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Abstract	
  

The development and availability of more sophisticated techniques for probing the 

local structure of materials has shown the prevalence and significance of poorly 

crystalline and amorphous phases in a wide range of biological processes. Such 

techniques, including pair distribution function analysis (PDF) and solid state nuclear 

magnetic resonance spectroscopy (NMR) have been used in this work to investigate 

the structure and properties of a series of amorphous pyrophosphate phases, of 

biological significance to the formation of natural hard tissue, and their effect on 

modified calcium phosphate cement formulations. 

Following confirmation by lab source powder XRD that an amorphous product had 

indeed been synthesised, elemental analysis was used to confirm the stoichiometry 

was correct. 

PDF analysis showed there to be no order in the system beyond a length scale of 

approximately 8Å and refinement of the partial PDF patterns of analogous crystalline 

phases produced patterns (albeit sharper) with peak positions corresponding to 

those in the patterns produced from the amorphous samples, confirming the 

presence of the desired chemical bonding.  

Unusually for amorphous phases, a high degree of thermal stability has been 

demonstrated, and confirmed by variable temperature powder XRD, where 

crystallisation (and the corresponding appearance of Bragg peaks in the XRD 

pattern) only occurred at temperatures >500oC. Water seemed to play a key role in 

the stability of these phases, as TGA-DTA measurements showed crystallisation 

temperatures to correspond with a stabilisation in the mass of the sample. 
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NMR analysis showed that at the early stages of thermal dehydration, at 

temperatures <250oC, the pyrophosphate units undergo hydrolysis forming hydrogen 

phosphate units which then recombine into pyrophosphate units as more water is 

removed from the samples, which begins to explain why water loss in these samples 

is not immediate but occurs in steps. 

The properties of brushite based cement formulations, modified by the addition of 

these amorphous phases, were investigated. It was found that the amorphous 

materials were indeed able to remain amorphous following the cement setting 

reaction without extensive crystallisation occurring, evident from the quantitative 

diffraction data analysis, but that the strength of these cements was severely 

compromised when compared to standard unmodified brushite cement formed in the 

same way. 
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Chapter	
  1:	
  Introduction	
  

1.1	
   Biomaterials	
  Chemistry	
  

The need for new biomaterials is clear, and described perfectly by L. L. Hench [1]. 

“… As living beings get older, they begin to wear out. Although many factors 

responsible for aging are not understood, the consequences are quite clear. Our 

teeth become painful and must be removed, joints become arthritic, bones become 

fragile and break, the powers of vision and hearing diminish and may be lost, the 

circulatory system shows signs of blockage, and the heart loses control of its vital 

pumping rhythm or its valves become leaky. Tumours appear almost randomly on 

bones, breast skin and vital organs. And, as if these natural processes did not occur 

fast enough, we have achieved an enormous capacity for maiming, crushing, 

breaking and disfiguring the human body with motor vehicles, weapons, and power 

tools or as a result of our participation in sport…” 

The field of biomaterials is very broad, and encompasses both organic and inorganic 

branches of chemistry in the study of polymers, metals, alloys and ceramics to 

replace damaged or diseased material to improve the quality of life for the recipient, 

however this project focuses on applications related to hard tissue replacement. 

1.1.1	
   Hard	
  Tissue	
  Replacement	
  

The two principle examples of hard tissue in humans are bone and teeth. During the 

course of human life, both are subject to the detriment of aging or human activities 

and often need to be repaired or replaced at one time or another.  

Natural bone is a complex hierarchical structure consisting of many different 

components, but in simple terms, can be thought of being made of two parts; a 
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ceramic component based on a carbonated form of hydroxyapatite, the structure of 

hydroxyapatite shown in figure 1.2, and an organic component based on the 

complex polypeptide collagen. 

 

Figure 1.1 - model of the complex structure of bone [2] 
 

In practice, there are many other components to natural bone tissue, including 

enzymes such as alkaline phosphatase which is responsible for the hydrolysis of 

condensed phosphates in the body, and osteoblasts and osteoclasts responsible for 

the building of new bone and the removal of old bone respectively. There are also, 

as indicated in figure 1.1, a complex network of blood vessels running through the 

tissue. 

The ceramic component of natural bone tissue is related to hydroxyapatite (figure 

1.2), a calcium orthophosphate with the general formula Ca10(PO4)6(OH)2. As in 

natural bone, it is often found in substituted forms where phosphate (figure 1.2, 

purple tetrahedral) and hydroxyl (figure 1.2, found in channel sites highlighted with 

red rings) groups can be exchanged for species such as carbonate, sulphate and 

halide ions amongst others. The adaptability of this structure is also evident in the 
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substitution of calcium by other cations, e.g. strontium and sodium, or in the stability 

of vacant sites. A common example is the use of fluoride in the prevention of tooth 

decay.  This is achieved by substitution of hydroxyl groups in dental enamel with 

fluoride through the use of tooth pastes and added fluoride in some domestic water 

supplies. When substituted into the hydroxyapatite structure at the channel OH site 

(highlighted in figure 1.2), the resulting “fluoroapatite” (Ca10(PO4)6F2) renders the 

dental enamel less soluble [3-6].  

 

Figure 1.2 - structure of hydroxyapatite,  
Yellow: Calcium, Purple (Tetrahedra): Phosphate, PO4, Red: Oxygen. Channel 

OH sites circled. 
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1.2	
   Bone	
  Replacement	
  Technology	
  

As described by L. L. Hench in Science [1], bodily parts wear out or become 

diseased or damaged. Bone tissue is no exception to this, indeed, approximately 

160,000 hip and knee replacement operations are performed in the UK alone [7] and 

approximately 2 million patients worldwide undergo some form of bone grafting 

procedure each year [8]. 

1.2.1	
  Joint	
  Replacement	
  -­‐	
  Hips	
  

As one can imagine, there are different types of hip replacement surgery available. 

One of the first distinctions between the different types of joint replacements, is the 

materials from which the artificial joint is made, which includes metals such as 

titanium and alloys of metals such as vanadium and chromium, and ceramic based 

joints. 

An important consideration  is  how the artificial joint is to be held in place. Both 

cemented and cementless systems exist. In a cemented system, a bone cement is 

used to attach the acetabular cup and femoral stem to the natural bone tissue of the 

pelvis and femur respectively. An example of a bone cement is polymethyl 

methacrylate (PMMA), with the structure of monomer methyl methacrylate shown in 

figure 1.3. 

 

Figure 1.3 - Structure of methyl methacrylate 
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There are particular drawbacks to the use of PMMA bone cement. The 

polymerisation reaction is very exothermic which precludes its use as a cement in 

areas of the body close proximity to vital organs without an appropriately adapted 

procedure to limit local heating damage. In addition, the monomer, methyl 

methacrylate, is also extremely cyto-toxic with a LD50 value of approximately 

125ppm [9] by inhalation in humans and so, any surgeon using this cement must 

ensure that the polymerisation reaction has gone to completion. 

One general drawback of all cemented implants is a condition known as debris 

induced osteolysis [10-13]. This is where small particles of the cement or implanted 

bone graft material start to wear away natural bone tissue during the natural 

movement of a joint. Typically, this can be combated by using resorbable bone 

cements which do not remain in the body but are intended to be converted to natural 

bone tissue using the body’s normal biological mechanisms and pathways, or 

cementless systems where a coating on the outside of the join encourages natural 

bone ingrowth into the implant. 

The structure of the implants are also markedly different. A very recently developed 

type of artificial hip, termed the Birmingham Hip or Birmingham Hip Resurfacing [14-

17], consisting of a much smaller implant made of a titanium alloy now being the 

preferred method of replacing a hip than the traditional total hip arthroplasty. 
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Figure 1.4 - Total hip replacement artificial joint [18] 
 

 

Figure 1.5 - Hip resurfacing artificial joint [18] 
 

Figure 1.4 shows the structure of a total hip replacement artificial hip joint and figure 

1.5, the structure of a Birmingham hip resurfacing artificial joint. The major 

advantage of the Birmingham hip resurfacing type joint is the size of the femoral 

stem. In a total hip replacement operation, much more of the natural femoral bone 

must be removed in order to insert the femoral stem of the artificial joint, compared 

to the Birmingham hip resurfacing type joint where the femoral stem is much smaller. 

Total hip resurfacing procedures can be redone should the artificial joint start to wear 

out, as typically they only last 10 – 15 years, where as a total hip replacement cannot 

usually be redone due to the amount of femoral bone tissue that was removed to 

implant the artificial hip in the first place. 
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1.2.2	
  Bone	
  Grafting	
  

Every year, some two million people worldwide undergo some form of bone grafting 

procedure [8] to repair defects due to either disease or injury and as a result, the 

bone graft substitute market is now estimated to be worth around 1 billion USD 

annually [19]. 

There are three main types of natural bone grafting procedures; autografts, allografts 

and xenografts. The use of autologous bone graft, or an autograft, is currently 

considered to be the gold standard in bone grafting. In this procedure, bone tissue is 

taken from the patient’s own body and, after any relevant processing, implanted at 

the defect site [20]. Alternative techniques have been sought however as the 

autografting technique requires a second surgical procedure and leads to tissue 

morbidity at the donor site [7, 21]. A possible alternative is the allograft, where the 

donor tissue is taken from already deceased donors or from patients receiving a hip 

prosthesis. Allografts may be processed to produce specific shapes and sizes for 

particular applications, for example a cortical ring for spinal fusion, or to yield 

particular handling properties to allow easier application. For example demineralised 

bone tissue, which is currently very popular in the US, is generally implanted as a 

mouldable paste [22-24]. However the use of bone tissue from another human can 

cause immunological responses in the recipient and cases have even been reported 

of disease transmission, including diseases such as HIV when knowledge about how 

such diseases are transmitted was poorly understood [25]. To reduce the risk of 

biological infections, deproteinised human bone has been proposed [26-28], in which 

the allograft tissue is heat treated to remove all the organic matter, leaving only the 

mineral component of the bone tissue. 
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Xenograft tissue is, in many ways, a similar technique to allografting, except that the 

bone tissue comes from an animal donor. For example, BioOss [28], is bovine bone 

tissue that has been deproteinized by sintering at over 1000oC. 

As existing methods of bone grafting all possess various drawbacks, much research 

has been conducted into the development of artificial bone grafting materials [29-34]. 

There are a number of desirable properties of an artificial bone graft material. One of 

these is biocompatability which is a difficult term to define. A biocompatible 

material is one that when implanted into the body, behaves in a similar way to the 

natural material which it is replacing, and has an overall beneficial effect on the body. 

The term biocompatibility is often misused to mean that the material will not trigger 

an immunological or toxic effect in the body, however biocompatibility includes the 

performance of a stated function within the body which could include the release of a 

drug. If the drug material is something like a chemotherapy drug for the treatment of 

a cancer, then although the implanted material itself replicates the function of the 

materially occurring material, the drug contained within has a toxic effect on the 

tumour or cancerous cells. Another potentially important property in bone grafts is 

resorbability. This property allows the implanted material to be slowly dissolved 

away over time and replaced with natural tissue, often utilising the implanted 

material’s degradation products as a source of the raw materials to supply the body’s 

own biological pathways. Artificial bone grafting materials are currently under 

investigation to design materials which offer these advantages as well as ease of 

implantation in the form of injectable cements, enhancing the natural bone regrowth 

response and giving no risk of biological infection or immunological response in the 

recipient. 
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Many different materials have been proposed as artificial bone graft substitutes. 

Metals such as tantalum, titanium, iron or magnesium, polymers such as 

polylactides, polyglycolides, polyurethanes and polycaprolactones and ceramics 

such as silicate based glasses, cacium sulphate hemihydrate (CaSO4.½H2O), CSH 

or plaster of paris), and calcium sulphate dehydrate (CaSO4.2H2O, CSD or gypsum) 

and calcium phosphates [33]. Of the many different types of materials that are 

considered for artificial bone substitute, those based on calcium phosphates are the 

most attractive, having been first studied around a century ago [35] and having 

received much interest over the last 40 years or so. Natural bone tissue is 

approximately 60% calcium phosphate, so this is a very obvious choice as a possibly 

biocompatible substitute material. 
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1.3	
   Phosphates	
  

Phosphate materials can be described as either orthophosphates or condensed 

phosphates. Orthophosphates are the simplest and most studied type of 

phosphates. They contain only isolated PO4
3- groups, with cations for charge 

balancing. 

 

Figure 1.6 - Orthophosphate anion 
 

Orthophosphates are found in many structures and find  uses in numerous 

applications. Of particular current significance are their use in hard tissue 

replacement, as exemplified by the previously mentioned hydroxyapatite (figure 1.2) 

and in the development of lithium battery materials (lithium iron phosphate) [36, 37] 

As previous mentioned, the ceramic component of bone is predominantly composed 

of a carbonate substituted hydroxyapatite. Therefore hydroxyapatite and other 

orthophosphate phases offer much potential in hard tissue replacement applications 

[33]. Although hydroxyapatite itself is biocompatible, it is extremely insoluble under 

physiological conditions, meaning that any implants made of hydroxyapatite will 

remain in the patient’s body.  

Tricalcium phosphate (TCP), Ca3(PO4)2, is another example of a calcium 

orthophosphate phase which has been studied as a potential bone replacement 

material. There are two possible polymorphs (α and β), of which β-TCP is the more 
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commonly used. The α polymorph is typically formed from thermal treatment of the β 

polymorph or thermal crystallisation from a suitable amorphous phase and forms 

only a meta-stable structure at room temperature [38]. 

Studies have shown that particles of such non-resorbable implanted bone 

replacements can lead to the wearing down of the natural bone material, particularly 

around the joints and cause debris induced osteolysis [10-13]. 

A potential route to avoid this in some applications is to ensure that any bone 

substitute material does not remain in the body in the long term but is remodelled by 

processes which already take place in the body to repair the defect. Whereas pure 

phase hydroxyapatite does not participate in any such processes on any sort of 

practical time scale, studies have shown that mixtures of this with tricalcium 

phosphate, so called biphasic calcium phosphate cements, can show much better 

cellular responses in vivo [39-41]. β-Ca3(PO4)2 and hydroxyapatite have been 

commonly used as implant materials to repair large bone defects for over 40 years 

[42-44]. Seemingly, these compounds offer a suitable alternative to the autograft or 

allograft. However, resorption is slow, meaning that the implanted material remains 

in the patient’s body for prolonged periods of time, which can lead to other problems 

such as the condition known as debris induced osteolysis [11].  

Brushite CaHPO4.2H2O is another calcium orthophosphate phase with a structure, 

similar to that of hydroxyapatite (structure of brushite shown in figure 1.7). 
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Figure 1.7 - Structure of brushite 
Yellow: Ca2+, Purple: PO4

3-, Red: Oxygen (either as part of a PO4 or a water 
molecule) 

 

Brushite has been shown to be much more soluble under physiological conditions 

than hydroxyapatite and tricalcium phosphate and therefore presents the possibility 

of being resorbable once implanted. However, studies have shown that 

hydroxyapatite is formed as brushite dissolves in vivo [45] which, as already 

mentioned,  is effectively insoluble. This coating of hydroxyapatite effectively stops 

any further resorption. However, additives in the brushite based cements, such as 

magnesium containing compounds [46], can be used to prevent this. It has been 

shown that magnesium ions present in the cement bind to newly forming 

hydroxyapatite crystals preventing further crystal growth and enabling the more 

desirable resorption processes to occur more fully. 

Brushite based calcium phosphate cements can be formed in a number of ways. 
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Ca(H2PO4)2.H2O + Ca3(PO4)2 + 7 H2O à  4 CaHPO4.2H2O 

Equation 1.1 
 

The room temperature reaction between monocalcium phosphate monohydrate 

(MCPM, Ca(H2PO4)2.H2O) and beta tricalcium phosphate (β-TCP, Ca3(PO4)2) and 

water at room temperature and pressure forms brushite as in equation 1.1 and can 

be thought of as a cementing type reaction as it involves mixing solid components 

with water to form a paste which then sets hard forming a new phase. 

Pyrophosphates are the simplest of the condensed phosphates and are formed 

during a condensation reaction between two orthophosphates, often in the presence 

of protons. This reaction forms a P-O-P linkage, the characteristic bonding motif of 

condensed phosphates, and expels water, the chemical reaction for which is shown 

in figure 1.8. 

 

Figure 1.8 - Condensation reaction between two orthophosphates forming a 
pyrophosphate 

 

Pyrophosphate is a very important molecule in vivo. Many biological processes vital 

to the healthy function of the body rely on this species. For example, the hydrolysis 

of pyrophosphate anions produced during the conversion of adenosine triphosphate 

to adenosine monophosphate, a reaction couple of respiration, effectively drives the 

equilibrium of this reaction forwards and renders it irreversible. Enzymes exist, 
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alkaline phosphatase for example, that can cleave the P-O-P linkage in a 

pyrophosphate forming orthophosphates, during the bone resorption and reformation 

processes.  

Conversely, polymorphs of calcium pyrophosphate, particularly hydrated calcium 

pyrophosphates, have been identified as being the cause of pseudo-gout when they 

build up in large amounts in the joints and certain internal organs such as the spleen 

[47-52]. 

The mechanism for bone mineralisation involves many enzymes. One vital enzyme 

involved in the process is tissue non-specific alkaline phosphatise (TNAP) [53]. This 

enzyme hydrolyses pyrophosphate ions, which are themselves an inhibitor to bone 

calcification, forming phosphate ions. Studies have shown that people who have low 

levels of pyrophosphate generating enzyme NPP1 demonstrate soft tissue 

calcification, and that when levels of this and TNAP are elevated in cultured 

specimens, osteoblast calcification increased [54].  

A related structure to the pyrophosphate, the bisphosphonate (figure 1.9), are used 

in the treatment of osteoporosis as they have been found to interrupt the bone 

resorption process and therefore increase the bone density of the patient. 

 

Figure 1.9 – Bisphosphonate 
 



Chapter 1: Introduction 
 

 
 

22 | P a g e  

Bisphosphonates encourage osteoclasts to undergo apoptosis, or cellular death, 

therefore slowing the rate at which bone is resorbed. Bisphosphonates however are 

known to invoke various side effects in the patients. Oral doses have been shown to 

cause inflammation and erosion of the oesophagus and stomach, and generally 

require the patient to sit straight upright for 30 – 60 mins after taking the medication. 

Intra-venous administration has been seen to cause flu-like symptoms upon the first 

administration due to their ability to activate the specific human T Cells, but these 

symptoms do not reoccur upon further doses. 

There are other treatments though. Osteoporosis has been found to be more 

prevalent in post-menopausal women, as an oestrogen deficiency has been linked to 

the proliferation of osteoclasts responsible for the resorption of bone. Although 

oestrogen supplements have been used to combat this, a drug under current 

investigation is strontium ranelate, the struction shown in figure 1.10. Although the 

exact mode of operation of this drug is still unknown, it has been shown that it is able 

to both slow the resorption process and enhance the regrown process, therefore 

acting upon both of the processes involved in bone remodelling and actually helping 

to increase bone density in the patient. 

 

Figure 1.10 - Strontium Ranelate 
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Not a pyrophosphate or related structure, it is thought that strontium substitution onto 

calcium sites in the bone mineral structure is the key to this drug’s potency. 

Brown et al. [55] reported precipitation reactions yielding many different 

pyrophosphate phases, including calcium pyrophosphates of different structures and 

hydration states, as well as other mixed metal pyrophosphates such as calcium 

sodium pyrophosphate, more commonly known as canaphite as well as a synthesis 

of an impure amorphous calcium pyrophosphate. 

Further condensation can lead to a range of higher condensed phosphate species 

known as polyphosphates. These reactions can occur in much the same way 

though, in the presence of protons expelling water, but can lead to a range of 

different structures including chains, rings and sheets, where it is possible to share 

multiple oxygen atoms from a single PO4 formula unit. 

 

Figure 1.11 - Structure of a triphosphate 
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Phosphate	
  Bone	
  Cements	
  

Calcium phosphates offer a potential as possible artificial bone replacement 

materials due to their similarity to the natural material. Previous research has shown 

that a modified synthesis of a brushite based calcium phosphate cement by reaction 

between beta tricalcium phosphate and pyrophosphoric acid (H4P2O7), a source of 

condensed phosphate, does not form brushite exclusively [45]. Indeed, studies on 

the resultant cements by both powder XRD and solid state NMR showed that it also 

contained a significant amount of an amorphous phase, calcium pyrophosphate. 

Studies on this cement showed that it was both mechanically stronger than standard 

brushite cements and had improved biological activity [45]. A key role was played by 

the amorphous material which appeared to be resorbed over a shorter timescale, 

inducing enhanced bone regrowth. The nature and properties of the amorphous 

Ca2P2O7 was not well understood. 
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1.4	
   Amorphous	
  Materials	
  

1.4.1	
  What	
  does	
  ‘amorphous’	
  mean?	
  

In the solid state, the atoms of a material organise themselves into their lowest 

energy configuration. This is normally a crystalline form, in which a regular repeating 

pattern of a particular arrangement of atoms can be found throughout the structure. 

From that, a unit cell can be defined, which is the smallest possible collection of 

atoms that contains all possible elements of symmetry to generate the bulk structure. 

Such crystalline materials produce Bragg diffraction lines in both X-ray and neutron 

diffraction experiments. This is due to the X-rays or neutrons diffracting from 

crystallographic planes of atoms within the structure. 

Crystalline solids can contain disorder of varying degrees often as a result of defects. 

This disordering can impart markedly different properties on the material, compared 

to the perfectly crystalline analogue. Natural bone is an example of this as its 

structure is complex. Although, as previously mentioned, it can be thought of as 

consisting of two components (a crystalline component based on a substituted 

hydroxyapatite and an organic component based on a substituted form of the 

polypeptide collagen), these substitutions are not made in a regular manner 

throughout the bone tissue, and in fact, many different species are substituted into 

both the ceramic and organic components to impart different properties on the bone 

tissue depending on the application which is required (e.g., weight bearing such as in 

the legs, or sensory such as in the ear). As the bones in our body all fulfil slightly 

different roles, their structure must also be different. 

Many different substitutions are possible. Both calcium and phosphate sites can be 

substituted for other metals and other polyatomic anions, including but not 
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exclusively other alkali and alkali earth metals, sulphate, carbonate and fluoride. 

These substitutions are often not made in a regular repeating manner, thus if a new 

unit cell can be defined, it often displays subtle but measurable differences in size 

compared with the original un-substituted material. It is however, often not possible 

to easily define a unit cell for these types of disordered materials. This site disorder 

can broadening Bragg peaks in an X-Ray diffraction pattern, but often it also leads to 

a reduction in crystallite sizes. The effect is evident from Scherrer’s equation which 

relates the FWHH (Full Width at Half Height) in the diffraction pattern and the 

crystallite size of the sample. 

𝝉 =
𝑲𝝀

𝜷 𝐜𝐨𝐬𝜽 

Equation 1.2 – The Scherrer Equation 
 

The Scherrer equation, equation 1.2, estimates the average size of a crystallite (τ) in 

a sample by relating the shape factor (K) which is dimensionless and typically has a 

value of around 0.9 but can vary with the actual shape of the crystallite, the 

wavelength of the X-rays (λ), the broadening of the peak in the diffraction pattern, full 

width at half height (β), and the diffraction angle (θ) to the size of the crystallite. 

 

An amorphous material is commonly defined as one where the disorder in all 

components is so great that the long range order is lost in the entire material. Any 

ordering that is present is limited only to local collections of atoms, often from groups 

within the structure, e.g. sulphate, phosphate etc., but the arrangement and 

orientation of these groups with respect to each other is often random. As a result, it 
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is not possible to define a unit cell for an amorphous material and amorphous 

materials do not show Bragg peaks in a diffraction pattern. The study of amorphous 

materials relies on the use of techniques which probe the local structure of particular 

atoms such as magnetic resonance (NMR) techniques and local probe X-ray or 

neutron techniques such as atomic pair distribution function (PDF) analysis. 

 

1.4.2	
  Amorphous	
  Materials	
  in	
  Nature	
  	
  

An amorphous form of a particular phase is a high energy, thermodynamically 

unstable form; they can often be thought of as the kinetic product from the reaction 

rather than the thermodynamic one. As such, they often display a much higher 

reactivity than the crystalline equivalent and for this reason offer very attractive 

properties to biological organisms. Rather than trying to make a thermodynamically 

stable material react in a particular way to produce the desired structure (e.g. bone, 

or a shell), many organisms stabilise an amorphous phase as a reactive store and 

then allow it to react and form the desired phase. 

Many shellfish store calcium carbonate in an amorphous form and then use it to 

rebuild and repair shells, by allowing it to crystallise to calcite or other crystalline 

polymorphs of calcium carbonate [56-58]. Biogenic amorphous calcium carbonate 

(ACC) has been identified as a vital precursor to hard tissue formation in many 

species of shellfish. It has been shown that ACC is used as a store of calcium and 

carbonate ions in a reactive form, stabilised in vivo by the organism, and used to 

repair or renew calcium carbonate based shells and exo-skeletal formations which 

usually consist of the calcite polymorph of calcium carbonate [59]. 
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Amorphous calcium orthophosphates (ACP) have been identified in the milk of 

lactating mammals, particularly shortly after the birth of an offspring [60]. It has also 

been shown that phosphates present in this meta-stable state are essential in the 

early stage formation of natural bone, as the levels of amorphous calcium 

orthophosphate decreased after the first 6 months and were virtually undetectable 

after 12 months after birth. 

In-vitro synthetic routes to amorphous phases such as amorphous calcium 

carbonate [56, 61, 62], amorphous calcium orthophosphate [60, 63-67] and 

amorphous calcium polyphosphate [68] have all been reported, and the products 

well characterised. 

Somewhat surprisingly, given the prevalence of pyrophosphates in biological 

systems and the importance of amorphous phosphate phases in many bone 

mineralisation processes in the body, there is very little reported on the synthesis of 

amorphous pyrophosphates.  
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1.5	
   Aims	
  of	
  this	
  project	
  

For a phase to be a suitable resorbable biomaterial, it must dissolve releasing ions 

which can then be reprocessed by osteoclasts and osteoblasts and other bone 

forming and bone remodelling cells and enzymes. Therefore, the more soluble a 

phase is, the more susceptible it will be to the biological resorption pathways of the 

organism into which the material has been implanted. 

Amorphous materials are usually more soluble than crystalline polymorphs of the 

same phase and so it is for this reason that cement formulations with amorphous 

calcium phosphate content are to be investigated to for improved properties. As 

strontium has recently been identified as a potential active ingredient in an anti-

osteoporosis drug, we are also interested in the idea of loading these bone cements 

with an amorphous strontium pyrophosphate phase, which would have both higher 

solubility and potentially beneficial effects against the proliferation of the disease by 

delivering a very local dose of strontium ions directly to the bone tissue. 

Therefore, the aim of this project is to synthesise amorphous group II metal 

pyrophosphates, for magnesium, calcium and strontium, as isolated phases, 

characterise their structure and behaviour to better understand their reactivity and 

properties. Once the phases have been isolated, we intend to incorporate them onto 

brushite based bone cement formulations in known amounts and investigate the 

effect on the chemistry and properties of the cement. Time permitting, initial 

biological testing involving exposure to relevant enzymes and cell lines will be 

undertaken via collaboration. 
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Chapter	
  2:	
  Experimental	
  &	
  Analytical	
  Techniques	
  

2.1	
   Synthesis	
  

2.1.1	
  Precipitation	
  Reactions	
  

One of the most useful routes to amorphous materials is to rapidly precipitate them 

from a solution. This allows the isolation of the amorphous phase, which can be 

thought of as the kinetic product of a reaction, to be formed rather than the 

thermodynamic product which is likely to be a crystalline phase.  

During this work, precipitation reactions between a concentrated aqueous solution of 

a group II metal salt (e.g. CaCl2, SrCl2, MgCl2 and Sr(NO3)2) and a less concentrated 

aqueous solution of potassium pyrophosphate (K4P2O7) at room temperature. In 

effect, a cation exchange occurs, precipitating a group II metal pyrophosphate 

product, leaving a potassium salt by-product in solution. 

Chemical reagents, which were used as supplied without further purification, are 

shown in Table 1. 

Reagent Formula CAS# Purity Supplier 

Calcium 
Chloride CaCl2 10043-52-4 99.99% Sigma Aldrich 

Strontium 
chloride SrCl2.6H2O 10025-70-4 99% Sigma Aldrich 

Magnesium 
Chloride MgCl2.6H2O 7791-18-6 ReagentPlus 

>99% Sigma Aldrich 

Potassium 
Pyrophosphate K4P2O7 7320-34-5 97% Sigma Aldrich 

Strontium 
Nitrate Sr(NO3)2 10042-76-9 >99% Sigma Aldrich 

 

Table 1 - Reagent Details 
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2.1.2	
  Cement	
  Forming	
  Reactions	
  

Cementing reactions were undertaken according to equation 2.1: 

Ca3(PO4)2 + Ca(H2PO4)2.H2O + 7H2O  à  4CaHPO4.2H2O 

Equation 2.1: Brushite cement forming reaction equation 
 

Two solid calcium phosphate phases, the beta polymorph of tricalcium phosphate (β-

Ca3(PO4)2 ) and monocalcium phosphate monohydrate (MCPM, Ca(HPO4).H2O ), 

are ground together in equimolar quantities to form a homogenous mixture. Water is 

then added to form a workable paste, which is then added to a cement mould and 

allowed to set without control of temperature in the open laboratory. 

The mould forms cement pellets, which are small and cylindrical with a length twice 

the diameter (length 12mm, diameter 6mm).  
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2.2	
   Characterisation	
  

2.2.1	
  Powder	
  X-­‐Ray	
  Diffraction	
  

In 1913, William Lawrence Bragg and William Henry Bragg proposed the idea of 

what is now routinely referred to as Bragg Diffraction when they demonstrated that, 

when exposed to X-Radiation, crystalline solids produce characteristic patterns of 

scattered X-Rays that relate to the positions of atoms within structure of the solid. 

The concept of Bragg diffraction can be described using the reflection of X-Rays 

from crystal planes; when a beam of monochromatic X-Rays is shone onto a crystal 

plane at a particular angle of incidence, θ, some of the radiation will be reflected from 

the plane at an equal angle, θ. Most of the radiation however will pass through the 

plane to the next plane and the whole process repeats.  

 

Figure 2.1 - Diagram showing Bragg Diffraction 
 

Figure 2.1 shows how radiation can be reflected from planes of atoms in a crystal. At 

a particular angle of θ, reflected X-Rays from the first Bragg plane will interfere 

constructively with the reflected X-Rays from the second Bragg plane for a particular 

inter-planar distance, known as the d-space. When waves of reflected X-Rays 
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interfere constructively, Bragg peaks appear on the diffraction pattern corresponding 

to the angle θ and the d-space. 

 

Diffracted waves of X-Ray radiation remain in phase with each other provided that 

the difference in path length is equal to an integer multiple of the wavelengths. 

nλ = 2dsinθ 

Equation 2.2 – Bragg Equation 
 

where d is the d-spacing and n is an integer. Equation 2.2 is known as the Bragg 

Equation. Waves that satisfy this equation interfere constructively with each other 

and produce a peak of significant intensity on an XRD powder pattern. 

The intensity of a peak depends on the scattering ability of the atoms forming the 

Bragg planes. X-Rays are diffracted by the electron cloud of an atom and therefore, 

heavier elements with a larger number of electrons can scatter X-Rays to a greater 

extent than lighter elements with fewer electrons. 

A typical diffraction pattern shows Bragg peaks of an intensity, measured usually in 

arbitrary intensity units, usually “counts” or “counts per second”, and the 2θ value at 

which the Bragg equation is satisfied. 

During this work, diffraction patterns were collected on a Bruker D8 Advance 

diffractometer fitted with a copper X-Ray tube and primary beam germanium 

monochromator providing radiation Cu Kα1 (λ = 1.5406Å) configured in transmission 

geometry. Also used was a Bruker D2 Phaser configured in reflection (Bragg-
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Brantano) geometry, again using copper radiation but without a monochromator, 

thus radiation contained Kα1 & Kα2 (average λ = 1.5418Å). 
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2.2.2	
  Rietveld	
  Refinement	
  

Analysis of powder diffraction data can range from simple phase identification to 

complex structural analysis. A simple “search-match” type procedure relies on 

matching the intensities and positions of Bragg peaks recorded to those of known 

structures in a database. Although this method can give a good indication of the 

phases that are present in a multi-phase sample, there is only limited information 

that can be obtained from it. You cannot, for example, obtain an accurate 

assessment of the phase fractions or how the structure may have changed. Detailed 

structural analysis of powder diffraction data is not as routine as for single crystal 

diffraction data due to factors such as overlapping peaks. Hugo Rietveld devised a 

method, known as a Rietveld refinement which can be used to deconvolute the XRD 

pattern [1]. 

For this, a structural model(s) must first be available in order calculate the intensities 

of all the phases that are present in the sample. Once constructed this simulated 

pattern, along with other contributions (e.g. background) is mathematically compared 

by least squares minimisation with the observed powder XRD pattern on a datapoint-

by-datapoint basis. This is effectively minimising the residual Sy as shown in 

Equation 2.3. 

S! =    w!(y!-­‐y!")!
!

 

Equation 2.3 – Least Squares Minimisation 
 

Where wi = 1/yi and yi = observed intensity at the ith point. yci = calculated intensity at 

the ith point. In this way, the Rietveld method can deal with peaks containing 
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contributions from more than one reflection, which is often vitally important in powder 

data analysis.  

Modifying parameters such as the background contribution, the unit cell size, atomic 

coordinates, and parameters governing peak shape (including asymmetry), the 

iterative process modifies the structural model and generates a new simulated 

diffraction pattern and calculates the difference between it and the observed 

diffraction data. If the new simulated data set is found to be mathematically closer to 

the observed data set than the previous simulation (i.e. the refinement is converging) 

then the process continues until it reaches a point at which further iterations do not 

make significant changes, if any, to the goodness of fit. The goodness of fit of the 

refinement is judged by various indicators. These include a visual inspection of the 

Rietveld plot, the chemical sense of the structure obtained and mathematical fit 

parameters. These include the parameters defined by Equations 2.4 and 2.5.  

R!" =
w! y!-­‐y!" !

w! y! !

!
!
 

Equation 2.4 – Goodness of fit parameter for Rietveld refinement. 
 

R! =
y!-­‐y!"
y!

 

Equation 2.5 – Goodness of fit parameter for Rietveld Refinement 
 

As well as obtaining phase fractions for the crystalline phases in a multi-phase 

sample, it is possible to estimate the content of phases present in the sample which 

do not generate Bragg peaks. To achieve this, the powder pattern must have an 
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excellent Rietveld fit to the known crystalline phases present. Only after this can the 

sample be spiked with a known weight percentage of a highly crystalline material. 

For the purposes of this work, when analysing amorphous content present in 

modified cements, we used alumina (Al2O3, corundum structure). The refinement is 

then undertaken including this phase in the model. If amorphous material is present, 

then the weight percentage calculated via the refinement will be higher than the 

actual weight percentage added. From a simple calculation it is then possible to 

estimate the total sample unaccounted weight fraction for in the Bragg scattering, 

providing an estimation of the amorphous content. 

Rietveld refinements were carried out using Bruker AXS DIFFRAC.TOPAS version 4 

software (Bruker AXS GmbH, Oestliche Rheinbrueckenstr. 49, 76187 Karlsruhe, 

Germany). 
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2.2.3	
  Pair	
  Distribution	
  Function	
  (PDF)	
  Analysis	
  

The atomic pair distribution function is a local structure probe which can be used to 

analyse disorder in materials. The PDF, denoted as G(r), is a Fourier Transform of 

the normalised total scattering intensity recorded in Q-Space, S(Q), and describes 

the probability of finding pairs of atoms at a given interatomic separation and is 

mathematically described in equation 2.7.  

G r = 4πr ρ r -­‐ρ! =
2
π Q S Q -­‐1 sin Qr dQ

!

!
 

Equation 2.6 – Atomic Pair Distribution Function 
 

Where Q = 2π/d, ρ(r) and ρ0 are local and average atomic number densities 

(respectively) with r being the radial distance [2]. 

The PDF pattern obtained shows peaks corresponding to atomic separations within 

the sample. 

If a crystal structure is known for the phase under investigation, PDF modelling can 

be used to assign these peaks, and also to deconvolute any peak overlaps. From the 

known crystal structure, a predicted pair distribution function can be calculated for 

isolated atomic pairs in the structure. These are known as partial PDFs. They show 

only the peaks from the total PDF that correspond to the atomic separation between 

a specific pair of atoms in the sample. These partial PDF patterns can be used to 

assign atomic pairs to peak in the total pattern. 

To calculate a PDF pattern, the total scattering intensity recorded from the 

diffractometer must be normalised. During this work, PDFGetX2 [3] was used to 
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generate PDF patterns. PDF modelling, refinement and calculated patterns were 

generated using the PDFgui [4] software. 

PDF data was collected by members of Dr Joe Hriljac’s research group at the 

Advanced Photon Source (APS), Argonne National Laboratory, Chicago, USA at 

sector 11-ID-B. Samples were packed into 1mm diameter kapton tubes and data 

collected using synchrotron X-Rays of energy 58keV with a Perkin Elmer amorphous 

silicon detector. The data collection time was 10 minutes.  
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2.2.4	
  Magic	
  Angle	
  Spinning	
  NMR	
  Spectroscopy	
  

Nuclear magnetic resonance spectroscopy uses the principle that a spinning nucleus 

possesses a magnetic moment which can be manipulated by an external magnetic 

field to determine the sort of a magnetic and chemical environment in which it is 

situated. 

Quantum mechanics states that for a nucleus with spin quantum number I in a 

magnetic field, there will be 2I+1 non-degenerate energy levels, eg for 1H nuclei 

where I = ½ , in a magnetic field are found to occupy one of two non-degenerate 

states. In classical terms, one of these is aligned parallel to the applied magnetic 

field, termed B0, (low energy) and one anti-parallel (high energy). 

At thermal equilibrium, there will be a slight excess of spins populating the low 

energy (parallel) state, giving an overall magnetisation vector, M. This representation 

is known as the Vector Model, shown in Figure 2.2. 

 

Figure 2.2 - Vector Model of NMR Spectroscopy 
 

The spectrometer then applies a radiofrequency magnetic pulse along either the x or 

y axis, which has the effect of tilting the magnetisation vector away from the z axis. 
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When this happens, the direction of the vector begins to precess around the z axis 

and remains tilted away from the z axis for the duration of the pulse. When the pulse 

is turned off, the magnetisation vector returns, or relaxes, back to the z axis 

releasing the energy it absorbed when tilting away from the z-axis as it does so. The 

precession frequency of the magnetisation vector is known as the larmor frequency.  

In order that the spectrometer only has to measure in a single dimension, the 

laboratory axis in which the nucleus is precessing is also rotated in the x-y plane at 

the Larmor frequency. This gives the impression that the magnetisation vector simply 

tilts away from z and then returns again. This is known as the rotating frames model 

[5]. This basic understanding of the principles of NMR holds for both liquid and solid 

samples, however, there are extra considerations to be made when analysing solid 

samples. 

There are three basic interactions which can affect the nuclear magnetic moment; 

dipolar interaction (the interaction between nuclei with non zero nuclear spins), 

chemical shift anisotropy and quadrupolar interactions (interactions between nuclei 

with non zero and non ½ spin states, i.e. more than 2 non degenerate energy 

states), all of which contribute to line broadening in the spectrum [5]. In solution state 

NMR, these interactions are cancelled out by the constant molecular motion inside 

the sample tube; in solid state NMR, this is not possible. 

Chemical shift anisotropy is as a result of the orientation of single crystals within the 

magnetic field. 
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Figure 2.3 – Chemical Shift Anisotropy [6] 
 

Figure 2.3 shows how the orientation of a crystal in a magnetic field can affect the 

signal that is observed, where θ and σ are angles which define the orientation of the 

crystal. In practise, for a powdered sample this would result in a single, very broad 

peak encompassing the intensities from all the individual peaks where the shape of 

the overall peak reflects the probability of finding a crystal in that orientation. 

To counteract these interactions in a solid state experience, Magic Angle Spinning 

(MAS) NMR is used. This is where the sample is spun at the magic angle (ca. 54.7o) 

[5] which effectively simulates the constant tumbling movement of the sample, if it 

were in solution (Figure 2.4). 
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Figure 2.4 – Magic Angle Spinning [6] 
 

When the sample is spun at an angle β with respect to the magnetic field, the 

anisotropic elements which act upon the spectral line are scaled, according to Figure 

2.5, and at the magic angle, 54.7o, they are reduced to zero.  

(3cos!β-­‐1)/2 

Figure 2.5 
 

This technique produces spinning side band peaks in the spectrum however which 

are an indication of where the intensity of the un-spun peak would appear. Spinning 

at a faster speed can reduce and often remove these as the distance between the 

centre band and the spinning side bands is equal to the spinning frequency. If 

spinning side bands do appear in the spectrum, care must be taken to include their 

intensities in any integrations carried out on the centre band. 

Both 1D and 2D NMR experiments were performed on samples so that information 

about both the environments of the nuclear spins and their connectivity can be 

obtained. 
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One of the advantages of NMR is that it is sensitive to local ordering. Therefore, 

even in “XRD” amorphous materials, where diffraction is of limited use, NMR can 

provide extremely useful data. Typically, the NMR spectrum will show peaks, albeit 

broad, at the appropriate chemical shifts for the nuclei being studied. This is of great 

benefit not only for amorphous materials but for materials with very small crystallite 

sizes or nanocrystalline materials where the usefulness of XRD is limited. 

NMR measurements and data processing were performed at Warwick University by 

Dr Danielle Laurencin and Professor Mark Smith, and at the EPSRC Solid State 

NMR Facility at Durham University. Details of experimental parameters will be 

referenced where presented in results chapters. 
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2.2.5	
  Thermogravimetric	
  Analysis	
  

Thermogravimetric differential thermal analysis (TGA-DTA) can be used to monitor 

how a particular phase changes as a function of temperature using a highly accurate 

balance and thermocouple. As the sample is heated at a controlled rate, mass 

changes are monitored. These may be due to the loss of waters of crystallisation, 

decomposition products such as carbon dioxide from a carbonate containing phase, 

or whether oxidation or reduction is occurring. Decomposition products given out 

during the heating can be identified using evolved gas analysis, often via mass 

spectrometry. 

To monitor thermal events in the sample, a thermocouple is used to monitor 

temperature changes between the sample under analysis and a standard material, 

usually alumina (Al2O3, Corrundum) due to its high thermal stability, known as 

differential thermal analysis (DTA). This can give an indication of the enthalpy 

associated with any phase transformations occurring in the sample as momentarily 

the sample temperature may deviate from that of the reference indicating that an 

endothermic or exothermic event is occurring. As a result, TGA is useful when 

determining the temperatures at which amorphous phases crystallise or undergo 

phase transformations. If thermal events occurring during heating result in either a 

phase change or crystallisation event, then the information from the TGA trace can 

then be used in conjunction with variable temperature X-Ray diffraction to determine 

the products from such thermal events. 

In this thesis, TGA and DTA measurements were made on a Netzsch Jupiter STA-

449. The experiments were run under flowing nitrogen gas, with a heating rate of 2 

°C per minute, starting at 20 °C up to 800°C. 
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2.2.6	
  Scanning	
  Electron	
  Microscopy	
  

Scanning Electron Microscopy uses a focused beam of electrons to excite electrons 

on the surface of the sample. These excited electrons (termed secondary electrons) 

are detected by the microscope and produce an image based on their position on the 

detector, the position of the electron beam which is rastered across the sample and 

the number of electrons detected. 

Although secondary electrons are the most common signal type in SEM, much more 

information can be obtained provided the right detector is available. For example, 

characteristic X-Rays, just like those produced during XRF experiments, are 

produced from the sample and can be used for elemental analysis. Back scattered 

electrons, which are simply primary electrons that are reflected from the surface of 

the sample in an elastic way, can also be used in conjunction with the characteristic 

X-Ray radiation in determining sample composition as the ability of a sample to 

reflect primary electrons changes with atomic number Z. 

Owing to the poor conductivity of these samples, it was necessary to coat the 

samples in gold. 

Electron Micrographs were collected at the Centre for Electron Microscopy at the 

University of Birmingham, using a JOEL 6060 SEM, fitted with an Oxford Diffraction 

EDX Detetor. 
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2.2.7	
  Elemental	
  Analysis:	
  ICP-­‐MS,	
  EDX	
  and	
  XRF	
  

The focus of this work was the synthesis, characterisation and use of amorphous 

materials. Analysis of these materials is, as has already been alluded to, not trivial 

due in part to the lack of information that can be obtained from a lab source powder 

X-Ray diffractometer. Therefore, elemental analysis is vital in establishing 

composition and potential stoichiometry.  

X-Ray emission Spectroscopy uses the principle that when electrons are excited to 

emission from an atom, an electron hole is created. This hole is then filled by 

electrons in higher shells relaxing down and by so doing, emitting an X-Ray photon 

of a characteristic wavelength for that particular electronic transition and is therefore 

specific for that element. 

Many different electrons can be excited away and so X-Ray radiation of different 

energies and wavelengths can emitted. Each discreet wavelength of radiation 

produces a different spectral line in the X-Ray spectrum. These lines can be 

described according to the energy levels of the electrons involved in the release of 

that particular wavelength of radiation, figure 2.6. 
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Figure 2.6 - Spectral lines for EDX / XRF 
 

The energy at which the spectral lines appear depends on the electronic 

configuration of the atoms in the sample. This is related to the effective nuclear 

charge, Zeff, for each electron. For example, if a sodium K-Shell electron is excited 

away, then the L-Shell electron relaxing into the hole in the K-Shell will do so due to 

the attractive force of the nucleus containing 11 protons. This Kα line will appear at a 

certain energy (Na Kα1 = 1.0 keV). Whereas if the same excitation process takes 

place on a calcium atom there is a much greater attractive force pulling the relaxing 

electrons to fill holes in lower shells  as the nucleus now contains 20 protons. As 

such, the Ca Kα1 = 3.7 keV. It is also true that more energy is required to excite the 

electrons away from the atom in the first place and as such the elemental range of a 

spectrometer depends in part on the excitation source. 

The intensity of the spectral line, measured in counts per second, depends on the 

quantity of that particular element present in the sample, and so to a rough 
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approximation, provided that inter-element and matrix corrections have been applied 

correctly and the sample has been prepared appropriately, doubling the 

concentration of an element will double the peak height in the X-Ray emission 

spectrum. 

For these emitted X-Rays to be of any analytical use, the spectrometer must have a 

way of discriminating between their energy as well as measuring their intensity. 

There are two types of spectrometer available for doing this; energy dispersive and 

wavelength dispersive. 

In an energy dispersive spectrometer, the detector not only measures the intensity of 

the fluorescing X-Rays but is also able to discriminate their energy as well. Modern 

spectrometers are fitted with silicon drift detectors. These are solid state detectors 

which measure the ionisation caused by the emitted X-Ray photons on a piece of 

high purity silicon. A series of ring electrodes allow the charge carriers to drift 

towards a small collection electrode meaning that a greater intensity signal is 

observed. 

Energy dispersive spectrometers, generally have lower energy resolution (typically of 

the order of 100-200 eV) than wavelength dispersive spectrometers. Figure 2.7 

shows a schematic representation of an energy dispersive X-Ray spectrometer. 
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Figure 2.7 - Schematic of Energy Dispersive Xray Spectroscopy 
 

In a standard ED-XRF spectrometer, the angle between the X-Ray tube – sample – 

detector is approximately 50o – 60o.  

There exists a special subset of ED-XRF spectrometers known as a tXRF or Total 

Reflectance XRF spectrometer where the angle at which the X-Ray tube excites the 

samples is typically less than 1o, with the detector mounted perpendicular above the 

sample. 

 

Figure 2.8 – (a) X-Ray Tube detector geometry in an ED-XRF spectrometer, (b) 
X-Ray Tube detector geometry in a tXRF spectrometer 
 

In a standard geometry ED-XRF spectrometer, it is possible for the primary beam to 

scatter off the surface of the sample and into the detector along with the 

fluorescence signal which has the effect of raising the background of the spectrum 
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and hence the lower limit of detection. In a tXRF spectrometer, almost none of the 

primary beam is scattered into the detector therefore the detection limits obtainable 

from a tXRF spectrometer are much lower than for a standard ED-XRF 

spectrometer, often by a few orders of magnitude. 

In a wavelength dispersive X-Ray spectrometer (WD-XRF), the detectors do not 

discriminate the energy of X-Ray photons, they only measure their intensity. To 

distinguish between the different wavelengths, a series of monochromator crystals 

are used to “filter” the X-Ray photons to a monochromatic beam in much the same 

way as the monochromator on a diffractometer. These monochromators are 

attached to a goniometer to allow a sweep of the emission spectrum to be 

performed. The angle at which the monochromator is being held with respect to the 

sample and the detector can be converted using Braggs law to calculate wavelength 

and subsequently the energy of these photons. Then using Braggs law, this angular 

measurement can be converted to energy. 

In order that only the X-Rays being diffracted from the monochromator at the angle 

recorded by the goniometer reach the detector, a series of collimators are used to 

ensure that only a parallel beam of photons from the sample are diffracted. 

As a result, only photons of a single energy hit the detector at once which means 

that an wavelength dispersive spectrometer has a much greater energy resolution, 

typically of the order of 4-10eV. Figure 2.8 shows a schematic representation of a 

wavelength dispersive X-Ray spectrometer. 
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Figure 2.9 - Schematic of Wavelength Dispersive Xray Fluorescence 
Spectroscopy 
 

XRF spectra during this work were collected using a 3kW Bruker S8 Tiger WD-XRF 

spectrometer within the school of Chemistry at The University of Birmingham, and 

tXRF spectra collected using a Bruker S2 Picofox with a Mo excitation source at 

Bruker UK, Coventry. 

WD-XRF measurement parameters are shown in Table 2. 

Element Line Energy 
(keV) Crystal Collimator Time 

Mg Mg Ka1 1.254 XS-55 0.23o 30s 
Ca Ca Ka1 3.692 LiF200 0.23o 10s 
Sr Sr Ka1 14.165 LiF220 0.23o 10s 

P P Ka1 2.010 PET 0.23o Line: 10s 
Bkg: 10s 

K K Ka1 3.314 LiF200 0.23o 10s 
 
Table 2 - WD-XRF Measurement Parameters. 
 

Crystals 

XS-55 is a W/Si multilayer crystal with a d-space of 5.5nm. LiF200 is a lithium 

fluoride crystal, which is cut along the 200 plane, thus having a d-space of 0.403nm. 

LiF220 is a lithium fluoride crystal cut along the 220 Bragg plane, thus having a d-
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space of 0.285nm and PET is a crystal of pentaerythrite with a d-space of 0.874nm. 

The purpose of the two different lithium fluoride crystals is to provide either better 

resolution (but as a consequence, poorer sensitivity) in the case of the LiF220 or 

better sensitivity (but hence, poorer resolution) in the case of the LiF200. 

Collimators 

The purpose of a collimator in XRF is to ensure that a parallel beam of X-Rays is 

being directed towards the analyser crystal. After irradiating the sample, secondary 

fluorescence is directed down the optical path of the instrument but diverges as it 

does so. Collimators are used to combat this divergence. 

The size of a collimator, on a Bruker spectrometer, is measured according to the 

angle away from straight through it will allow a beam of photons to pass. Smaller 

angles are higher resolution collimators, larger angles are higher sensitivity 

collimators. 
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2.2.8	
  Ion	
  Chromatography	
  (IC)	
  

Ion chromatography, is a method of separating ions or charged molecules from a 

mixture in solution. 

In IC, the stationary phase presents functional groups of opposite charge to that of 

the species you wish to separate (i.e. for cation IC, the stationary phase would 

present negatively charged functional groups, for anion IC, the stationary phase 

would present positively charged functional groups). Ions in the sample adhere to 

these functional groups by electrostatic interaction. 

A mobile phase containing exchangeable ions is used to wash the analyte through 

the column. Sodium hydroxide is a commonly used mobile phase in anion IC. In this 

case, the anions are bound to the positively charged stationary phase until the 

concentration of negatively charged hydroxide ions becomes high enough to 

exchange them. 

During the experiment, the actual eluent that is used during the measurement 

changes concentration at a steady rate. This is done in-situ by the chromatography 

instrument. 

Although ion chromatography was carried out during the course of this project, the 

results are not reported as instrumental problems caused issues with reproducibility 

and accuracy. 
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2.2.9	
  Cement	
  Testing	
  

Once cements are formed, they are tested for their compressive strength using a 

universal testing instrument. This has a mechanical plate that moves slowly 

recording the resistive force being applied against it by the cement. As the pressure 

is increased, eventually the cement will deform, at which point the resistive force will 

drop. This breaking point is recorded by the instrument. 

Compressive strength measurements were made using a [] in the School of 

Chemical Engeineering at the University of Birmingham. 

Tap densities are calculated to compare how well the different components pack 

together. A fixed mass of the powdered components in the cement mix is put into a 

measuring cylinder and then tapped on the desk a fixed number of times. After this, 

the volume is recorded. The lower the volume, the better the packing arrangement, 

which can be related to the amount of water required to make a workable paste and 

then also the setting time (the more water required to make a workable paste, the 

longer the setting time), although it must be commented that this test can only be 

used as an indication of setting times as there are other parameters which affect 

packing of solid powdered samples such as particle size and shape. 

Powder to liquid ratios, although quite a subjective measurement, is still very 

important. A fixed mass of the powder components is mixed with water to form a 

workable paste, which is where this measurement becomes a subjective one as 

what constitutes a workable paste depends on the person making it. 
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2.2.10	
  Vibrational	
  Spectroscopy	
  

Vibrational spectroscopy, such as Infra-Red spectroscopy, can be used to determine 

the chemical bonding within a sample. As with all spectroscopic techniques, there 

are selection rules that govern whether or not a signal can be observed from the 

energy process being undertaken. In Infra-Red spectroscopy, the selection rule 

states that for a signal to be observed, the vibrational mode being observed must 

cause a change in the dipole moment of the bonding pair of atoms [7]. 

 

Figure 2.10 – Molecular vibrational modes. (a) Asymmetric stretch, (b) 
symmetric stretch, (c) scissoring mode. 
 

In figure 2.10, various molecular vibrational modes are shown for a tri-atomic 

molecule, such as water. In figure 2.10, the asymmetric stretch (a) and the scissoring 

mode (c) could be described as infra-red active where as the symmetric stretch (b) 

would be described as infra-red inactive. 

In this way, infra-red spectroscopy is useful for determining the presence of 

functional groups, and the spectra obtained can, with the use of an appropriate 

database, be used to finger-print identify the presence of different chemical groups. 
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In this work, the infra-red spectra of amorphous pyrophosphate phases are to be 

compared to those of crystalline analogues to compare the positions of the 

vibrational bands to confirm the presence of phosphate groups. 

Measurements were carried out in the School of Chemical Engineering at The 

University of Birmingham on a Thermo. 
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Chapter	
  3:	
  Synthesis	
  and	
  Characterisation	
  of	
  
Amorphous	
  Group	
  II	
  Metal	
  Pyrophosphates	
  

3.1	
   Introduction	
  

As previously mentioned, recent work by our group has shown that the presence of 

an amorphous calcium pyrophosphate phase in a brushite based calcium phosphate 

cement (CPC) improves the mechanical and biological properties of the cement, 

when compared to standard unmodified brushite CPCs [1]. It is the aim of this project 

to synthesise and fully characterise these products and investigate their 

incorporation into brushite CPCs to better understand how they improve the 

properties of the cements in vivo. The realisation of the importance of amorphous 

materials in various biological processes vital to the healthy function of organisms is 

only in recent years becoming evident due to the development and availability of 

techniques that can probe the local structure of a material, such as pair distribution 

function analysis (PDF) and solid state magic angle spinning nuclear magnetic 

resonance spectroscopy (MAS-NMR). During the course of this project, we make 

use of these techniques to fully understand the structure and reactivity of the 

amorphous materials under investigation. 

Brown et al [2] reported the synthesis of many different pyrophosphate phases, 

including a reaction between sodium pyrophosphate and calcium chloride, but report 

that the amorphous calcium pyrophosphate product was not further studied as it was 

always significantly contaminated with sodium, presumably present as sodium 

chloride. This chapter will look at altering the synthetic routes to obtaining these 

products in pure form. 
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3.2	
   Synthesis	
  of	
  Amorphous	
  Pyrophosphates	
  

Reagents were freshly prepared as follows; 0.2 mol dm-3 potassium pyrophosphate 

(K4P2O7), 1.0 mol dm-3 calcium chloride (CaCl2), 1.0 mol dm-3 magnesium chloride 

(MgCl2), 1.0 mol dm-3 strontium chloride (SrCl2), 1.0 mol dm-3 strontium nitrate 

(Sr(NO3)2 ). These reagents were mixed in equi-volume amounts, according to the 

following reactions, which were based on the reactions reported by Brown et al [2] 

for the synthesis of amorphous calcium pyrophosphate and Sinyaev et al [3] for the 

synthesis of amorphous calcium polyphosphate. 

MgCl2  +  K4P2O7  à  Mg2P2O7.xH2O  +  KCl 

CaCl2  +  K4P2O7  à  Ca2P2O7.xH2O  +  KCl 

SrCl2  +  K4P2O7  à  Sr2P2O7.xH2O  +  KCl 

Sr(NO3)2  +  K4P2O7  à  Sr2P2O7.xH2O  + KNO3 

Amorphous magnesium and calcium pyrophosphate phases were successfully 

synthesised, regardless of the order in which the reagents were mixed. When 

solutions had been left over night or longer, reagent mixing order became important 

in the synthesis of amorphous magnesium pyrophosphate; adding magnesium 

chloride to potassium pyrophosphate afforded a crystalline product, Mg2P2O7.6H2O 

[4] whereas adding potassium pyrophosphate to magnesium chloride afforded an 

amorphous product, an observation which we have not as yet been able to fully 

explain. Even when reagent solutions were not freshly prepared, mixing order did not 

affect whether or not an amorphous calcium pyrophosphate phase was obtained. 

In the case of amorphous strontium pyrophosphate, a reaction between strontium 

chloride and potassium pyrophosphate produced a crystalline strontium 
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pyrophosphate phase, α-Sr2P2O7 [5], irrespective of the order in which the reagents 

were mixed and whether they were made fresh or not. When the source of strontium 

ions was changed from a chloride to a nitrate, an amorphous product was obtained, 

again, irrespective of mixing order and whether or not the solutions were made fresh. 

This was observed regardless of the order in which the reactant solutions were 

mixed. In common with the precipitation of many amorphous materials, our 

successful syntheses of amorphous pyrophosphates exploit a rapid precipitation 

from a relatively concentrated solution, thus avoiding the thermodynamically favored 

crystalline product.  As the concentrations of the reacting metal ions solutions used 

(1 mol L–1) fall well below the solubility limits of both reagents in H2O at room 

temperature (3.46 mol L-1 for SrCl2 (i.e. 547 g L-1), and 3.79 mol L-1 for Sr(NO3)2 (802 

g L-1)),[6] it is unlikely that the marginally lower solubility of SrCl2 is responsible for 

the difference observed in the precipitation behaviour. Instead, it is possible that the 

differences in the counter-ions in solution influence the rapid availability of the Sr2+ 

ions. Such kinetic factors may thus slow down the precipitation of the amorphous 

product and favour a crystalline one. Alternatively, it is possible that incorporation of 

nitrate ions may stabilize an amorphous strontium product, although our detailed 

characterization provides no evidence of the presence of these ions in this product. 
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3.3	
   Characterisation	
  of	
  Amorphous	
  Phosphate	
  Phases	
  

3.3.1	
  Powder	
  X-­‐Ray	
  Diffraction	
  

Powder X-ray diffraction is of limited use when studying amorphous materials, as the 

lack of any long range order means that the patterns do not show any Bragg peaks 

which could be used to indentify known phases. Therefore, the only information that 

can be gained from this technique is whether or not the materials are indeed 

amorphous. Lab source powder X-ray diffraction patterns (pXRD) were collected on 

each of the as synthesised phases, and are shown in figure 3.1. 
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Figure 3.1 - Powder XRD patterns of as synthesised amorphous 
pyrophosphates 
 

From the lack of any Bragg peaks in the patterns, it is clear that these phases are 

indeed amorphous, lacking any long range order, although some very short range 

order is present as can be seen by the very broad ‘humps’ in the pattern. 
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Other techniques that probe the elemental composition (such as WD-XRF, EDX or 

ICP-MS) and the local structure (such as solid state NMR and PDF analysis) must 

be used to positively confirm that the amorphous product is of the desired 

stoichiometry and composition. 

3.3.2	
  Scanning	
  Electron	
  Microscopy	
  

SEM images (figure 3.2) were taken of the amorphous samples to better understand 

whether any common morphology to their particles (shape, size etc) was present. 

Crystalline samples typically show particles with defined edges, faces and corners, 

and particles are often of a similar size. 

 

Figure 3.2 - SEM micrograph of amorphous calcium phosphate phase 
 

It is clear however, from the images recorded for AMgPPi, ACaPPi and ASrPPi that 

particles of these samples do not have defined edges and shapes. This is consistent 

with the materials being amorphous as the lack of defined particles is a good 

indicator of, at best, poor crystallinity.  
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3.3.3	
  Elemental	
  Analysis	
  

Wavelength dispersive X-ray fluorescence spectroscopy (WD-XRF) was used to 

confirm the stoichiometry of the as synthesised phases. This technique compared 

with the  other such techniques, e.g. energy dispersive X-ray spectroscopy (EDX), is 

better able to differentiate between the energies of photons being expelled from the 

different elements in the sample. From the XRF data, in principle we can accurately 

calculate a metal to phosphorus ratio which is a key aspect of our analysis. We can 

also determine whether any other elements, particularly potassium, are present. 

Various protocols and sample preparation methods were used, with varying degrees 

of success. 

The first sample preparation method used was to press the samples into pellets. This 

simple sample preparation method involves mixing the sample in a known ratio with 

an XRF binding complex (Chemplex SpectroBlend 660), an organic stearate based 

compound to provide a pellet stable during the measurement process. The binding 

complex consists of solely hydrocarbons which are effectively invisible during the 

XRF analysis. In each sample analysed, 500mg of sample were ground with 100mg 

of wax binder and pressed into a 13mm pellet at a pressure of ca. 1.5 tonnes for, 

twice for 30 seconds each time.  

Table 3.1 - XRF results for pelletised samples 
Metal Th.  wt% M Th. wt% P Obs. wt% 

M 

Obs. wt% 

P 

M:P Ratio wt% K 

Mg 21.62 27.92 7(4) 18(3) 0.6(3) 6.3(7) 

Ca 24.5 19.0 31(7) 24(6) 1.2(4) 4.2(9) 

Sr 50.35 17.82 53(7) 13.8(8) 1.4(4) 0.3(3) 



Chapter 3: Synthesis and Characterisation of Amorphous Group II Metal Pyrophosphates 
 

 
 

73 | P a g e  

 
 

From the results obtained (shown in table 3.1), there is a clear difference with the  

expected stoichiometry in each case. The observed ratios did not appear to match 

with any chemically meaningful stoichiometry. Worryingly, re-running the samples 

provided more uncertainly and only increased the size of error bars associated with 

the weight percentages recorded for each element present. Indeed, significantly 

different results were even obtained by running the reverse side of each pellet. 

In general terms and accepting the large uncertainty in these data, the results 

suggest that the magnesium phase is magnesium deficient whereas the calcium and 

strontium phases are phosphorus deficient when compared to our expected 

stoichiometries.  However, it is clear that these measurements are unreliable at best 

and the factors affecting the results need to be considered more carefully to improve 

an further measurements. 

One key indicator that the analysis is not giving a complete picture as to the 

composition of the samples is the Compton ratio. When an X-ray photon interacts 

with a solid sample, it can scatter off the sample either elastically, causing no change 

in the energy of the photon, which is known as Rayleigh scattering or it can scatter 

inelastically, where some of the energy of the photon is lost, which is known as 

Compton Scattering. The level of Compton scatter is increased by the presence of 

lighter matrices, e.g. organic species or water, which are all invisible to the XRF 

spectrometer. A ratio can be calculated between the calculated Compton intensity 

based on the components that the spectrometer has quantified, and the measured 

Rh Kα Compton peak from the X-Ray Tube. Ideally, for a sample in which every 

component can be detected and quantified accurately, the Compton ratio should be 



Chapter 3: Synthesis and Characterisation of Amorphous Group II Metal Pyrophosphates 
 

 
 

74 | P a g e  

1, however, if there are high levels of species which are not detectable by the 

spectrometer, then this ratio will drop. 

Table 3.2 - Compton Ratios for Pelletised samples 
Metal Compton Ratio 

Mg 40(2)% 

Ca 62(2)% 

Sr 40(3)% 

 

From the data in table 3.2, it is clear from the lower than optimum Compton ratios, 

that there are components in the samples that the spectrometer is not detecting. 

Therefore, any corrections that need to be applied due to their presence, cannot be 

accurately applied as the quantity of these potential interfering species, and 

therefore the magnitude of the interference they contribute, cannot be accurately 

assessed and calculated.  

There are some crucial parameters affecting the accuracy and reproducibility of a 

WD-XRF measurement; penetration depth, critical depth, mineralogical effects 

(including homogeneity, particle size) and inter-element and matrix related effects, all 

of which contribute to changes in the amount of signal that actually reaches the 

detector and thus whether or not an accurate value for the amount of that element 

present is reported. 

The penetration depth is defined as the depth into which the primary X-Ray beam 

can penetrate, whereas the critical depth (sometimes known as the information 

depth) is defined as the depth from which fluorescence can be detected. Therefore, 

in a given sample, the X-Ray beam may be able to penetrate the entire thickness of 

the sample, however the signal from a given element in this sample may only come 
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from the surface few microns. Fluorescence from heavier elements such as 

strontium (Sr-Kα1 14.1KeV) is of higher energy than fluorescence from lighter 

elements such as magnesium (Mg-Kα1 1.25KeV). However it is also the case that 

heavier elements have a greater absorbing effect on other elements in the sample 

than lighter elements due to higher electron density and greater binding energy due 

to the larger positive charge from the nucleus. This factor affects both the 

penetration depth and the critical depth for all elements in the sample.  

Homogeneity of a pressed pellet sample is extremely important; homogeneity of both 

the particle size and distribution of component compounds within it, as shown in 

figure 3.3. If a given element in the sample only has a very short critical depth, then it 

is important that the proportion of the sample represented by the critical depth is 

representative of the sample as a whole. 

Figure 3.3 - Homogeneity in pressed pellet samples 

 

If the sample contains a mixture of light and heavy elements, then the penetration 

depth of the lighter elements will be greatly reduced by the presence of the heavier 

elements. However, the penetration depth of the heavier elements will not be greatly 

affected by the presence of the lighter elements. Therefore, if the samples are not 

well ground and mixed, then the amount of the sample represented in the critical 

depth, will not be representative of the sample as a whole. Water molecules present 

in the sample can also reduce the intensity of fluorescing X-Rays.  

Critical
Depth
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In certain cases, it is also possible for the X-rays fluorescing from one element to be 

absorbed by and cause an enhancement in the fluorescence of another. This effect 

can give the impression that there is less of one element and more of another than is 

actually present. A fundamental parameters (FP) approach to applying matrix 

correction factors to a measurement to properly account for inter-element 

absorbances must be applied, and it must take into account the affects that each 

element can have on other elements in the sample. The FP approach used in this 

work was based on the variable alphas model [7]. This model takes into account the 

effect of absorbance by the matrix of the sample on each element, and applies 

correction factors specific to that element, but change the magnitude of the 

correction factors in each sample within a series (hence variable alphas), to account 

for changes in the concentrations of each of the interfering elements in the sample. 

The traditional way of calculating matrix correction factors, known as a fixed alphas 

approach, would be to take the mid-point concentration of each element in the 

sample, and calculate a correction factor which will be applied to the whole series. 

The variable alphas approach calculates a minimum and maximum alpha correction 

factor for each element, at every possible concentration within the range of the 

samples in the series. Therefore, if one sample from a series has a high 

concentration of a particular element compared to another sample with a low 

concentration of the same element, the magnitude of the correction factors that are 

applied can be altered to account for the fact that the interference response might 

not be linear with respect to concentration. 

 



Chapter 3: Synthesis and Characterisation of Amorphous Group II Metal Pyrophosphates 
 

 
 

77 | P a g e  

In the case of the magnesium samples, the presence of water (proven by TGA) in 

the sample, combined with the presence of heavier species such as phosphorus 

have likely contributed to the reduction in the signal intensity of the fluorescing 

magnesium X-Rays. The amount of phosphorus being reported is also lower than 

expected, because of the presence of water in the sample, absorbing some of the X-

ray fluorescence. Especially as water is invisible to the XRF spectrometer and 

therefore, accurate matrix corrections cannot be applied to take this into account. 

In the case of the calcium and strontium phases where there is an apparent 

phosphorus deficiency, phosphorus is the lighter of the species analysed, and so X-

rays emitted from phosphorus atoms can be absorbed by the heavier calcium and 

strontium atoms as well as water present in the samples. 

To investigate the effect of water molecules, the presence of which was proven by 

TGA, on the weight percentages observed for samples prepared as pressed pellets, 

as synthesised samples were heat treated for 24hrs at 400oC to remove the water of 

crystallisation. This did not however improve either the values recorded by the 

spectrometer or the precision of the measurements. Running multiple pressed pellet 

samples following this heat pre-treatment again provided results with large error 

bars, for which a chemically meaningful stoichiometry could not be obtained 

indicating that it was more than just the presence of water and inter-element effects 

affecting the results obtained. 

Chemical bonding in the samples can also affect the excitation energy of the 

fluorescing element by altering how tightly electrons are bound in that particular 

elemental configuration. So, for example, the excitation energy of a fluorescing 
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phosphorus atom in an orthophosphate will be subtly different to that of a fluorescing 

phosphorus atom in a pyrophosphate. 

The variable alphas model used for applying correction factors for an XRF 

measurement works best when all components in the sample are taken into account. 

In a metal pyrophosphate sample of stoichiometry M2P2O7.xH2O, only the metal M 

and phosphorus are calibrated for. Although the water is removed by heat pre-

treatment, the oxygen atoms from the pyrophosphate are not included anywhere in 

the calculations, unless this is artificially added into the software. Oxygen, being a 

very light element, is very difficult to accurately quantify using XRF, and so, adding in 

the oxygen content from the pyrophosphate would be making an assumption that the 

sample is indeed pyrophosphate, an assumption which the spectrometer is 

supposed to be confirming. 

Therefore, to remove the need to make these kind of assumptions and to remove all 

matrix, inter-element and sample related effects, the samples were all heat treated 

for 24Hrs at 400oC to remove any water present in the samples. They were then 

fused into a lithium borate glass bead. Each bead consisted of 0.35g of sample and 

3.5g of lithium tetraborate flux. This mixture was heated to 1250oC in a 95:5 Pt:Au 

crucible for 12 minutes, 6 minutes at a time with the addition of a small amount of 

ammonium iodide after the first 6 minutes to aid the bead releasing from the bottom 

of the crucible. 

Lithium tetraborate is a strongly oxidising flux and converts all oxidisable species into 

their most stable oxide form. This process is well known and understood and the 

products from this oxidation reactions can be predicted. Species such as halides, 

carbonates, nitrates etc are often lost as gases (halogens, carbon dioxide, nitrogen 
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oxides etc). As excitation energies can be subtly, but noticeably, affected by the 

chemical bonding in a sample, converting the sample to an oxide form standardises 

the fluorescing species and removes such factors. A sample consisting of M2P2O7 

(samples assumed to be anhydrous after heat pre-treatment) would be converted to 

MO and P2O5 with the corresponding amounts of M and P in the oxide mix being the 

same as in the original pyrophosphate sample. As certain species are lost from the 

sample, the mass before ignition and the mass after ignition must be measured so 

that a loss on ignition can be calculated. The very best results are obtained when a 

pre-oxidised sample is fused as then the dilution factor with the borate flux can be 

calculated exactly and taken into account by the XRF software.  

During the fusion process, a small amount of phosphorus is lost from the sample. 

However, this is corrected for in the calibration, provided that all the samples are 

fused for the same length of time, and contain the same amount of starting material. 

Table 3.3 - XRF results for fused samples 
Metal Theoretical 

wt% M 

Theoretical 

wt% P 

Observed 

wt% M 

Observed 

wt% P 

Observed  

M : P Ratio 

wt% K 

Mg 21.62 27.92 21(1) 27(1) 0.99(2) 4.9(2) 

Ca 31.49 24.41 31(2) 24(1) 1.05(3) 2.7(2) 

Sr 50.35 17.82 50(1) 17(1) 1.05(4) 0.8(4) 

 
 

When all correction factors have been applied correctly, XRF indicates that the metal 

to phosphorus ratio is consistent with that of a group II metal pyrophosphate phase 

of expected stoichiometry M2P2O7 but also very reproducible, shown in table 3.3. 

Compton ratios showed that the measurement was indeed giving a quantification for 
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every component in the sample, as Compton ratios were all between 99% and 

103%. Measurements on multiple samples confirmed that the results were precise, 

unlike samples prepared as pressed pellets, where re-runs were significantly at 

variance with each other. Also, unlike samples run as pressed pellets, the observed 

weight percentages recorded are much more consistent with theoretical weight 

percentages, for anhydrous phases of stoichiometry M2P2O7. 
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3.3.4	
  Infrared	
  Spectroscopy	
  

Fourier transformed infrared spectroscopy of the as synthesised material were 

recorded and compared to spectra recorded of analogous crystalline phases. 

 

Figure 3.4 – FTIR spectra of Ca2P2O7.4H2O (Blue) and ACaPPi (Red) 
 

Figure 3.4 shows the comparison between the FTIR spectra of ACaPPi and the 

analogous crystalline calcium pyrophosphate tetrahydrate (Ca2P2O7.4H2O). The 

comparison shows that although there are peaks in the spectra for ACaPPi in the 

same region of the spectra as for the crystalline equivalent, that these peaks are 

very broad and featureless. The fine detail which can be seen in the crystalline 

material, which will be as a result of there being defined and discrete bonding 

throughout the structure which results in different vibrational frequencies being 

allowed is lost in the spectrum of the amorphous material due to the averaging of 
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multiple distinct bond lengths and angles within a particular range. A very broad 

band can be seen at approximately 3400 cm-1 indicating the presence of water, 

which was later confirmed and quantified by means of TGA analysis. 

A small, but noticeable peak at 712 cm-1 is a characteristic vibrational mode of the P-

O-P linkage in the structure. This peak can be seen in the spectra for both the 

crystalline and amorphous materials, indicating that the amorphous material is a 

condensed phosphate of sorts. 
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3.3.4	
  Thermal	
  Analysis	
  

Thermogravimetric and differential thermal analysis were carried out on the as 

synthesised samples. 

 

Figure 3.5 - TGA-DTA of as synthesised AMgPPi. 
Black Line = TGA Trace, Red Line = DTA Trace 
 

TGA and DTA of as synthesised AMgPPi, figure 3.5, shows two initial mass losses 

up to temperatures of ca. 150oC and 230oC. After 250oC, a further gradual mass 

loss, occurs until ca. 400oC when the mass stabilises.  DTA indicates that an 

exothermic event with no associated mass loss occurs at ca. 650oC. 

The total mass losses recorded by the TGA indicate that AMgPPi is a dihydrate 

phase, with two water molecules of crystallisation per pyrophosphate unit. The first 

two initial rapid mass losses each equate approximately to a single mole of water 

loss, with an associated endothermic event at each indicating that water is indeed 

evaporating from the sample. The final exothermic event, with no associated mass 
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loss, indicates the approximate temperature at which crystalisation occurs which was 

confirmed by variable temperature powder XRD. 

 

Figure 3.6 - TGA-DTA of as synthesised ACaPPi 
Black Line = TGA Trace, Red Line = DA Trace 
 

TGA of as synthesised ACaPPi, figure 3.6, shows an initial large mass loss up to a 

temperature of ca. 180oC associated with a large exothermic event in the DTA trace, 

at which point the rate of loss decreases until ca. 500oC where the mass then 

stabilises and no further losses are recorded. A further exothermic event is present 

at ca. 600oC with no associated change in mass. 

The mass losses up to ca. 500oC relate to water loss from the sample, totalling four 

moles of water. This water is lost in steps, with the first three moles being lost fairly 

rapidly up to around 180oC and the final mole, which is evidently bound more tightly 

(probably to the calcium atoms), being lost more slowly up to ca. 500oC with the 

large endothermic event at ca. 160oC showing that water is indeed evaporating from 
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the sample. This stepwise loss of water is also seen during thermal treatment of 

amorphous calcium polyphosphates [3].  

The final exothermic event at ca. 600oC, with no associated mass losses, indicates a 

crystallisation process.  

 

Figure 3.7 - TGA-DTA of as synthesised ASrPPi 
Black Line = TGA Trace, Red Line = DTA Trace 
 

TGA of as synthesised ASrPPi (figure 3.7) shows an initial large mass loss up to ca. 

200oC with a large endothermic event at the same temperature, a further smaller 

mass loss up to ca. 500oC and then a third mass loss of a similar amount up to ca. 

650oC, at which point an exothermic event is also seen in the DTA trace.  

The initial mass up to ca. 200oC equates to the loss of two moles of water, with an 

associated endothermic event in the DTA curve consistent with evaporation. The 

further two mass losses equate approximately to a single mole of water, each 

showing that this phase, like ACaPPi, is a tetrahydrate. The exothermic event at ca. 
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650oC shows the point at which this phase crystallises, forming α-strontium 

pyrophosphate (α-Sr2P2O7, [5]) as shown by powder XRD. 

In all three samples, crystallisation events only occur after the removal of all the 

water of crystallisation, indicating that the presence of water in the structure is likely 

to be linked to sustaining the meta-stable amorphous state.  

In-Situ variable temperature powder XRD, figures 3.8 and 3.9, was run to fully 

characterise the products of thermal decomposition. 

 

Figure 3.8 - In-Situ VT-XRD of ACaPPi 
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Figure 3.9 - In-Situ VT-XRD of ASrPPi 
 

Although there are crystalline peaks present in some of the lower temperature 

amorphous patterns, these were successfully indexed to the corundum structure and 

originate from the alumina sample holder used in the variable temperature 

diffractometer. 

The high thermal stability of these metastable amorphous phases is unusual when 

compared to other amorphous phases. Amorphous calcium carbonate, which is 

reported to be CaCO3.nH2O, is known to lose its constituent water before 

transforming to crystalline calcite at 250 oC [8]. It is interesting to note that, as with 

ACC, both ACaPPi and ASrPPi contain water, so it seems that the presence of water 

is ubiquitous in the formation of these amorphous phases and is likely to aid their 

stability. The high thermal stability is also likely to be related to packing implications 

of the anisotropic shape of the pyrophosphate anion and the inherent flexibility of the 
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P-O-P linkages that define the conformation of the P2O7
4
− unit. Indeed, within an 

amorphous structure we may envisage a distribution of P-O-P bond angles which will 

impede the formation of the ordered arrangement necessary for a crystalline 

structure. Therefore, even though free energy may favour crystallization, the kinetics 

of P2O7
4
− rearrangement may prevent crystallization until higher temperatures, and 

water may be retained to stabilize the structure until that point.  
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3.3.5	
  Solid	
  State	
  NMR	
  Analysis	
  

Solid state 31P NMR spectroscopy was carried out on the as synthesised phases. 

NMR spectroscopy is useful when studying disordered systems as it probes the local 

environments around a particular nucleus, rather than the average structure across 

the sample. Therefore, we can probe the local environment in which the 31P nuclei 

are found within each of the samples. Using two-dimensional spectroscopic 

techniques, it is also possible to assess how these nuclei are connected together, by 

probing the through bond coupling between nuclei. 

The one dimensional NMR spectra obtained by measuring the as synthesised 

amorphous samples show a single, broad resonance signal, centred at around           

-7ppm (figure 3.11). There are several very noticeable features in the spectra. Firstly, 

the peak widths are further confirmation of the amorphous nature of the samples. 31P 

resonance signals for a crystalline sample typically have FWHH (full width at half 

height) of around 75Hz whereas the peak widths for the amorphous samples is 

around 750Hz indicating the large distribution of signals within the region of the 

spectrum expected for Q1 type phosphate environments. Q-Typing is used to 

describe the environment of a phosphorus atom in a condensed phosphate, denoted 

as Qn where n is the number of bridging oxygen atoms connected to that particular 

phosphorus atom. Each phosphorus atom in a pyrophosphate would be described as 

being Q1, where as in a triphosphate unit, there are two Q1 phosphorus 

environments and a Q2 environment. 
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Figure 3.10 - Solid State 31P NMR Spectra of as synthesised amorphous 
pyrophosphates [9] 
 

From figure 3.10 it is clear that the observed resonance signal shifts to more positive 

ppm as the cation is changed from magnesium to strontium showing that the 

phosphorus nuclei are more shielded by the presence of larger nuclei. 

At higher fields, it was possible to see a slight shoulder at ~-2ppm in the spectrum of 

ASrPPi, indicating that there could be a very small amount of Q0-phosphate present 

from partial hydrolysis of the pyrophosphate molecules. This can be clearly seen in 

figure 3.11 below. A subsequent 1D 1H à 31P CP-MAS experiment showed this 

impurity peak to slightly increase in intensity showing that this phosphorus 

environment is slightly closer to a proton than the other phosphorus environments in 
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the sample, indicating that it the impurity phase is possible a hydrogen phosphate, 

HPO4
2-, or similar. 

 

Figure 3.11 - BLACK: 31P MAS-NMR Spectrum of ASrPPi, GREY: 1H à  31P CP-
MAS NMR Spectrum of ASrPPi [9] 
 

1H-MAS NMR spectra were recorded to probe the water molecule environments in 

the sample. Single resonance signals were observed at approximately -5.4ppm 

which is very close to the signal observed for the water signal from the crystalline 

Ca2P2O7·4H2O, which appears at -5.9ppm. Just like the signals recorded in the 31P 

spectra, the 1H signals from the water molecules in the samples are very broad, 

indicating that there is no structural ordering to the arrangement of water molecules 

in the structure either. 

The connectivity of the phosphorus atoms in the sample was confirmed by refocused 

31P INADEQUATE (Incredible Natural Abundance DoublE QUantum Transfer 

Experiment) experiments [9]. This technique probes through bond coupling which in 

this case, is the homonuclear J2 coupling between the phosphorus nuclei in the 

pyrophosphate. As the peaks in the 1D spectra are quite broad, it is possible that 

peaks for minor components within the sample, if the samples are not single phase, 

are masked. The 2D experiment will also show if there are higher levels of 

31P Chemical shift (ppm)
-30-25-20-15-10-505101520
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condensation present in the sample (if there are multiple correlated resonance 

signals present) or not. 

The INADEQUATE experiment correlates single and double quantum events 

occurring in the sample. A double quantum event is described as two magnetic 

moments flipping the direction of their moment simultaneously. This would indicate 

that these moments are magnetically coupled to each other. Single quantum events 

are, therefore, single uncoupled magnetic moments flipping the direction of their 

moment. 

It is possible to see from the 2D experiment whether or not there are other species 

present in the sample by the orientation of the signal intensity in the recorded 

spectrum.  

 

Figure 3.12 - Schematic of 2D INADEQUATE Spectrum 
 

Figure 3.12 shows a schematic of how the spectrum should look if only 

pyrophosphate is present. The points on the spectrum labelled “a” and “b” indicate 

only where the intensity of the 1D peaks would be due to the broadness of the 
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signal. If only pyrophosphate type phosphorus environments exist in the sample, 

then the correlation signal in the INADEQUATE spectrum should be aligned along 

the diagonal between the two dimensions, indicating that there are only the two 

coupled spins. If molecular symmetry and group theory are disregarded, then 

pyrophosphate can be thought of as being symmetrical – two PO3 units joined 

together by a fourth oxygen, with one phosphorus nuclei coupling to the other 

magnetically creating a symmetric signal in the 2D spectrum. If other types of 

phosphorus environments are present in the sample, this would show as a distortion 

of the signal shape due to either environments that do not couple at all, i.e. not 

chemically bonded, or are coupled to more than one phosphorus environment 

indicating higher levels of condensation. 

 

Figure 3.13 - 31P INADEQUATE Spectrum of ACaPPi 
 

From the 2D INADEQUATE spectrum of ACaPPi in figure 3.13, it is clear to see that 

the intensity of the signal is orientated along the diagonal of the spectrum and 

10 5 0 -5 -10 -15 -20

20

10

0

-10

-20

-30

-40

Single quantum dimension

D
ou

bl
e 

qu
an

tu
m

 d
im

en
si

on

ppm

pp
m

b

10 5 0 -5 -10 -15 -20

20

10

0

-10

-20

-30

-40

Single quantum dimension

D
ou

bl
e 

qu
an

tu
m

 d
im

en
si

on

ppm

pp
m

10 5 0 -5 -10 -15 -20

20

10

0

-10

-20

-30

-40

10 5 0 -5 -10 -15 -20

20

10

0

-10

-20

-30

-40

10 5 0 -5 -10 -15 -20

20

10

0

-10

-20

-30

-40

Single quantum dimension

D
ou

bl
e 

qu
an

tu
m

 d
im

en
si

on

ppm

pp
m

b



Chapter 3: Synthesis and Characterisation of Amorphous Group II Metal Pyrophosphates 
 

 
 

94 | P a g e  

centred around the position of the pyrophosphate signals, indicating that only the 

single level of condensation is present. 

A heteronuclear cross polarisation experiment was performed to assess the 

distances between the phosphorus nuclei, and in turn the pyrophosphate molecules, 

and the water molecules in the sample. 

The first observation here was that varying the polarisation transfer time, or contact 

time, of the experiment did not affect the intensity of the signal observed showing 

that there is no variance in the proton phosphorus distances in the sample. This is in 

direct contrast with the related crystalline Ca2P2O7.4H2O phase which has varying 

proton phosphorus distances giving rise to variation in relative peak intensities as the 

contact times are increased.  

Analysis of samples of ASrPPi which had been thermally treated at low temperatures 

(140oC and 220oC, figure 3.14) showed that partial hydrolysis followed by 

condensation appeared to be occurring in the sample. 1H à 31P CP-MAS 

experiments showed that the signal in the 1D spectrum from ASrPPi corresponding 

to a slight impurity phase was increasing slightly with increasing temperature, and 

that a corresponding proton signal in the 1D 1H MAS-NMR spectrum was also 

increasing in intensity showing that there was indeed a hydrogen phosphate species 

being created, figure 3.15. 

A similar behaviour has been noted in the thermal treatment of amorphous calcium 

polyphosphates [3]. It was noted that at temperatures between 140oC and 155oC, 

water loss occurred alongside a reduction, from NMR data, in the amount of 

polymeric phosphate and an increase in shorter chain phosphates (pyrophosphates) 

and orthophosphates, Shifts in the vibrational spectra also showed that there were 



Chapter 3: Synthesis and Characterisation of Amorphous Group II Metal Pyrophosphates 
 

 
 

95 | P a g e  

significant proportions of H-O(P) type species being produced, showing that although 

some of the water from the material was simply evaporating off, some was taking 

part in a hydrolysis reaction, and converting the longer chain polyphosphate into 

shorter chain phosphates and hydrogen phosphates. Upon further heating, further 

water is also lost, but the levels of hydrogen phosphate start to drop as more of the 

dimeric and polymeric phosphates are hydrolysed. At temperatures around 420oC, it 

was seen that this depolymerisation has been almost completely reversed and no 

detectable amount of monomeric or dimeric phosphate could be detected, but that 

the product was now completely anhydrous, indicating that with the final removal of 

water, a reformation of P-O-P linkages has occurred. 

 

 

Figure 3.14 – 1H and 31P MAS NMR spectra of ASrPPi before and after heat-
treatment at 140 and 220°C. The greyed region on the spectra shows where the 
new signals appear upon heat treatment. 
 

31P Chemical shift (ppm)
-20-1001020

1H Chemical shift (ppm)
048121620

ASrPPi_140

ASrPPi_220

ASrPPi
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Figure 3.15 - BLACK: 31P MAS-NMR Spectrum of ASrPPi heated to 220oC, 
GREY: 1H à  31P CP-MAS NMR Spectrum of the same sample 
 

Heating a sample of ACaPPi to higher temperatures showed crystallisation had 

indeed occurred. Samples were heated to temperatures between 500oC and 1000oC 

for 12Hrs in a furnace at 100oC intervals. 31P MAS-NMR spectra were then recorded. 

Following the trend in the variable temperature XRD, no new phases were seen in 

samples heated up to 500oC, shown in figure 3.16, however the shape of the centre 

band in the NMR spectrum had changed and a degree of asymmetry could now be 

seen indicating that there was some sort of structural rearrangement taking place on 

a local length scale. These changes were not be seen on an X-Ray diffractometer. 

31P chemical shift (ppm)
-30-25-20-15-10-5051015202530
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Figure 3.16 – 31P MAS-NMR Spectrum of ACaPPi after thermal treatment at 
500oC for 12Hrs 
 

Upon heating the sample to 600oC, shown in figure 3.17, two sharp peaks are 

observed, matching the peak positions of α-calcium pyrophosphate (α-Ca2P2O7 [10]) 

shown in figure 3.18. 
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Figure 3.17 – 31P MAS-NMR Spectrum of ACaPPi after thermal treatment at 
600oC for 12Hrs 

 

Figure 3.18 - 31P MAS-NMR Spectrum of pure α-Ca2P2O7 [10] 
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The two peaks shown in the NMR spectrum relate to the two unique crystallographic 

sites in which phosphorus exists in the structure. The peak width here of 

approximately 55Hz indicates that these are indeed now crystalline (compared to the 

peak width of approximately 750Hz for the amorphous phase). There are also two 

very weak signals at slightly higher chemical shift, approximately 2ppm. To establish 

that these are not in fact residual signal from spinning side bands, the spinning 

speed was varied to see if the position relative to the centre two bands changed. As 

it did not, and spinning side bands started to appear at slower spinning speeds, it 

can be concluded that these must be as a result of a small amount of 

orthophosphate present in the sample. NMR spectra of samples heat treated to 

lower temperatures, and similar studies on calcium polyphosphates [3], have shown 

that there is a decomposition pathway at low temperatures via ortho and acid 

orthophosphates so it is entirely possible that not all of this low temperature 

decomposition product has reformed into condensed phosphate as the temperature 

was raised further. 

Further heat treatment to higher temperatures continue to follow the trend seen by 

variable temperature XRD. Heating the sample to 700oC, figure 3.19, started a 

further phase transformation, evident from the additional peaks in the NMR spectrum 

that are starting to evolve. 
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Figure 3.19 - 31P MAS-NMR Spectrum of ACaPPi after thermal treatment at 
700oC for 12Hrs 
 

Upon further heating to higher temperatures, the newly evolving peaks become more 

defined  indicating that the phase transformation event is moving to completion. At 

1000oC (shown in figure 3.20), four clear peaks of similar peak width can be seen in 

the pyrophosphate region of the spectrum, corresponding to the chemical shifts of β-

calcium pyrophosphate (β-Ca2P2O7 [11]), a spectrum of the pure phase shown in 

figure 3.21. 
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Figure 3.20 - 31P MAS-NMR Spectrum of ACaPPi after thermal treatment at 
1000oC for 12Hrs 
 

 
Figure 3.21 - 31P MAS-NMR Spectrum of β-Ca2P2O7 [11] 
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The peaks around the orthophosphate region of the spectrum have also changed 

markedly. Although the two weak signals of defined width can still be seen at higher 

intensity indicating that there is more of this crystalline orthophosphate species 

present now in the sample, there are also very broad signals appearing, indicating 

that there is another amorphous or poorly crystalline phase now present as well, 

possibly the product from an incomplete hydrolysis reaction as its chemical shift 

would indicate that it is also orthophosphate in structure rather than a higher 

condensed phosphate. 

It is also possible to see another very broad signal, in comparison to the sharper 

signals from the major β-pyrophosphate phase at more negative chemical shift, 

approximately -18ppm. At this more negative chemical shift, this species would be 

assumed to be a higher condensed phosphate, possibly a triphosphate or higher 

level of condensation.  

As well as the evolution of additional peaks in the region expected for Q1 phosphate 

environments, it can also be seen that the intensity of the orthophosphate peaks has 

increased. Even at these higher temperatures, no evidence of any crystalline 

orthophosphate phases can be seen in the variable temperature XRD, showing that 

either there is a very small amount of this phase present or that the crystallite sizes 

are smaller than the length scale able to be detected by an X-Ray diffractometer. 
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3.3.6	
  Atomic	
  Pair	
  Distribution	
  Function	
  Analysis	
  

As synthesised samples of AMgPPi, ACaPPi and ASrPPi were analysed by pair 

distribution function analysis, as well as crystalline analogues of each amorphous 

phase. Measurements were made by Victoria Burnell at the Advanced Photon Light 

Source in Chicago. 

Atomic Separation (Å)

2 4 6 8 10 12 14 16 18

AMgPPi

Mg2P2O7.6H2O

 

Figure 3.22 - Atomic Pair Distribution Function of as synthesised AMgPPi 
(Top) and crystalline magnesium pyrophosphate hexahydrate [4] (bottom) 
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Figure 3.23 - Atomic Pair Distribution Function of as synthesised ACaPPi (Top) 
and Calcium Pyrophosphate Tetrahydrate [12] (Bottom) 
 

 

Figure 3.24 - Atomic Pair Distribution Fuction of as synthesised ASrPPi (Top) 
and strontium pyrophosphate [5] (bottom) 
 

The first difference observed between the PDF patterns in figures 3.22, 3,23 and 

3,24 of the amorphous and crystalline samples, is the lack of peaks after 

approximately 7Å in the amorphous samples, indicating that the samples only 

display short and short / medium range order. The distance between the calcium 
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atoms in crystalline calcium pyrophosphate tetrahydrate is approximately 8.5Å, 

therefore, the ordering that is present in the amorphous sample can be assumed to 

be as a result of molecular ordering within the pyrophosphate units themselves, 

rather than from stacking and packing arrangements of the pyrophosphate units with 

respect to each other. 

There are also clear differences in peak shape between the amorphous and 

crystalline patterns. The PDF patterns for the crystalline products show sharp 

defined peaks, which in the amorphous PDF patterns seem to have merged into 

single, broad rounded peaks. 

A by eye comparison of the crystalline and amorphous PDF patterns for each phase 

shows that the local structure of the amorphous phases, up to 7Å, does closely 

resemble that of their crystalline analogues, with all the major peaks appearing at the 

same interatomic separations. 

To fully assign peaks in the patterns to atomic pairs, and deconvolute any peak 

overlaps, partial PDF patterns were calculated, which were then compared to the 

amorphous patterns allowing full assignment.  

Partial PDFs are a computer calculated PDF patterns based on the atomic positions 

in a known structure, for a particular pair of atoms in the structure. The pattern 

shows only the peaks at atomic separations present between that particular atom 

pairing, and so can be used to assess the contributions of many different atomic 

pairs to broader peaks in the whole PDF.  

This technique is similar to that of  a Rietveld refinement of an XRD pattern. The 

PDF refinement software, which in this work was PDFgui [13], initially  refines a 
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structural model for your structure, based on the recorded PDF, by allowing certain 

parameters associated with the model to vary. After each modification, using a least 

squares refinement process, the new model is either kept or rejected depending on 

whether the goodness of fit indicator has improved or worsened from the previous 

value. 

PDFs of the crystalline analogues were refined, using models obtained from the 

ICSD database (inserted into the software as CIF files). Once the refined model has 

been generated, partial PDFs were calculated from it, and compared to the PDF 

patterns of the amorphous pyrophosphate phases to fully assign which peaks 

represent which atomic pairs. 

Atomic Separation (Å)

2 4 6 8 10 12 14 16 18

P-O

P-P

Mg-Mg

Mg-P

Mg-O

Mg2P2O7.6H2O

AMgPPi

a b c d e f g

 

Figure 3.25 - Partial PDF patterns for magnesium pyrophosphate 
 



Chapter 3: Synthesis and Characterisation of Amorphous Group II Metal Pyrophosphates 
 

 
 

107 | P a g e  

Atomic Separation (Å)

2 4 6 8 10 12 14 16 18

P-O

P-P

Ca-Ca

Ca-O

Ca-P

Ca2P2O7.4H2O

ACaPPi

a b c d e

 

Figure 3.26 - Partial PDF patterns for calcium pyrophosphate 
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Figure 3.27 - Partial PDF patterns for strontium pyrophosphate 
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Figures 3.25, 3.26 and 3.27 show the partial PDF patterns calculated from 

crystallographic data for equivalent crystalline structures of the amorphous materials 

under investigation. The first rather surprising similarity between the partial PDF 

patterns for all phases is that the contribution to the total PDF pattern from the P-P 

atomic separation is so small. As phosphorus is amongst the heavier scattering 

species present in the samples, one might expect the contribution to be greater, 

however when, in the case of AMgPPi and ACaPPi, it can also be seen that the M-M 

contribution is also very small, it becomes clear that the number of atomic 

separations has a very marked effect on the recorded intensity. Indeed in all 

samples, the peak intensity for P-O separations was amongst the most intense with 

there being eight P-O distances in each sample compared to P-P and M-M where 

there is only one of each. In the case of ASrPPi, the Sr-Sr contribution to the total 

PDF is larger, presumably as a result of the greatly increased scattering ability of 

strontium when compared to magnesium and calcium. 

Several observations about the bond lengths calculated from the partial PDFs, 

shown in table 3.4. P-O (~1.5Å) and P-P (~2.5Å) distances in all samples are the 

same, indicating that the change of cation has no effect on the bond lengths and 

bond angles in the samples. M-O distances also follow a trend that could be 

expected that Mg-O being the shortest distance with magnesium being the smallest 

cation and Sr-O being the longest of the M-O separations with strontium being the 

largest cation in the series. 
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Table 3.4 - Structural Summary of PDF Data 

Atomic 
Pair 

ACaPPi (Å) Ca2P2O7.4H2O 
(Å) 

ASrPPi 
(Å) 

α-Sr2P2O7 

(Å) 

P-O 1.53 1.54 1.52 1.52 

M-O 2.43, 3.56, 

4.47 

2.41, 3.56, 4.50 2.58, 

3.96 

2.65, 4.50 

P-P 2.99 3.06 2.58 2.87 

M-P 3.56 3.48 3.27, 

3.96 

3.22, 3.89 
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3.3.7	
  Solubility	
  

In order for a material to be a suitable bioresorbable implant material, it must not only 

be soluble under physiological conditions, but dissolve at a rate comparable to 

natural bone regrowth. 

Various attempts were made to measure the in vitro solubility, however these proved 

unsuccessful. Firstly, an ion chromatography instrument was re-plumbed such that a 

stirred beaker containing the amorphous material in water was pumped around a 

circuit, through a small filter column to create back pressure through a conductivity 

detector cell and then back into the reaction mixture. As the ion chromatograph 

pumps the stirred solution around the circuit, the conductivity of the solution should 

increase as more of the material dissolves into the liquid. The conductivity could then 

be related to a certain concentration of ions in solution by means of running the 

experiment with suitable calibration standards. 

Due to instrument malfunction, this approach was unsuccessful. The age of the 

instrument rendered the pump unable to withstand the high pressures required by 

the conductivity cell, and the solution simply leaked inside the pump module. 

The second approach was to take aliquots of the solution in which amorphous 

pyrophosphate had been soaking each day and record the XRF spectrum using a 

Bruker S2 Picofox tXRF Spectrometer. However, after approximately 20 days, there 

were still no detectable levels of calcium, strontium or phosphorus. The material was 

filtered and dried and the diffraction pattern collected which showed that the material 

had crystallised. This suggests that amorphous stability in aqueous environments is 

limited but further study is required to quantify this. 
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An attempt to gauge the biological response in vitro with the enzyme alkaline 

phosphatise, ALP. ALP is a hydrolytic enzyme which breaks down P-O-P linkages in 

biological systems to shorter chain condensed phosphates and orthophosphates. 

In this experiment, a set mass of amorphous pyrophosphate phase was placed in a 

viscin tubing which was then suspended in a buffered solution containing ALP. Viscin 

tubing was used to prevent the enzyme from hydrolysing the pyrophosphate at its 

surface, as viscin tubing with an appropriate pore size was selected such that the 

enzyme was too large to enter. As the material dissolved, and mixed with the 

buffered solution, the enzyme would hydrolyse the condensed phosphate molecules 

to orthophosphate molecules. 

An aliquot of the buffered solution as then taken and by means of a phosphate assay 

according to the method prescribed by Chen [14], the concentration of 

orthophosphate could be determined by means of UV-VIS absorption spectroscopy 

and appropriate calibration standards by the colour of the resulting assay. 

However, this proved an unsuccessful attempt as every material that was assayed 

provided the same result, that there was a large spike in enzymatic activity during 

the first 5 minutes and then a very low level of catalytic activity for the rest of the 

experiment (figure 3.25 shows a photograph of the aliquots taken and treated as per 

the phosphate assay protocol) 
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Figure 3.28 – Aliquots of buffered solution measured by phosphate assay 
method. 
 

It is clear from the photograph in figure 3.28 that the second of the assays taken 

shows an apparent concentration spike in orthophosphates (darker colour correlates 

to higher orthophosphate concentration). However, as any condensed phosphate 

sample assayed provided exactly the same result, whether it was a pyrophosphate 

or higher condensed phosphate, amorphous or crystalline, this was clearly an 

anomaly. It was later found that the reagents used to develop the assay were 

themselves contributing to the result, and so an alternative protocol was required. It 

was intended to use the ion chromatograph to quantify the amount of phosphate in 

each sample, however owing to instrumental failure during the course of this work, 

this was not possible. 
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3.4	
   Conclusion	
  

Following the mixing of fresh reagents, it is possible to obtain amorphous group II 

metal pyrophosphate phases which do not contain large amounts chloride salts, as 

previously reported by Brown [2].  

Powder XRD measurements were of limited use in characterising the structure of 

these materials so analytical methods that probe the local were used to determine 

the structure on a short length scale. Following development of an appropriate 

sample preparation protocol, XRF showed the atomic ratios in the samples to 

correspond to those expected for a group II metal pyrophosphate. 1D and 2D MAS-

NMR showed that the phosphorus environments in the structure are Q1 in type, that 

is, only a single bridging oxygen atom per phosphorus atom showing that these 

phases are indeed pyrophosphate species. PDF analysis confirmed that ordering in 

the samples is limited to a length scale corresponding to locally bonded groups of 

atoms only, with no ordering to atomic pairs longer than 8Ǻ. A comparison of the 

PDF patterns of analogous crystalline phases allowed each of the peaks in the PDF 

of each amorphous phrase to be assigned to an atomic pair in the structure, a 

process known as a Partial PDF. 

Surprisingly, thermal analysis (TGA and VT-XRD) have shown that these 

amorphous, thermodynamically unstable phases, are relatively thermally stable up to 

temperatures as high as 550oC, where they start to decompose upon the removal of 

the last water from the samples. However, NMR studies of samples thermally treated 

at lower temperatures shows that some thermal hydrolysis forming hydrogen 

phosphate phases in the case of ASrPPi does occur.  
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This apparent amorphous stability, both in terms of long term stability at room 

temperature and stability at high temperature is likely to be due to the flexibility in the 

pyrophosphate molecule. The very broad 31P resonance signal from the 1D MAS-

NMR indicates that there is likely to be a very broad range of P-O-P bond angles. 

This flexibility, and the overall shape of this polyatomic anion is likely to impede 

crystallisation and therefore offer some stability to this otherwise metastable phase. 
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Chapter	
  4:	
  Synthesis	
  and	
  Characterisation	
  of	
  
Modified	
  Calcium	
  Phosphate	
  Cements	
  

4.1	
   Introduction	
  

Bone replacement, with either a natural or artificial material has been known for 

some time, with the first application of an calcium phosphate based artificial bone 

replacement material being used around a century ago [1]. Since then, various 

artificial materials have been suggested, as the supply of natural bone for such 

applications is both limited and presents potential cross-infection issues [2-5]. 

Various materials have been suggested as possible artificial bone replacement 

materials [6] which include ceramic components such as calcium phosphates and 

calcium sulphates, polymers such PMMA, collagen and cellulose and metals such as 

titanium and its alloys. The work in this thesis focuses on the use of ceramic 

materials, and in particular, the use of calcium phosphates. 

Bioceramic bone substitute materials can be thought of as being one of two kinds; 

permanent materials which remain in the patient’s body indefinitely and 

bioresorbable materials, which are slowly dissolved away over time, and replaced 

with naturally formed material using biosynthetic pathways. Although permanent 

bioceramic materials offer a much more desirable approach to replacing damaged 

bone tissue than other forms of bone grafting, e.g. an autograft or allograft, studies 

have shown that over time small particles of the implanted material can break away 

and contribute to a condition known as debris induced osteolysis [7-10]. That is, 

these particles contribute to the wearing away of natural bone. 

As natural bone is such a complex material, and is clearly the optimal material for the 

purpose, much research has been undertaken into the development of resorbable 
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bioceramic implants. Bone varies in function, structure and composition with subtle 

differences in the substitution chemistry of both the ceramic and organic components 

tuning properties of the bone tissue to the exact purpose that is required. Therefore, 

if an implanted material is to truly behave like the natural material, these 

substitutions must be taken into account. Clearly, this represents a problem as it 

could conceivably mean that a surgeon would need a different formulation for 

different areas of the body. Therefore, the underlying premise for the design of a 

bioresorbable implant material is to create a local source of the raw materials that 

the body needs to synthesise natural bone. The implant material must be dissolved 

away at a rate comparable with the rate of bone formation and if possible give rise to 

an enhancement in the rate of bone formation, thus shortening the healing time for 

the patient. 

Although not a particularly bioresorbable implant material, much research has been 

undertaken into the use of hydroxyapatite as a potential artificial bone substitute. The 

ceramic component of natural bone is comprised of a substituted hydroxyapatite and 

so a synthetic version should be able to present similar properties in vivo [11-16]. 

Biphasic mixtures of calcium phosphates, including β-TCP and hydroxyapatite have 

been found to be more resorbable than pure hydroxyapatite [13], whereas other 

phases such as brushite have been shown to be resorbed too rapidly [17-19]. 

Indeed, implanted material consisting of brushite has been shown to convert to 

hydroxyapatite on the surface in vivo thus preventing any further resorption [18]. 

Magnesium ions present in the brushite implant material however can prevent this by 

binding to newly formed hydroxyapatite crystals preventing further proliferation [20]. 
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The way in which such an artificial implant material is applied in surgery is also 

crucial when selecting an appropriate material. The material must be able to be 

implanted and be in a state in which the incisions in the patient can be closed up on 

a timescale of a few tens of minutes. Defect sites are often not regularly shaped and 

so the implant material must be able to flow like a liquid to fill completely any 

irregularly shaped defect sites. 

So called Bone Cements offer such a possibility. As one can imagine, from the name 

cement, these are formed by mixing a liquid with solid reagents to form a paste 

which then after a period of time, sets hard to form a new phase. 

Typically, calcium phosphate based cements are implanted as injectable pastes. 

That is, where a homogeneous mix of the solid components is mixed with water to 

form a workable paste of the required consistency. The dissolution of the solid 

components followed by the precipitation of the cement phase yields crystal 

proliferation and inter-growth, resulting in the hardening of the cement. 

Different factors affect how successfully the cement can be formed. These include 

particle size, powder liquid ratio and setting time. In order for the materials in a solid 

to form a flowing paste, the inter-particular gaps must be filled with water molecules 

which will allow the particles to flow freely over one another. If the solid components 

are not of reasonably homogeneous particle size, an efficient packing arrangement 

will not be achieved, meaning that the gaps between particles will be larger and 

therefore require more water to fill them. If we assume that, following suitable 

grinding treatment, particles will be almost spherical in shape, then the larger 

particles will also require more water to fill the inter-particular spaces. This can be 

likened to the gaps between footballs stacking which are obviously larger than the 
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gaps between golf balls stacking together. If however, one of the phases forming the 

solid mix produces smaller particles than the other, then these can be used to space 

fill between the larger particles, reducing the need for filling by water molecules. 

The setting time of the cement is related to the powder to liquid ratio. In order for the 

cement to set hard, precipitation of the cement phase must follow dissolution of the 

solid components. If there is too much water present, this may not happen at all, but 

will certain happen more slowly if there is more water present in the paste. Setting 

time is a very important clinical factor to gauge whether or not a particular cement 

formulation is suitable for the purpose required; the patient cannot stay on the 

operation theatre table indefinitely while the surgeon waits for the cement to set, and 

so it must set within a clinically acceptable timeframe. This must however allow the 

surgeon ample time to apply the cement correctly and completely. 

As previously mentioned, the presence of an amorphous calcium pyrophosphate 

formed in-situ during a brushite cementing reaction appeared to produce a cement 

with enhanced properties which were assigned to the amorphous component [18]  

The formation of the amorphous pyrophosphate was a direct result of employing 

pyrophosphoric acid in the setting reaction: 

H4P2O7 + 2Ca3(PO4)2 + 12H2O  ⇌ 4CaHPO4·2H2O + Ca2P2O7·4H2O 

From this reaction most of the pyrophosphate was found to be present in an 

amorphous form (~25-30wt%). It is not apparent how the level of amorphous material 

can be modified to attempt to optimise the properties of the cement. Hence, in this 

work we are seeking to separately produce an amorphous form and add it in a 

systematic manner to a standard brushite cement reaction to allow optimisation of 
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properties to occur. It also allows the potential addition of other biologically important 

ions such as strontium and magnesium. 
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4.3	
   Synthesis	
  of	
  Modified	
  Brushite	
  Cements	
  

The basic brushite bone cement formulation was calculated according to the 

following chemical equation: 

Ca(H2PO4)2.H2O  +  Ca3(PO4)2  + H2O  à  4 Ca(HPO4).2H2O 

Equation 4.1 – Brushite Cement Forming Reaction 
 

Equation 4.1 shows how a mole of MCPM (monocalcium phosphate monohydrate, 

Ca(H2PO4)2.H2O) reacts with a mole of β-TCP (tricalcium phosphate, β-polymorph, 

Ca3(PO4)3) and a mole of water to form four moles of the brushite cement phase. 

Phase Mr (g mol-1) Mass Used (g) 

MCPM 250 5 

β-TCP 310 6.2 

 
Table 4.1 - Brushite Cement Formulation 
 

For all cement formed in this work, 5g of MCPM were ground with 6.2g of β-TCP 

which was then made to a workable paste with water. This is referred to as the 

“unmodified cement”. 5g of the dry mix was taken, to which a certain weight 

percentage of amorphous material was added. These modified mixtures were then 

ground again to obtain an apparently homogeneous mix and then mixed with an 

appropriate amount of water to form a paste of comparable consistency to the 

unmodified cement mixture.  
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4.4	
   Characterisation	
  of	
  Modified	
  Cements	
  

There are various key parameters which govern the quality of a cement and whether 

the cementing reaction can go to completion forming the new cement phase or 

whether there are starting materials present in the final product. 

4.4.1	
   Tap	
  Density	
  

Packing efficiency is very important. In order for the cement to set in a clinically 

acceptable time frame, that is not so slowly that the patient is in the operating theatre 

for unnecessarily long periods but not so rapidly that the surgeon is not allowed  

sufficient time to correctly implant the cement. 

When the cement paste is formed from the mixture of solids and liquid, the particles 

must be able to flow around each other. This is either achieved by homogeneous 

grinding of the starting solid materials in the mix, or by using water to fill any spaces 

between particles. Inefficient particle packing would mean that more water is 

required to form a workable paste and therefore increase the setting time. So, 

particle size and powder liquid ratio are important. 

Packing efficiency of the powdered material mix can be assessed by measuring the 

tap density of the materials. This technique involves taking a fixed mass of the 

mixture in a measuring cylinder, tapping the cylinder on a hard surface a fixed 

number of times and then measuring the volume. 

2g of the solid powder mix was placed in a 10cm3 glass measuring cylinder and 

tapped 200 times. 
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Wt% Amorphous Tap Density - ACaPPi (cm3) Tap Density - ASrPPi (cm3) 

0 0.8 0.8 

10 1.2 1.3 

20 1.9 2.2 

30 3.1 2.9 

40 4.5 4.9 

 
Table 4.2 – Tap Densities of Dry Reactant Mixes 
 

The most efficient packing arrangement for atoms in a solid is a crystalline 

arrangement. As such, amorphous materials in general have a lower density than 

crystalline analogues of the same material. This is illustrated by the decrease in tap 

density as the weight percentage of amorphous content increases, shown in table 

4.2.  

4.4.2	
   Powder	
  Liquid	
  Ratio	
  

From the decreasing tap density with increasing added amorphous content, it can be 

predicted that, to make a paste of constant workable viscosity, more liquid will be 

required for formulations with higher added amorphous content than for formulations 

with lower amorphous content. It is likely that both atomic disorder and irregular 

particle size and shape contribute to larger gaps in the amorphous phase than in the 

crystalline components. In order to make a paste that can flow properly to fill a defect 

site, these gaps must be filled with water, therefore, with increasing amorphous 

content, there will be a greater amount of water required, which is indeed what is 

seen, as shown in table 4.3. An unmodified brushite cement was produced from 5g 

of cement mix and an appropriate amount of water to form a workable paste. Upon 



Chapter 4: Synthesis and Characterisation of Modified Calcium Phosphate Cements 
 

 
 

125 | P a g e  

adding amorphous content, a total of 5g of the solid cement components were mixed 

again with sufficient water to form a paste of similar viscosity.  

Wt% Amorphous Water required (cm3/g) 

0 3.5(5) 

10 4.4(6) 

20 6.4(5) 

30 8.1(4) 

40 10.1(5) 

Table 4.3 – Powder Liquid Ratios 
 

At higher levels of amorphous content, it was very noticeable that the amorphous 

additive was not homogeneously mixing with the cementing components, following 

the addition of water. Particles of consistent appearance to that of the amorphous 

material could be seen floating in the liquid. This would indicate that the resulting 

cement is not going to be perfectly homogenously mixed and phase segregation 

throughout the set cement could be possible, which will have a marked on the 

strength of the resultant cement, introducing possible defect sites which will 

introduce points of weakness when the material is under strain. 
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4.4.3	
   Setting	
  Time	
  

The setting time of the resultant cement was very important. As already mentioned, 

the surgeon must be allowed sufficient time to properly implant the material, but it 

must also set quickly enough so that the patient is not left in the operating theatre 

with open incisions for longer than is absolutely necessary.  

Table 4.4 - Setting times 
Wt% Amorphous Setting Time (min) 

0 23(3) 

10 24(5) 

20 20(3) 

30 18(6) 

40 16(6) 

 

The average setting time, shown in table 4.4, for the modified cements decreases 

with increasing amorphous content, however, the amount of water required to make 

a consistently workable paste was increasing, observations that potentially 

contradict. However, when the density of the amorphous material is considered it is 

entirely possible that the extra water is simply filling in spaces in the lower density 

amorphous phase rather than taking part in the cementing reaction. Furthermore, as 

the percentage of amorphous content is increasing, but the total mass of solid 

components was remaining constant (5g), then there will be a smaller mass of solid 

components that takes part in the cementing reaction, so it is conceivable that the 

actual cement setting reaction will be complete in a shorter time. However, it should 

be noted that the resulting cements, although set and no longer able to flow under 
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the action of gravity, were noticeably softer with increasing amorphous content 

however.  

4.4.4	
   Compressive	
  Strength	
  

Compressive strength is also an important property of a bone cement. If it is to be 

used in a load bearing application, it must be able to withstand stresses applied to it. 

Compressive strengths were measured for ACaPPi modified cements (table 4.5) 

between 10wt% and 30wt% addition of amorphous material. The sample modified 

with 40wt% did not display enough structural integrity to register a reading on the 

compressive strength instrument as it just disintegrated as soon as a load was 

applied to it. For the cement series modified with ASrPPi (table 4.6), it was not 

possible to test 30wt% and 40wt% modified samples for the same reason. 

Table 4.5 - Strength Testing Results for ACaPPi Modified Brushite Cements 
Wt

% 
1 2 3 4 5 6 7 8 9 10 Avg SD 

0 
6.50	
   6.04	
   6.42	
  

6.2

4	
   6.92	
  

6.3

2	
  

6.6

9	
   5.29	
   3.78	
   4.72	
   5.89	
  

0.9

9	
  

10 
20.4

7	
  

11.7

0	
  

13.5

8	
  

5.2

6	
  

21.0

5	
  

2.8

4	
  

9.5

3	
  

16.8

1	
  

11.2

1	
  

26.7

7	
  

13.9

2	
  

7.4

3	
  

20 
2.16	
   0.42	
   2.64	
  

2.6

8	
   1.61	
  

2.3

4	
  

2.5

9	
   7.00	
   7.08	
   0.83	
   2.94	
  

2.3

0	
  

30 
0.69	
   0.13	
   0.85	
  

0.8

6	
   0.52	
  

0.7

5	
  

0.8

3	
   2.24	
   2.26	
   0.27	
   0.94	
  

0.7

3	
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Table 4.6 - Strength Testing Results for ASrPPi Midified Brushite Cements 
Wt

% 
1 2 3 4 5 6 7 8 9 10 Avg SD 

0 6.50	
   6.04	
   6.42	
  
6.2

4	
  
6.92	
  

6.3

2	
  
6.69	
   5.29	
   3.78	
   4.72	
   5.89	
  

0.9

9	
  

10 
21.7

8	
  

12.4

4	
  

14.4

5	
  

5.5

9	
  

22.4

0	
  

3.0

2	
  

10.1

3	
  

17.8

9	
  

11.9

3	
  

28.4

8	
  

14.8

1	
  

7.9

0	
  

20 2.43	
   0.47	
   2.97	
  
3.0

1	
  
1.81	
  

2.6

3	
  
2.91	
   7.87	
   7.95	
   0.94	
   3.30	
  

2.5

8	
  

 

Unmodified brushite cements made in this way display similar compressive strengths 

to those previously reported [18]. It is clear to see from the results that modifying the 

cement formulation with 10wt% of amorphous material, either strontium or calcium 

amorphous pyrophosphate, greatly increases the strength of the cement when 

compared to an unmodified brushite cement made from the same method, albeit with 

a marked increase in the range of results. However, this increase in strength is 

considerably less than the 25MPa compressive strength reported for modified 

cements, synthesised with the use of pyrophosphoric acid, previously reported [18]. 

It is interesting that a very noticeable decrease in compressive strength is apparent 

then noticed when 20wt% amorphous content is added, and the resulting cement is 

in fact apparently weaker than an unmodified cement. This could be as a result of 

non-homogeneous mixing of the phases during the cementing reaction, and resulting 

segregation of cement phase and amorphous phase, rather than an integral mix of 

the weaker amorphous phase within a matrix of the stronger cement phase. This 

may also explain why there were inconsistent results for the 10wt% modified 
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cements. It does highlight, that with a careful optimisation of components, it should 

be possible to produce a stronger cement with the addition of small amounts of 

amorphous material. This would be in addition to any improved biological impact of 

the amorphous component. 
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4.5	
   Compositional	
  Analysis	
  of	
  Cement	
  Samples	
  

The cements produced during this work were made using the same cement forming 

reaction which was modified to include various weight percentages of an amorphous 

phase. It is possible that the cementing reaction causes amorphous materials to be 

consumed and so it was not clear how much amorphous material would be present 

following the cementing reaction. It was already known that it is possible to form 

crystalline pyrophosphate phases via an amorphous pyrophosphate that is left to 

soak in the reaction liquor for a period of time. Although during the course of this 

project, it has been found that the amorphous pyrophosphate phases are stable for 

much longer periods of time than previously reported [21] if removed from the 

reaction liquor, it is not clear if their stability is as high in the aqueous environment of 

the cementing reaction.  

To determine this, Rietveld analyses of the powder diffraction patterns of samples 

spiked with 10wt% corundum (Al2O3) were used to assess and estimate how much 

amorphous material was present. 

Before a Rietveld analysis can be undertaken, each phase present in the sample 

must be identified. Powder diffraction data were analysed using Bruker EVA 

software, and the ICDD PDF Structure database. Standard models for the 

components were employed as taken from the ICDD PDF and in general atomic 

parameters were not varied. Any exceptions will be discussed when necessary. 

Lattice parameters of the main crystalline products are given in table 4.8, 4.9, 4.11 

and 4.12. 
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Figure 4.1 – Rietveld Refinement of unmodified Brushite Cement. Recorded 
data shown in black, fit in red, difference in grey, peak markers for each phase 
shown at the bottom. 
 

Figure 4.1 shows the rietveld refinement of an unmodified brushite cement, 

synthesised in the same way as the modified cements. Although the fit is not perfect 

(Rwp = 20), it clearly shows that there is a sizable presence of monetite, effectively 

dehydrated brushite, showing that the cement paste was water deficient. This will 

therefore be a feature of all cements synthesised in this work. 

Figure 4.2 shows the rietveld refinement of a brushite cement modified by addition of 

10wt% ACaPPi. Further rietveld refinements can be found in appendix 1. 

 

 

Figure 4.2 – Rietveld refinement of Modified Cement, 10wt% ACaPPi 
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ACaPPi Brushite Monetite Amorphous Rwp 

10 41(2) 35(2) 9(2) 7.8 

20 27(2) 36(2) 26(2) 9.16 

30 44(2) 24(2) 20(2) 8.65 

40 21(2) 32(2) 25(2) 9.2 

 
Table 4.7 – Phase Fractions from Rietveld Analysis of ACaPPi Modified 
Cement Samples 
 

ACaPPi a b c vol 

Unmodified 6.378(1) 15.211(3) 5.825(1) 497.74(3) 

10 6.3754(2) 15.2097(7) 5.8205(2) 495.93(3) 

20 6.3723(3) 15.2045(9) 5.8183(3) 495.39(2) 

30 6.3738(2) 15.2104(6) 5.8197(2) 495.73(2) 

40 6.3729(3) 15.198(1) 5.8194(4) 495.23(3) 

 
Table 4.8 – Refined Brushite Unit Cell Parameters for ACaPPi modified 
cements 
 

ACaPPi a B c vol 

Unmodified 6.955(2) 6.754(2) 6.985(2) 306.97(3) 

10 6.9164(2) 6.6460(2) 7.0082(2) 310.8(1) 

20 6.9138(3) 6.6430(3) 7.0050(3) 310.56(3) 

30 6.9167(3) 6.6447(3) 7.0067(3) 310.8(1) 

40 6.9146(4) 6.6433(4) 7.0042(4) 310.44(2) 
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Table 4.9 - Refined Monetite Unit Cell Parameters for ACaPPi modified cements 
Phase analysis showed that monetite, seemed to be the present in relatively large 

amounts in the cement formulations modified with ACaPPi, just as in the unmodified 

cement, rather than a purely brushite cement that might be expected. It also 

appeared that the ratio of brushite to monetite decreased as the amount of added 

amorphous material was increased. This showed that although sufficient water was 

added to the dry starting material mix to form a workable paste of an approximately 

constant viscosity, the presence of the amorphous phase seemed to be influencing 

how much water was available for the expected cement reaction. 

The rietveld analysis showed that the level of amorphous material present in the final 

cement was less than was added to the dry cement mix, with the 20wt% sample 

being the only exception to this trend. However, diffraction showed no evidence of 

any crystalline calcium pyrophosphate phases, and no evidence of any other 

crystalline calcium orthophosphate phases suggesting that a hydrolysis had 

occurred. 

31P MAS-NMR spectra were recorded of the modified cement samples. 
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Figure 4.3 – 31P MAS-NMR Spectrum of Un-modified Brushite Cement 
 

Figure 4.3 shows the spectrum recorded of an unmodified brushite cement formed in 

the same way, with the main peak for brushite appearing approximately 1ppm. There 

are also some very weak peaks shown for starting material. 
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Figure 4.4 - 31P MAS-NMR Spectrum of Brushite Cement modified by addition 
of 10wt% ACaPPi 
 

Figure 4.4 shows the spectrum of a brushite cement modified with the addition of 

10wt% ACaPPi. The main band for brushite can still clearly be seen at approximately 

1ppm, but there are also four additional peaks between approximately -7ppm and -

13ppm, which correspond to the four phosphate environments in the crystalline 

polymorph β-calcium pyrophosphate phase. However, it must be noted that these 

peaks are weak in comparison to the main brushite band and are positioned over a 

very broad, high background peak, indicative that there is still amorphous content 

present in the sample. 

When a cement with 40wt% ACaPPi added, the peaks corresponding to β-calcium 

pyrophosphate become much more pronounced, as shown in figure 4.5. 
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Figure 4.5 - 31P MAS-NMR Spectrum of Brushite Cement modified by addition 
of 40wt% ACaPPi 
 

As well as the increase in the level of crystalline β-calcium pyrophosphate in the 

sample, it is also clear to see that there is another broad peak centred at around 

4.5ppm, indicative of the presence of an amorphous orthophosphate species. 

Even though the NMR has clearly identified that there are extra crystalline phases 

present in the sample, these phases have not been detected in the XRD patterns. As 

NMR is a technique which can probe the local structure of a material rather than the 

average structure, like XRD, it can be concluded that the crystallite sizes of these 

phases are too small for diffraction to detect. 

It is likely then that actual amount of amorphous calcium pyrophosphate still present 

in the cement samples following the cementing reaction is actually lower even that 

the rietveld refinements report, as extra intensity in the background of the diffraction 
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patterns due to the presence of small crystallites of β-calcium pyrophosphate would 

be characterised by the rietveld software as being X-Ray amorphous. 

 
ASrPPi bTCP Brushite Monetite Amorphous Rwp 

10 2(2) 18(2) 33(2) 37(2) 6.78 

20 10(2) 6(2) 38(2) 34(2) 6.71 

30 2(2) 2(2) 41(2) 44(2) 7.73 

40 3(2) -- 39(2) 47(2) 7.68 

 
Table 4.10 - Phase Fractions from Rietveld Analysis of ASrPPi Modified 
Cement Samples 
 

Table 4.10 shows the phase fractions from rietveld analysis of diffraction patterns for 

cements modified with ASrPPi. It was surprising to see that the overall amorphous 

content had increased from what was added to the samples, in contrast with the 

samples modified with ACaPPi where the overall amorphous content had decreased 

slightly from what was added to the mix before cementing. It is not clear what this 

apparent extra amorphous material is and further investigation, possibly by pair 

distribution function or solid state NMR which probe the local structure of phases 

present in the sample, is required to fully characterise this. 

During the Rietveld analysis, it was noticeable that intensities for some of the 

monetite and brushite peaks in the pattern were not being modelled particularly 

accurately. One possible explanation for this is that strontium substitution onto the 

calcium sites in each structure may be occurring. There is one crystallographic 

calcium site in the brushite structure, and two in monetite. 
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To investigate this, the refinement was modified to include possible mixed 

occupancy of the various calcium sites by strontium. As a standard procedure in 

such refinements, these sites were given the same atomic co-ordinates and the sum 

of the site occupancies constrained to 100% occupancy. 

ASrPPi a b c vol Wt% Ca (1) Sr (1) 

- 6.378(1) 15.211(3) 5.825(1) 497.74(3) 45(2) 1 0 

10 6.3829(3) 15.2217(9) 5.8225(3) 497.26(5) 18(2) 0.84(1) 0.16(1) 

20 6.378(1) 15.218(3) 5.877(1) 497.3(2) 6(2) 0.99(4) 0.00(4) 

30 6.344(5) 15.22(1) 5.880(5) 494.8(8) 2(2) 0.8(3) 0.2(3) 

 
Table 4.11 – Refined brushite unit cell parameters and site occupancies for 
ASrPPi modified cements 
 

ASrPPi a b c vol 
Wt% Ca  

(1) 

Sr  

(1) 

Ca 

(2) 

Sr 

(2) 

- 6.955(2) 6.754(2) 6.985(2) 306.97(3) 55(2) 1 0 1 0 

10 6.9245(2) 6.6499(2) 7.0110(2) 311.50(2) 33(2) 0.95(1) 0.05(1) 0.81(1) 0.19(1) 

20 6.9359(4) 6.6543(4) 7.0164(4) 312.51(3) 38(2) 0.94(1) 0.06(1) 0.83(1) 0.17(1) 

30 6.9403(6) 6.5938(6) 7.0170(7) 312.72(5) 41(2) 0.94(1) 0.06(1) 0.82(1) 0.18(1) 

40 6.9470(7) 6.6588(8) 7.0226(8) 313.50(7) 39(2) 0.93(1) 0.07(1) 0.73(2) 0.27(2) 

 
Table 4.12 – Refined monetite unit cell parameters and site occupancies for 
ASrPPi modified cements 
 

Firstly, the results of the refinements on the brushite component (table 4.11), indicate 

that the volume of the brushite unit cell is slightly decreased as amorphous content is 

increased. This would appear contrary to what might be expected with the inclusion 
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of the larger strontium ion to replace calcium. The Rietveld refinements provide 

some limited evidence of strontium substitution at 10% amorphous content but none 

in the 20% sample. We can ignore the 30% sample as brushite content is only 

~2wt% and thus the refinement is likely be highly unreliable with such little intensity 

to model.  On balance of evidence, and given that strontium substitution has not 

previously been reported in brushite, we may infer that it is unlikely to have occurred 

in these brushite phases.  In contrast, the Rietveld study on the monetite component 

(table 4.12) provided stronger evidence for strontium substitution. Firstly, the unit cell 

parameters showed an increase as would be expected.  It appears that there is 

significant and consistent evidence for strontium substitution, particularly onto the 

second of the calcium sites within the monetite structure as the amount of 

amorphous content is increased. These findings are tentative given the quality of the 

data and the lack of previous evidence (table 4.12) of strontium doping in monetite 

and further investigation, possibly by synchrotron powder XRD. 

Evidence of strontium substitution onto calcium sites, although not reported for 

brushite or monetite is thought to be a significant  mode of operation of the recently 

developed osteoporosis medication strontium ranelate. In this drug the substitution of 

strontium onto the calcium sites in the apatite in natural bones is thought to occur 

[22, 23]. Although reports show that the mode of operation of strontium ranelate is 

not fully understood,  it is thought that the presence of strontium both impedes bone 

resorption and enhances bone growth, and therefore the presence of an amorphous 

strontium pyrophosphate in an artificial bone replacement material such as described 

in this chapter could offer some advantages by a similar mechanism. 
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4.6	
   Conclusions	
  

This chapter has shown that modified brushite based cements can be formed by the 

systematic addition of previously synthesised  amorphous materials. XRD and 

subsequent Rietveld analysis demonstrate that the amorphous content is present 

following the cement setting reaction; despite previous work by Brown et al [24] 

showing that amorphous pyrophosphates crystallise when left in the presence of 

water for prolonged periods of time. This does not appear to be the case here, 

although it is clear that water is being absorbed into the amorphous material rather 

than taking part in the cement setting reaction, by the fact that the powder to liquid 

ratios increase markedly as the level of amorphous content increases.  

Rietveld analysis showed the possibility of strontium substitution into the cement 

phases, with a preference for substitution onto one of the calcium sites in monetite 

rather than brushite, however, further studies by either neutron diffraction or 43Ca 

NMR would be required to properly determine whether this is in fact a real 

observation of an artefact of the refinement. 

The cements are shown to be much weaker than standard unmodified brushite 

cements when the level of amorphous content increases past 10wt%, indicating that 

this type of formulation would not be a suitable grafting material for any weight 

bearing application. This potentially shows that the synthesis of modified in this way 

could be optimised to produce cements stronger than standard brushite cements that 

do contain low levels of amorphous materials to potentially improve the in vivo 

biological response. 

If further work on the biological response to the higher levels of amorphous content 

in the material show that a much enhanced regrowth response can be triggered, 
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then this may mean that this is still a viable material for other bone grafting 

applications. 
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Chapter	
  5:	
  Conclusions	
  and	
  Further	
  Work	
  

5.1	
   Conclusions	
  and	
  Further	
  Work	
  

Chapter Three describes the successful synthesis of amorphous group II metal 

pyrophosphates by means of a simple precipitation reaction and the detailed 

structural characterisation. 

One of the biggest challenges during this work was the selection of appropriate 

techniques to characterise the structure of these poorly investigated materials. The 

standard technique employed in many materials chemistry research groups is lab 

source powder XRD. However, as has been shown in Chapter Three, for the 

materials under investigation in this thesis a featureless diffraction pattern is 

obtained which gives little or no insight into the structure of these materials, other 

than that they are amorphous and possess no long range structural order. 

Chapter Three goes on to describe how XRF can be used to accurately determine 

the chemical stoichiometry of a phase, but also how an appropriate sample 

preparation protocol and appropriate correction factors must be applied to the 

measurement in order to obtain accurate and chemically meaningful data. 

Techniques which probe the local structure of a material rather than the average 

structure of a material were of vital importance to this work and chapter three also 

details how the local structure of these amorphous phases was characterised by the 

use of such techniques including as NMR and PDF. 

NMR studies have shown that the environment in which the phosphorus nuclei 

reside is consistent with that of a Q1 phosphate environment, that is, a phosphate 

with a single bridging oxygen atom. 
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NMR also gave an insight into the unusual low temperature decomposition route, 

where water found in the structure reacts to hydrolyse the P-O-P linkage, forming 

acid phosphate species. These species then, upon further heating, re-condense to 

reform the amorphous pyrophosphate phase, a decomposition route that has been 

seen in other amorphous condensed phosphates [1].  

Variable temperature XRD studies showed these materials to be stable to 

unexpectedly high temperatures, and that although water loss seems to be step-

wise, there is no evidence of any crystallisation until all the water within the sample 

has been lost. This would indicate that the presence of water is very important in the 

stability of these apparently unstable phases. 

As variable temperature XRD only analyses the average structure of a material, 

NMR was used to give an insight into the local structure of the heat treated samples, 

and it can be seen that there are low levels of other amorphous phases forming with 

chemical shifts corresponding to both ortho and higher condensed phosphates, but 

also a small presence of orthophosphate. The fact that NMR shows this to be 

crystalline but there is no evidence of this from XRD, shows that crystallites are 

smaller than can be detected by XRD. 

Pair distribution function analysis was used to great effect to determine the bonding 

of atomic pairs within the structure on a local length scale. Indeed comparisons 

between crystalline analogues of the amorphous phases under investigation showed 

that there was no ordering to the distances between atom pairs longer than could be 

assigned to locally bonded groups of atoms, showing that the only ordering in these 

phases was that of the individual M2P2O7 units.  
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Unfortunately, the solubility of these amorphous phases could not be determined 

owing to instrumental problems, flawed methodology and then crystallisation of the 

amorphous material at a faster rate than dissolution. Crystallisation of these 

amorphous phases in aqueous conditions does present a potential problem with 

regard to their potential use as bioceramic implants. Further investigation under 

simulated physiological conditions would give an insight as to whether the presence 

of this amorphous phase would assist bioresorption in vivo or whether the phase 

would simply crystallise as it did in pure water, as their stability in aqueous conditions 

is clearly much more limited than their stability when dry. 

 

Chapter four details how these amorphous materials were taken forward and used to 

modify brushite based calcium phosphate cement formulations. It shows how the 

densities of the solid cement components, when mixed and ground together, 

decreases as expected with the addition of an amorphous poorly packed material. 

Following this trend in reduction in density, the amount of water needed to form a 

workable cement paste increased, but rather surprisingly, the setting time for the 

cement decreased. The actual amount of cement forming components in each 

sample was decreasing with increasing amorphous content, but the total mass in this 

experiment stayed the same. Therefore, with a lower mass of cementing reagents to 

react then it is conceivable that the time taken for the reaction to complete will be 

shorter.  

Rietveld analysis showed there to be a large proportion of monetite forming in the 

final cement product rather than brushite, showing that there was insufficient water 

for brushite to form. From this, it can be assumed that the lower density amorphous 
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phase is absorbing water rather than allowing it to take part in the cementing 

reaction, hence the formation of monetite rather than brushite. 

These analyses showed that there was amorphous content remaining in the final 

cement formulations, but at a lower level than was added to the cement. However 

there was no evidence of any detectable levels of products from crystallisation of the 

amorphous additives in XRD patterns of the cement products. NMR however did 

show evidence of crystallised pyrophosphate within the sample. Just as with the heat 

treated amorphous materials, the fact that this crystalline phase is only detectable by 

NMR shows that the crystallite sizes of these phases are too small to be detected by 

XRD. 

Rietveld also showed there to be a potential substitution of strontium onto calcium 

sites in both brushite and monetite, with a preference for one of the calcium sites in 

the monetite structure over the other. In the case of substitution into the brushite 

structure, this was not accompanied by the expansion of the unit cell parameters that 

would be expected when a structure is substituting larger cations into the structure, 

so it is possible that this is simply an artefact of the refinement as with increasing 

added ASrPPi content, the level of brushite in the structure was decreasing and so, 

the intensity with which the rietveld software can model any potential mixed site 

occupancies is decreasing and so any errors associated with this will be larger. In 

the case of monetite, there was clear evidence for substitution of strontium onto one 

of the two calcium sites more so than the other and as the amount of monetite in the 

structure was found to be substantial, it could be concluded that this is a real 

observation rather than simply a mathematical possibility from the rietveld software. 

Further work, possibly by synchrotron powder XRD to better determine whether 

other changes are also happening in the structure, such as relaxation of the oxygen 
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positions, to allow for the larger strontium cations should be undertaken to establish 

whether this is a real observation or an artefact of the rietveld refinement. Further 

work to more accurately characterise the phases present in the cement would also 

help to improve the accuracy of the structural model used in the rietveld analysis. 

 

Chapter four also shows that the compressive strength of the modified cements is, 

with larger amorphous loading, reduced compared to that of a standard unmodified 

brushite calcium phosphate cement produced by the same method. However, at 

10wt% amorphous content, the strength was found to be much greater than for an 

unmodified cement made by the same route. Although this reduction in strength with 

higher amorphous content would preclude its use in weight bearing applications, this 

apparent increase in strength at low levels of amorphous content leads us to believe 

that the preparation of these modified cements can be optimised to improve on the 

compressive strength of such a modified cement. If further work to quantify the rate 

of bioresorption showed an increase compared to a standard unmodified cement, 

then even the weaker, higher amorphous content cements could still find use as a 

bone grafting material in other locations in the body. 

It was noted that during the cementing reactions for formulations with higher levels of 

amorphous content, that particles of the amorphous phase were separating out and 

floating on top of the water during mixing. If phase segregation was occurring during 

the cementing reaction, this could have introduced weak points to the cement such 

that they fracture in regions with high levels amorphous material first. Further work to 

better characterise the homogeneity of the dry cement mixes, and possible studies 

into the effects of various milling techniques on the composition of the dry mixes 
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before cement setting reactions would help in any optimisation of the synthetic 

protocol. Diffraction experiments carried out on an instrument with a very small beam 

spot size, such as beam line I11 at Diamond Light Source, to measure the pattern at 

given intervals along the length of the sample would determine whether or not phase 

segregation during cement setting is in fact occurring. For strontium doped samples, 

XRF experiments, again using an instrument with good special resolution, such as a 

Bruker M4 Tornado, could determine whether there exists high concentrations of 

strontium rich phases within the sample or not, indicating that there might be areas 

rich in amorphous strontium pyrophosphate which would, again, introduce weaker 

areas of the cement. 

 

As this project focussed on the chemistry of these materials, there is much work yet 

to be done in studying the biological properties of these modified materials. For 

example, enzyme degradation studies to establish whether these materials are able 

to be broken down using the body’s normal hydrolytic enzymes, cell culture studies 

to determine whether there is indeed an optimum amount of amorphous material to 

enhance the rate of bone regrowth. There is obviously a trade off here as it has 

already been shown that high levels of amorphous material severely compromise the 

strength of the material, however if the regrowth rate means that a much shorter 

recovery time is achievable then this could be a clinically acceptable compromise for 

a patient, depending on the area in the body in which the implanted material was to 

be used. 
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Appendix	
  1:	
  Rietveld	
  Refinements	
  
 

For all refinements, the measured data is shown in black, the calculated fit is shown 

in red and the difference shown in grey. Tick marks for each phase are shown 

underneath the difference line. 

 

 

Figure A1.1 – Rietveld refinement of Modified Cement, 10wt% ASrPPi 
 

 

 

Figure A1.2 – Rietveld refinement of Modified Cement, 20wt% ASrPPi 
 



Appendix 1: Rietveld Refinements 
 

 
 

153 | P a g e  

 

 

Figure A1.3 – Rietveld refinement of Modified Cement, 30wt% ASrPPi 
 

 

 

Figure A1.4 – Rietveld refinement of Modified Cement, 40wt% ASrPPi 
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Figure A1.5 – Rietveld refinement of Modified Cement, 20wt% ACaPPi 
 

 

 

Figure A1.6 – Rietveld refinement of Modified Cement, 30wt% ACaPPi 
 

 

 

Figure A1.7 – Rietveld refinement of Modified Cement, 40wt% ACaPPi 
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Appendix	
  2:	
  Published	
  Work	
  
The following article was accepted for publication into the Journal of Materials 

Chemistry, October 2011.  

 



D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

B
ir

m
in

gh
am

 o
n 

18
 N

ov
em

be
r 

20
11

Pu
bl

is
he

d 
on

 2
1 

O
ct

ob
er

 2
01

1 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

1J
M

13
93

0D
nt amorphous

ver,d Joseph A. Hriljaca

ynamic Article LinksC<

PAPER

page / Table of Contents for this issue
Enhanced stability and local structure in biologically releva
materials containing pyrophosphate†

Colin Slater,a Danielle Laurencin,b Victoria Burnell,a Mark E. Smith,c Liam M. Gro
and Adrian J. Wright*a

DJournal of
Materials Chemistry

Cite this: J. Mater. Chem., 2011, 21, 18783

www.rsc.org/materials

View Online / Journal Home
Received 12th August 2011, Accepted 5th October 2011

lay

log

ess

nt
DOI: 10.1039/c1jm13930d

There is increasing evidence that amorphous inorganic materials p

many organisms, however the inherent instability of synthetic ana

in vivo matrix limits their study and clinical exploitation. To addr

that enhances long-term stability to >1 year of biologically releva
the absence of any complex stabilisers, by utilising pyrophosphates (

ubiquitous in vivo. Ambient temperature precipitation reactions wer

amorphous Ca2P2O7.nH2O and Sr2P2O7.nH2O (3.8 < n < 4.2) and t

investigated. Pair distribution functions (PDF) derived from synchrot
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2� anions within the amorphous
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provide important new materials with unexplored potential for enzy

establish factors crucial to isolate further stable amorphous inorgan

Introduction

A growing awareness of the existence and potential of amor-

phous inorganic materials has led to a rapid increase in their

study in recent years. Often previously neglected or undetected as

a consequence of their lack of long-range structural order and

relative instability, amorphous inorganic materials are now more
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readily evident, partly through the continuing development of

techniques sensitive to local order, such as magic angle spinning

(MAS) solid state NMR and atomic pair distribution functions.

Of particular interest has been the discovery of their prevalence

in a diverse range of biological systems,1–8 where it appears

organisms exploit their unique properties in a number of

processes.

Amorphous calcium carbonate (ACC) is one of the most

widely studied amorphous materials in nature,1,2 with numerous

studies on marine creatures,9 where ACC has been shown to be

a transient precursor to hard external shell formation. In effect,

the highly unstable and soluble ACC is used as a reactive store of

calcium and carbonate ions whose transformation into hard

tissue is apparently controlled by the organism.9 Synthetic ACC

is highly reactive and the reported preparative routes require

meticulous control of reaction conditions, including temperature

and pH, to obtain the unstable product.10,11 Amorphous calcium

orthophosphates (ACP) have also been widely studied, although

their involvement in biomineralisation processes in mammals is

still the subject of much controversy. While there is no irrefutable

J. Mater. Chem., 2011, 21, 18783–18791 | 18783

http://dx.doi.org/10.1039/c1jm13930d
http://dx.doi.org/10.1039/c1jm13930d
http://dx.doi.org/10.1039/c1jm13930d
http://dx.doi.org/10.1039/c1jm13930d
http://dx.doi.org/10.1039/c1jm13930d
http://dx.doi.org/10.1039/c1jm13930d
http://pubs.rsc.org/en/journals/journal/JM
http://pubs.rsc.org/en/journals/journal/JM?issueid=JM021046

