-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Position paper: Toward an holistic approach of Systems
of Systems

Simon Bouget

» To cite this version:

Simon Bouget. Position paper: Toward an holistic approach of Systems of Systems. Middleware 2016
— Doctoral Symposium, Dec 2016, Trento, Italy. 10.1145/3009925.3009935 . hal-01419712

HAL Id: hal-01419712
https://hal.inria.fr /hal-01419712
Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/88187356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01419712
https://hal.archives-ouvertes.fr

Position paper: Toward an holistic approach
of Systems of Systems

Simon Bouget
IRISA — Université de Rennes 1
simon.bouget@irisa.fr

ABSTRACT

Large scale distributed systems have become ubiquitous,
from on-line social networks to the Internet-of-things. To
meet rising expectations (scalability, robustness, flexibility,...)
these systems increasingly espouse complex distributed ar-
chitectures, that are hard to design, deploy and maintain.
To grasp this complexity, developers should be allowed to
assemble large distributed systems from smaller parts using
a seamless, high-level programming paradigm. We present
such an assembly-based programming framework, enabling
developers to easily define and realize complex distributed
topologies as a construction of simpler blocks (e.g. rings,
grids). It does so by harnessing the power of self-organizing
overlays, that is made accessible to developers through a
high-level Domain Specific Language and self-stabilizing run-
time. Our evaluation further shows that our approach is
generic, expressive, low-overhead and robust.

1. INTRODUCTION

Modern distributed applications are becoming increasingly
large and complex. They often bring together independently
developed sub-systems (e.g. for storage, batch processing,
streaming, application logic, logging, caching) into large,
geo-distributed and heterogeneous architectures [10]. Com-
bining, configuring, and deploying these architectures is a
difficult and multifaceted task: individual services have their
own requirements, configuration spaces, programming mod-
els, distribution logic, which must be carefully tuned to in-
sure the overall performance, resilience, and evolvability of
the resulting system.

This integration effort remains today largely an ad-hoc
activity, that is either manual or uses tool-specific scripting
capabilities. This low-level approach unfortunately scales
poorly in the face of the increasingly complex deployment
requirements and topologies of the involved services |13} |9}
16}, |20].

The lack of a principled and systematic programming model
that is able to consider existing distributed systems as com-

ACM ISBN 978-1-4503-2138-9.
DOI:/10.1145/1235

posable first class entities imposes a high toll on developers.
In order to write and maintain the low level glue code or con-
figuration files required to realize these topologies, they must
(i) have a deep understanding of the involved distributed ser-
vices, their specific semantics, and individual programming
model ; (ii) cater for the unavoidable volatility of the work-
loads and of the cloud infrastructures in which these services
typically operate; and (iii) allow for a continuous integration
process in which a deployed system is modified on the fly.

To solve this situation, we argue that practitioners should
be allowed to programmatically manipulate distributed sys-
tems as first class entities |3, from which whole distributed
systems can be incrementally assembled.

We also argue that the mapping of systems to individual
nodes should remain as much as possible transparent to de-
velopers. In particular developers should not have to worry
about nodes failing, leaving or joining the system (a com-
mon occurrence in public clouds for instance), or about the
intricacies of scaling operations.

As a first step towards this ambitious goal, we propose
an assembly-based programming framework for the imple-
mentation of complex distributed topologies. It provides
developers with a high level component-based programming
model [8, 5], and exploits self-organizing overlays [23| |2} |11]
to map at runtime a developer’s high-level description of
a complex distributed topology onto a concrete infrastruc-
ture. It relies on the scalability, resilience, and adaptability
of self-organizing overlays to maintain a developer’s target
topology in the face of failures, scaling and dynamic adap-
tations.

2. STATE OF THE ART

Easing the development of complex distributed systems
has been a long-running and recurrent objective of middle-
ware research. Most of these efforts have however focused
on the local behavior of individual nodes (e.g. with proto-
col kernels |21}, [15], or component frameworks [8| [5, [19]),
rather than on the programmatic means to describe a sys-
tem’s global structure and behavior. As a result, most of
these programming frameworks offer little or no support for
the flexible integration of individual systems into a larger
whole.

2.1 Component-based programming

Component-based software engineering (CBSE) promotes
development by assembly. It allows developers to construct
complex systems by assembling pre-existing components, i.e.

modular reusable blocks that explicitly exposes their interfaces—

10.1145/1235

both in terms of requirements and of features provided.
Components provide separation of concerns and modular-
ity, and facilitate re-use and continuous integration. A large
number of component technologies have been successfully
applied to distributed systems over the years, both in indus-
try (e.g. Enterprise Java Beans (EJB), the Service Com-
ponent Architecture (SCA), the CORBA Component Model
(CCM), .Net, and the OSGi Remote Services Specification)
and academia [5} |§].

These solutions, however, view components as software ar-
tifacts living within nodes, and focus therefore on the work-
ings of individual nodes rather than on a system’s global
behavior. By contrast, we propose to inverse this view,
and consider components as distributed entities enforcing a
given internal structure (a star, a tree, a ring) which devel-
opers can assemble programmatically to realize more com-
plex topologies. Individual nodes now live within compo-
nents, and become transparent to developers, who only per-
ceive system-level entities they can instantiate and connect
to form larger wholes.

2.2 Self-organizing overlays

To realize this vision, we propose to exploit self-organizing
overlays |11} 23, 2], a family of decentralized protocols that
are able to autonomously organize a large number of nodes
into a predefined topology —from a random network [12]
to a ring or torus [22, |11] to an hypercube— by exploiting
epidemic (or gossip) interactions to progressively organize
nodes. Self-organizing overlays are self-healing, and can with
appropriate extension, conserve their overall shape even in
the face of catastrophic failures [4]. These topologies can
be used to support the many P2P- and cloud-based applica-
tions that have been proposed for over a decade now, such
as VoIP (e.g. Skype), streaming [24], pub-sub [6], and stor-
age [18] |9]. In particular, the scalability and robustness of
these solutions have made them particularly well adapted to
large scale self-organizing systems such as decentralized so-
cial networks [14] |2, news recommendation engines [1], and
peer-to-peer storage systems |7].

However, more and more applications require much more
complex topologies |9} 13| that can be hard to obtain via
the traditional protocols. Typically, self-organizing overlays
such as T-Man [11] or Vicinity [23|] are unfortunately mono-
lithic in the sense that they rely on a single user-defined
distance function to connect nodes into a target structure,
e.g. nodes try to reach and connect to the "closest” nodes
in their ID space. Simple topologies such as ring or torus
are easy to realize in this model, but more complex com-
binations, such as a star of cliques, are more problematic.
This model does not lend itself naturally to development by
assembly, mentioned in the previous section: self-organizing
overlays, in their basic form, have no notion of composition
or connection to other overlays.

As a conclusion, by merging techniques from the two do-
mains, our approach goes beyond both of them: (i) On one
hand, beyond traditional component-based frameworks for
distributed systems in that it considers components as collec-
tive distributed entities enforcing a given internal structure
(a star, a tree, a ring) which developers can assemble pro-
grammatically to realize more complex topologies. (ii) On
the other hand beyond existing self-organizing overlays by
supporting the description of a target topology as a compo-

sition of more elementary shapes, breaking away from the
monolithic design of typical self-organizing overlay proto-
cols.

This enables a programmer to create, deploy and maintain
easily the more complex topologies that are needed to sup-
port today’s sophisticated applications, such as distributed
NoSQL databases with sharding (e.g. MongoDB relies on a
star of cliques).

3. OUR APPROACH

Our framework comprises: (i) a component library, (ii) a
DSL, and (iii) a runtime. The DSL is simple and expressive
enough to describe a large array of topologies that can be
difficult to achieve with earlier methods. It achieves this goal
by allowing developers to construct a complex topology by
assembling simpler blocks, termed components. To support
this process, our framework provides a component library
that includes, by default, base components that implement
basic topology shapes such as rings, grids, etc. Finally, our
framework comes with a runtime that handles under-the-
hood the role allocation and the differentiation of nodes that
belong to different components.

3.1 Component library

In our proposal, a component is a subset of message-
passing nodes organized in a particular elementary topology.
The component library contains a predefined set of compo-
nents implementing a range of such elementary topologies
(a ring, a tree, a torus), that a developer can combine to
build a complex distributed topology. This combination re-
lies on ports and links. Ports are logical point of contact
for a given component and links are logical connections be-
tween two components (through ports). At runtime, a port
is managed by (at least) one node in the corresponding com-
ponent, and at the node level, a link is a connection between
two nodes from two different components.

From an implementation point of view, components and
links are implemented using multiple layers of overlays that
are built upon each other: one self organizing overlay per
component (known as the component’s core protocol) real-
izes the component’s actual shape, while two other overlays
are used to locate ports, and realize links. The system’s
resulting overall topology is the union of these different over-
lays.

3.2 DSL

In order to globally describe a target topology without
bothering with the low-level, local behavior of individual
nodes, the framework provides a very basic DSL used to
write the configuration file that will be interpreted by the
runtime. The key elements of this DSL/configuration file
are: (i) a list of the basic shapes (each represented by a
component) involved in the overall topology, and some rules
to decide which node will be assigned to which component;
(ii) for each component, a list of the ports it provides, and
some rules to decide which node(s) will take in charge each
port; (iii) a set of links between ports, represented as a list
of pairs of ports.

The superposition of these three elements (components,
ports for each component, links between ports) completely
defines a target topology and enables the description of a
large array of complex topologies similar to those used in
today’s real world applications.

To be connected ~

to a component IComponent

]
l port selection]-ﬂ}-[port connection]

|

|

|

|

[|
Same-component Overlay (UO01) H Distant-component Overlay (U02) l‘
| |

|

|

|

[

ol £l
L") or

Runtime l Global peer sampling l

Figure 1: Organization of the runtime

3.3 Runtime implementation

The translation from the high-level target topology de-
scription to the actual low-level behavior of each individual
node — and all the tedious details such as node assignment,
port management, link establishment, ... —are to be handled
by a runtime. We propose an implementation of this run-
time as a set of gossip greedy optimization sub-procedures
realizing different layers of overlays, described in Figure
Gossip algorithms are probabilistic, naturally resilient and
offer good convergence times in most practical situations,
with theoretical convergence guarantees under stable condi-
tions. Two utility overlays (UO1 and UO2) are in charge of
assigning nodes to each component, gather nodes from the
same component and maintaining ”long distance” connec-
tions between nodes from different components (for perfor-
mance issues). Two additional overlays handle the mapping
between logical ports and actual nodes (port selection) and
the connection between different ports according to the links
specified in the target topology.

4. EVALUATION

The goal of our evaluation is to show the applicability of
our approach. We realized a proof-of-concept implementa-
tion of the runtime described in section B3l We also used
the overlay-building algorithm Vicinity 23] to create a few
basic shape components (Ring, Star, Clique) for the library
described in We then used them to show that our ap-
proach: (a) can actually generate complex topologies, com-
parable to those used currently in real-world applications;
(b) is easy to use; (c) is efficient, i.e. doesn’t generate an
unreasonable overhead and converges fast enough.

All experiments were run in the PeerSim simulator [17]
and we used the simulator configuration file as a substitute
to the DSL we described above. All measures were averaged
over 25 runs, to smooth the noise due to the probabilistic
nature of gossip algorithms. We computed 90% confidence
intervals but they were negligible and we do not display
them.

We ran various experiments: (i) building various topolo-
gies comparable to those used in real world applications; (ii)
convergence speed for the different sub-procedures of our
framework in a Ring of Rings topology; (iii) ability to dy-
namically reconfigure in presence of evolving needs; (iv) scal-
ability in terms of total number or nodes (logarithmic, Fig.
and in terms of number of components (linear, Fig. [3)); (v)
bandwidth consumption of the framework runtime, relative
to the bandwidth needed to realize basic shapes (Fig. [4).

Detailed results are omitted here for lack of space, but
results are encouraging and conform with the existing liter-
ature about gossip protocols and self-organizing overlays.

30 T
Elementary Topology
Same-component (UO1) —X—
25 Distant-component (U02) —%—
Port Selection

Ex Port Connection —ilt—
$ 20} J
[=
o
(%]
S8
w 15 B
el
c
3
« 10 i
o
#*

sl * * * * * * * 3 |

0 1 1

100 1000 10000
of Nodes

Figure 2: Convergence time of the various sub-

procedures for a system of 20 components. It is
fast and scales well with the number of nodes.

16 T
Elementary Topology
Same-component (UO1) —>%—
14 - Distant-component (U02) —¥— 7]
Port Selection

) Port Connection —ill—
5 12 b
>
c
o
o 10 = -
8
w
2 8t 1
3
S
S 6 4
* *

4 I /’K/K/)

=Dk
2 Il Il Il Il
0 5 10 15 20
of Components

Figure 3: Convergence time of the various sub-

procedures for a system of 25600 nodes. It is fast
and increases slowly with the number of compo-
nents.

5. CONCLUSION & FUTURE WORK

We proposed a programming framework constituted of a
DSL, a component library and a runtime that enables devel-
opers to define and maintain complex target topologies by
assembly of simpler shapes. We further demonstrated that
our approach can be efficient and scalable.

We could push our work further in (at least) two different
directions: (i) add more features to our proposed frame-
work, develop a more complete and efficient tool-chain, and
transform it into a real, production-ready product; or (ii)
apply self-organization and composition to other problems
in distributed systems.

In particular, there are many opportunities to leverage
opportunistic composition across initially unrelated services
to provide better Quality of Service (QoS) and ensure some
non functional properties (better latency, load repartition,
etc.), especially in the emerging Internet of Things (IoT).
We can even imagine that a group of nodes could leverage a
third-party system as relays and use it to remain connected.

However, this requires a common framework and new tools
to be put in place to detect and evaluate such composition
opportunities, and to enable communication and coopera-

1000
900 1
800 1
& 700 F .
2
2 600 .
<
3 500 [B
% 400 | 1
c
©
@ 300 1
200 1
100 | Baseline —+— -
Overhead —x—
0 1 1 1
0 5 10 15 20

Rounds

Figure 4: Comparison of bandwidth consumption
(in bytes) between the core protocol and our run-
time’s sub-procedures, for a system of 20 compo-
nents and 25,600 nodes. Both follow the same pat-
tern, and both are very small.

tion between unrelated systems who have no prior knowl-
edge of each other.

6. ACKNOWLEDGMENT

This thesis is funded by the French Ministry of Higher Ed-
ucation and Research and is supervised by Frangois Taiani
and Yérom-David Bromberg from the ASAP project-team
at IRISA /Inria Rennes — Bretagne Atlantique.

7. REFERENCES

[1] R. Baraglia, P. Dazzi, M. Mordacchini, and L. Ricci.
A peer-to-peer recommender system for self-emerging
user communities based on gossip overlays. Journal of
Computer and System Sciences, 79(2):291-308, 2013.

[2] M. Bertier, D. Frey, R. Guerraoui, A.-M. Kermarrec,
and V. Leroy. The gossple anonymous social network.
In Middleware, 2010.

[3] G. Blair, Y.-D. Bromberg, G. Coulson, Y. Elkhatib,
L. Réveillere, H. B. Ribeiro, E. Riviere, and F. Taiani.
Holons: Towards a systematic approach to composing
systems of systems. In Int. Workshop on Adaptive and
Reflective Middleware, ARM, 2015.

[4] S. Bouget, H. Kervadec, A.-M. Kermarrec, and
F. Taiani. Polystyrene: The decentralized data shape
that never dies. In Distributed Computing Systems
(ICDCS), 2014 IEEE 34th International Conference
on, pages 288-297. IEEE, 2014.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The fractal component model and
its support in java. Software: Practice ..., pages
1257-1284, 2006.

[6] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg.
Spidercast: a scalable interest-aware overlay for
topic-based pub/sub communication. In DEBS, pages
14-25, 2007.

[7] L. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Designing Privacy Enhancing
Technologies, pages 46-66, 2001.

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan. A generic
component model for building systems software. ACM
TOCS, 26(1).

L. Glendenning, I. Beschastnikh, A. Krishnamurthy,
and T. Anderson. Scalable consistency in Scatter.
Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 15-28, 2011.

Q. Huang, K. Birman, R. van Renesse, W. Lloyd,

S. Kumar, and H. C. Li. An analysis of facebook
photo caching. In SOSP, 2013.

M. Jelasity, A. Montresor, and O. Babaoglu. T-Man:
Gossip-based fast overlay topology construction.
Computer Networks, 53(13):2321-2339, Aug. 2009.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M. Van Steen. Gossip-based peer
sampling. ACM TOCS, 25(3):8, 2007.

J. C. A. Leitao and L. E. T. Rodrigues. Overnesia: A
resilient overlay network for virtual super-peers. In
SRDS, 2014.

G. Mega, A. Montresor, and G. P. Picco. Efficient
dissemination in decentralized social networks. In
P2P, 2011.

H. Miranda, A. Pinto, and L. Rodrigues. Appia, a
flexible protocol kernel supporting multiple
coordinated channels. In in Proc. 21st Int. Conf. on
Dis. Comp. Sys. (ICDCS-21), pages 707-710. IEEE,
2001.

MongoDB Inc. MongoDB Manual (version 3.2) /
Sharded Cluster Query Routing. accessed 11 May 2016,
https://docs.mongodb.com/manual/core/sharded-
cluster-query-router/.

A. Montresor and M. Jelasity. PeerSim: A scalable
P2P simulator. In P2P, 2009.

A. Montresor, M. Jelasity, and O. Babaoglu. Chord on
demand. In Proc. of the IEEE Int. Conf. on
Peer-to-Peer Comp (P2P’05), pages 87-94. IEEE,
August/September 2005.

L. Seinturier, P. Merle, R. Rouvoy, D. Romero,

V. Schiavoni, and J.-B. Stefani. A component-based
middleware platform for reconfigurable
service-oriented architectures. Software: Practice and
Ezperience, pages n/a—n/a, 2011.

B. Technologies. Riak KV Usage Reference / V3
Multi-Datacenter Replication Reference: Architecture.
accessed 11 May 2016,
http://docs.basho.com/riak/kv/2.1.4/using/reference/v3-
multi-datacenter /architecture/.

R. van Renesse, K. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using
ensemble. Softw. Prac. and Exp., 28(9):963-979, 1998.
S. Voulgaris and M. Van Steen. Epidemic-style
management of semantic overlays for content-based
searching. In Furo-Par. 2005.

S. Voulgaris and M. van Steen. Vicinity: A pinch of
randomness brings out the structure. In Middleware
2013, pages 21-40. Springer, 2013.

C. K. Yeo, B.-S. Lee, and M. H. Er. A framework for
multicast video streaming over ip networks. J. of
Network and Comp. App., 26(3):273-289, 2003.

	Introduction
	State of the art
	Component-based programming
	Self-organizing overlays

	Our approach
	Component library
	DSL
	Runtime implementation

	Evaluation
	 Conclusion & Future Work
	Acknowledgment
	References

