broadly correct*

The model may be used to investigate a number of important 

features of savanna hydrology and water resources. The data shown 

in Figures 6.4, 6.5 and 6.6 represents the period of the sahelian 

drought. In particular, during 1973 a number of wells dried up and 

the drops failed over large areas. A contributary cause of this 

drought was the distribution of rainfall in 1972. Although S3Omm of 
rain fell at Bauchi during this year, the rains commenced early, and 

carried on intermittantly. Recharge was therefore low and Eta high. 

The early rains soil moisture is seen to dry out several tines dur 

ing 1972 causing the loss of crops which were sown at tie beginning of 

the rains. A similar event occurred during 1973, and the occurrence 

of two years crop failure was sufficient to produce local food short 

ages.



298

Model sensitivity to changes in root constant.

The value selected for the root constant v/ill affect the v;ator 
balance in a number of ways. As the root constant increases, the 
following changes occur, viz;

1) Eta is increased.

2) Recharge is decreased.

3) Runoff is decreased.

4) Seepage is decreased.

5) The groundwater table shows a later rise.

In Table 6.4 these changes are shov/n for six different values 
of the root constant.

Table 6.4 Sensitivity of water balance to changes in the root 
constant (Data from Bauchi during 197°)

Root Constant (mm)

12 i°° 130 200 230 300

Eta (mm) 72? 751 777 842 874 936
Recharge (mm) 595 546 49 a 455 412 767
Runoff (mm) 189 174 149 HO 77 48
Seepage (mr.) 277 259 247 232 216 196
Day number of water 6 l66 Ig2 6 2Q6 
table rise

Start of seepage 174 183 203 209 213 214 
End of seepage 296 306 318 319 324 326
Maximum depth to 6 2 ?Q3 ^ 6^ 
water table (irm)

5354 531° 527° 535T 537T 53T7

Note Rainfall = 1182 mm.

Specific yield = 0.05
Balance presented here for 197°, and therefore the groundwater 
levels are sensitive to the assumed initial condition for

The data in Table 6.4 illustrates clearly the effects of a 
root constant change caused by alarge land clearance scheme such as 
has been recommended by various international agencies to promote 
agriculture by mechanisation. The re ot constant benenth n natural
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plant canopy is approximately 250mm as shown by the -aximum soi? 

moisture defecits presented in Table 5.8. The effect of large 

scale vegetation clearing will be reduce this value below 100mm, 

representing that for a cropped surface. From Table 6.4 such a 

change in root constant will approximately double recharge, thus 

producing saturated conditions more quickly. Runoff is therefore 

increased and also the incidence of water-logging in the top soil. 

Runoff will also increase as a result of the reduced rate of infil 

tration. Under bare fallow conditions therefore the incidence of 

soil erosion will increase.

rodel sensitivity to changes in specific yield.

A sensitivity analysis was also performed for the 197°-1979 

data set, of the water balance calculations to changes in specific 

yield. The results of this analysis are presented in Table 6.5.

Table 6.5 Sensitivity of v;ater balance to changes in specific 
yield (Data from Bauchi during 1976)•

Specific Yield 

0.03 0.04 0.05 0.06 O.OR 0.10

Eta (mm) 751 751 751 751 751 751
Recharge (mm) 546 546 546 546 546 546

Runoff (mm) 210 193 174 153 108 66

Seepage (mm) 253 255 259 264 282 29?

Dry number of l66 i66 166 166 166 l66 
water table rise

Start of seepage 178 183 183 197 197 197 

End of seepage 291 294 306 318 352 18

Maximum depth to 620l ^Q^ 5593 5440 5220 5088 
water table (mm)

\7atertable depth 58n ^3 ^IQ ^00 5040 4944 
Day 121 (mm)

Uotes. Rainfall = 1182

Root constant value used = 100mm 

Balance presented here for 197^.

Changes in the specific yield do not alter the date upon which 

the water table rises. However, the slope and response of the water 

table to recharge are altered considerably. To illustrate this point 

further, the groundwater hydrographs produced bv the model for the
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specific yields shown in Table 6.5 are presented in Fi.-'iire c,9.

The sensitivity of the model response diminishes rrr rkedly as 

the specific yield is increased.

Specific yield assessment.

From the sensitivity analyses described above, a method for 

estimating the specific yield of a basement aquifer is suggested. 

If a groundwater hydrograph and the required climate data are avail 

able it is possible to model that hydrograph by varying the values 

of root constant and specific yield in the model, until the model 

reproduces the observed hylrograph. This analysis is presented 

below for the Bauchi hydro :p?aph shown in Figure 5.3.

The groundwater hydrograph response is partially controlled 

by the elevation at which seepage commences and the level at which 

further recharge appears as runoff. If the objective of the analysis 

is to model a particular hydrograph then the values at which these 

occur on the observed hydrograph may be used in the model. Changes 

in these values will have a constant effect upon the model. From 

Figure 5-3 it may be seen that seepage finishes when the groundwater 

level falls below approximately 3°00nni. In practice, this is the 

elevation of the sand bed of an adjacent river course. The hydro- 

graph peaks at an elevation of approximately Il^Omm. These values 

are used in the following model runs.

The first step in the analysis is to determine the value of 

the root constant which corresponds with a rise in the water table 

on the same day as the observed data, "/hen this has been established, 

the specific yield is varied until a response similar to th.it of the 

observed data is achieved.

In Table 6.6, the observed data and the best fitting model data 

are presented.

In Fig-are 6.10 the graphical output for these values of root 

constant and specific yield is shown. The data presented in Tables 

6.4 and 6.5 are also for the year beginning January 1st 197'°. From 

this data the range of sensitivity can be established.

A value of specific yield can therefore be given for the aqui 

fer material, in which the -vater balance operates, which is 0.05 - 

0.005.
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Table 6.6 Observed and predicted values for the Bauchi ground - 
water hydrograph sho-.vn in Figure 5»3.

I'odel parameters - Hoot constant = 100

Specific yield = 0.05

""b served Predicted

Level of hydrograph on January 1st 1978 4650 4650

Llaximum groundwater depth (mm) 5600 5592

Rise occurred on day 166 166

Pea1/: level attained on day 243 212

PeaV: level of ground\vater (mm) 1750 175^

Beginning of rapidly falling stage 263 243

Beginning of gradually falling stage 326 320

Seepage ended at a level of 1 (mm) 3 P00 3 Q00

Level of hydrograph on January 1st 1979 445° 4172
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6.4 Assessment of annual yield. 

Introduction.

There is little available data from which to estimate the 

annual yield of weathering zone aquifers. Although a large num 

ber of "boreholes are in operation on basement areas, the total 

abstraction per year from such boreholes is not recorded. Bore 

hole pumps are in general operated as water is required and no 

record kept of the quantity of water pumped. The lack of abstra 

ction data is compounded by the lack of abstraction well drawdown 

data with the result that the long term yield and response of a 
borehole are unknown.

Despite the lack of detailed data, it is clear that a number 
of boreholes fail at some time after their commissioning, as a 

result of complete dewatering of the aquifer. As there are no 

direct observational data available to assess the annual yield of 

a basement borehole, it is of use therefore to attempt a prediction 

of the available yield based upon the analyses presented above.
\

Observed borehole yields.

Although a limited number of boreholes in the Bauchi area pro 

duce 20m /hr for 12 hours per day, throughout the year, such in 

stances are unusual. A more typical yield is perhaps 5m /hr (see 

also Table l.l), however, the majority of J;he boreholes sited around 

Bauchi on the axis of weathering troughs, produced yields of 10m /hr. 

In the analysis which follows therefore, a design yield of 10m /hr 

for 12 hours pumping per day is assumed.

Assessment of storage required.

The design yield of 10m /hr represents an annual demand of 

approximately 4.5 x 10 m of water.

The estimate of aquifer size listed in Table 6.1 represents the 

best available estimate of the extent of weathering in a well dev 

eloped weathering trough. Although the data is from the Bauchi area, 

it is probable that it represents a good estimate, representative 

of the environment as a whole. The data from Table 6.1 can there 

fore be used to assess the typical ground\vater storage.

The average volume of grade II material is 5.0 x 10 m (-1.5xl0^m )
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and of grades III + IV material is 4.0 x 103m3 (- 1.5 x 103m3 ). 

If a fracture porosity of 0.005$ is assumed (Strettsova + Adams, 1978) 

for the grade II material, and 0.05^ for the grade III + IV material, 

then the average quantity of water per metre length of weathering 
trough in the grade II material is 25m3 (i 7.5m3 ).

As the grade II material everywhere underlies the grade III + 

IV material, and as the hydraulic conductivity of the fracture zone 

is high, it will act as an efficient drain to the overlying inter- 

grannular porosity material. For this reason it is suggested here 

that a high percentage (^80$) of the water in the grade III + IV 

material can be extracted "by pumping from the fracture zone. A 

volume of available water per metre of weathering trough of approx 

imately 180m (- 60m ) is predicted by the analysis.

The annual groundwater storage requirement is approximately 

4.5 * 10 m of water. If 180m is available for each metre of wea 

thering trough, then a 250m length of weathering trough is required 

to support abstraction at the design yield. The figure of 250m 

therefore represents a minimum spacing of boreholes along a weather 

ing trough.

Assessment of recharge area required.

Where grade III -f IV material crops out, only a poor soil dev 

elopment is likely. A restricted vegetation cover is probable on 

such poor soil, and therefore the possible recharge should be cal 

culated using a short root constant. A root constant value of 150mm 

is used in the calculation which follows.

The average recharge predicted by the water balance model for 

a root constant of 150mm is 342mm (sd 138mm). To replace abstraction 

of 4.5 x 10 m would require recharge over an area of 526 x 250m. 

For example, for each 250m length of weathering trough, a width of 

recharge zone of approximately 250m on either side of the trough is 

required to replace abstraction.

The rainfall which falls upon the central low hydraulic condu 

ctivity part of the trough, and upon surrounding inselbergs, will 

runoff without infiltrating. When such runoff crosses a recharge 

zone it will infiltrate and will add to the volume of direct re 

charge. The effect of recharge from intercepted runoff may possibly 

decrease the recharge area required by as much as 50$.



306

Annual yield.

Although the calculation presented above is based upon a large 

number of approximations, a number of significant results are evi 

dent from the analysis. These are discussed below.

1) A weathering trough 250-300ra wide and not less than 400m 

long contains sufficient water to support abstraction for one year, 

with pumping at a rate of 120m /day (2.8l/sibr 12 hours each day). 

V/eathering troughs of this size are not unusual around Bauchi; 

they occur with a frequency of approximately one for every four 

square kilometres. At the end of this period of pumping, the avail 

able storage within the trough will be reduced to a minimum.

2) Complete recharge to a trough of this size is probable in

most years from a combination of direct infiltration and intercepted
2runoff. A recharge area of approximately 250 x 500m is required

to replace abstraction based upon calculated average recharge.

3) Recharge is very variable. A dependence both upon the 

quantity of annual rainfall, and the frequency of rain storms has 

been demonstrated in this study. In Table 6-7, the calculated re 

charge for the 8 years of available data are shown.

Table 6.7 Recharge for a root constant of 150mm.

1969 1970 1971 1972 1977 1974 1978 1979

Rainfall 1067 946 1102 929 739 1154 1182 991

Recharge 335 385 440 220 109 462 521 264

% average 99 112 128 64 32 135 152 77

Note. Mean recharge = 342mm (s.d. = 138mm).

The data in Table 6.7 indicates that in three of the eight 

years, recharge would be less than sufficient to replenish abstr 

action in the previous dry season. Recharge in excess of that re 

quired to replace dry season abstraction is lost as runoff, and 

therefore it is not possible to draw on water held in storage from 

a previous higher than average recharge year. The situation which 

developed in the drought years of 1972 and 1973 is clearly indicated
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4) As approximately a 250m long section of weathering trough 

in a well developed weathering area is required to support abstr 

action at 120m /day, the borehole spacing along a weathering trough 

should not be less than 250m.

5) A borehole can produce yields of greater than 10m /hr for 

considerable periods of time. However, it is the overall quantity 

of available storage which determines the annual yield, and not the 

yield of the borehole. There is therefore no reason to construct 

a borehole which is capable of pumping at rates of greater than 

10m3/nr.
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6.5 Resource Development. 

Introduction.

In the following discussion, optimum methods of development 
are described for the development of groundwater on basement com 

plex rocks and within a savanna climate. It is envisaged that al 

though the techniques have been developed for use around Bauchi, 

they also have a wider application, as discussed in Section 1.1.

The method of resource development is determined by the planned 
abstraction rate for the resource. This in turn is determined by 
the purpose for which the groundwater is required. Groundwater re 

quirements within the savanna were discussed in Section 1.2.

Two levels of development were discussed in Section 1.2, viz;

1) Rural supplies with a maximum yield requirement of 1m /hr 
(220 gallons hr"1 or 0.28 l/s).

2) Institutional supplies for schools ("boarding), hospitals, 
industry, etc, with a yield requirement of 10m /hr or greater.

The first level of development can be met "by abstraction by 
non mechanical means from a dug well. Dug wells have many advan 
tages in the rural context ("'ater Surveys, 197$) ? and shon.Jd be 

used wherever possible.

The second level of development can only be met by a borehole. 
As the construction and operation of a borehole requires an invest 
ment of > 5 times that of a dug well (Water Surveys, 1978)> a sig 

nificantly increased investigation programme is justified in order 
that the success of the borehole can be better assured.

The two development strategies are briefly discussed below.

Abstraction by dug well.

It is necessary that a well penetrates below the level of the 

dry season water table. This implies a typical depth of a well of 

10-15m, 6m above the dry season level and 4-9m saturated well be 

neath this level. A saturated depth of 5«6m in a 1.5m diameter well 

represents a storage of 10m of water, sufficient water for a day's 

abstraction. The hydraulic conductivity in the vicinity of the well 

does not have to be high therefore as any drawdown in the well during 

the day can be replaced by seepage during the night.
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As the yield for a well is low, and the hydraulic conducti 

vity of the aquifer can also be low, it is only necessary to sink 

wells to the top of Grade IV weathering in a fairly shallow basin 

of weathering.

The location of suitable sites for wells can be carried out 

efficiently using an EM-31. Subject to the restrictions concerning 

recharge discussed above, any area with an apparent resistivity 

of less than 15Q$m would indicate a possible dug well site.

The construction of dug wells has been extensively reviewed 

recently (Water Surveys, 1978).

Abstraction by boreholes.

It is necessary that a borehole penetrates the greatest possi 

ble thickness of weathered material, and that it passes through 

fractures in the grade II weathered material. To maximise the 

quantity of available storage to the borehole, grade II material 

at a depth of^4Cto is required, with at least 20m of grade III + 

IV material above the grade II material. An average overall depth 

of weathering of ^>0m is therefore required.

The location of areas of weathering in which the grade I rock 

lies at a depth greater than 50m is best achieved by the use of 

electrical resistivity techniques. It is recommended that the re 

sistivity profile techniques, described in Section 4> be used to 

obtain profile data at more than one separation over an area of in 

terest delineated by an initial study of the remote sensing data 

.and the use of an EM-31. The borehole should be sited at the point 

corresponding to the lowest apparent resistivity value obtained 

with the largest electrode spacing.

The borehole should be designed to produce a maximum of 10m /hr, 

unless it can be demonstrated that the particular area of weathering 

is of greater than usual extent. This quantity of water may be ob 

tained readily from a 100m ID cased borehole (Johnson, 1972), and 

the use of 200mm ID or larger cannot be justified on basement wea 

thering areas.

The boreholes can be efficiently constructed using a down hole 

hammer rig. As it is necessary to drill through grade II + III 

weathering, it is not practical to use a rotary mud flush rig, or 

a percussion rig. Modern compressed air techniques utilising down
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hole hammers enable a "borehole to be constructed in 4B hours in 

Bauchi.

Many boreholes drilled in basement areas are very considerably 

over designed, with long runs of stainless steel screen installed 

into holes drilled for 30 metres through grade I rock. As the 

borehole yield is only designed to be of a maximum of 10m /hr, the 

use of sophisticated screens is not warranted. For example, one 

metre of Johnson screen "o60 slot at 75mm nominal diameter has suf 

ficient transmitting capacity to exceed 10m /hr. If only one metre 

of screen is to be installed in the borehole, a major problem arises 

as to the best part of the section to install the screen against.

The grade V + VI material should be cased off and grouted. 

IJo groundwater is contained in this material and the grout serves as 

an efficient protection against pollution. The grade II material 

is sufficiently competent to not require casing, and this can be 

left as open hole. A possible design for a typical basement bore 

hole is shown in Figure 6.11. Such a design can be constructed 

using a 150ram OD down hole air hammer, producing a 100 ID cased fin 

ished hole.

The use of a positive displacement borehole pump is recommended. 

The yield of these pumps can be adjusted at the surface, and there 

are similarly no submersed electrical or mechanical elements. The 

pump element consists of a helical metal rotor which rotates inside 

a fixed sleeve whose internal shape is also helical but with half 

as many windings in a given length as the rotor. As the rotor turns, 

water enters the pump element and is carried forward at a uniform 

speed to the outlet. A pump size which would produce 10m /hr can 

operate within a 100mm ID bore.
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6.6 Further research required. 

General.

The complexity of the hydrogeological environment within the 

savanna made it impossible to concentrate the subject matter of 

this thesis on one particular aspect, as had "been the initial in 

tention. It was not possible, for example, to develop geophysical 

techniques without first establishing the physical properties of 

the aquifer. This in turn led to a detailed consideration of 

possible mechanisms for granite weathering. Similarly an under 

standing of the weathering mechanisms "became essential if an attempt 

was to "be made to explain the distribution and type of the hydraulic 

conductivity, and the recharge to the system.

Inevitably, in a study of this nature, where published re 

search is conspicuously absent, a number of hypotheses have been 

constructed based upon limited data. The lack of basic observat 

ional data has been a particular constraint, and has meant that 

many of even the simplest assumptions cannot be tested.

A programme of further research is described below which, if 

carried out, will markedly improve the understanding of this envir 

onment .

Data collection.

Data is lacking in practically all fields.

To test the adequacy of the recharge model, a detailed study 

based upon Kowal's (1970) work at Samaru is required. In parti 

cular, observations of the following parameters are required for 

several small trial catchments, viz;

1) Rainfall intensity + distribution

2) Stream hydrographs

3) Seepage
4) Evaporation + evapotranspiration

5) Groundwater hydrographs

Perhaps the simplest and cheapest observation to make would be 

of groundwater levels, and days during the wet season when surface 

runoff caused peaks in stream hydrographs. This simple addition to 

the data b-se would be of immense value.
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A record of* the quantity of water pumped from boreholes, and 

measurements of the drawdown in pumping boreholes could also be 

acquired at very little extra cost and would allow a prediction of 

reduced borehole yields, before the condition became serious. Some 

idea of the actual quantity of abstraction is also necessary if an 

assessment of safe yield is to be made.

The results from the water balance algorithm indicate that 

the hydrological balance is markedly affected by changes in vege 

tation. A reduction in the rooting depth both allows greater re 

charge, causing higher groundv/ater levels, and a considerable in 

crease in surface runoff, which in turn increases the soil erosion 

risk. All the indications are that the savanna ecosystem is finely 

tuned to intercept and retain the maximum quantity of rainfall for 

the maximum time each year. Taith the advent of large mechanised 

farming schemes in savanna areas, the impact of clearing large areas 

of bush should be investigated in detail. It seems probable that 

water logging and soil erosion will be a serious risk in these 
schemes.

Hydrochemical study.

A hydrochemical study of the weathering mechanisms and the 

state of weathering in the weathering grades would be invaluable 

in increasing the knowledge of the weathering system. If possible, 

undisturbed samples from beneath the water table should be examined 

using SM techniques in an attempt to identify the chemical phases 

which are removed in the grade III + IV weathering, and which re 

sult in the increased porosity of these zones. If for instance, as 

seems likely, calcic plagioclase is preferentially removed, then 

rocks containing this feldspar are likely to produce higher yield 

ing aquifer material.

The hydrochemical analysis of seepage water, runoff -.vater, and 

borehole water from different levels would also improve understand 

ing of the environment. In particular, tritium dating of borehole 

water would give an indication of the flushing time for water to 

pass through the weathering trough. This study would confirm, or 

otherwise, the hele-shaw model results which indicate a rapid flush 

ing.
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If it could be proved th?it water flushed the products of 

hydrolysis reactions rapidly from the grade II and III v;eathering 

zone, if for example, \vater from this zone was very recent, then 

the indications strongly infer that deep weathering is the result 

of a continued flushing of water in a v;arm climate. There are a 

number of interesting geomorphological implications of such a pro-
t

cess which would resolve the continuing controversy concerning the 

formation of insel"bergs.

Geophysical Study.

The resistivity profile section technique^ described in Sect 

ion four was only used at three sites. The acquisition and inter 

pretation of further sections would increase the data b:.se for this 

technique and provide more confident extrapolation between a given 

set of model resistivity distributions.

Electromagnetic EM systems appear to provide a means of gath 

ering resistivity profile sections quickly and inexpensively. 

The El 34-3 system is particularly versatile.

Without the use of ELI systems, then the offset profiling tech 

nique should be used to gather profile section data.

A major complication to the interpretation of profile sections, 

is the equivalence between the various layers. Recent advances in 

induced potential (IP) techniques indicate that the hydraulic con 

ductivity can be predicted from a measurement of IP. This method 

could therefore provide a means of resolving the best parts of the 

grade III and IV material before drilling a borehole.



CONCLUSIONS

In the introductoty section to this thesis it was stated that the 

object of the research was to make an assessment of the groundwater 

resources available on crystalline basement rocks within a savanna 

climate, and to develop a methodology for that assessment. It was 

further stated that although the general methodology developed was con 

sidered to be applicable to all similar geological and climatological 

environments, the area of particular reference for this research was 

that of Bauchi, in Bauchi State, Nigeria.

Two levels of resource development were described. The first, and
3 lower level, corresponds to abstraction at a maximum rate of 1m /hr

from a dug well, for the purposes of village water supply. The second 

level corresponds to abstraction at a rate sufficient to satisfy the

requirements of a school, hospital, or local small scale industry.
3These requirements are often greater than 10m /hr and can only be ob 

tained by abstraction from a borehole drilled into an area of deeper 

weathering. Three such areas of deeper weathering were investigated 

in the vicinity of Bauchi.

In the Bauchi area, a combination of geological and geophysical 

evidence was used to justify the assumption that the deep weathering 

areas were only of limited extent. They could therefore be treated 

as individual and unrelated compartments which fill up and overflow 

due to recharge in the wet season, and from which water may be drawn 

in the dry season. The volume of groundwater storage in such a compart 

ment is simply the volume of water contained in the aquifer below the 

base level of the local surface drainage.

In Sections 3 and 4, the weathering processes were analysed and 

a geophysical method developed for determining the volume of the 

aquifer. From an assessment of the savanna climate in Sections 2 and 

5, a value of recharge was calculated for a range of root constants. 

These two estimates were combined in Section 6 to provide a value of 

the safe yield from the three weathering troughs which were investi 

gated in Bauchi. From this analysis, the following conclusions 

concerning the yield at the three sites may be made, viz:



1) The maximum design yield for a borehole drilled into the centre
3 of a weathered trough should be 10m /hr.

2) Pumping should only be carried out for 12 hours each day.

3) The minimum spacing between boreholes should be 250m.

4) For an average rainfall year, a recharge area of 500 x 250m is 

required to replace the design yield abstraction by direct in 

filtration (root constant of 150 mm assumed).

5) A.substantial quantity of recharge caused by the interception 

of runoff is probable.. This will reduce the area stated in 4 

above.

6) The quantity of annual recharge will vary substantially within

short distances, caused by the great aerial variability in rain 

fall.

7) The quantity of annual recharge will increase significantly 

due to bush clearance within the catchment.

3 As the maximum design yield is 10m /hr, the borehole design yield

should be adapted accordingly. The use of 100mm slotted PVC casing is 

adequate for this purpose. A larger diameter, or the use of stainless 

steel screen and gravel pack are not required.

The electrical resistivity, or EM methods, are the most successful 

for locating deep weathering areas. The electrical resistivity profile 

section method described in Section 4, is best suited to making a 

volume estimate of the aquifer within the weathering zone.

A large proportion of the analysis described in this thesis is 

applicable only if the second level of resource development is antici 

pated. At the lower level, it is sufficient to locate, perhaps using 

EM methods, areas of moderate depth of weathering. Dug wells sunk into 

these areas will usually encounter sufficient supplies of water in the 

shallow weathered zones where extensive grade V and VI material is 

often absent.

Where an extensive and thick cover of grade V and VI weathered 

material has developed it is unlikely that sufficient recharge to an 

underlying area of deeper weathering can occur to enable abstraction 

to be replaced. Such areas are therefore of little use for ground- 

water development.



In areas similar to Bauchi, where inselbergs and surface outcrops 

are common, groundwater reserves must also be limited in extent, and 

can be treated as isolated compartments as discussed above. The general 

analysis as described for Bauchi is applicable throughout these areas. 

For such limited compartments it is not possible to calculate a 

groundwater balance based upon measurements of discharge, abstraction 

and a groundwater flow analysis.

In areas where a more extensive pediplan exists and outcrop areas 

are less common, groundwater flow can occur over a wider area with 

measurable discharge to base flow throughout the year. In these areas, 

a water table will exist throughout the area and it is therefore possible 

to calculate the movement of groundwater, from water table observations. 

The water balance analysis described for the Bauchi area will require 

modification to account for the groundwater flow over an extensive 

pediplan. However, the geophysical methods may still be used to 

locate areas of deeper weathering for the location of boreholes and 

the recharge analysis may similarly be used to describe the infiltration 

to the system. Recharge on these areas will be at a maximum where 

grade III or IV weathering material is close to the surface.

It is not possible with the data presently available to assess 

the accuracy of the analysis. The water balance results predicted for 

the Bauchi area were shown to be broadly comparable to those observed 

for a similar area at Samara, however, further detailed observations 

are essential before the analysis may be finally evaluated.
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APPEIIDIX A

Evaporation + evapotranspiration algorithm.

Al Description of algorithm.

General

The generalised algorithm has been written in FC2T3.41T-4 to 

perform a daily calculation of evaporation and or evapotranspiration 

for a station at any locality. The algorithm has been designed to 

produce data for various different methods of calculation, as des 

cribed in Section 2 of the thesis. To facilitate comparison of the 

various parameters, a crosr- correlation matrix is calculated for up 

to 14 variables on a monthly basis.

I'ethod of calculation.

Three different daily values are calculated. The fir;:t repre 

sents a normal Penman (194-) calculation; the second represents a 

modified (Thorn + Oliver, 1977) calculation, v;hile the third represents 

a I'onteith (1965) calculation.

Daily values of net radiation are calculated for a station at
_2

any latitude in units of V'atts LI . Values of albedo, observed sun 

shine hours, average temperature and humidity are required as HTPUT 

for the calculation. Daily values of the sun's declination and the 

s^n's radius vector are supplied by DATA statements within the algor 

ithm, while a value of the station latitude must be I1I?* :T.

A2 Algorithm structure. 

The Main Program.

The main program contains a description of IKPUT data required, 

the units in which the INPUT can be specified and the required ^CR^AT 

of that INPUT. Daily values of the required relation parameters are 

specified in DATA statements.

Although the calculation is performed on a daily basis, it is
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roprcnted on a decade an 1 monthly V^is u.-iu,- :i-. ; ta av^ra;-~i over tic 

required period. The lunar structure of the cale:r;-ir is preserved 

•.vith monthly totals reflecting tho actual numner o~ .'lays in the Month 

rather than a nominal thirty day month. It is ssumed that the 

data run starts on the first day of any specified month. A provision 

for leap years is included.

Summations of the data are printed for ten day. monthly and an 

nual periods.

The main program completes the data checking and sets up the 

correct calendar timing, performs the required summation, and prints 

out the final totals. The remaining parts of the calculation are 

performed by SUBROUTINES called from the main program. In this man 

ner, the structure of the calculation is preserved and may be altered 

more easily if required.

This routine is called from the main program at the end of every 

month. The routine performs a cross correlation analysis, between 

14 variables specified in the main program and prints out tha cross 

correlation matrix. The call to the routine may be suppressed by 

an appropriate choice on INPUT card 4«

SUBROUTIN

This routine performs the three calculations of evaporation or 

evapotranspiration. As the net radiation calculation is common to 

all three, a separate routine performs this calculation.

The units used in the PEW routine are mm equivalent evaporation

"TILTE EADIAT.

The calculation of net radiation is performed from first prin-
_2 

ciples and as discussed in Section 2. The units used are W 1!

Two values of net radiation aro calculated - the first represent: 

an albedo corresponding to the first value specified on I1TFUT card 5, 

while the second represents a varying monthly value of albedo as spec 

ified by the remaining 12 values on card 5»

SUBROUTINE ROUGHS.

This routine is called when the "onteith evapotranspiration is 

calculated* The purpose of the routine is to return values of the



A3

t\vo resistance terms in the T 'onteith equ.rticr: viz - ani r . The
>) ;_A

values of r , discrctised on a monthly basis a ̂e i;;:~"T on data car-1 s
7. The values are passed through to this routine ar it is envisa;;ai 

that further theoretical developments may allo-.v a rore accurate SMGC- 

ification of the resistance, and that this may conveniently "be per 

formed within this routine without disruption of the overall Tj-Ggran 

structure.

The value of r is calculated using twelve monthly values of
c*

ZO as specified on LTTUT card 6.

A3 Specification of variables. 

General.

Throughout the algorithm, individual variable names are given 

v/hich readily allov; identification of their purpose, hov;ever, the 

various arrays a^e described belov;.

AL?~DO (14) (Holds I/; values o^ the surface reflection
coefficient.

EAD\:ET (3) Kolis 3 val-.-es of net radiation. 
Y (9) Hol'ls values of empirically evaluated const ants

in the Penman equation.

EVA? (3) Holds the three calculated val.ies of evapo 
ration or evapotranspiration.

AIP-0 (3) Holds the three values of tho aerodynamic tern.

I'OITTI! (12) "olds the number of da^^s in cr:ch calendar month,

'1TA"E (12) Holds the names of the months.

^ADIT'S (366) Holds the daily values of the sun's radius
vector.

DEC'117 (366) Holds the daily values of the sun's declination
(in radians).

Z(600,l6) T̂ olds up to 600 daily values of 16 variables,
v;hich are printed out on a separate file for 
use by plotting routines etc.

X (35,14) Holds the 14 iaily values usei to perfom: the
monthly cross correlation analysis.

AZ (14,14) Holds the cross correlation matrix,

HAD1,E/LD2,HAD3 Are dummy arrays necessary by the limitations 
DEC1,DEC2,D3C3 of machine language on the number of continu 

ation lines in DATA statements.

ZO (12) Holds the monthly values of vegetation height
in cms.

HS (12) Holds the monthly valuas of the r^ rcr.iotanco
ixaramctcr.
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DAT (3,20)

DAT (1,1) 

DAT (1,2) 

DAT (1,3) 

DAT (1,4) 

DAT (1,5) 

DAT (1,6) 

DAT (1,7) 

DAT (1,8) 

DAT (1,9) 

DAT (I,10) 

DAT (I,11) 

DAT (1,12) 

DAT (1,13) 

7; AT (1,1/1) 

DAT (r,I5) 

DAT (I,16) 

S'-T (1,1?) 

DAT (1,18) 

DAT (1,19) 

DAT (1,20)

IDAY

ELEV

RLAT

HR

AJ.3PRS

GAUI'JL

DELTA

Is a '.vorhing array holding v.-ricus vririblcz 
as specified belov:.
The array contains the values for dally, ten 
laily and monthly calculations.

Lr.axirnjm temperature or daily aver-.ge temperature.

! rin.imura temperature.

Rainfall.

" 7ind run.

Piche evaporation.

Average relative humidity or v;et bulb temperature,

Observed sun hours.

Pan evaporation.

Gunn Bellani evaporimeter data.

S-.-n's radius vector value.

Average temperature.

Vapour pressure.

Saturated vapour pressure.

Aerodynamic term.

Hard, mum possible number of sunshine hours.

Back radiation term.

Incoming radiation term.

Sun's declination.

Relative humidity.

Ra resistance term.

Day number 

Station elevation. 

Latitude in radians 

Sun's hour angle. 

Average ambient pressure. 

Psychrornetric constant.

Slope of the saturation vapour pressure curve 
calculated "by the ROUTINE DEL after Bevin (1979).

A 4 Listing of the Fortran 4 program,

A listing of the program is given belov;.



M -'. S T c P .*• -1 N
DIf-F'.'SI':,' DAT1 (3,2G) ,X<35 , U) , A7( 1 i,U) ,AL?Eor»(1 O,RAr>JtT(3 ),

1 vfV),cv;p<?>, lONTUdi) , NA-EC6),;AM US < J 6 4 > „ :• E C L I N (^66),
2 Z (6 L -:-,1-) , 11 f. A «.-i EC 12) 

D I r.f M 5 I (' r> o A D 1 (1 * 3 ) , * A D 2 ( 1 ? 7 ) ,R AC-3 ( 1 ll*) , Z> E C 1 ( 1 ^ 7 ) , D E C 2 ( 1 * 3 > ,
1 D E C 5 (1 C'j ) , 7 i' (1 2 ) , R S (1 2 ) , A EC 0 ( Z ) 

C 
C 
C 
r psureif FOR THE rVALUA r ION f.p E V'- POP ATI ->N U5I*>r;
c THE CC:<-I^ED EQUATION IF PENI-AN /^O-^TPI T'-f.
C
C
C A DAILY VALUr OF EVAr'jP^TION IS CALCULATED H>° THREc VALUES
C OF ;L C E~<). DECADE AMD f'ONTHLY TO'ALS AR F PRIMED SUr.iFD
C FROf' THE DAILY D-TA. AVERAGED DECADE AND ^0:/TMLY DATM \^E
C ALSO COV°UTED.
C
C THE CALCULATION 15 WORKED I ,M THE FOLLOWING UNITS;
C OcT,?EES CENTIGRADE,np PP E SSU" E , K"1 wjrJD 5 'J '•' , - r c A I f^F ALL A "JD
C W / M * * 2 c-.DIATION.
C
C
C A C^PP EL *TIO r- -ATRIX IS C AL C'JL A T-. :. F.IH -;:-« ,-f,,-j*H - C *U'-F. ^
C E V^pr.o A Tlor» Ar<D \ ^EL?C T IOrj OF T-;--fj- J^TA.
C
C 
r
C TH? = - ._ t v A •! CALCULATES 7 H o E c V - L U p 2 •"> F ~ V ^ ? -.» - A ~ I 0 N j c
C E V A P i) T ^ ' i•-,' S P I - * T I 0 ^ . T u E F I P S T V ft L U F c E -" R E S c N T S
C E V-*POTR A.-'3°I RATI Or> CALCULATED U^Ir-G THE PEN; s A-kJ EOUATIOrJ D-SCRI
C IN THE TcXT (EON. 2-12).
C THE SECOND V^LUE REPRESENTS A SW;>RJ ^PASS E V A D 0 T R AN S°I R AT I D l^ 1
C CALCULATED USIHG A VARYING iL-EDJ ON A MONTHLY ^ASIS
C n^D WITH THE AEROOY^A'tl C TE^r r-'jDIFIED ^FTER THOh + OLIVER
C (1977). USE OF DIFFERENT ?0 VAL'JES IS =3SSSI^LE. A VALUE
C OF 1.37^^ ^IVES EQUIVALENCE WITH PENMAN SHORT GRASS DATA.
C THE T^I D D ViLUE REPRESENTS EVAPOTRANSPIoATI ON CALCULATED
C USIN^ THE /.QNTEITH EQUATION (EOM' 2-16). THE VALUES OF ZO
C AND PS A^E VARIED MONTHLY. VARYING AL3EDOES fi c E ALSO POSSIBLE.
C A VALUE OF 0.0 FOR RS GIVES THE EVAPOTRANSPIRAT I ON FOR
C A PLANT SURFACE THAT 13 WET .'
C
C
c THE RADIAT SUBROUTINE CALCULATED THE DAILY RADIATION BALANCE
C AT THE EAPTH'S SURFACE, IN WATTS /MtT»E**2. IN PUT TO THI 3
C SUBROUTINE I'UST -E LATITUDE ,ANO jU KI SHIr-E HOURS.
C AN OP T It.vvAL FACTOR OF C . 9 5 , Y(1) OF THE ^ENMAN CONSTANTS,
c IS USED TO (ODIFY THE ?ACK P^DIA^iQrj JE^il TO ALLOW FOR
C VEGETATTi.M MOT "ADIATING AS \ 3LACK ^ODY. 
C
C AfJ ELEVr-TlCN OErENDENCY TERK ^.FfEP MC CULLOCH 15 INCLUDFD
C IfJ THE FEN R"UTI"-5. 
C
C THE P^CTRA'. OUTPUTS DATA ONTO IW'J PILES. THE FIRST IS F 0 D
c pFC(jRriNf= THE RESULTS, THE SECOND TO a E USED AS DATA INPUT



A6

C
c
C
c 
c 
c 
c

FOl- THE PLOTTING ROUTINES.

C 
C
c 
c 
c 
c 
c 
c
ft
I
c 
c 
c 
c 
c 
c 
c 
c 
c

r
I

c
c 
c 
c 
c 
c 
c 
c

c 
c 
c 
c 
c 
c 
c 
c
r
V

c 
c 
c

OF THE DAT*. CO;. T D ')L

1 (13,14,6-6)
13 MO. OF RECORDS
14 YEAR I :l WHICH TO ST^T A T •* U M
6-6 STATION N A \ E - U 36

CARD 2

CARD 3

CARD 4

CARD

CARD 6

CARD

.0,2 F5 .C
THE STATION E L EV ATI < v-» , AVER A^ E A'-PIENT 3 R E SS L|C E (
LATITUDEOEGffEES), VALUES OF A VJD A N D P £ N P A
CONSTANTS Y(1),Y(9) IN TH FT^ST SEVEN FIELDS.

(611 ,1

THI
A
A
A
.1
r* 
i_

A
»

C
i
A
A
r

r-

<*s

r

c

1

1

1

Q

-*L
1
r-< 
V,'

~L
1
0
1
C

OL
TA
EG

I?,
S C

I N
I N
I N
i N

CUL
I n
I "

CUL
I N'

I V

I -'

I 'v

S 7
P T
INS

111 )
ARD DE

COL 1
COL 2
c OL 3
COLS

'Tier
COL 4
COL 4

-' T E D r
C^L c-
COL 5
COL 6
COL 6
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THE DA

AT ST

TE<?
CO
CO
CO

1-5

IF
IF

p o v
IF
IF
IF
IF

THE
TA
ART

.'I.NS v '
\VEPT5
NVE D TS
')VE C T-

GIVES

D*T.i
P Ol '
fl°~~

T E r- -
OATn
MO .-• T :,
R E L ^ T
THIRD

PUN IN
OF TH

^T'JPE
F AR F
I ; I L E
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DEFA
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T I 0 -4

-PU:
IS *r.i
IS ::A
I TV 0
IVE -I

c AOD
.1 T I
E '«ON
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c
E
U

T
V
C

X
j^

U

S
T

-.»F 0 A
U E ITE

TO K
: TO
LT V ^

R tDI
»LUt i

T ^LE '
wEP ;

;• i'i D
T ^ I S

«•' I D I 7
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M

TA I
TO
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r r
LUES

ft ~ I O

TO

r- E o
r.I.-l

WET
Y D A
THE
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N I N C
C E

c D o v

-UL^

TA 0-iL
/,ON T^
T^AT f?

R

H

A

5

T
Y
T
U

ADE

THIS CA D D CONTROLS OUTPUT.
A 1 IN COL 1 SUPRESSES THE '-)AILY OUTPUT
A 1 IN COL ? SUPPESSES T^E STATISTICS ROUTINE

THIS CARD HOLDS THE THIPTEE-M VALUES OF ALBEDO
THE VALUE OF O.'J? IS USEO WITH TWELVE
DIFFERENT MONTHLY VALUES.

( 1 2 F 5 . 0 )
THIS CA^D HOLDS THE TWELVE 'ONTHLY VALUES OF ?0
THE Rf'UPMNESS LENGT U .
7Q = APPROX H/10, WHERE H IS VEGETATION HEIGHT

( 1 2 F 5 . -1 )
THIS CARD HOLDS THE TWELVE y ONT*LY VALUES OF
^S,THE CAr40PY RESISTANCE TE»-I.

DESCRIPTION OF DATA CARDS

OF CONSECUTIVE DAILY ?ECO?D3 ^AY »E INPUT UP
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:.22^47,
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1 i;.1^C4o, C. 17446, 0.16*42, u.1*?22, u.156j1, 0.149-1, .'.14-41, 
1 «.1W:1, G.15C61, 0.12421, 0.11766, 3.1111?, 0.1U45?, U.<>9*u3, 
1 i. .00141, n.r-^479, O.U7S1R, U.C7156, 0.~,64S7, 0.05817, G. 05148, 
1 *,.C447C, 0.05S06, O.U5126, 0.02^5H, 0. 01774, 0.0156?, O.G1^52/

D^TA DEC3/ C. 01141,
1 0.: 0931, -'I. n614,-n.u2298,-O.Q2981,-G.:^665,-U.U4492, 
1-Q.05'.32,-O.U57C*,-C .06 7 8 5 ,-0 .07D6 1 ,-0 . C7 738 ,-0 . C84C7,- 0. C9 076, 
1-0. 097^5, -0.1 J414,-Q.11076,-0.11737,-0.12399,-0.13G61,-C.1370 9 ,
1-0.1435t>,- r).15<j02,-0.15649,-0.16?82,-0. 1691 4 ,-g . 1 75 47 , - -». 1 8 1 3 '"', 
1-0.1879^,-0.1Q416,-C.20034,-0.2CS53,-0.?1249,-0.21845,-0.22442, 
1-C. 2< 03 ^,-^.23610, -0.24182, -0.2 47 54, -C. 25307, -0.2 58 5^, -0.26412, 
1-U.Z6°65,-0.27481,-0 .27 998,-0 .? 85 1 4 ,-0 . ?9 03 1 , -0 . 295 18 ,-0. 3 0^05 , 
1-0.3-»492,-0.3J97Q,-C.31437,-0.31«95,-0.^2353,-0.3281?,-0.33^26, 
1- G. 33641, -0. 34G55, -0. 3 4470, -0.3 4*14, -0.35 21 1, -0.355 82, -0.35953, 
1-G.3625'j,-C.366GR,-C .36935 ,-0 .37? 63 ,-0 . 37 55 3 ,-0 . 378 44,- 0.3* 093 , 
1-e.38352,-0.38608,-0.38863,-0.39j50,-0.39300,-0.3950G,-0.39706,

1-0.40724,-C.40768,-G.4G811,-C.i,-^53,-0.40fi99,-0.40891,-0.43^4, 
l-C.40876,-0.40569,-0 .4,-)799,-0.407 30,-3.40661,-0.40592,-0.404?1,
1 -U.4f;'I 73,-0 .403 GO/

DATA v/C.95,U.56,n.(/8,u.1 0,n.Q- , ,.26,1 . "0,1 .L-0,1 .CU/ 
DATA r*OMH /31,2 3,3 1,3 0,31 ,30,31 ,51 ,3C,^ 1,? 0,31 / 
D IT A »J ^ --E/7HJ.;^UAf>Y ,iHF t PPUA- Y ,S~- -PCW ,5M AP»rL,3H,1AV,

^EAD (1,1 CO ^.',IVEA» ,(rJA:-'.E(I ) ,1 =1 ,6) 
10U FOcrAT (13,14,6*6)

PEAD ( 1 ,2-0) ELEV,A,' 3 rPS, ALAT,A, 3 ,Y( 1) ,Y

PEAD (1,3'OC)L1,L2,L3,L17,L18,L1^,L4 
300 FOKf-AT (611,112)

RYE^?=FLOAT(IYEAP)

I RY=I FIX(PY)
PI»Y=FLCAT(IRY)
IF((PY-P!PY).LT.1.0E-5) :10NTH(2)
PEMD(1,7JO) L20,L21 

70U FORMAT (211)
PEAD (1,^CO) (ALPEOO(I) ,1 = 1,13) 

400 FO«?MAT(13F5.0)
PEAD (1,500) (7,1(1) ,1 = 1,12) 

500 FORMA T ( 12F5.0)
READ (1, -GO) (PS(I) ,1 = 1 ,12) 

9 CU FQPMAK 12F5.0)
DO 60 1=1,166
IF(I .GT.133) 60 TO ^1
DECLI N(I) = CJEC1 (I)
R*DIUS(I)=RAD1<I)
GO TO 6C

61 I F(I .CT.Z66) r-0 TO 62 
DECLI i.'(I) = r>EC2(I-1 33 ) 
PADIU5(I)= p AD 2(1-133)
r,Q TO 6C

62 PAOIUS( I) = PAD3(I-266 ) 
r>PCLI N( I) = OEC3(I-266)

6'J CONTINUE
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C
c

DO 1' 1=1,18 
Dn 1-j J=1,3

DAT1 ( J,I )=0 .0
I 0 C<iNTI ''UE

00 11 1 = 1,35
DO 11 j=n,i:

X(I ,J) =0.0
II CONTI ^UE

E VAPX1=C.Q 
E V A P X 2 = L . 0 
EVA?X3=C.O 
EVAPY1=C.'~> 
E VAPY2=C.C 
E VAPY3=C.C 
EVAPZ 1=C.O 
EVAP72=C.O 
EVAP73=C.C 
J C (iU * T = f 
P T C T = G . C 
» A I M 1 ^ = . . C
p A i N > • 0 = •..>:
W^ITE ( 5,1000) (NAr^d ) ^ I= -j ,6),?LEV, i--cap : ^ >L ^ T 

1 r.OU F03r*AT(lnf-,1 ^x^P-'D-CLlr' *T£ 3 T ^TI^s< N ^ v c / 1 ? X , 6 A 
111V,17HSTATION ?L6VATIoKJ,2X,F6.2,2x,6w.v,:T c E5/ 
211X,Z^w.iVEPArF ;," D IENT PRESS URE, ? X,Ff.2/ 
3 11X,16^ST\TION L - TI TUO E , 2X ,F 6 . 2)

WRITE (3,^0^0) ^,P,(v (I) ,1 = 1 ,9) 
3000 FOPtf AT(

2 lX,3^Y5 = ,F4.2,?X,3HY6=,F4.2,2x, 7.HY7=,F4.2,2y,3HY3=,F4.2,2X,
3 5HY9=,F4.2) 

WRITE (3, 3050) (70(1), 1 = 1, 12)
505U FO^AKI^O^SW^ONTHLY AERODYNAMIC ROUGHNESS IN nr./i X,12FS.2 )

3C51 FORHAT(1HO,31MMONTHLY CANOPY RESISTANCES S / '1 /1X,12F8.2)
IF(L4.EQ.O) L4=1 

C 
C
C USE D£TP IN rtONTH A^»AY TO SET 1° AVERAGING TI?1ES 
C
C PROG^Af S S3U--1ES C U,^ STARTS IN JANUARY IF L4 IS Ef.PTY 

98 DO 1^ >^K

DO 14 KJ=1 ,3
IFCKJ.E0.1) L6=10 
I F(KJ.EO.Z) L6=10

DC 15 KA=1,L6

PECO°D CARD fl fJ£ INCREMENT COUNTER
JC^UNT=JCOUNT+1 

TF ( JCOU'-T.E^ . (N*1 ) ) GO TO °9
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RE 40 ( 1 , <H'(J) I DAY , ( DAT1 (1 , I ) ,1 = 1 ,9)
60 J FOP'<AT(I3,2X,3F5.G,F7.0 ,5F5.0)

C
c CHECK AND CORRECT UNITS IF NtCESSAAPY

IML1.EQ.1) DAT1 (1,1) = (OATK1 ,l)-3 2.0) *5. 0/9.0 
IF (L1 .EQ.1 ) DAT1(1,2)=(DAT1(1,2)-32.G)*5.G/9.G

IFCL3.EQ.1) DAT1<1,3)=CAT1(1,3>*25.40Q 
DAT1 (1,4>=DAT1 (1 ,4)*Y(Q) 
I F (L1F . £0.0) GO TO 31 
DAT1 (1,11>=DAT1 (1,1) 
DAT1 (1,1)=0.0

31 IF(L19.EQ.O)GO TO 32
IF(L1.EQ.1.AND.L19.EG.1) DATK1,6) = (DATK1,6)-32.G)*5./9

32 CONTINUE
IF(L1*.EQ.1) GO TC 5u

50 CONTINUE
DAT1(1,12)=S\/P(DATU1,11)) 
IF(L19.E1.3) GO TC 51

c COMPUTE VALUE OF ED FRO^ WET CUL? TEK D
C UrJ AS PIRATED VALUE OF GAil.lA USED

EW=SVP(DAT1 ( 1,6) )
IF(o »T.jn,6) .LT.n.O) GO TO 52
DAT1 ( 1 ,1_; )=EW-7 .90t-4*a?'=»PQ?*(^^n(1,11)-3sTlC1,6)
GO TO 53 

52 D4n(1,13) = EW-7.2E— i*A- = PGS«(DAT1 (1,11)-DU1 (1,6))
GO TO 5? 

S1 DAT1 ( 1 ,13) = ( DAT1 (1 ,6>*CV-T1<1 ,12 )) /1 -'".«j
53 CONTINUE

DAT1 (1 ,19) = D4T1 (1 ,1?)/u AT1 (1 ,12)^100.:

IF(DM1 (1,8) .LT.1 .uE~5) GO TO 77 
DAT1(1,S) = DATK1,3)+Q.51*DAT1(1,*)

77 CALL PEN(EVAP,D.Ul,SAD^ET,LtN,ID*Y,Y,A.LrEDO,A,B,ELEV,*h^P9S, 
1 ALAT,PADIUS,DECLIfJ,Ll7,KK,70,R3,nERO)

IF(L20.FQ.1) GO TO 12
CALL DATnUT(?ATl,EVAF,IDAY,IYEAt?,L5,L6,^LPEDO,KCUNT,^L,RADNET,

ADD TC ALL SU^S 
12 CONTINUE

p JOT=«TOT*P AIM 
DO 16 1=1,13

DAT1 (2,1 ) = 3ATl(2,I)-*-t5.^T1(1 ,1) 
DATK3,I)=DATK3,I)+:>=vTl(1,I) 

16 CONTINUE
PVAPX1=EVAPX1+EVAP(1) - 
EVA °X2 = C.

EVAPY1=EVAPVH-EVAP(1) 
EVsPY2=EVAPY2+EVAP(2) 
EVA?Y3=EVAPY3*EVAP(3) 

3 Zl*EV A?(D
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EVAF7*=£VAP73+EV A?(3) 
X(JL,1 )=EVAP(1 ) 
*(JL,2>=EVAP(2) 
X( JL,3) = EVAP(3> 
X(JL,O = DAT1 (1 ,1 ) 
X(JL,5)=DAT1 (1 ,4) 
X(JL,6)=DAT1 (1 ,5) 
X(JL,7)=DAT1(1 ,12) -OAT 1(1, 13) 
X(JL,8) = r5AT1 (1 ,7) 
X(JL,9)=AERO(2) 
X(JL,10) = URO(3) 
X( JL,11)=RADNET(1) 
X (JL,12)=DAT1 (1 ,13) 
X(JL,13) =DAT1 (1,9) 
X(JL,14)=DAT1 (1 , 
Z(IDAY,1)=EVAP(1 ) 
7 (I DAY,2)=EVA?(2) 
7(IDAY,3)=EVAP(3)

,=
7(1 DAY,6)=3 ADNEK3) 
7 (I DA,Y^7)=A5RO(1 ) 
7(IDAY,^)=ASRO(2) 
7(1 DAY,9)=AE^ 0(3) 
7(1 DAY, 1C) = P AT N 
7(1 DAY, 11 ) = FLO AT (I DAY)

7(1 D^Y,1^)=DAT1 ( 1 ,£)
7 (I DAY,15) = DA^1 ( 1 ,12)-C;.-T1 (1,1

INCREMENT KOUMT AND TEST F0«? AVERAGE PE = IUD 
KOUNT=KOUNT+1 
IF(KCUNT-L6) 18,19,19 

19 <OAY=ID AY-L6-»-1
COUMT=FLOAT«OUNT) 
DO 22 1=1 ,1*

DAT1(1,I)=DAT1(2,I)/COUNT 
DAT1 (2,1 )=G.O 

22 CONTINUE

CALL PE\(EVAP r t>ATl ,P AON1 ET ^Lr'N ,1 D ^ Y , V ^AL PE D 0 , A ,3 , E LE V, A '^B PR S , 
1 AL AT, P^DIUS, DECLIN,L17,KK, 70, R S,AE«?0)

DATOUT(DAT1,EV^P,IDAY,IYEAP,L5,L6,AL :^ EDO,k:oUMT,^L,R4DN': T,

C 
C

WRITE (3, 2 COG)* DAY, ID AY,AL6ECO(1 ),t VAPY1 ,AL3t DO(kK+1 ) ,

FORM*T(1"0,6X,26HTOTAL5 FOR PERIOD FROM DAY,I 7,3X,6HTO D&Y, 
1I7/7X,32»PFNi1AN EVAPORATION FQR ALBEDO OF,F8.2,^H = ,F3.1/ 
27y,4 1 wj'C'MFI ED PEN.1AM EVAPORATION FOR AL3EDO OF,FR.2,3M = , 
37X,34Hpr\TEITH EVAPORATION FOR iL ; EDO OF,F8.2,3M = ,FR.1/ 
n7v,17HTCTAL RAINFALL = ,F8.1)
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B AI N1 C = 0 . Q 
EVAPY1=0.0
E v A ? Y 2 = r. o
EVA-Y5=O.G

C
18 :'L=-"L + 1

IF(['L-L5)23,24^24

DO 24 1=1,18
D A T 1 ( 1 , I ) = 0 * T 1 ( 3 , I ) / * C D UN T 
DAT1 <3, !) = :?. 0 

Z6 CONTINUE 
L<TJ=1 
CALL PEN (EVAP,OAT1 ,? ADNET,LMN,I 0 ; Y,Y,AL=tDO,A,?,ELEV,

CALL OATOUKDAT1 , 
1 KK^rN^fE^L^LC, AEPO) 
W&ITE (3,?OuO) KDAV,iD 

1 EVA°Z2,,'L^E^O(t«-»-1),EVAP?3,fi ^1.'- j 
rL = 0
o AI N^j =^.0 
E V 2 o 7 1 = c . • j
p.vAP72 = -:.'j
E V A ? Z 3 = 0 . C

r
C

I F ( L 2 1 . F Q . 1 ) (- 'j Ji- 2*
CALL ST.MSCLS^ID-V^X^A? ,KK,.-NAIIE) 

c 
c

23 CONTINUE 
15 CONTINUE 
14 CONTINUE 
13 CONTINUE

I FCN- JCCUNT>54,5<»,55 
55 L4=1

I Y E A ? = I Y E A R + 1
PYEAP=FLOAT(IY£AR)
PY=R YEAR/4.0

IF((9Y-«?IRY).LT.1.0E-5) GO TO 56 
nO.'JTH (2) = 2 R 
GO TO 57

56 ;<r>NTH(2)=29
57 r:o TO 98 
54 CUfJTI NUE

WPITE CUT OVERALL TOTALS FOP C0r° ...R I SON
^^ WRITE < ^,5CCO)RTOT,ALBtDO(D,tV A P X1 , AL=»E^O (2 ) ,EVAPX2, C VA 

500J FOc-HAT(lMO / 5X,2?HTOTAL RAINFALL *OR YEA«?,F8.1/
1f X,49HFEMMAN TOTAL EVAPORATION FJR VARYIMG -LPEDO UF =

36^,5 HH^CDIFI ED PENMAN TOTAL EVAP^ATIO'J F G^ V^yiNG JVL^EDC OF =
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4FP.2,^X,3H = , F3.1 /
56X,45H*rv, TEI TH EVAPORATION FOR VARYING .^LBEDO OF 
6 F8.1 ) 

L25 = 1
WRITE (6,1001) N,IYEAR,L25 

131)1 FORMAT(1*,I3,2X,I4,I1)
WRITE (6,1002) (NA;'E(I ) ,1=1 ,6) 

1002 FOP*AT(1X,6A6)
W&ITE (6,5 COO) ((Z(N7,MZ),MZ = 1,16),iMZ = 1,N) 

9000 FORK'AT(ly,16F6.27(1X,16F6.2)) 
STOP 
END

FUfJCTlOiN DEL(T)
D = L=(C.C12*(T/5 .C'-3.C') **3+0.1 

1 1.55*(T/5.C-3 .0+5.437)75.0
RE7UR fv

FUNCTION 5VPCT) 
S V P= 'J . C C 3 * ( T / 5 .

RETURN
END

- 3 . u ) * * «* * 0 3 * ( ' / 5 . «- "5 . •'• ) * *

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C

SUPROUTIME POUGHS(ZO,KK ,R S,DAT1 ,^ A) 
DI ^ENSIc-M 70(12) ,RS( 12) ,DAT1 (3,23)

SU?ROUTI\E CALCULATES T^E VALUE 3F PA, HE AERODYNAMIC
RESISTANCE TO THE TRANSPORT OF W^TER V A- OUR FROM THE
SURFACE TO 2 i»ET»ES^THE 'REFERENCE LEVEL ?.
THE VALL'ES OF RS, THE CANOPY RESISTANCE A^E »EAD FRO?' DATA

A nONTHLV VARIATION IS ALLOWED F OR .

K IS VOS KAR.IAN'S CONSTANT = 0.41
D IS THE 7tR<> f-LAfiE M 5 r L A CE^.EN T-- ASSUME D INSIGNIFICANT

U=DAT1(1,4)*1000.0 7S .64E4

RETURN
END
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SU=FOUT

00

11

10 I
sx = o 
sxx =
DO 1

w

5
CO NT 
A = FL
X H.= S 
SD^S 
DO 1

INE S7ATS<L5,IDAY,X,AZ,KK,r;NAME> 
ION X (35,14),AZ(14,14),MM <,E(12>

16
12
10

15

c
CONTI NU
DO 13 I

DO 1
S
5
5
S
S
0

c
A?C=( SX

I F(A
R

C
E
=
4
X
v
X
X
X
c

NTI

1 f
j

1 =
7 =
1X
zx
IX

1
S
S
S
S
S

1
~

c
Q
1
2
2
5
X
X
X
X
X

N

4
1
.
.
=
=
=

1
2
1
2
1

UE

f
0
0
c
0
n
K
=
=
X
X
X

1

.

.

.

=

S
S
1
2
2

C^TINUE
1
c
=

X1
c .
(S

—

L
X

S
T
1

X
V

X

1
1
2
G

.0 
C.O
1 J=1,l
X=SX+x(j,i)
XX=^Xy+Yf I T ^ * *7** f\ w/\AA\w*A/ &

INUE
CAT(L5)
X/A
GRT((SXX-SX*SX/A)/(A-1.0» 
2 J=1,L5

IF(SD.LT.1.OE-1Q) GO TD 16 
X(J ,I)=(X (J ,I)-Xf<) /SD 

GO TO 12
X(J,I)=0.0

1 ,L5
X1 +X(K,I

=SX1X1+X 
= SX2x2-»-X 
= SX'

17
18

14
13

= 0.

x J)

*SX1/A)*(SX2X2-SX2*SX2/A) 
. GE-10) GO TO 17
-SX1*SX2/A) /SORT(A? C ) 
0 TO 18
0

A7 ( I, 
AZ

CO NT 
CON7INU 
LDAY=ID 
WRITE (3 
FORi1AT( 

130X,2PH

INUE 
E

7 15X,55H 
415X,56H 
515X,32H
615X,1?H
715X,3CH 
815X,^8H 
915X,31H 
115X,3fr"
215X,58^

1HO,2 
- E * I 0
5*, 55 
SEC ON 
THIRD 
FC-PTH 
FIFTH 
SIXTH 
SEVEN 
tIGTH 
NINTH 
TENTH

) LDAY,I DAY,:1NAhE(K<)
9X,34Hr1ATRIX OF CORRELATION COEFFICIENTS/
D FOR DATA SUMMATION I S ,1 6 , ^X ,2H 1?>, I 6 ,3 X,4H D
HFIRST ROW IS OPEN WATER EVAPORATION/
D ROW IS EVAPORATION WITH VARYING ROUGHNESS i

ROW IS EVAPORATION CALCULATED ^Y ,^10NTEITH E
ROW IS MAXIrtUrt TEM-ERATUPE/
ROW IS WIND/
ROW IS PICHE EVAPORATION/ 

TH ROW IS VAPOUR PRESSURE DEFECIT/
ROW IS OFSERVED SUN HOURS/
ROW IS PENMAN AEROOYMA.'UC TER.1/

Y S

ROW 13 f'ONTEITH TE-,:/
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J15X,<6M=LEVENTH »fig is MET RADIATION (J 07)/ 
415X,3:u T WEL-M ROW IS INCOMING ROIATTON/ 
515X,.^H ;MIP TEENTM QOW IS fiUwN «fLHMI «f O / 
615x,3:NFaiRT£ENTw ROW IS F AN £ V ,?C •? ATI 0 N-) 

DO 1* J=1,14
19 WRITE<3,20'..-:>- J,( A7( J,JZ),JZ=1,14) 
(j ,j F C»? ^ M ( 1H ";, 4 Y , i 2 ^ ^ x , 1 4 F 7 . Z )

DET 
END

S U = C") U T I NE PEN(EVVP,CATl^4DNET,L.iN,IDAY,Y,ALPEO 
;i.c P - S x AL AT , c AD I US , C ̂ E CL I N ,L 1 7 ,K < , I 3 ,l S , \E R 0 )

EDO(14) ,P ACIUS( 7 66),OECLIN(366

, w V f

G A H,v! M = A ."- -' ° S *6 . 5 7 4 E - 4 
OELTA=DEL(OAT1 (1,11)) 
IF(L17.Ef>.0) GO TO 10 
DO 11 J=1,3

GO TO 12
11) CALL «? A:i AT(OAT1 ,1 D '* v^9 i?IU3,DE CLI N^. 

1«?ADMET,<«<)
li: RACNETC I)=^AD\ST( 1 ) *ZF \CT

R.ACNET(2>=«?ADNET(2)*7FiCT 
DO 15 I F=1 ,3 
IFd^.EQ.?) GO TO 1^ 
I F ( I » . E C . 3 ) GO TO 15

F A C T2 = 0 EL f A / ( D E L T A + G A,^,: A ) 
AERO(IP)=FACT1*<Y<6)*(DAT1<1,12>-DAT1M,13>)*

RADNET(I-)=RADNET(IP)*FACT2

GO TO 1? 
14 AERO<IP>=F*C71*13.8*<DAT1<1,12)-:AT1<1,13))*

2CALOG (2.'JE03/ZO(Klf)))**2
PADNET(I D )=RADNET(IP)*FACT2

GO TO 13
15 DAT1(1,16)=DAT1(1,16)*ZF*CT*FACT2 

DATl(1,17)=DiTl(1,17)*ZFACT

CALL ROl!GHS( 7G,KK,RS A DAT1 ,RA)
(^<) X s? A))

15.JE-5)
RAONET(I r-)=RADNET(IF)*F^CTl 
£VA°(I :: )=PApNET(I-)-»-AERO(IP 
OAT1 (1 ,ZC)=RA 

15 CONTI NU P
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c
C 
C 
C 
C 
C 
C 
C 
C

lrENSI Ci-J ')AT1(3,?:; ),RAOILi$(366),DECLlJ(366), 
Y(9),AL-EDO(14),PADNET(3)

su-ROUTINE CO/PUTES THE RADIATION BALANCE AT THE SIT
VJD PL^Ct^ VALUES IM A^R AY R'DfJET. THE VALUES C-0 C *E ^ 
TO THE DIFFERENT ALEEOOdS.

THE VALUES OF NET RADIATION ARE IN W/n**2

IF (LhN-1 
14 DAT1 (1 ,1C =R ADIUS( IDAV)

15 X=0. 0174532925 
A?S=27?.12 
RLAT=ALAT*X

C^i'IF'JTE IMC01ING RADIATION 
DAT1(1,17)= 1.357«iE^/(X*18

*SI HDAT1 (1^1

C
c 
c

RADIATIONCOMPUTE C

1(Y(4)-«-Y(5)*DAT1(1,7)/OAT1(1 / 15))* 
2(Y(Z)-Y(5)*SORT(DAT1(1,13)))*Y(1)
RADNET(1)=DAT1(1,17)~(A+6*DAT1(1,7)/DAT1(1,15))* 

1(1. C-AL5EDO(1))-OAT1 (1,16)
DO 10 1=2,3

10 CONTINUE 
RETURN
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SU-souTIf.'E DATOUT(DAT1,EVAP,IDAY,IYEAP,L5,L6,*L D ED9,KOUNT,ML, 

D r"ENSIGN 3AT1 (3,2 C) ,EV A? (3) , AL rE D 0 (1 4 ) ,R A5MET(? ),.iNA:iE (12)

IF(PL-15)12,13,13 
13 JDAY=ID.'Y-L5

GO TO 16 
12 1F« :i!NT-L6) 14,15,15

C
16 WPITE(3,1COO)IYEAP,JDAY,I DAY,r,N \«E (K<)

10HU FQPf*AT(lH'?,1 X///1X,4HY£AR,I4,3X,32HDATA AVERAGED BETWEEN DAY NU " 
1R,I5,16H AND DAY ,MUM?ER,I5,10X,A8)

GO TO 17
14 WRITE (3,2000) IYEA«?,IDAY,rNArtE(K<) ,JL

2000 FORMAT(1MO,1X///1X,4HYEAR,I4,3X,1QHDAY NUMBER,2X, 13,1 r X,A8, 13) 
17 WRITE(3,4020)

FORHAT(1X,6H^LBEDO,2X,5HTOTAL,3X,5HTOTAL,3X,5HTOTAL,5X, 
15HTOTAL, < X,4HTE^P,2X,4HTEfP,2X,3^SUN,5X,4wWIND,4X, 
23HVAP,5x,3HSVP,5X,2HIh,5x^5MTCT-L,2X,5H^>lCHE,2X,

WPITE (3,5000) 
5 iij'l FCP^AT( c5X,5HEXRHD.,3X,6HNET^AD,2X,4MAEPO,4X,4MEVAP,4X,3Hr:AX,

24X,4HEVAP,3X,4HEVAP) 
DO 10 1=1,3

IF(I.GT.1) GO TO 11
WRITE(3,6G 'O AL-EDO(I ) ,DAT1 (1 ,16) ,R AO'JETd ),AERO(I), 

1EVA?(I),^Arl(1,1),DATl(1,2),DATl(1,7),D'Tl(1,4),DATK1,13), 
2Dm(1,12),DATl(1,17),DATl(1,15),OAT1(1,5),DAT1(1,S),DATK1,3) 

6uL'0 FO^WAT(?X,F5.2,2X,F5.2,2X,F5.2,?X,F5.2,^X,F5.2,4X,F5.2,1X,F5.2, 
11X,F5.2,3X,F5.1,3X,F4.1,4X,F5.2,5x,F5.2,2x,F5.2,2X,P5.2,?x,F5.2, 
22X,F5 .2) 
GOTO 1C 

11 IF(I .EQ.3) GO TO 18
WRITE (3,7000) ALBEDO«K*1 ) ,RADNET( I ) ,AER 0(1) ,EVAP (I) 

7000 FORMAT(2X,F5.2,PX,F5.2,3X,F5.2,3<,F5.2)
GO TO 1C 

18 W t>ITE(3,70D2)ALBEDO(k'K-»-1) ,RADNET(I),AERO(I),EVAP(I),DAT1(1,11),
1 DATK1,1 (?) A DAT1(1,20),DAT1(1,9) 

7302 FORnAT(2X,F5.2,9X,F5.2,3X,F5.2,3X,F5.2,4X,5HTAV =,F5.2,5X,
14MRH =,F5.1,5X,4HPA = ,F 5 . 1 ,5 X ,1 H G UN ^ SAD =,F5.1) 

1C CONTINUE 
PETU'R N 
END
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APPENDIX B

Description of the samples from two boreholes drilled into deep 

weathering area A.

I-Totes 1. The boreholes were drilled using a 'Halco-400' pneumatic 
hammer rig with a 6" bit. The action of the drill bit completely 
disrupts the sample, which is then carried to the surface by the 
return air flow. The sample divisions represent a proportion of the 
returns collected during drilling a depth equivalent to one drill
pipe (9 f ).
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Borehole No. 5 - Sample Description.

Depth 
(m)

0 -2.7 Clays-sands. \Yhen washed, the medium grained sands

contain 40-5^ rounded quartz grains \vith various 

feldspars, some grains of laterite. The red clay 

fraction gives the whole sample a red colo-ir, simi 

lar to that of the top soil throughout the area.

2.7-5•5 The dry sample contains more large aggregates bound

by clay.When washed, the sample is seen to be 60-70", 

quartz sand with 15/° larger aggregates of clay (some 

times blue) and sand. The wash \vater is a farm col 

our rather than the lateritic red of the fir^t sample,

5.5-8.2 A small (< 10) percentage of clay bound aggregates.

I'ostly sand with 80^ quartz (rounded grains), 10>c 

\vhite (kaolinitised?) feldspar. The sample contains 

much less clay and when dry will run freely through 

a sieve.

8.2-10,9 First sample that was damp when drilled. The sample

consists of clay and sand. Y,1: en washed the sample 

showed no fines present.

10.9-13.7 Clay, wet when drilled. The sample was a gritty clay,

When the sample \vas washed, the remaining portion 

v/as 60/c sand, mostly red feldspar and rounded quartz 

grains (imm size), 40^ rock fragments of an inter 

mediate fine grained biotite granite.

13.7-16.4 As above - clay was a yellow brown colour.

16.4-19.6 Clayey sand with some rock fragments. 40/c quartz

grains, 5^/- rock fragments, 10^ biotite.

19.1-21.9 Sand, V/ater entering borehole during drilling. Clay

now less than 10"*. Biotite 15^. V'.Tien sample is 

washed, the biotite flakes are carried av;ay by the 

water. The remaining portion of the sample compri 

sed of rock fragments, quartz and feldspar grains.
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of the sample. The maximum size of trie cr/^tal grains 

v;as 5mi"« Some pla>;ioclase and quartz p;rain" pr2:;ent. 

These are surrounded, some shov;inr crystal faces - but 

not freshly cracked.

24.6-27.3 As above - v;ater continuing to increase.

27.3-30.1 As above. Fragments of muscovite, quartz, plagiocla~e, 

orthoclise and biotite noted. 

V,: ater continuing to increase.

30.1-32.8 The sample becomes more coarse.

32.R-35.5 Very fine grained sample. Free biotite in abundance

throughout sample. 

35*5-38.3 The sample becomes more coarse.

38.3-41.0 Coarse sand size sample -passes into fine rock dust.

ITotes.

The standing v;ater table at the end of drilling v;as 3.65m,

Yield on airlift = 9. 

drawdown = 3m
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Borehole No. 10 - sample description.

Depth 
(m)

0-2.7 A reddish "brown clayey sand size sample containing approx 

imately 20^ clay. When the sample is washed, a fine to 

medium grained, sub-angular to sub rounded, clear quartz 

sample remains, with a small quantity of a cream coloured 

feldspar and some biotite.

2«7-5«5 As above - but more of an olive brown colour. Clay con 

tent increases to 30/c.

5.5-8.2 An olive brown clayey sand size sample, which when dry

congeals together as small clay pellets, \7hen washed, the 

clay pellets remain discrete. The sand size fraction is 

dominantly a clear quartz sand with some iron staining on 

the grain rims. The grains are sub-angular to sub rounded. 

Orthoclase forms approximately 10^ of the sample - show 

ing some quite fresh appearing cleavage faces. A small 

quantity of biotite is present.

8.2-10.9 An olive brown, slightly clayey sand size sample. V.Tien 

washed the sample has a grain size varying betv;een fine 

sand to gravel. Larger particles are fresh cleavage frag 

ments of a cream to white coloured feldspar. The remaining 

sample is half a clear angular quartz sand, and half ortho- 

clase feldspar.

10.9-13.7 An even textured medium to coarse grained sand size sample

with a few larger orthoclase fragments. The orthoclase is 

partly decomposed. Some biotite is present.

13.7-16.4 A fine gravel to coarse sand size sample of cream to yellow

coloured fresh orthoclase cleavage fragments and angular 

to sub rounded cle^r quartz grains. Very little biotite. 

The whole sample is bound together with a little yellow 

brown clay.

16.4-19.1 As above.

19.1-21.9 V/ater begins to enter borehole. An even textured fine to

medium grained sand sized sample with s:me Inrge fra.7r.ents



of clear quartz and orthoclase.

21.9-24.6 A coarse to fine angular sand size sample of clear quartz, 

pink or cream orthoclase and some Motite in approximately 

equal proportions.

24.6-27.3 As above - v.'ater continuing to enter borehole.

27.3-30.1 A light grey coarse angular sand sized sample of domin- 

antly clear quartz and biotite. 

Problems with collapse in the borehole at this depth.

30.1-32.8 As above - biotite forms an increasing proportion of the 

sample.

32.8-35*6 A fine to coarse sand size sample of clear quartz and

biotite making up about 85^ of the sample. The remaining 

15'<* is a fresh yellow to pink orthoclase.

35•6-38.3 As above - I'o fresh rock encountered.

es.

The standing v;ater level was 4-56m at the end of drilling. 

The yield on air lift v;as 3.25 m /hr with a drawdov/n of 9»
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APPENDIX C

Resistivity profile section algorithm

Cl Description of the algorithm

General

The algorithm has been written based upon the \vork of Dey (1976) 

and Dey + TJorrison (1979).

The version of the program which is included in this Appendix is 

based upon a mesh of 185 x 16 nodes. A central portion of the mesh 

is used for the modelling and 41 electrode positions are modelled. 

The graphical output routines included have been written for a maxi 

mum number of A~L source terms.

The mesh numbers, intervals, scaling factors, electrode positions 

and transform (ky) values can all be altered, however, in the input 

data shown, these have been selected as appropriate for producing pro 

file sections as shown. However, the algorithm could also be used for 

many other applications, such as different electrode configurations 

on the surface, or for down hole electrodes.

The first four inp- t data cards do not have to be changed once 

the scaling factor is decided for the model in question.

The model resistivity distribution is input for each model run 

and the last three data cards, or sets of cards, are altered accord 

ingly for each model. Card five contains the column number that the 

model resistivity distribution commences at, and similarly the column 

number for which the resistivity distribution input ends at. From 

the boundaries in x to these values the resistivity distribution is 

assumed to be equal to the 'edge' values specified below.

The sixth data card contains the resistivity coding information. 

The seventh to twenty second c rJs c-.rry the 15 rn vs of the re-
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sistivity model codes.

If more than P0 columns of data are to be input then the tv;o 

sets of 15 cards are separated by a dummy card for convenience. The 

algorithm then re-ds the coding data for the first half of the 

columns and then the second half of the columns.

An example of a data set is included after the algorithm coding 

An example of the data output for the same set is also included

Required run time and storage.

One run of the program requires b^ seconds 01 time on the Lan- 

Regional Computer Centre CDC 7600.

Level 2 storage is required on this machine, however the total 

storage required for an 185 x 16 array is I751fy£ words, assuming 1 

word of storage for each array element (some machine structures re 

quire 2 v/ords for each array element) .

C2 Algorithm structure 

"ain Program

The main program includes a brief description of the theoretical 

approach and the program structure.

The variables and arrays used are also described.

The spacing of the x nodes are obtained from a data statement 

although the z node spacing is read on the third data card and can 

therefore be varied as this is of value during modelling.

The dimensions of the various arrays are also defined by the 

variables IV3, IVICY, LIT, I^T, and in-72. If the -node! is to be run with 

different dimensioning then these variables must be changed as they 

carry the array size information through to subroutines.
•

The main program reais the data and compiles the required 2~ 

mesh grid. The coding for resistivity is converted to conductivity 

values and assigned to the mesh intervals. The input data is then 

output for checking.

The finite difference approximation, and the solution of the 

matrix equation are repeated for different values of the ;vave number. 

Only the required transform potentials as defined by the electrode 

position, are stored - nil other potentials are discarded.



An option is included to exa~ine the transfers potential res 

ponse at each electrode. The parameter ICHLCK on the first d.itc. card 

should be read as zero for the data to be output.

The transformed potentials are converted to a response in XYZ 

space and the 1^ x IS array of potential response for c-ch source 

position is then printed.

The potentials are combined together into apparent resistivity 

results and these results then printed.

Finally, if the parameter IPLOT is not eqval to zero on the first 

data c-^rd, then the graphical output is prepared,

The main subroutines are described belov/, however, if the struct 

ure of the program is to be altered it is strongly recommended that 

the tv/o key references be studied first, so as to obtain an apprecia 

tion of the program logic.

STJEROUTIES FLTDI7

This routine performs the finite difference a~ Troxination to 

Equation 4»19 f°r ^he '"'ave number value contained in '.VAVH.

An area discretisation is used, and the -"esh streached in the 

x = - , x = +•'- and z = + boundary directions. Special conditions 

are established around the bound ries. The ITeumann condition applies 

to the top surface, v/hereas at all other bound ries a rrixed condition 

has been used (Dey + Llorrison, 19?9"b) •

Subroutine FILvDIF forms the capacitance matrix of the finite 

difference coupling coefficients required.

This routine inverts the capacitance matrix using the Cholesky 

decomposition technique.

SUBROUTINE SOLVE

This routine performs the back substitution of the inverted ma 

trix with the required source terms as defined by the electrode posi 

tions requested.

SUBROUTINE REVERT.

This routine performs the reverse fourier transformation of the 

transform potentials for each source position required. A ^ array
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is used and, in effect, the t.rune form potentials co'.! Ir.j-sei ::lon ;<; one 

dimension to leave a 2D array of potentials ;:c described ybcve.

This routine could be easily altered to provide the response at 

any distance off the x-z plane. The value of Y in the routine is 

set to zero however for the production of profile section data. To 

obtain potential data off the x-z plane the dimensioning would re-mire 

alteration.

SUBROUTINE PROFIL

This routine performs the correct calculation of potentials to 

produce alph^apparent resistivity data. The form of the statements 

beginning VA, etc. is the same as that given in Equations 4-15- 

This illustrates well how the scalar potentials are simply aided to 

produce the required response.

The alpha, beta and gamma response for the first electrode spac 

ing required is printed out.

Due to the approximation inherent in the finite difference tech 

nique it i~ necessary to correct the data for a driven set of scaling 

factors. The values held in array FACnC! perform this correction. 

The values are empirically found from several trial runs of the pro 

gram over a uniform half space. The values in FACTOR are selected 

as zero while the optimum wave numbers are found (but see also Dey + 

Torrison, op. cit).

Subroutine PROFIL may be readily altered to apply to any elec 

trode configuration where the electrodes are based up.~n equal distan 

ces, or multiples of equal distances. Dipole dipole pseudo section 

or Schlumberger profile responsss could therefore be accomodnted as 

easily.

SUBROUTINE FIPLOT.

This routine plots out the profile section response onto an A4 

sheet. Any number of source terms to a maximum of 41 can be plotted, 

although as the plotting instructions are all contained within "00 

LOCPS, only a small change would be required to increase this number.

C 3 Resistivity profile section algorithm.

C 4 Input data

C 5 Output data

Sections C3, C/T and C r; follow belov;.



PPOG»;K VODELF* CALCULATES T HE POTENTIAL DUE TO A ?rINT SOI< C CE
OF CURRENT USING A FINITE DIFFERENCE APPROXIMATION T'' THE 
FIELD AS DESCRIBED =» Y DEY AND I103RISON (G E 0 PH Y S I C S , 1 9 7 9 )

THE POTENTIAL IS CALCULATED OVER A 3-D CONDUCTIVITY DISTRI3JTIO
ALLTHOUPH NO VARIATION IN CONDUCTIVITY is ALLOWED IN THE 'Y § , 
OR STRIKE DIRECTION.
THE CONDUCTIVITY IN THE X-Z PLAME nAY BE VARIED THROUGHOUT THE 
CENTRAL -OPTION OF THE MESH.

A FOURRIER TRANSFORM OF THE 3-D POTcNTI'-L DISTRIBUTION IS USnO 
SO THAT THE FINITE DIFFERENCE AP 3 ROX InATI ON CAN BE nAOE IN 2-0 
S°ACE OF A LIMITED MUMPER OF VALUES FOP <Y,THE WAVE .'JUMPER.

A MATRIX INVERSION TE CH NI OUE , CH OL E SK v DF C Or-IPOSI T I ON , IS USED TO 
INVERT THE POSITVE DEFINITE SYhETRIC HALF =?AND CAPACITANCE 
MATRIX -RODUCED FY THE FINITE DIFFERENCE DISCRETISATION. 
AFTER E*CH DECOMPOSITION THE INVERTED MATRIX IS BAC*-SU«3TI T UTE 
WITH A MMHER OF USER DEFINED SOURCE TE^MS RE D RESENTINS 
INDIVIDUAL CURRENT ELECTRODE POSI TI ()NS . TH E TRANSFORM POTENTIALS 
AT EACH C LECTRODE POSITION APE HEN STORED AND THE REMAINING 
POTENTIALS DISCARDED.

WHEN TH" TRANSFOPI"! POTENTIALS w AV E «EEN CALCULATED FOR l LWN.i t 
WAVE i\Uf r E D 5,THE T ^4NSFOPr RESPTISE AT EACH ELECTRODE IS
INVERTED -;c< TO A 7 -D RESPCNSE.
AN cis*i£) ARRAY OF POTENTIALS AT EAC* -LECROCE IN THE
X-Z -LANE IS PRODUCED.THIS ;.»RAY CO^'TAI^S T^E (IS-1) POTENTIALS 
DUE TO 3 CURRENT 301JSCE AT ONE -DSITIO'^THE =ROCESS nsviNG TH-..N 
= EEr^ cgpcATED FOR A CURRENT POSITION AT EACH ELECTPOIE P '^SI"IO.\! 
IN TUPN. IN THIS WAY THE APPARE?^T OcSIS r IVITY RESPONSE FOR ANY 
ELECTPCDE CONFIGURATION ,1 AY BE CALCULATED.

OUTPUT INCLUDES THE CONTENTS OF THE (IS*IS) ARRAV ANir> T^E 
APPARENT RESISTIVITIES FOR THE C3N c IGUR AT I 0N OP ELECTRODES 
CHOSEN. GINO ROUTINES APE ALSO U^ED TO PRODUCE GRAPHICAL OU T PUT 
FOR A NUr^E 0 OF SPECIFIC ELECTRODE CONFIGURATIONS..........

FOR PROFILE RESULTS M 185*16 A»?AY IS USED WITH 41 SURFACE 
ELECTPCDt POSITIONS.

DEFINITIONS OF VARIABLES

L = NO. OF NODES IN X DIRECTION
N = NO. OF NODES IN Z DIRECTION
X?Cr = SCALING F ACTOR IN X
zsc- - SCALING FACTOR IN f
LWKC = MO. OF VALUES OF KY (USUALLY 3)
LIN = NO.OF SPACES BETWEEN NODES IN X
NIM = NO. OF SPACES PETWEEN NODES IN Z
L yoc r, = 3EGINNIrJ« OF AREA OVER W^IC" CONDUCTIVIT V IS VARIED
LX^^D = END OF THIS AREA
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DEFINITIONS OF ARRAYS

X(LL) NODES IN X 
7 ( N N ) NODES IN 7 
•>eLX(LLIrJ) NODE SPACINGS 
DEL7(NNlN) NODE SPACI^GS

I J 
IN

IDELXP(LLIN)
IDEL7RCNNIN)
A f R x (L L r: N , N n 1)
CXZ <LLIN,NMIN)

RATIO OF NODE
P ATIO OF NODE 

CAPACITANCE 
CONDUCTIVITY 
CXZ (I ,K) c-?

3P4CI «'F S 
MATRIX

I N
IN

X 
Z

ETWEEM NODES SUCH THAT 
SEN7S THE CONDUCTIVITY

ROUNDED 9 Y NODES X ( I ) , 7 ( K ) X ( I + 1 ) , 7 ( K )

X (I ) ,7 XCI+1 ),?

ICCDE(LLI,M,NNIN) ARRAY OF CODE VALUES 0-9 FOR RESISTIVITIES
RESISTdO) ARRAY OF RESISTIVITY CODE VALUES
XS(LLNiM) VECTOR TO CONTAIN SOURCE TEPrtS a,ND RESPONSES.
TKY(IVKY) TP.Af.iSF OR M VALUED, MAX. NUilPFR OF TEN....
S(5C') WORKSPACE
PHO(10,IVS) A D P A RE NT RESISTIVITY VALUES.
VKY (I VKY ,IVS,IVS) TRANSF03* RESPONSE POTENTIALS IN X-7
V(IV3,IVS) 3-^ RESPONSE POTENTIALS 1:4 X-7 PL.A^E.
ISNC:E(IVS) ELEC TC?OD£ POSITIONS V5 DEFINED 3Y MODE N"r r-E»S

D I ME N S I C N TK v ( 1 Q ) f R E S I S T ( 1 0 > , S ( 5: ) , ^ u 0 ( 1 - , 4 1 ) 
VKY(1C,41 ,^1) ,V(A1 ,41 ),I SNODE U1 )

c 
c

c 
c

LEVEL 2,.^MRX
READ IN 5PAC INGS.IDELXP SHOULD HAVE (L-1) TER:1S
DATA I DELXR/1000,100,20,4,1,1,1 ,1 ,1 ,1,1 ,1,1 ,1,1,1,1,1,1 ,1,1 ,1 ,1 , 

11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
21,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
31,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 
41,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 
51,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,2^, 
6100,10 -jU/

ISNODE SHOULD HAVE 41 OR LESS TE^^.S
DATA IS NODE/13,17,21,25,29,33,37,41,45,i9,53,57,61,6^,69,73, 

177,81, 35,89,93,97,101,1U5,109,115, 11 7,121 ,125,129,1^3, 
2137,141,145,149,153,157,161,165,169,173/

7Z=1 . •••E-Sn

100 FORM AT(615) 
IV3 = 41 
Iv<Y = 1 C
LL=1S5
N N = 1 6

L,N,IS,LWNO,ICHECK,I 3 LOT



NNIN=NN-1

c
c

N N 1 = N N 4- 1
NN2=50
LM=L*N
LIN=L-1
NIN=N-1'
N1=N+1
N2=2 *N + 1
READ (5,101 ) XSCA,ZSCA

101 FORMATC2MC.O)
102 FOPMATCZCI4)

READ<5,102HIDELZR<K),K = 
DO 10 I=1,LIN
CQ=FLOAT(IDELXR(I) )

10 DELX( I) =XSCA*CQ 
DO 1 1 K=1,NIN 
CQ=FLOAT(IDELZP(K)>

11 DELZ (K) =ZSCA*CQ 
X(1)=P.C 
Z (1) = O.G 
DO 12 I=?,L

12 X (I)=X(I-1)+DELX ( 1-1 ) 
DO 13 «<- = 2,N

13 Z CO^Z (^-1) + DEL7 («-1 )
PI =b. 14159265

<?FA:> IN >CY VALUES

c
c

c 
c

READ IN A$EA OVE^ WHICH CO^DUC T IVITY IS I 
READ (5^104) LX3EP,LXEND

104 FORI1ATC2I5)
READ(5^105)(RESIST(I),I=1,10)

105 FORfHTCICFS.O)

MODELLED

14
106

29 

3U

IFCLX'-.GT.SC) GO TO 29 
DO 14 K=1 ,NIN

1U7 

31

GO TO 2-c 
LXMID=LX=EG+79
DO 30 K=1,NIN 
READ(5,1C6)(ICODE(I,K),I=LX C EG,L<,''ID)
LXrIOl=LX?1ID + 1

READ SEPARATOR CARD 
READ (5,1Q7)NEXT

,L X E N D
DO 31 K=1,NIN
PEAD(5,106)(ICODE(
CONTINUE

DO 15 K = 1 , N I N 
DO 15 1=1 ,LI ?J
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IF(I.LT.LXBEG)ICODE(I,K)=ICODE(LXbEG,K) 
IF(I.GT.LXEND)ICODE(I,K)=ICCDE(LX£ND,<) 
ICX=I CODE(I,K)+1 

15 CXZ(I,K)=1 .0/RESI STCICX)

C 
C 
C 
C WRITE OUT RESISTIVITY CODING FOR THE HALF SPACE
C - * 

W»ITE(6,1000) L,N
1000 FOPNAT(1H1 ,25X,35HRESISTIVITY PPDFILE MODELLING USING, 

15X,I5,5X,2MPY,5X,I5,5X,5HSPACE) 
WRITE (6,1 COD (PESISTU), 1=1, 10)

1001 FOPMAT(1HQ,3GX,23HRESISTIVITY CODE V ALU E S / ( 1* ,1 OF 1 U. 1 ) ) 
DO 22 K = 1 , N I N 
WRIT^Cd, 1002 )CICODE(I,K), 1=34, 153)

1002 FO<^ATC1X, 12011 )
22 CONTINUE 

C WRITE OLT ;>ELX,AND X DISTANCES
WRITE (6,1013) 

1015 FOPhAT(lwr>30X,2^HDISTAMCES BETWEEN r.-ODES)
WRITF(6,1P r>8) (DELX (I ) ,1=1 ,LIN)
WRITE <6,1C14) 

1014 FQBMAT( 1 U C,3UX,?7UPFLATIV£ POSITIONS OF MODES)
WPITE(6,10e*)(X(I),I=1,L)
W P I T E ( 6 , 1 r< 1 3 )
W R I T F ( 6 , 1 r O c ) ( D E L 7 ( \e ) , '< = 1 , M N )
W *? I T F ( 6 , 1 f U )

1008 FnpwiAT(1^0,10Fl0.1/(lX,10FlC.1M 
13J7 FORf'ATdHO /> 2 JX,16HTR ANSFORM V ALU5 S / ( 8F 1 5 . 1 C ) ) 

C
WRITE(6,1u1U)(ls,MODE(I),I=1,IS)

101U FOR.§ UT(1WU,1 9X,31HSURF ACE POSITIONS OF ELECTRODES// 
1C1X,50I4))

C
r
V

C
C COMPUTE CAPACITANCE MATRIX FOR DIFFERENT WAVE NUrtPE
C

DO 999 KY=1,LWrJO

CALL FIVOTF( 
1N1,N2,S,7Z,L

IER=0 
C 
C INVERT THP CAPACITANCE MATRIX

C ALL INVEOT(A".RX,LN,N,Dl,D2,«1,IEo,LLNN,N?n)
WR JT c-(6,ir03) IER 

1ji'3 PQt?rA T ( 1W'"!,35X,2 C'H,1ATPIX SOLUTION ERROR INDEX =,5X,I?)
WPITE (0,1015 ) D1,D2

1'.'15 FOPn«kT(1WO,5HOl = ,1PE15.6,5X,5H>2 = ,1PE15.6) 
C

IF(IEP.N C .0> GO TO 999
c SOLVE IM'C*TE;> ..ATRIX FOR VECTORS CONTAINING SOURCE TE
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DO 998 ISOUR=1,IS 
ISN=ISNC^ECISOUR) 
Irt=(I 5 N-1)*N + 1 
DO 17 J=1,LN

17 xs(j>=:.o

c
C 9ACKSU6STITUTE COLUMN VECTOR XS CONTAINING SOURCE TE"tt WITH
r INVENTED MATRIX
r

CALL SCLVE(A.^RX,XS,LN,N,N1 ,LLNN/JN1 ) 
C 
C 
C SORT OUT REQUIRED SOLUTIONS AND =>LACE IMTO VKY

DO 18 IRESP=1,IS
ISI=ISNr.DE(IPESP)
INI=(I5I-1)*N*1

18 VKY<KY,IKE3P,ISOUR)=XS<I.MI) 
C 
C ZERO EL^'ENTS OF VECTOR XS AND LOAD WI T w MEXT SOURCE TERh

DO 19 IJ=1,LN
19 x s (u) =:. c

998 CONTINUE
999 CO.n I ^UE 

C 
C
C A&R.H* V^v MOW CONTAINS THE TR *N 5 C ''•*:* R^-^(^J>E VALUES F-)R 
C IS -JUr r £P pnTE^TI^L ELECTRODE P>SITIO,JS D'Jt TO THE 3A1E
C NUMrE- C- CU r RENiT ELECTRODE POSITIONS...
r

C
C VKY IS * THREE DIMENSIONAL ARRAY WITH T U E E L = r = rj T S >70REO AS

C 
C

IF(ICWECK.NE.O) GO TO 26 
C 
C
c" WRITE HUT TRANSFORM VALUES IN i
C FOR EACH SOURCE TER-1 
C

DO 23 ISCUR=?'J,25
WRITE(6,1C04) ISOUR

1004 FT?r *,T( 1 U 0,2 OX, 1 ^H SOURCE NU«* r ER ,5 X , I 5

IF(IENO.GE.IS) IEND=I5 
25 W-7ITE(6,1C11)(ISNODE(IJ),IJ = 

1011 FO?MAT(1H1,1 UHWAVE V ALU E , 2X ,9 I 1 2)
DO 2^ I=1,LWNO

24 WRITE (6, 1C 12) T<Y(I),(VKY(I,J,I5'>J9),J 
IFCIE^-^.EO.I S) GO TO 23

IF(IEND.GE.IS) I c rJD=IS 
GO TV) ?-



C10

CONTINUE

?6 CCMJMJE

CALL D EVE?T<V<Y,I5,LUNO,TKY,V,IVS,IV<<Y)
THIS KCL'TIME WILL °E !'FO t?r1 THE REVERSE FOURIER

C

C 
C
C

DD 2-> I J = 1,I S 
WPITE(6,1P05) IJ,(V(U,I),I = 1,I3) 

1C'j5 FG^~T(1HO,35X,15HSJURCE POSI TI O'J ,1 5 ,5X ,
124HPCTEMIALS AT EL E CT9 00 E S / / < 1 X , 1 P 1 jE 1 1 . 4) )

20 CONTINUE

A°fMNGE POTENTIALS TO PRODUCE LIMES OF °ROFILE RESULTS
FOR ,«ULTI 3 LES OF ELECTRODE SPACING.
CALL PRCFIL(V,IS,ISNODE,X,L,RHO,IVS,A,LL>
00 21 1=1,10
WPITE(6,1CC6)(PHO(I,J),J=1,IS>

21 CONTINUE
06 FOPMAT(iuc,5 v,1 = 1^ = 12.2 /(6X,1P1 ,)H 1 2 .2) ) 

IF (IPLCT.NE.O) PO TO 27

PLOT CUT D*TA F«?0f PPl-FIL ROUTINE USI^G GI.MO-F 
C-X-LL P I ~Lr.T( c ^O,ICODE,7 ,PFSI ST,LI .\',r.'IN,L^N, ^. ,I

1 IV". ,LL,fiN,LLlN,/'MN)
H 7 C " % :T ! ,-- U E

T ~

FUNCTION AX'1 (X)
IF(X .PE. 2.00) GO TO 1JO
T=X/3.75
T2=T*T

T6=T4*T2

T12=T1C*T?
B = 0.5C + C.87£ 905 94* T2 +0.5 1498 

10.00501 552 *T1 0*0.000 ^2^11 *T1 2 
6I1=X*?

. 15 r«8 4934 *T6 + 0.026 5 8733 *T»

T2=T*T 
T4=T?*T2

T12=T10*T2

A K 1 = A A /
<?E TU 1? N 

0 * K 1 = 1 . C
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FI:*'DIF(WAVE,CXZ A AlrJ,N,

r 
C

0 I'^,«S I Ci< CXZ (LLI N,NNIrO , DELX(LLIM) ,DELMrJNI ••< 
X(LL),?(MN> ,S(NN2)

,< r«? X <LL N 1 > ,

SlJPCuUTli-.'E CALCULATES THE COEFFICIENTS FOR THE r.ATPIX EQUATION 
USING A CFNTPE POI^T FINITE DIFFE9£"KE DISCRETISATION 
LEVEL 2,;M»X

C
C 
C

C
C 
C

JF=N1-1
J A^EF = M 
J E=N1 +1 
J A = N2
00 14 I J = 1 ,N? 

U S(IJ)=G.O 
D 0 1 J I = 1 , L 
DO 10 K = 1 ,, N 
I^=(I-1 )*N+K
IF(I .EQ.1.0P .1 .EQ.L) GO TO 11 
IF(K.E^.^) .^0 TO 12 
IF(K.E0.1) GO TO 13

COEFFICIENTS F0» INTERIOR NODES
3 (JA) =- ((DEL 7 «-1 ) *CV7 ( I ^<-1 )-»-DfLZ (K)*C<? (I ,K ) ) / 

1(2.G*OELX(I) ))
S(J^)=-((DEL7(K-1)*CVZ(I-1,K-1)+:>EL7(IO*CX7(I-1,K))/ 

1(2.C*DELV(I-1)) )
S (JE )=-((D EL X(I-D*CX7( 1-1, 0+DELX (I )*CX7 (!,<))/ 

1(2.0*DEL7(K) ))
S(JF)=-((DELX<I-1)*CXZ(I-1,K-1)-H>ELX(I)*CXZ(I,K-1»/ 

1(2.C*DEL7«-1))) 
A<=WAVE*WAVE*(CX7(I-1 ^K-1)*DELX(I-1)*DEL7(K-1)+CXZ(I,K-1>*

10ELX( I) *DELZ (K-1)*CX7(I /,K)*DELX(I)*DELZ«)*CXZ(I-1,K)*DELX(I-D* 
2DELZ (K))/A.O
S(jMeEF)=-(S(JA)+S(JB)+S(JE)*S(JF)-A<) 
DO 15 IJ=1,N1 

15 AM«?X(IM^IJ) = S(IJ)
GO TO 1C 

13 CONTINUE

COEFFICIENTS FOR NODES ON THE S U 1? F A CE --NE Urt a NN CONDITION

A«f=WAVE*WAVE*(CX7(I-1^<)*DELX(I-1)*DELZ«)*CXZ(I / K)*DELX(I)* 
1DELZ(K))/4.0 
S(JA)=-D£L7(K)*CX7(I,K)/(2.C*DELy(I))

S(JE)=-((DELX(I)*CX7(I^K)*DFLX(I-1)*CX7(I-1^K»/

S (JF) =G.O 
S(JA?EF)=-(S(JA)+?(J Q )+S(JE)+S(JF)-AK)
DO 17 I J = 1,

17
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GO TO TC 
13 CONTINUE

C
C COEFFICIENTS FOR NODES ON THE =>OTT0.1
C

1DELX ( I) *DELZ (K-1 ) ) IU .0 
C^LL °AD(X,Z,L,N,;LF,,>9G,I,K,ZZ,JHVE,THF.,
S(JA)=-:FLZ<K-1)*CX7(I,K-1)/(2.C*DELX(I)> 
S(JK)=-^LZ(K-1)*CX7(I-1,K-1)/(2.0*DELX(I-1>) 
S ( J E ) = C . C
S(JF)=-<(DELX(I>*CXZ<I,K-1)+DELX<I-1)*CXZ(I-1,K-1>>/ 

1(2.C*DEL7C<-1)))
CZ=-3(J C )*D£L7(K-1)*WAVE*CQ?(ALF)*APG 
S(JArEF)=-($(J£)+S(je)+S(JE)+S(JF)-AK)+CZ 
DO 19 IJ=1,N1

19 AM.PX(IN,IJ) = S<IJ)
G 0 TO 1C 

11 COMTI^'UE
IF(I .PQ.L) GO TO 20 
IF(K.GT.I.AND.K.NE.N) GO TO 22 
IF(K.FQ.N) GO TO 23

COEFFICIENTS FOP TO 0 LEFT M^ND C^NE 1?

CALL P4D( 
S(JA)=-:r 
S ( J B ) = :• . C 
S(JE)=-DE 
S ( J F ) = ? . 0

S(JA&EF)=-(S(JA>+S(JP)*S(JE)*S(JF) -AO + CZ
DO 2U I J^1,N1
AiJ'«?X(IN,IJ) = 5(IJ)
GO TO 1C 

22 CONTINUE 
C
C COEFFICIENTS FOR THE LEFT SIDE 
C

AK=WAVE*WAVE*(CX7(I,K-1 )*DELX<I)*DEL7(K-1>+CX?<I,K)* 
10ELX(I)*DELZ (K)) /4.0

CALL o AD(X,7,L,N,JLF ,ARG,I,<,77 ^ AVE ,TH E ^LL , NN)

1(2.C*-DELX(I) )
S ( J 5 ) = 3 . 0 
S(JE)=-:ELX(I)*CX7(I / <)/(2.u*OEL7(K))
S(JF)=-CELX(I)*CX7(I^K-1)/(2.Ci*DEL7«-1)) 
C7=-SCJ'1 )*OELX(I)*WAVE*COS(THE)*n»G

DO 25 IJ=1,N1 
25 A^RX(IN,IJ) = <?(IJ)

GOTO 1C 
25 CONTINUE

C
C COEFF I CIFNTS FOR THE POTTOM LEFT CORNER
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C

AK=WAVE*WAVE*(CX7(I,K-1 )*DELX(I)*DELZ(K-1))/4.0
CALL *AD<X,2,L,N,ALF,ARG,I,K,Z7,rfAVE,THE,LL,NN> 
S(JA)=-DEL7(K-1)*CXZ(I,K-1)/(2.0DELX(I))
S (J 3 )=C.O
S (JE) =0.0
S(JF)=-DELX(I)*£XZ(I ,K-1) /<2.G*DEL7 (K-1))
CZ=-(S(JF)+DELZ(K-1)*COS(ALF)+S(JA)*OELX<I)*COS(THE))* 

1WAVE*ARG

DO 26 IJ=1,N1 
26 AMPX(IN,IJ)=S(IJ)

GO TO 1C 
20 CONTINUE

IF(K.GT.1.AND.K.NE .N> GO TO 27
IF(K.EQ.N) GO TO 28

C COEFFICIENTS FOR TOP RIGHT CO&NE* 
C

AK = WAVE*WAVE*(CX 7(1-1 ^K) * DELX ( I -1 )*DEL? (K)) /4.C
CALL RAD(X,Z,L,N,ALF,A»G / I,K,ZZ / WAVt^THE,
S (JA) =C -U
S(JP)=-rEL7('<')*CX7(I-1,K)/(Z.C*D :: LX(I-1))
S(JE)=-DELV(I-1)*CX2(I-1,<)/(2.C*CEL7(K))
S(JF)=C.u
C7=-S(J?)*DELX(I-1)*WAVE*APG
3 (JAr EF>=- (3 ( J A)*S( J •'• > + 5 ( JE)-«-5(J(: )-^)->-:z
00 2^ IJ=1,N1 

?9 AM»X ( IN,IJ)=3( IJ>
GO TU 1 r 

27 CONTINUE 
C
C COEFFICIENTS FOR THE RIGHT SIDE 
C

AK=WAVE*WAVE*(CX7(I-1 /,K-1)*DELX(I-1) 
1DELX(I-1)*DEL7(K))/4.0

CALL RAD(X,Z,L / N,ALF^ARG,I,<,Z?,VAVE
S(JA) =G.U
S(JP)=-((DELZ(K)*CX7(I-1,K)^DELZ(K-1)*CXZ(I-1,i<-1))/ 

1(2.0*DELX(I-1)»
S(JE)=-OELXCI-1)*CXZ(I-1 / K)/(2.0*DEL7(K)>
S(JF)=-DELX(I-1)*CXZ(I-1,K-1)/(2.D*OEL?«-1))
CZ=-S(JE)*DELX(I-1)*WAVE*COS(THE)*A i'G

DO 30 IJ = 1,m

GO TO 1C 
2? CONTINUE 

C
C COEFFICIENTS FOR THE RIGHT -OTTO* MODE 
C

CALL PAD(X,Z,L,N,ALF,AffF,I,K,Z7,WAVE,THF.,LL,NN>
3(JA)=0.0 
S(J3)=-DELZ(K-1)*CX7(I-1^K-1)/(2.0*i>ELX(I-1 ))
S (JE)=Q.U
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S(JF)=-DELX(I-1)*CX7(I-1,K-1)/(2.0*DELZ(K-1)) 
CZ=-(S(JF)*DELZ(K-1)*COS(ALF)+S(J3)*DELX(I-1)* 

1C OS(THF)) *WAVE*APG
S(JA^F)=-(S(JA)+S(JB) + S(JE)+S(JF)
DO 31 I J = 1,N1 

31 A:HmiN,IJ) = S(IJ)
10 CONTINUE 

RE TUP N 
END

INE PAD(X,Z,L,N,ALF,APG,I,K,,7?,WAVE,THE,LL,NN) 
DIMENSION X(IL) ,7(NN) 
L:'ID = (L + 1)/2 
DIST=A&S(X(I)-X(LMID» 
R=SQ«T(DIST*DIST+7(K)*7(K)) 
APGX=WAVE*P 
APG1=AK1 (APGX)

IF(A«?G1.LT.Z7.AND.A»G2.LT.ZZ) A P5 = 1 . 0
IFORf-1 .(^E. 7 7. Oft .!> C K2 .GE . 77) A9 P= A«? P1 / A«?G 2
IF(K.EO.I) PO TO 10
ALF= ATANCDIST/Z (K) )
T c (I . EO .L,"ID) GO TO 10

F U r- C T ! 0 f. A K 0 ( X )
I F ( * . (? E . 2.0) r, 0 TO 10
T=X/5.75

10. C36 0768+1*0.00^5 8 13)) ) ) ) 
T=Q.5*v
Y = T*T
AKO=-ALCG(T) *31 -0.57721 5 86+Y* ( 0 .42 2 784 2 0* Y* ( 0 . 2 3 069756 + Y* 

2(G.C343?SQO+Y*(C.OC26269g+Y*(0.:Ou1 075l) + Y*0. 00000740))) ))

10 AKU=1 . 
PETUP N 
END
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S'J = a >UTIf-'E SOLVEC A,X,LN,N,M , 

C
C SHF-RJUT1NE °ERFCOrS THE 8 AC< SUB ST I TUT! C -i OF VECTOP X WITH 

C i1AT» IX r. ............

C
0 I*-Ei'5I Crt A<LLNN,NN1),X<LLNN)
LFVEL 2, A
L1=0
L = U
00 1 ^ I = 1 , L N
SL)r-=X ( I )
I F (N.LE .C) GO TO 1 1
I F (Li .E r̂ .O) GO TO 12

IF(L.GT.N) L=N
K=N1-L
KL=I-L
DO 13 J=K,N
SU^=SUf-y«L) *A(I , J) 

13 rL = KL-M
GO 1'} 11

12 IP(SUx.NP..n L1 = 1 
11 X (I) =SUf-*A (I ,.M1 ) 
1C COf-'TlNUF 
14 X f LN) =X (LN') * ,(L .J,>! 1)

IF(L^.Lr.l) r-o Tvr T^

SUi-= v ('< >
IF(N.LE. r ) GM T>> 17

L=l
00 18 J=<L,K1
5U! 4 =5UF-X( J) *A( J

18 L = L-H
17 X (K) =SUf*A« / Nl )
16 CONTINUE
15 CONTINUE

END
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: 01
3 ON I IN 03 U

a*-; A = (d S3 d I'd no si) A
dflNIi-JOS 21
= n -4 11^ I'D 9L 

< L>IX-c>IX)*iA+VA=VA ^L 
91 o 1 o u

ci GO
= ON I IN 03

71 01 03
( 1>IX-Z*X)/ (lA/ZA) 901V-=V 

01 Of) (Ci-30' I" iVZA-ao'Q£-3C' I'iT LA)dI

( A >i I ) A > 1 = 2 X X

ON'rtl'Z = A^I Zt 00 
(L)A>l*(bn03l'dS3al'L)A>A=vA

SI'L = d£3aI I I 00 
S I'l=afi05 I 01 OQ

(SAl'SAI)A'(A>AI)A>U'<SAl'SAl'A*Ar)A>iA NDISM3^I Q

SI A>A
D 
3 
3
0

i 01 3'Uinoti
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11

D 
D 
D

11 
P 
D 
D

D
I

I
D

U^s >UTInE P°OFIL<V,IS,ISNO»E,X,L,P«o,IVS,ASF,LL)

ITE rjSIf N XCLL) ,V( IVS,IVS) ,1 SNODEdVS)
I r:E N S I C N P M 0 ( 1 0 , I V S ) , F ; C TO* ( 9 )
ATA FACTO*/.°654,.97G9,.99,1 .D -155,1 ,;j2*7,
.05 uA ,1.07 A 1,1 .0977,1 .1£23/
I=3. 141392653
O 1 j 1=1, IS
C 10 J=1,1C
MO< J,I )=C.C
O 1 1 1=1, IS
A = I 3 n C D E ( I )
WO( 1,I)=X(I A)
ENO=1
O 12 17=2, 1C

TO 99
I n =(IENC-1)/3
IF (I END. GT. I 3) GO 
00 13 I=IEMD,I3

: 2 = I

^ ? = I S N C C £ ( I '- 2 ) 
A = * ( V ? ) - Y ( < 1 )
I F (i - r r .- -; .L ) == \

c 
c 
c

I FCIEN& TO 9P

V3=VC*FACTOR(1)*A/?I*1.5 
WPITE(6,1GOO) V1,V2,V3 

10UO FORMAT(1QX,1P3E14.4) 
CONTINUE

C 
C

98

)=VA*A/PI17 ,1 
13 CONTINUE 
12 CONTINUE 
99 DO 1^ J=£,1Q 

DO 14 1=1,IS 
14 RHO(J,I)=°HO(J,I)*FACTOP(J-1)
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SUP ROUTINE FIPLOT(PHO,ICODE,7,RESIST,LIN,NIN,L,N,A,IS, 
1IVS,LL,tN,LLIN,NMN)

C
C ROUTINE USES GINO ROUTINES TO PLOT OUT TME PROFILE
C SECTION (U4 <\4 SIZE. ..................................
C

Dlr.ENSlCN RHO(1C,IVS),RESI5T(10),MLL),ICODE(LLIN,NNIN)
C
C THE CODE IS DESIGNED FQ& A MAXIMUM NUM3EP OF 41. ELECTRODE POSITION!
C

CALL CN$25
CALL DEVPA p (32'J.'l,25'I.U,l)
CALL WINDOW<2)
CALL CHASI7(3.0,4.5)
CALL ITALICdS.O)
CALL »,CVT02< 18.0,172 .0)
CALL CHAHOLC31HRESISTIVITY PROFILE SECTION*.)
CALL ITALIC(O.O)
CALL >"CVT02d8. 0,167 .5)
C'LL CHiSI? (2.0,3.0)
CALL CHihOL(66HC*LALCUL ATED FROM THE MODEL RESISTIVITY DIST°I^UTIO

IN $H()wr. CELOW*.)
C ",LL CH^SIZd .0,1 .5)
Y 1 = 1 s A . •:
v?=15^ . . 
X1=17.75
X2=1-- .3.
rUJ" a Ec = :
D n v: i = i,is
CALL rv/-n2< X1 ,Y1 )
C

CALL CH '-I* T( NUr» a PR ,? )

1'j CONTINUE 
C

CALL ,-.CVT02(95. 0,161 .5)
CALL CMASI7(2.0,2 .75)
CALL CHAMOLC24HELECTPODE POSITIONS *.)
CALL i*CVT02< 160.0,161 .5)
I A = I F I X ( A )
C.'LL CHAINTC I A, 3)
CALL :*CVT02( 170. C, 161 .5)
CALL C« iw OL( 15Hi^ETRE S APART*.) 

C 
C

XI =2 5 .5
I°=1
X=25 .5
IE=IS
Y=139.C
CALL CHiSIZd.C,1.5)
DO 40 J =2,?
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IE=IE-2
J1=J-1
IAX=I A*J1
CALL *CVTO?(12.0,Y)
CALL CH.4woL(5HA= *.)
CALL ,'CVT02(14.5,Y)
CALL CHAINTC iAx,3)
DO 31 I=IP,IE 
CALL rOVT02(X,Y) 
IP=I F IX(RHO( J,I) ) 
CALL CH-INT(IR,4)

31 CONTINUE 
Y=Y-10.C 
X1=X1+7.5

40 COiJTI HUE
CALL CHfiSI7<2. 0,3.0)
CALL ?*CVT02(230. 0,130.0)
CALL CHrHOLC 19HMODEL R E SI STI V I T** . )
CALL ^CVT02(230.i.,125.Q)
CALL CH.-HOLC14HDI S TR I ?UTI ON* . )
C^LL CM A STZ( 1.8,2. 5)
CALL »>CVTC2(?3Q. 0,120.0)
CALL CHiwoL(2lHCODE VALUES*.)
CALL C* ASI7(1 -^',1 -5)
CALL P C V T 0 2 ( 2 5 5 . 0 , 1 1 7 . 5 )
CALL CH^HHLC 14H( OH-i-METBES) *.)

X 1=2 5 5 .L
Y=115.C
CALL CH>SIZ(1.8,2.1)
DO 13 1=1,10
11=1-1
CALL ^CVTQ2(X,Y)
CALL CH£INT<I1,2>
CALL POVT02(X1,Y)
R1=PES!ST( I)
CALL CHAFIX(»1,6,1)
Y=Y-7.5 

13 CONTINUE
CALL i4 CVT02(20.0,65 .0) 

CALL CH;5I7 (2.5,3 .O
CALL CH,iMOL(52HCODED RESISTIVITY DISTRIBUTION*.)
X=2C.C
Y=6C.C
CALL CMASIZ(1.25,2.j)
DO 20 J=1,NI N
DO 21 1=13,172
CALL r'CVT02(X,Y)
IC=ICODr(I,J)
C*LL CHMNT(IC,1)
X=X+1 .25
C^LL PCVT02(X,Y) 

21 CONTINUE
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RES 1ST I I/I Tr PROFILE SECTION
Calculated From the model resistivity distribution shown below

ELECTRODE POSITIONS 10 HETRES APART
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38
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78
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Appendix

NODEL RESISTIVITY 
DISTRIBUTION

IDE
0 
i

7
8 
9

VALUES
((HV-neTRE<:) 

175.0 
15.0 
10.0 

100.0 
800.0 

1000.0 
5000.0 

.0 

.0 

.0

0

CO

DEPTHS 
(HETRES)

.0

.5
1 .0
1 .5
2.5
5.0

10.0
15.0
20.0
25.0
32.0
10.0
50.0
90.0

410.0

.5
1 .0
1 .5
2.5
5.0

10.0
15.0
20.0
25.0
32.0
40.0
50.0
90.0

410.0
2970.0
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APPENDIX D

Travel time data from seismic refraction surveys.

A six channel Bison l^HO signal enhancement siesmograph w^s used 

with a hammer source and a chart recorder.
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Appendix Dl Travel Time data - seismic refraction example 1

X
(m)

0

10
20

30

40
50
60
70
80
90

100

110

120

130

140

150

160
170

180
190
200

tp \ (ms)

__

15.8

17.3
18.0
21.6
27.0
25.2
27.3
28.8
32.1
34.2

39.5
41.01
41.0
42=9
44.0
47-0
49-2
50.6
54.2
56.3

tg
(ms)

27.0

28.8
22.7
18.4
12.9

—

14.4
19.8
23.1
25.9
29.2
32.1
36.0
36.0
32.0
36.0

—
—
—
—
—

tg
(ms)

34.2
34.2
33.1
28.8
29.2
27.0
25.5
23.4
19.8
12.6

—

12.2

20.9
28. P.

27.0
30.6
31.7
33.9
35.3
38.9
41.0

tg
(ms)

_

—

—

—

—

36.0
34.2
32.8
31.2
28.8
27.0
25.2
23. R
16.6
12.6

—
—
—
—
—
—

t-v
(ms)

56.7

56.7

55.6
51.3
51-7

( 49-2
•47.4
46.0
44.9
42.0
40.5
37.5
35.3
29.2
29.2
30.6
32.4
24.5
21.6
18.0

—



Appendix D2.

Travel Time data - seismic refraction example 2.

X

(m)

0

10

20

30

40

50

60

70
80

90
100

110

120

130

140

150

160

170

180

190

200

tg 
(ms)

—

5.6
8.5

11.6
14.0
17.2
19-4
21.3

26.8

31.3

33.0

36.0

37.6

40.4

43.5
47.3
50.5*
57-8*
51-5*
54.0*
55-5*

tg 
(ms)

17.5

12.2

10.5

9.0
6.8
—

5.7
10.6

16.6
22.8
27.8

28.0

29.5

32.0

35.0
38.0

40.0

42.6

42.7
45.2

46.5

tg
(ms)

33.4
31.8
30.6
29.3
27.4
27^9
22.3

16.4
10.8

5.5
—

8.0

15.6
22.0

26.0

30.4

33.4

34.7
34-7
36.8
38.2

tg 
(ms)

47.5

46.8

45-8
42.7
40.6
38.2

36.3
34.6
34.2

32.0

30.0
26.5
22.2

H.5
4.5
—

10.6

17.0
20.6

22.9

22.8

tg 
(ms)

56.0*

55.0*
54.0*
50.0*
48.7*
46.6
44-4
42.6
42.2
40.0
38.0

35.4
33.0

30.6
28.2
22.0

20.7

17.0
12.5
9-0
—

Note * denotes data projected from underlying "branch of the t x graph
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Travel time data - seismic refraction example 3.

X
(m)

0

10

20

30

40

50
60

70

80

90
100

110

120

130

140

150

160

170

180

190 

200

tg 
(ms)

-

11.5
14.4
30.6
33.8
41.0
48.3
51.2
54.0
58.7
60.5

tg 
(ms)

16.0

24.8

30.2

37.1

43.6

50.4

55.8
58.0

58.4

58.7

tg
(ms)

60.5

58.7
54.0
48.6
45.0
43.6
39.6
33.1
27.7
19.8

—
16.8
27.6
35-0
40.0
43.2

50.4

57.7
61.2

67.2 

68.0

tg 
(ms)

58.5

54.0
52.2

50.8

49-4
44.6
40.0
32.4

23.7

17.3
—

11.6
24.0
30.2

37.1 
43.6

tg 
(ns)

68.0

77.0

63.0
52.2

43.9
43.0

33.1
27-0
24.5

:



Appendix D4 200m long line with shot points every 75m '

X

(m)
/

0

5
10

15
20

25

30

35
40

45
50

55
60
65
70

75
80
85
90

95
100

105
110

115
120

125
130

135
140

tg 
(ms)

_

7.3
7.7

14.7
17.3
21.4
22.6

22.6

24.8

28.4

28.5

28.3

34.0

36.6

41.3

40.3

40.4

45-9
46.2

47.8
57.2
52.8
55-4
57.1
58.2
56.6
57-6
58.5
59-2

tg 
(ms)

40.4

40.6

40.0

38.7

38.6
37,9
35-3
33.2

29.1

27.5

34.3
29.1

31.2

23.0

15-1
—

12.5
18.7

24.6

27.8

31.5
31.7
33.2
39-4
43.1
46.6
46.6
47.6
49-2

tg
(ms)

60.5

61.4

60.9
59-4
58.8
59,9
59.7
59.2
56.5
59-2
5-3.6
55.0
55.4
54.4
53.7
50-5
?•

50.1
48.7
48.2
47.6
46.0
45-5
43.9
38.7
38.7
37.6
32.0
32.0

tg 
(ms)

67.0*

67.9*

67.4*

65.9*

65.3*

66.4*
66.2*
65.7*
63.0*
65.7*
65.1*
61.5*
61.9*
60.9*
60.2*

58.5*

59.0
57.0
7

54.9
53.9
53.2
53.4
51.8
53.9
49.7
49-1
47.7
47.6

tg 
(ms)

81.0*

81.9*
81.4*
79,9*
79.3*
80.4*
80.2*

79-7*
77.0*
79.7*
79.1*
75-5*
75-9*
74.9*
74.2*
72.5*
73.0*
71.0*

7
66.3
68.4
67.3
67.8
67.3
65.3
64.5
63.2

60.1

59.6
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APPENDIX D5

X(»)

0

5
10

15
20

25
30

35
40

45
50

55
60
'65

70

75
80
85
90

95
100

105
110

115
120

125
130

135

140

145
150
155
160
165
170
180

tg
(ms)

—

12.2

17.8

22.6

25.7

27-7

28.8

31.7

34.3

37.4
39-0
41.9
42.4
46.1
4D .l

49-7
50.1

—

50.2
5L3
51.8
53.4
53.4
54.9
57.0
58.6
59.6
59-6
60.7
60.7
63.8
65.6
66.7

—

68.7
71.0

te
(ms)

39.0

37.0

34.3
31.1
29.5
28.5

25.8

21.2

15.3
10.9
—
—

17-1
22.8

25.8

28.0

28.4

30.6

32.2

34.3
36.1
36.5
37-0
38.1
38.6
40.2
42.8

45-9
47.0
49.1
50.6
52,9
53.4
57.1
56.6
62.3

tff
(ms)

51.8

48.3

46.1

45-1
43.0
40.8
38.7
39.8
37.1
36.6
36.1
34.8
33.2
30.6

—

27.4

23.2

21.1

16.9

9.7
—

9.6
15.1
21.4

23.0

24.3

26.1
2P..7

29.8

32.4
34.2

37.0

37.0
39-7
40.2

12.5

tT
(ms)

63.8

61.7

60.2

60.7

58.6
56.0

53.9
53.9
51-3
49.7
49.2
47.6
47-1
45-5
44.0
40.8
39.8
36.6
35-6
35.6
3/1.2
31.8
29.2
27.1
25.9
24.0
22.4

19.8

16.2

11.0

—

10.8

16.6
20.0

22.2

26.7

tg
(ms)

74.5

71.1

71.0

71.0

70.5

68.4
—
—

63.3
60.7
56.5

—

54-4
53.9
53.4
54.9
52.2
51.7
49.0
48.0
46.4
45.9
43.2
43.3
41.8
40.7
38.6
37.6
36.0
33.9
33.5
31.9
30.3
29:3
28.3
20.^
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145
150
155
160
165
170

175
180

185
190
195
200

205

210

215
220

225

230

235
240
245
250
255
260
'265

270

275
280

285

290
295

300

59.7
59.6
60.6
63.2
62.3
63.2
61.2

64.9
64.2
63.7
65.8
63,2
64.7
66.8
67.3
7
•

66.8
63.4*
65.8*
66.2*
68.3*
71.3*
70.4*
72.5*
'75-5*

7

78.8*
76.7*
78.8*
80.1*
76.8*
80.5*

49.7
50.7
47.2
48.8
50.9

?
50.4
50.5
51.0
53.0
57.1
55.1
57.1
58.2
58.7
58.2
58.0
56.8
58.0
59-7
61.4
62.2
61.6*
63.7*
66.7*

7

70.0*
67-9*
70.0*

71.3*
70.0*

71.7*

12.7

I
12.0

22.7

26.6
29-5

35.7
37.3
38.3
41.0
42.0
42.5
42.0

42.5
42.8
43.5
44.0
41.4
43.8
44.2
46.3
49-3
48.4
50.5
53.5

7
t

56.6

5^.7

56.8
58.1
56.8
56.5

45-5
43.5
40.4
37.8
36.7
34.7
23.7
32.6
30.0
29.5
28.0
23. «
21.2

18.6
17.6
9.8
—

10.5
14.7
16.8
19.8
24.4
23.1
27.8
27.4
29.4

30.0
7

27.0

28.7

33.0

31.0

59.0
5*. 5
5°'.o
56.9
48.7
47.7
48.7
48.2
46.6
46.6
42.5
41.4
41.9
43.5
46.4
37.3
31.5
32.8
32.0
27.4
30.7
29.4
27.4
27.4
23.1

18.9
21.0

19.4
14.7
14.3

13.9
—

Note Data marked with an asterisk has "been calculated from a lower 

t - x curve.
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185
190
195
200

72.6

73.1
73.8
74.7

61.9
^4-5
66.7
68.2

44.6
45-7
45-1
47.2

28.3
28.8
30.4
31.9

17-3
1'3.6
13.8

—
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APPMDIX E

Description of the -vater balance algorithm

El Description of the algorithm

General.

The algorithm has been written in Fortran-4 to perform an annual 

calculation of the water balance within a small catchment. The model 

is a one dimensional black box model and its main features have been 

described in Section 5*3 and Section 6.3. Figures 5«10» 6.4 and 6.5 

summarise many of the essential components of the model.

The ''onteith equation is used to calculate a daily value of 

actual evapotranspiration which is the:i combined with any rainfall 

which has occurred to produce a Tr alue o^ the soil moisture change 

(DELS) for that day. Antecedent soil moisture conditions are used to 

control the calculation of evapotranspiration.

The algorithm produces both graphical and ordinary output. Ex 

amples of the graphical output are included as Figures 6.6 - 6.8. 

The written output prints values for all variables on a daily basis, 

and from this output the various agro-climatological parameters of 

interest, such as growing season length, soil saturation, etc., may 

be ascertained.

Any number of consecutive daily data sets may be submitted. The 

graphical output is produced every two years on a convenient A4 size 

sheet.

It is necessary to assume initial conditions for the various var 

iables such as soil moisture deficit etc.

E2 Algorithm structure 

Main program. 

Certain aspects of the main program are identical to that of the
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evaporation algorithm described in Appendix A. In particular, the 

daily values for the sun's declination and the sun's radius rector, 

have been edited from the program source text which follows.

The main program contains information necessary to present the 

data in the written output on a calendar month basis.

The required initial conditions are set in the main program and 

can be varied as necessary by editing. This is to avoid changing one 

or two lines of data on a data source file which may contain more 

than 3000 lines and is stored remotely.

The main program sets up the required calendar timing, and per 

forms the water balance whose structure may be seen in Figure ^.10. 

Various sub-totals are added to as the program reads through the data 

for one year. At the end of a year, totals are printed and the pro 

gram then returns to read the first card of the next year's data. 

Card 3 of the input sequence which contains the input data conversion 

information is read at the beginning of each subsequent yerr of data.

The program may be started on the first day of any month as 

specified by the first re-ding of card 3.

S T ROUTINE BPLOT.

This routine uses Gino-F and Ginograf routines from the C.A.D.C. 

library to plot the graphical output. The routines are device inde 

pendent and are widely available on most main frame computers. The 

output is described in Section 5-3-

SUBROUTINE TCTALP.

This routine is a subset of the previous routine and plots out 

the annual totals at a position specified by BPLOT.

SUBROUTINE DISCHG.

This routine calculates the quantity of \vater lost daily from 

the groundwater table as seepage. A simple one dimensional daicyian 

relationship is assumed between the hydraulic conductivity of the 

aquifer material and the elevation of the wqter table above the stream 

base level. The value of hydraulic conductivity is assigned within 

the routine. All other variables are passed through from the main 

program. The routine is called each day from the main prograrr. if the 

groundwater level (GLEV) i:: higher than the minimun level



SUBROUTINE UNIT3.

This routine is called each day from the main program and per 

forms the corrections to the daily climate data ac srecified by 

the control options on card 3, or the first card of each subsequent 

years data. The control options are described in the text at the 

beginning of the main program. It follcr.vs therefore, that the input 

data is required to be of a consistent type for one year, or part 

of a year if it is the first or last year included in the data run.

SUBROUTINE DDCV/N.

This routine is called from the main program and distributes 

the calculated value of evapotranspiration (ETA), or the lowest val 

ue of ETA during the dry season (ETADRY) if a zero flux plane is 

present (S/.IS^ 0), between losses from soil moisture (SII^l) or from 

the groundwater level (GLEV) depending upon the value of OLIDI. The 

relationship used is presented graphically in Figure 6.5.

It is anticipate'! that the conditions in thic routine wo^lc. be 

varied under different climatic circumstances. Such changes can be 

readily programmed to this routine.

SUBROUTINE PL:;.

This routine is called daily from the main program and calculates 

a value of evapotranspiration for the day in question. The routine 

also acts as a calling program for various aspects of the calculation.

The Llonteith relationship is used to calculate ETA*
_2 

A value of daily net radiation in \vatts m is returned from the

PJ1DIAT SUBROUTINE.

A value of RS is returned from the RESIST SUBROUTINE.

A value of ZO is returned from the VEG SU7?RCUTT~E.

A value of RA is returned from the ROUGHS SUBROUTINE.

Values of ETA, IGHOYJ and RS are returned to the main program.

SUBROUTINE RADIAT.

This routine has the same structure as the similarly named rout 

ine described in Appendix A and will not be described further here, 

other than to point out that the r:utine can return a value of in 

coming radiation or net radiation for any local! t;- at any Intitule.
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In this way the program aan be UP, ad for envi ronment:-- o^.tr-i le the 

savanna.

SUBROUTINE RESIST.

This routine calculates an assessment of the R3 term in the 

I'onteith equation based upon the soil moisture deficit data available. 

The relationships are based on Equation 5.6 and the information shov;n 

in Figures 6.4 and 6.5.

The relationships are empirical and it is envisaged that further 

developments will permit a refinement of the simple linear changes 

presented here.

SUBROUTINE VEG.

This routine calculates the value of ZO based upon the length 

of the growing season. A maximum value of ZO is alloy/ ed of 110.0, 

correspondin- to a vegetation height of l.lm overall. This value 

is reached a°ter 110 days in which there is sufficient moisture in 

the soil to permit germination and grov/th. The value of IGRC'V rep 

resents the length of the grooving season and is returned from SU3- 

RC"THTE ALE. A minimum value of ZO of 6nr is assumed.

As for the previous routine the relationship described here is 

empirical and further development will produce modifications. How 

ever, the value of ETA is sensitive to ZO and by allowing ZO to in 

crease from an initial srall value, the early wet season conditions 

are better represented.

This routine calculates the value of KA based upon Equation 5-7« 

The value of ZO is returned from SUBROUTINE VEG as described a~bove. 

There is similarly likeljr to be modifications to this routine as the 

method is developed. A value of mean wind speed in metres per second 

is calculated from the daily value of wind run at the climate station.

rT'BROUTINE GROUND.

This routine calculates the value of GFLUX which is used to mod 

ify the net radiation calculated by SUBROUTINE KADIAT. If 100£ of 

the available net radiation v;ere usad to calculate ETA throughout 

the year, an overestimate would be produced.



Eighty percent of net radiation ic used during the wet ne-son

and this falls to 25^ during the dry s ason. The relationship ic

shown graphically in Figures 6.4 and 6.5.

SUBROUTINE ALB.

This routine calculates a daily value of albedo used in 3 T "B- 

ROUTIHE RADIAT which is applicable to the time of ye .r and the soil 

moisture conditions.

During the dry season a value of 0.35 is assumed. As the rains 

begin, this -apidly falls to 0.25. The growth of a luxurient vege 

tation cover during the wet season means that a high proportion of 

net radiation is absorbed by the vegetation surfaces. As the wet 

season progresses, the albedo falls to 0.15 after 70 days and remains 

at this level until the soil moisture deficit approaches the root con 

stant value at the end of the growing season. A gradational change 

back to 0.35 is then allowed. The relationship of albedo to S'H) is 

shown in Figures 6.4 and 6.5.

E3 Specification of variables. 

General.

Throughout the algorithm, individual variable names are given 

which readily allow identification of their purpose. 'There variables 

have been named in Appendix A, then the names have been retained.

The names of arrays have been retained from Appendix A with the 

exception that DAT has been increased in size to 40 elements, and an 

array introduced to store the two years of data for the plotting 

routines GB (731,9) •

The following variables are used.

GLEV Height of the water table.

GLEV!'IT minimum depth to the water table.

GLEVLIX Maximum depth to the water table.

ROOTtI Llaximum value of the root constant.

ROOT Value of the root constant during the grcv;ing
season.

S?-U)1 Soil moisture deficit beneath a zero flux plane.

SMD2 Soil moisture deficit above a ^ero flux plane,

rns Soil moisture store.
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ST'DAI

S:.0)A2

SL!DG1

SKDG2

SY

S1SA1

SKSA2
irnt' Y J/! :A

IGR07J

SEEP 

RSCH

DELS 

ETA

ETADRY

HC01TD 

FALL

SVP 

GFLUX

ST 'D value at which the albedo begins to change

SI.'D value at \vhich al"bedo change is completed.

SO value at -.vhich ground flux begins to change,

S!ID value at which ground flux completes change,

Specific yield.

SI'S value at -vhich albedo begins to change.

'-"S value at which albedo change is co:-'V,leted.

Maximum value of SLID.

Length of growing season.

Quantity of seepage.

Quantity of recharge.

Quantity of runoff.

Change in soil moisture.

Value of evapotranspiration.

Ilinimum dry season value of ETA*

Value of hydraulic head.

Value of hydraulic conductivity.

Daily reduction in level of water table.

Value of SI.ID at which short rooted vegetation 
wilts.

Saturated vapour pressure.

Proportion of net radiation lost to processes 
other than ITA.

E4 Listing of the Fortran 4 program.

A listing of the program is given below,
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D J.'F'is I (iJ ^ A T UO> ,Y(
D I vr \SIClv ;'0,7w(12)
DIME US 1 CN «? AM (13? ) ,

LT

Ar>? ( 137 ) ,P At. 5 M •;>.

S ^02 = 0 .0

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SY=0.03
GLEVMN=175Q.O
GLtVh*=38CC.C

CALL
CALL

PROGRAM CALCULATES A WATEP PAL *,"(* = +4 + + *** + + + + +

BASED UFHN i'OMEITH E.QUATION1 TO CALCULATE ACTUAL ET/, AND T"F. JS?E 
OF A SOIL i-iOISTU^F POTENTIAL i^OuEL D^SC^I-?D IN THE fEVT* +

AMY CONSECUTIVE D&ILY ^ECO»rS "AY FF

t' PLOTS A PALACE AFTE C

IT 15 NECESSARY TO SET INITIAL 
GLE V^GLEVKM^GLEVHX

YE;RS

5 ; L /' r;C£ „ V 17

ROOT* IS T^E rAXIhUK1 VALUE OF TME POOT CO^S T AMT + •»••»• 
SY IS THE VALUE OF SPECIFIC YEILO +*4>*

THE PPCGPA r' ^AS P E EN CONSTRUCTED SO T U AT ANY OF THE ;S5Ur.EO 
PELATICNSHI PS N!AY BE SIMPLY CHANGED IN T4 E S U E ̂ D CU TI tJt S + **

DESCP1PT10N OF THE DATA CONTROL

CAPD 1 (I?,I4,6A6)
13 f'O. OF RECORDS
IA VEAR IN UMICH TO STA^T DATA 
6A6 STATION NAME - UP TU 76 C

CAPD
THF STATION ELEVATI OM, AVcR AGE A-^PIEN^ 
L A T I T U D E ( D E C- P E E S ) , V AL U E S OF <\ A M r. = A 
CONSTANTS V(1),Y(9) IX TH FI^ST SFVEM

S U D c (
P r N rt A

( 6 1 1 , 1 I ? , 1 I 1 )
THIS CA D D DETE&riNS X 
A 1 IN C(JL 1 CONVERTS 
A 1 IN COL 2 COUVERTS
- 1 I r! COL 7 COi^VE^T"
- ."i T f ; C 01 S 1-5 G I V f "

TU^E r; F 3 A T •' IM C U~ 
F^^E^'^^ITF T '« f F -. T I r- 
:'ILE r TO < I L o . , F 1 F ^ 
IfjC^L 1- T) "••
D r r ' L! L " V- L I' " : F .^ w T
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'1SA? = 3 
M D f; * = R
r.DA 2 = 3
nDP?=S

WRITE (6,4 
AC-CO Fo&i'.ATMH 

WR ITE ( 6,4
4001 F o P r a T ( 1 H

400

1

1

1
C
c
c
c

1 ?.Q

200

WRITE (6,4
2 FORMAT d u

DO 10 1=1
I F ( I . G T . 1
DFCLI NCI)
RADIUS ( I)
GO TO 1C

1 IFCI .G.T.2
DECLINC I)
R A D I U S ( I )
GO TO 1C

2 DECL I IH I)
RADIUS (I)

0 CONTINUE

WRITE OUT
W»ITE (6,1

u FORMAT ( 1M
111X,17HST
21 1X,24H fly
3 11X,16HS

WRITE (6,2
'J FORM AT MM

1 1X,3HY1
2 1X,3«Y5=
3 3HY9=,F

cop'*? U . 0 
f T A 2

i:.-;- rl ) SMD1 ,SKD2,Sr'DP1 , 
1,5X,26HSOIL i'OISTUPE 
r,C1) Sf'S,Sl'OAl ,Sr.DA2, 
C,10X,24HSOIL MCISTUR

0,15X,25HGROUNDwAT£P
,366
33) GO TO 11
= DEC1(I)

66) GO TC 12 
=DEC2(I-133) 
=PAD2(I-133)

-DEC3(1-266)

D 
S'-'S

32
F E
A1
T °

?0

f *
CI
,5
i- f1

NS

M-D

T
MS
D

£

l-:x
DA
i 2

y

DA

TA

A/

TA

/

(

/

(

5

(

5x

*,

5X

c; r •

5 F

,6

F

1

F

10

K 
*. " •

1:

.^)
~ ) )
.?)

HEADINGS
,1000) (NAhE (I ) ,1=1 ,6) ,ELEV,A!^PR5 
1H 0,1 OX, 2 ".H CLIMATE STATIOM NA^E/1 
STATION ELEVATION,3X,F6.?,2X,6MME 
flVE D AGt Af'PIENT PR E S3 U» E ,? X , F x . ? / 
HSTATION L ATITUuE ,2X,F6.2)

G) A,» ,(Y (I) ,1=1,9) 
"0,16HPENf.APJ CONSTAuTS/1)',2wA=,':

,AL-. 
?X,6 
TPE5

C 
C

3

3

A
60 C

S
E
R
P

E
R

I

E
D
L
w

001 F
W

)U2 F
13
Z6

C
D

L
0
E
T
F

0

=> E
NT
E
A
C
F

p
D
H
F

D
I

0 =
NU

<-
w

E
» 2

T = O.G
P
T
T

TAT =
A
rt

c
T
0
^
0

C)
P
o
M

W

(1
C

I
A

N
U

T
N

AD"

~

I
P
j
p
S
A

1
M
T
".
T

M

r,
L
1
->
c

7

o
c
A

F
;

s
•^

z.

Y =
= 0
= 0
0.
= c
T =
Y =

K
f .: T
(6
TC
( 6
T (

^4
E D

K
I

r • 5
.C
„
C
»

I
C
=
M

1

1
y
f'

J
r

G

0
C
•

L
(

->

M

^

H

/

,
=

1

OUNT-M
5
4,1?
K)
r-CD f,N'ArECK),JvtAR
0, VJX x fiF^5X ,14)
C.C'2 )
C,9X,4H<?/- IN,5V,3WETA,4V,4MSV,[,1,
4 H G I. EV,4y,4MPh CH,4/,4Mi-')FF,W,r.

3 X , c . H r- F L U X , 6 X , ? * c c )
1 , L '
,4 ,

: >V
' ; r, ~ ^ X 

4 v u '•
t L 3 , " X 

- v
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?U t- AT( I )=C.O
"FAD (5,50-: > T DAY, (DAT (I ) ,1 = 1 ,o 

5 L"'j f 0° K A T ( 1 7 , ? X , 3 F 5 . 0 , F 7 . J , S F 5 . D

C 
C 
C

u
C

C 
C

J C
CALL I!MTS(DAT,Y,AMPPPS,L1,L?,L3,L5,L6,L7)

I F (IPP Cw.LT.5 .no .I^
PI- K=(1 .C-0.25 ) /60 .0
AIGPOV'=FLOAT(IGPOW)
P 0 OT F = A I P R 0 W * R K R -»- f . 2 5
ROOT=RCOTM*R'>OTF
GO TO 67
POOT=PCOTtt
CONTINUE

. r,7.6C ) <"- 0 TO 6

BALANCE CAL STARTS H £ P E *-»-+4 + -H- + -»-+-»--»- + -».-»--»-+ + -»--»-+-»--t- +

PECM = t.: L
SEEP=C.C
POFF=C .C
IF(GLE V.LT.GLEVMX) CALL D I SCHp ( GL£ V ,G LE V?<iX , S c E P , S Y)
I F (S;«S . GT. n .1 ) G<> TO 30

1Sr,S,S? SA1 ,Sf S A2,Sf'Dl ,Sf DG1 ,Sf;DG2,5 :iD P 1 , S " D A ? ,P 00 T ,1 r-' OW , 
2L5,ALREDO) 

I F (DAT ( 7.) .LT.C.1 ) tTAD°Y=ETA

ETADP v = ArIr-i1(ETADPY,ETA) 
COMPUTE SOIL ,>10I£TU P E BALANCE

P 
G

41 I 
P 
S

42 C 
I 
G 
G

IF (D 
I P ( S 

FCH 
O T 
* (( 
ECH
! i D 1 
ONT 
F(( 
LEV 
O T

ELS.LT. ;.tO GO TO 4^
M D 1 .P. T . 0 . U ) GO TO A 1
=DELS
n 42
ShD1-DELS) .GT.":. ;:) GO TO 43
=DELS-SKD1
= T . 0
INUE
fiLEV-RECH/SY) .LT.GLEV^N) GO
=GLEV-RECH/SY
O 25
=PECH-r GLEV-GLEVhN) *5Y

GO TO ?5 
43 IF (S''.D1 . G0 To

T g IS COKDITIOM SET3 UP A ZFPO

S r^Dl =SKD1-DFI S 
GO T r » 25

45

C 
C 
C

GO TO ^5 
4 u CALL D D f ̂  N ( D E L 7 , G L E V , S Y , S '. J 1 , R 0 0 T y. , 3 " D :' X „ ~ /, 5 , :. -. D -5 1 „ S ' ^ A 7. )

GO T 0 2 S

COnPL r TLS ALL C '»N D I T I U'ITMuU r A 7
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c
c 
c

c 
c 
c

c 
c 
c

c 
c 
c

C^NTI^UP

EVAPORATION CONTlKUfcS ^EiJEATH T u - 7 K a (} FLUX PLArF AT A 
VALUE FCIJJVALENT TO THE -VE POTENTIAL E~TA?LIS U ED.

CALL fDCWrK E7ADRY,Gl_EV,SY , S''D1 ,* >DT",S^DSX , S M £ , Sr'DAl , S^.DA? ) 

".01 STUPE PEDI ST<?I D LIT ED TO BALANCE 3 r P 1

1S 
2L 

D 
I 
S 
5 
I 
I 
G

S
S
G

52 C
S
S
I 
I

ALL 
!-S, 
5,A, 
FLS 
F (D
r* s - 
MD?
F (S

F(S
0 T

1-1D1 
r.S = 
0 T 
ONT 
f* i> =
** ft X

F(S 
F(S

r E h f E T A ,
? ' S M ,Sr$ A2^Sf'D2 ,5.''.DGi x SI'DG 2 , S ,", D A1
L? ECO)
=DAT(3)-ETA
ELS.LT.O.U) GO TO 5?
Si'S^DELS
=SfD2-DELS
.-1DP.LE.C.O) S".u2 = v .i.
''.S.C-E.Si'DI) GO TO 53
0 ?S
= S", S-SMD1

o.c
0 4? 
I U U F
S :* S * D. F_ L S 
= 5T2-DPLS
-5.LT.H.C) 3rS=C.G
i'5;.Eo.o.:n ) s:/ D2 = r.o

7 - 1 > A 2 , «? o o T , I P = ^ W

NO D p. CHA*KE AND 5hD2 S="D1

I F(S,'D?.GT. Sf D1 ) GO TO 54
GO T^ 25 

54 S r* D 2 = C . C
S'*.S = O.G 

25 CONTINUE

BALANCE CALCULATION ENDS HERE 4- 4- 4- 4- 4- 4-

^F (K 
G? (* 
GP (K 
GP (K
r Q / ix
I" P V ^

KS (K

GR (K 
GF (^
GP (^ 
SEt«^ 
» r CH 
C OFF
ET*T
RAIN
DAT( 
D AT( 
D 'T(

OAK 
.-) *T( 
n :T(

on

OU 
OU 
OU 
"U 
OU 
OU 
OU 
T =
r —

= ETA 
=DAT(3) 
= f- L E V 
= ̂ ECN

= Si'S

= SEEP

21 
?/=•

NT,V
M,? 
NT, 7 
NT,4
NT,5 
r- , 6
NT, 7
NT,8
NT, 9
SEEPT+SEEP
P E C M T + ° E C w
p^pp J4-P rjp F
T^T+ET^
P A J N T •»• C A T ( 7- >
) = P T A,
) =5 'D1
) = S •' D ~<
)=DEL b

) = f- L E V
•> - c r - u
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DAT (27) = <?OF F 
D^T(?9)=SF. EP

C
C W0ITF OUT OAT* PPODUCED *v -ALANCE

WPITF (6, 3 COO IDAY,DAT(3),OAT<T),I = 2:, 7-') 
3 CO U F OP • < A T (1 V , I 3 ,2 X , U F * . 2 ) 

14 CONTINUE 
13 CONTINUE

WP1TE (6,5COO) IYEAR
W&1TE (6,50.01) ETAT,»Arrf7,PECWT,P^FFT,SEEPT

5000 F OF r*ATMHC«,25X,15H TOTALS FO& Ytft',5X,I4)
5001 FORhAT MMG,1SX^24HTOTAL t V AFOJP A>» S P I D ATI W rJ # 5 v , f 1 u . 1 /

F ALL,5X ,F1,.j.1 /

416X / 13HTOTAL SEEPAGE, 5V,F1 C .1)
C

IFdCCUNT.EO.?) CALL BPLOT(r?,Jc 
I F (r-'-JColJNT)23, 23,24 

24 L4=1
I YE A o = I YEAR +1
p YEAP=FLOAT(I YEAR)
P Y = P VE AP/4.C
I PY=IF ix(RY)
»IPY=FLCAT(!PY)
I F ((PY-PIPY) .LT.1 .CE-5) r,n TO 21
r-'OiJTH (2) = 2P
GO TO 22 

21 10NT* (2) = ?Q 
?2 CO NT I uUF.

GO TV) 2^ 
23 CONTINUE

CALL PEV'END
STOP
END

SVP(T) , ., __^*r* T ;-?) **i*-.-. 776

PETU p M
END

DEL(T)

1 1 . 5 5 * ( T /5 . C -3 . C ) + ^ . 4 ? 7 ) / 5 . Q
P ETU D ro
E ND
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r- 1(1) 
DO 14 1=1 ,73b
fiP(I)=GMj)*r:9(I)
I Y F A P = I v f ; p -1
CALL CH.asi7(?.0,?.5)
CALL CHAIN'KI YEAP,4)
C*LL PCVT^2(155 .* ,22 .5)

CALL CHA1MKI YEAR ,4)
CALL CHASI7(1 .5,2 .0)
CALL AXIPOS(1,25.C,?C .0 ,250 .U,1)
CALL AVISCA(S,24,0.3,730.0,1>
CALL A.XILAB(IMOL,12,3,1 ,21 ,0,-1)
CALL AXIS C A <"<,146,T.0,730.0,1) 
CALL AXICP-A (1,1,1)
CALL AXISCA(S,730,0.0,731 .0,1)
CALL AXJPOS(1,25.C,30.C,50.0,2)
CALL AXISCA(3,s,O.G,PU.C,2)
CALL AXIDPA(-2,-1,2) 

C
C PL 07 PAIrJP A Ll+-|- + + -»++••• + •'• + + ••• + + + 
C

CALL F P A H I S ( G 2 , 7 3 * , "' . 1 )
CALL AXI^'SH ,275 .u,3«'.-_:, 5 v .,-!,? )
CALL AXISCA(3,10,0.0,10. 0,2)
C ILL >-XIDPA (-2,1 ,2) 

C
C PLCT FTn + + + +^ + + + + + ++ + + + + *4.4 + + 
C

CALL PE^.SEL (2,0,C)
CALL ^PA 3 OL(DAY,G1,73;»)
CALL PErSEL(1,0, r )
IYtA D =IYEAP-1
X=3C .C)

C^LL TT. 7ALP(V,Y,PAINT1,»EC^T1 / RO |: ': T1,SEF.

X = 156 .C
V =6H.O
CALL T07ALPCX,Y,»MNT2,P£CH72, D OPFT?,SEE?l2,FT/iT?,IYEAP)

CALL rGVT02 (3 J.C»,75.!"O
C ALL C«ASI7(2.5 ,3 .5)
CALL CHAHOL(1UMPATNFALL*.)
CALL ;'CVT02 ( 7.5 .C X ?2.C)
CALL C^ASI7(1.5,2.0)
CALL C^ A^-'OL (1 rJM(fn-/D AY) * . )
CALL [-CV702 (225 . r',75 .0)
CALL CHASI7 (2 .^,3.5)
CALL C^AMOL (?OHEVA?C'7R A fJ S ? I c AT I OM * .)
CiLL iM'.VTu? (?45 .0,72 .0)
CALL C H * 3 I 7 < 1 . 5 , 2 .'" J)
C/'LL CWAM«»L(1v«w(' : • / 0 A Y ) * . )

CALL r--f \/Tr>? (U .r-,17^ .0)
C ' L L C l - J T- I 7 (•> . r- , 7 . 5 >
C •' L L C >- - u 0 L ( ? .' ^ 3 • • I L v »' I : T ' J F '•' i> f- ~ - * . )
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CALL ! OVT02 00. C ,174 .ID
CALL Cw/k w OL(1*HR<jPT CONSTANT = *.)
CALL P.CVT02 (135.0,174. j)
j »OOT=I fix(POOT)
CALL CWAJr'T(iPoOT,3)
CALL "CVTO?(180.C',174 .0)
CALL C"ftWCL(18HSPECIFIC YEILD = *.)
CALL I'CVTO? (228.0,174.0)
CALL C"AFix(SY,5,3)
CALL CHASI7 (1.5,2.0)
CALL AXIPOSC1,25.C,114.0,250.:,1)
CALL 4XISCA(3, 365,0.0,73U. f),1)
CALL AXIDPA(-1,0,1)

CALL AXIPCS(1,25.i.-,114.'; ,18. 1,2)
CALL AXI$CAn,8,f .ij,4U.r,2)
CALL AXIDPA(1,-1,2)

PLOT SEEPAGE DATA-*-***********-*.****

CALL AXIPOSd,275.0,114.0,1*.0,2)
CALL AXISCA(3,8,0.0,40.0,?)
CsLL AXIDPAC-2,-",?)
CALL TP^FOL(DAY,G8,73G)
CALL rCV702(30.0,130.0)
CALL CHASI?(?,5,T.5)
CALL CWAHOLMfrH COMBINED SEEPAGE*.)
CALL f^CVTO? CS5 .0,125 .5)
CALL CHAHOL(1?HAND RUNOFF*.)
CALL CM^SIZ(1 .5,2 .0)
CALL MCVTG2(4C.C,122.0)
CALL CHAHOL(13H(MP-EOUIV .)*.)
CALL HCVT02(3C.:,108.6)
CALL CHASIZ(2.5,3.5)
CALL CHAHOL(13HGPOUNDWATE»*.)
CALL i-'CVT02 (^0.0,104.2)
CALL CMAHOL (12WMYDROGR ARM*.)
CALL CHA5I2 (1 .5,2 .0)
CALL rOVT02(?5.0,101.C)
CALL CHAHOLC14HCM PELOW GL)*.)
CALL r.OVT02 (254.0,108.6)
CALL CWASIZ(2.5,3.5)
CALL CMAMOLdOMPECHAPGE*.)
CALL MOVT02(260.0,105.0)
CALL CHASI7(1.5,2.0)
CALL CHAHOL (6H(f-- A) *.) 

C 
C 
C
C STAPT RCTM IONS **•»• + 
C

CALL
CALL
CALL
c; LL
C ^LL
C ALL
CALL
C ; LL

SHIFT? (25 .0,17-
PCTAT? (1 ,180.0)
AXTPOS (1 ,O.C,0.
M v I 5 C A ( 3 , 1 4 6 , C .
AXJDPA<2,0,1)
A X J P o 3 ( 1 , L .'-.,(.'.
H y]s r l( 7 1? f »'"/

iylh t?A(2,-1,?)

» )

C,250.C,1
0,730 .0,1

r^ -x t^ -i ^ \

Jcu.'r.^)

)
)
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C PLOT 5*'D D^T (^-»- 4-* + -'-* + -»-44 + 4444

CALL r,«?;pOL(DAY,r-5,7?^.)
Y = $f'Dl M3.0
X = FLOAT(IS!,D1 )
CALL GRAi-OV(X,Y)
CALL CHAHCL(<SHSMD1*.) 

C 
C 
C PLOT SI'S DATA + + + + + ++-«- + 4. + + + + + +

CALL PENSEL (2,11,^)
CALL r RAPOL (DAY,P7,7TC)
Y = Sr',Sh + 3.0
X = FLOAT(IS r*S)
CALL ^PAMOV(X,Y) 
CALL CMAHOL (SHSMS*.)

c
CALL PENSEL (1 ,Q,C) 

C 
C PLOT SMD2 D AT A +•»• + •'•+•'••»• + + •••••• + + •*•*
C

CALL G&APOL (DAY, P6, 730)

X = FL-'>AT(IS -.
CALL F»Ar-OV(X A Y)
CALL CH.^WOL d MS--D?*.)

CALL AXIFOSH ,25t'.u,n. j,^5 . r>,2)
CALL AXISCA(^^12,C .0,3C2.C,2)
CALL AXJDRA (-2,1 ,? )
CALL AXIPOS (1 ,".C , 56 .U, 250.^,1)
CALL AXISCA(?,146,u.(',730.C,1)
CALL AXIPOS (1 ,0. n , 56 .G,3C .0,2)
CALL AXISCA(3,12,n.C,6.0,2)
CALL AXIDRA(2,-1 ,2) 

C
C PLOT HYDPOGPAPH D A TA* + *•»••»••»••»•+ + + •»• 
C

CALL FPAPOL(^AY,r?,73v) 
C

CALL AXIPOS(1,25C.Q,56.C,25.C,Z)
CALL AXISCA(3,?,C.G,40.C,2)
CALL AXIDPA(-2, 1 ,2)
CALL AXIPOS(1,G.':,56.0,25:.(:,1)
CALL AXISCA(5 ,730,0.0,730 .C,1 ) 

C
C PLOT PECHAPC-E DATA AS H I S TOPR A " + 
C

CALL fPAMls C--4, 730,0 .1 )

CALL PCTMT 7 (1 ,-18r..".)
CALL SHIFT? (-25 .0, -17 L. r«)
CALL PICCLE
i c ou n T = •:
KOUNT=C
DO 1 1 1=1,731
DO 11 J=1,9 
P* (I , J)= n - r>

p r T i - p r j
E rD
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CALL -CVT02(X,Y)
CALL CHiSI? (1 .5,?. 5)
CALL CW/IHOL (12HTOTAL S FOP* )
Y = Y-3 .0
xi=x-»-7 .C
CALL f,CVT02 (V 1,Y)
CALL C"AINT(I YEAP,4)
Y = Y-2 .5
CALL CMASI7 (1 .25,1 .75)
CALL ^OVT02(X,Y)
CALL CHflHOL (KMRAI N = *.)
X1=X+1G.O
CALL MCVT02(X1,Y)
CALL CMAFIX (P,6,1 )
Y=Y-2.5
CALL »-cvT02(x,Y)
CALL CHAHCL (7METP =*.)
X1=X*8 .75
CALL hOVTO? (Xl^Y)
CALL CH^FIX(P,6,1)
Y = Y-2 .5
C^LL f-.rVTO? (X ^Y)
CALL CM/iHOL (1?HPECHAPGE =*.)

CALL ^CVr G2(X1,Y) 
CALL C^*PlX(tt,6 x 1)

Y=Y-2.5 
CALL ^OVTO? <X,Y)
CALL CH^HCL d owpur.'OF F =*.)
X1=x + 12 .5
CALL r.UVT02 (XI ,Y)
C/>LL CH^FIX (P0,6,1 )
Y=Y-2.5
CALL n<jvT02(X,Y)
CALL CHAHOL (1 1WSEEPAGE =*.)
X1=X-H3.75
CALL MCVT02(X1,Y)
CALL CMAFIX (S,6,1 )

END

SUBROUTINE OISCHG 
C
C ROUTINE CALCULATES QUANTITY OF D^ILV SEE ^ *G E *•»••»••»• 
C 
C "COND = HYOO^ULIC CONDUCTIVITY OF SOIL ("/D.tY)

= (GLEVMX-GLEV) /10GO .0 
CALCULATE FL'»W IM f:**3 THPOUGH S')IL^ FO D A UNIT i P -. A 
FLOW=HCCND*DELH
F ALL= FLCW/SY*I ro n .0
GLEV^LfcV + F^LL
SFEP=F ALL-SY
r P TU f- ^ l
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1U

H

12

11

13
15

L I .YE K
I F (L1
I F (LI 
I F (L? 
I F(L3 
DAK A 
I F (L? 
D A T ( 1 
DAK 1 
I F (L7 
I F (L6 
CONT I 
I F (L6 
DAK 1 
CO NT! 
DAK1 
I F <L7 
COKPU 
EW = SV 
IFCO A 
DAK1 
RO TO 
DATC1 
GO TO
DATC1 
CUNT I 
D A T ( 1

PETU D 
E M D

UTTNE 
S I (. N D 
. E 0 . 1 )
. E 0 . 1 )
. E 0 . 1 ) 
.E0.1)
) =DAK 
. Ei.C) 
1 )=DAT 
)=C.O 
. E <* . 0 ) 
. E0.1 . 
NUF. 
.E0.1)
1 )=(DA
NUE
2)=SVP 
.EO.H) 
TE VAL 
PCDAK 
T(6).L
3)=EU- 

15
3)=EW-

15
? ) = ( D A 
NUE 
9)=DAT

A T ( 1 ) = ( D A T ( 1 ) -3 2 . " ) *
A T ( 2 ) = ( D A T ( 2 ) - :« 2 . .: ) *
T ( A ) = D A T ( A ) * 1 . M 2 9
AT(3>) = DAT(3)*25 .A 
*Y(9)
O TO 10 
)

5 . ~ / 5 
5 . 3 / <?

O TO 1 A 
D.L7 .EQ .1)

D 
A)

P 
(1

G
AN

GO JO 12 
T( 1)*

(D 
P

UE 
6) 
T. 
7.

= (DAT(M-32 . 0 ) * 5 . C / 9

*U .5

AT(11)) 
O TO 13

OF ED FROM WET BUL? 
)
O.O) GO TO 11 
99E-A*Af',RPPS*(DAT(11

DATA

) -DAT (6) ) 

2GE-£*Af!FPP$*(DA.T<11> -DAT (5) )7.

T ( 6 ) * D A T ( 1 2 ) ) / 1 U . 0

(13)/D ATC12) *1CO.O

1D E CL I N , SI' S , Sh 3 A 1 , S hS A 2 , S;' D , S i' DG 1 , S n DG 2 , S i-'. D ^ 1 , 
2L5, ALBEDO) 

DIMENSICN YCO) ,»?ADIUS(366) ,D

r, D ^ 2 , » on T , I G » n v

SUFPOUTINE CO^PUT^S THE VALUE OP 
ACTUAL EVAPOTPAi\ISPI»ATK):J

-A7E067 FACT =

DELT A=DEL(OAT(11 ) ) 
IF(L5.EQ.O) GO TO 1C 
OADNFT=DAT(9)/(59.C*7FACT) 
PO TO 12

1C CALL PADIAT(DAT,»ADIUS,DECLIN,ALAT,SrD,PAD'JET,A,P,SS-,fPl 
1SMDGZ,SI'DA1,SMDA?,SMS,IDAY,Y,SMSA1,SMSA2,IP»<>W,ALPED^>

12 PMOCP=1 .2*1 .ni E03
CALL OESIST(DAT x POOT,S:*DAl,ShDA?^ 3 ,I? 
CALL VEP(IGPnw,7D 
CALL PCUGHS<DAT,o*,70)

, S r, D )

FACT1=^.6AEOA*OELTA/X

-5

E TA= ° A D Nt T 
D ATC ? ) =IG 
f) M ( 3 ? ) = L 3
R F T U ' ">
F
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, $

C 
C 
C 
C

SUL-P OUTIUE Dr)PU'N(FTA,GLFV,SY,S"n,:?OOT>' , 3 -, i< :\ ,r
F-TA= ARS(ETA)
ROOTA=8C.O
I F (ROOTA.GE .(ROOTI -35.0)) P Or>T A = * 0 OTl',-3 ? . C

ROUTINR DISTPI°UTES ETA BETWEEN SOIL MOISTJRE LCSS
EVAPORATION FPOII THE GR OUN'DW ATE « T A^LE ++*++++++

'. 1 , 3-0

I F(S r'D .GT.S^Df'X .OP .Sf'.S.GT. ~'. 
I F (SKD .LT.ROOTA) GO TO 12 
I F (Sf<D.L7.ShDA1 )G(> TO U 
I F (S -D .LT.Sr.DA2) GO TO 13

G:> TO 1 o

GO TO 2C
13 Bn=(0.85-C.3S )/(sr-DA2-5f-DAl 

F ALL=(S^D-SMDA1 ) *PM*0.35 
GO TO 23

14 Cfi = C..35/(Sf-DA1-POOTA>
F ALL= ( SPD-ROOTA)*C^ 

20 GLEV^GLEV-»-F ALL*ETA/SY
SMD=SMO*(1.0-FALL)*ETA
GO TO 11 

12 Sf'D = S[ D-^ETA.
GO TO 11

13 GLEV = GLEV-»-ETA/SY

C
c
c
c
r

11 I

P

E

S
D

P
0
r

I
I
G
P
G

10 I
B
P
G

14 P
11 P

I
I
A
P
G

12 P
r,

17; 0
1 f ; P

I
R

F(S
ETU
ND

U
I

U
F

R
f":

P

01

F

F
h
L
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M

L
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L
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F
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h
H
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(

p
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P
T
S

I
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= F
= 2

(
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—
=
(
(
=
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-

=
=
(
T 

1

T
S
2
(
T
0
5
S
S
5
(
T
0
T
S
p
D
1)

P

0
N

0
H

N

u
s

s
F

TU

P
P
L

R
p
0

»

T
I

E

p

C
C

GT.

INE
CfJ

OF
RS
E D

S

D

T
E

W.LT
W.G

AT (I
00.
0
1.
( • ,

5
S
0

*

C
M
K
C
C
0
•

0
(}
c
f

p

D
G
M

G
•

D
D
ur-

0

0•»
T
r

1
•

•

D
1

0
•

•

0
D
2

2
0
P
(

C-G
1
LT.
C/(
-60
1

LT.
GT.
.C/
-S"

r
r-

.(.:
*-'-»• P
7 ) .

T
G
M

PE
AT

TH
EP
FE

.1

.5

SI ST(DAT,POOT,Sfi DAl,St'!DA2,PS ,1 GROW, Sf-D)
(40)

IS SUPROUTINE IS TO *H*t AN ASSESSMENT
", IN THE MONTEITH =*3UATION =ASED CM' SML
CIT DATA

) G C TO 1 f ;»
0 ) GO TO 10

POW)*(2QO.C/50.0>

60.
1
•

S
S
(
D

L
G

*" r" 
i^ i

0)

ND
h,D
S!i

A1

T.

0) f^O TO 14
.C-60.0)
*BM

A1 ) GO TO 1 ?
A2) GO TO 13
DA2-SttDA1>
) •^A''1

S. J . ',< ) F S = «-• . '.^



S U c P 'H 1 T . ,-> i „ T < & ; j , c •' 0 I U S , D t CL I rJ , , ;.< E T ,

D I "'P N S I C N D fi T ( 4 : > , P A D I U S ( x *6 ) , D - C L I N (~- 6 6 ) , M 0 )

SUBPOUTIUE CALCULATFS T U E &ADIAn;)rJ -ALANCE AT SITE 4S f^ODIFIED PY A VA^YINT, ALBEDO AND V^DYI OF MEAT LOSS TO THE PPOUND. EOTW MODIFICATIONS
E 'fPJoiCA I. .***•*• + **•*• + ••• 
DAT(1 ; i)=PADIUS(JDAY) 
D AT( 18)=DECLI NCIDAY)
X=

COMPUTE INCOMING PAD I ATI ON

D ATM ?) =1 .1579 E^/CX*^. -;.«:* (DAT (1 M) **?)) *
HMP*?IN(ffLAT)*SIN(DAT(18))-»-COSCRLAT)* 
2C05(D AT (18) )*SIN(HR) )

COMPUTE BACK PADIATION

-')
1(Y(4)*Y(5)*DAT(7)/DAT(15))* 
2(v(2)-Y(3)*sORT(DtT(13)))*Y(1)

CALL GPCIJND ( S f.D , S I D^ 1 , S M DC,? ,r FL l!< )
CALL A L P ( S W D (• 1 , S .' D A? , S " D , I RP OW , ; L ? :,* , S " -5 , S : S A 1 , S J S A

R A D N E T = ( P A D NF T-0 A T ( 1 6 ) ) * ( 1 . 0 -6 F L J X )
D >T(3Q)=AL«EDO
DATC31 ) =GFLUX
PETUPf,1
END

SURPOUTINE GROUND (SMD,Si J| DGl ,SMDr-?,Ff LUX )

SUPPQUTINE CALCULATES THE PERCENTAGE OF NET Pa.DIATIOr' J 
FOP HEATING THE GPQUND. IT IS ASSUMED TM;T iHIS CAN =E 
AS HIGH AS 757 F0» VE»Y DRY Sf)IL CONDITIONS. 3 •-> D G 1 ' N D 
SJ.DG2 APE VALUES OF S.'D FETWEE'J WMJCM S?LUX CHJKGE*, 
BETWEEN 20 AND 7 5 •/ . * -»• -n- -»- -n- +

A M= (0 . 7 5-0 . ?0 > / f S fl DP 2- S h D P1 )
I F (S'-D.GF.Sf -DG2) GO TO 11 
IF(Sf=lD.LE.SMDG1) PO TO 1- 
G FLUX= (S^D-SMDG1 ) * AM-»-G . ? I' 
GO TO 12

GO TO 12 
10 G FLUX = C .1 
12 P E TU P M
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SU5 D Oi.iT!ht AL D ( Sr, OA1 , S'* D A 2' , Sh •> „ I ~ ? u w , A L J • r- o , S I S , 5 :• S 4 1 , S " S 1 2 )

S U o r ; c £ T :, r. L j c h r>
s" c fi iJ i s: s -v o j r L

C
c
c
c

S u P D o
F I fJDI

I=v

I F (S*
I M S I'l
I F ( S f 4.
A r 1 = (
ALPt D
I P P 0 W
1=1+1
GO TO

1 4 ALBE D
i r- R o w
1 = 1+1
GO TO

10 I F ( S ^
15 I F (AL

ALBED
1=1+1
I F (AL
I <^ow
GH jo

11 A''?=(
ALRE 0
I G P 0 w
1=1*1

15 I M I .
»ETU

END

LIT Jrjfc
nr- live

S .fT.S
D .GT.S
n .LT.S
J ."^5-0
0=(SMO
— r

1?
^ - r . 3 5
= 0

13
S .LT.S
PEDO.G
o = ALBE

BEDO.L
= iGwnw

1 ^
H .'55-0
0=r.35
= IGPOW

EQ .C)
D N

CALCUL
(>!' ING

hSAl )
I-DA2)
MUA1)
.15) /(
-SWDA1

MS A2)
T.C .25
Do-0.0

T.0.15
+ 1

. Z 5 ) / (
- ( S M S -
+ 1

ALBED 0

iTES THc ALFE
RADIATION, p

GO TO 1';
GO TO U
GO TO 15
Sf.DA?-Sr OA1 )
) *AM1+C.15

GO TO 11
) ALPEDO=C'.25
015

) AL*£DO=".15

S^S A2-S-SA1 )
SMSA1)*AK2

= 0.20

SUBROUTINE VEG(IGROW,7 £j)

ROUTINE CALCULATE? 7C PARAr-ETER ?£Q 
T^t R/i RESISTANCE TEPr=. CALCULATION
GROWING SEASON PEGAN+++++ 
IFCIPPOW.LT.1) G(J TO 10 
70=6 .G+FLOAK IGPOW)
GO TO 11 

1C 7lj=6 . rJ 
11 IFC7n.GT.11C.O) 70=11C.G

END

I'EO F:)H CALCULATION 0 
?ASFD UPON TI^E riNCE

SU R Pi>UT Jr-E PnUGHS ( u^T,

Sl'eP^UTT^'E C'.LCULATES 
RESISTANCE TF_P "•'••»•••••»••'•+••• 
D I, E US I ':r! DA* (40) 
U = c A T ( A ) * 1 3 JO . C t ? . 6 4 P G

NA 'T C

'J)




