
HAL Id: hal-01424816
https://hal.inria.fr/hal-01424816

Submitted on 2 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Public Domain Mark| 4.0 International License

Internship report MPRI 2 Reverse engineering on
arithmetic proofs

François Thiré

To cite this version:
François Thiré. Internship report MPRI 2 Reverse engineering on arithmetic proofs. Computer Science
[cs]. 2016. �hal-01424816�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/88175157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01424816
http://creativecommons.org/choose/mark/
http://creativecommons.org/choose/mark/
https://hal.archives-ouvertes.fr

Internship report � MPRI 2

Reverse engineering on arithmetic proofs

François Thiré
supervised by Gilles Dowek (ENS Cachan - LSV) &

Stéphane Graham-Lengrand (Ecole polytechnique - LIX)

August 21, 2016

The general context

Computer science and more speci�cally programming activities come with bugs. However, today, more
and more programs are used in critical applications in transportation, energy and health. Proof checkers
and automatic provers have been developed to prove that programs are correct. Nowadays, dozens of such
tools exist. As programming languages, each tool has its own (dis)advantages. Since proofs are built using
a logic, each proof checker is based upon a logic. But some logics may be more powerful than others. To
overcome this, some proof checker � called logical framework � can embed several di�erent logics. Logical
frameworks have the advantage to separate the logic from the proof. This allows to identify which part of
the logic is used in the proof and where.

But writing a proof that is correct in a proof checker is something tedious. There are proof assistants
that help by using a tactic system for example. Otherwise some theorems might be proved automatically
with automatic provers. But when one wants to prove a theorem with an automatic prover, this latter
generally only gives an answer without any proof. It is therefore natural for such automatic provers to
wonder if it is safe to trust an automatic prover? After all, it is only a program and programs have bugs...

The research problem

dedukti is a logical framework that implements the λΠ−modulo theory, an extension of the simply
typed lambda calculus with dependent types and rewriting rules. It aims to be a back-end for other proof
checkers by compiling proofs from these proof checkers to dedukti. This may also increase re-usability
of proofs between proof checkers. However if a logic is more powerful than an other, a theorem in the �rst
logic may not be a theorem in the second.

During this internship, we consider arithmetic theorems since many proof checker are able to check
arithmetic proofs. One problem that we study in this master thesis is to translate arithmetic proofs
coming from a powerful proof checker,� in our case matita � to a less powerful proof checker � hol �.
This translation needs to modify the logic used in proofs and that is why dedukti is handy here.

But a lot of arithmetic theorems are proved also by automatic provers. Indeed, today a lot of easy
arithmetic theorems are proved by this kind of tool. But most of them do not give a proof if it claimes to
prove a theorem. Since for these kind of tool, constructing a full proof may be tiresome, they prefer to give
a certi�cate, a sketch of a proof. However, any automatic prover can implement its own certi�cate format.
To answer this problem, Zakaria Chihani & Dale Miller proposed a certi�cate framework: Foundational
Proof Certi�cate (FPC) [CMR13]. This framework aims to provide a certi�cate format shared by many
automatic provers so that from the latter, a full proof might be reconstructed. However, for now, no
certi�cate format is given for arithmetic proofs. A second problem addressed in this internship is to
answer what kind of certi�cate is needed for linear arithmetic proofs (arithmetic without multiplication).

My contribution

Translating proofs from matita to hol requires to do several transformations on them. We have identi�ed
four features particular to matita that have to be removed so that proofs may be after translated into
hol. On these four features, two have been completely removed, the two others are left for future work.
Some transformation on proofs have been made manually, but generally it can be automated. This led
me to develop new tools like universo and deduktipli that transform proofs into others.

We also give a certi�cate format for linear arithmetic proofs and give an answer on how to reconstruct
a proof from this certi�cate format by giving a full proof in sequent calculus.

Arguments supporting its validity

On the translation of matita proofs to hol, two features of matita have been fully removed inside the
proofs. This increase our con�dence on the possibility to remove the two others one. Moreover, tools that
have been developed are quite general so that I think it should be possible to use it for other systems
implemented in other proof checkers if they can be translated in dedukti.

Besides, the new certi�cate format proposed in this report is very simple so that any automatic provers
should be able to provide one, and also allows to rebuild a full proof from it.

Summary and future work

Translating arithmetic proofs from matita to hol is a process that combines manual transformations and
automatic transformations. It would be interesting to know if the actual manual transformations may be
automated. Besides, the tools that I have developed so far are for the moment experimental. They can
be extended in di�erent ways. Of course, matita is an example here and the generality of these methods
remains to be investigated. It also remains to implement the new certi�cate format in checkers, the tool
that implement the FPC developed in the Parsifal team.

1 Introduction

Proving theorems in mathematics is generally a hard task. Moreover, with long proofs, the chance that
the researcher has made an error is high. To overcome these problems, there are two kinds of tools:

• proof checkers and proof assistants1 that allows the user to write a proof and the computer auto-
matically checks if the proof is correct,

• automatic provers where the user just enter the theorem and waits for an answer. Generally either
yes, no or I don't know.

A proof checker allows to formally check that a proof is correct. Formally, because proofs and theorems
have to be written in a speci�c language so that an algorithm is able to check automatically the correction
of a proof.

Nowadays, a lot of programming languages have been developed. The reason is not because one may
be more powerful2 than an other, but it is rather because that mechanisms of a language allow users to
program more e�ciently. The same phenomenon exists with proof checkers but contrary to programming
languages, some theorems may be provable in one proof checker and not in another. This depends on the
theory (and the logic) behind the proof checker. Indeed, there is no notion of universal logic. Therefore,
theorems provable depends on the logic that is used. This leads to the development of logical frameworks,
that are proof checkers that may embed di�erent logics. Section 2 is devoted to the presentation of proof
checkers used during this master thesis.

However, each proof checker comes with its own library (as for a programming language) and it is
di�cult to reuse a proof from one proof checker to an other. Yet, developing a proof might be something
tedious that we do not want to do for each proof checker. Indeed, some proofs needed hundreds of man-
month to be formally encoded into a proof checker like the four color theorem or the Feit-Thompson

theorem [Gon07] [Gon13]. Therefore it would be nice � when possible � to be able to translate a proof
from one proof checker to another.

When one proof checker is less powerful than an other like hol with coq, this has already be made
in [KW10]. However, what about the opposite? Of course, for some proofs it is not possible, but for most
of them it should be. In section 3, we focus on the translation of arithmetic proofs developed in a proof
checker named matita to another one named hol.

The use of dedukti will be handy here for several reasons:

• it is a logical framework, so it separates the logic from the proofs,

• it is a very simple system,

• it has been created for this purpose.

One problem that arises with proof checkers is that some theorems might not be hard to prove but quite
tiresome, especially for arithmetic proofs. Automatic provers are tools that allow to (dis)prove theorems
automatically. Instead of building directly a proof, they implement algorithms and heuristics allowing to
refute or not the initial statement. However, one problem with these tools is that most of them do not
justify their answer by giving a proof. So how one can trust their result? Should they give a full proof?
And in which formalism if that so? In general, an automatic prover will only supply a certi�cate in its
own format. The use of a Foundational Proof Certi�cate (FPC) have been proposed in [CMR13]. This
framework de�ne certi�cates format so that it is easy for an automatic prover to elaborate one and so that
it is also easy to reconstruct the proof from this certi�cate. In general, there is a trading to do: a simple
proof implies a long certi�cate and vice versa.

1From now on, proof checkers will refer to as both proof assistants and proof checkers since the former generally implement

its own proof checker
2in the sense that more functions are expressible

However for the moment, FPC support only �rst-order logic and some extensions have been pro-
posed [CM16]. We explore in section 4 the problem of adding linear arithmetic in this framework.

2 Proof Checkers

This internship uses several formal systems implemented in di�erent proof checkers. This section aims to
provide a brief summary of the systems that will be used later in this report. Proof checkers detailed in
this section use the proposition-as-type principle. So that a theorem corresponds to a type and its proof
is a function that implements this type in the formal language used by the proof checker. Therefore, the
correction of a proof in the formal system comes back to type check the proof. Most of proof checkers are
buit around a kernel that implements only a type checker.

2.1 dedukti

dedukti is an implementation of the λΠ-modulo theory introduced by Cousineau & Dowek in [CD07].
λΠ-modulo theory is an enhanced version of the λΠ calculus where rewriting rules are added.

The λΠ calculus

The λΠ calculus is a λ calculus with dependent types. A dependent type is a type that contains values.
For example, the type of the function that maps a number n to the type of vectors of size n is expressed
as:

Π (n : nat). (vector n)

The consequence is that since the type of vectors depends on a value �here a natural number�, then
vector 1 and vector 2 are two di�erent types. Π is a binder (like λ) that allows to index family of types
by abstracting over values or types.

The syntax of terms of the λΠ calculus is given below:

〈sort〉 ::= Type | Kind

〈term〉 ::= 〈sort〉 | x | 〈term〉 〈term〉 | λx : 〈term〉. 〈term〉 | Πx : 〈term〉. 〈term〉

〈context〉 ::= ∅ | 〈context〉 ',' x :〈term〉

Notice that types and terms are mixed together, this is a side e�ect of dependent types since values
may appear inside types.

The typing derivation rules are presented in Figure 1. With dependent types, a context might be
ill-formed. Therefore, we need a judgment for well-formed contexts.

Rewriting on terms

The denomination modulo in the λΠ−calculus modulo theory comes from that we add rewriting rules. So
�rst, we need to extend contexts so that they include rewriting rules:

〈context〉 ::= . . . | 〈term〉 −→ 〈term〉

However, if one allows any rule, the convertibility test will be undecidable and therefore type checking
will be also undecidable. Therefore, one needs to type check a rewriting rule before adding it to the system
to maintain the decidability of the system. This is expressed with the following judgment:

Γ ` l −→ r

(Empty)
∅ well-formed

Γ ` A : s
(Decl)

Γ, x : A well-formed
Γ well-formed

(Type)
Γ ` Type : Kind

Γ well-formed (when (x : A) ∈ Γ)
(Var)

Γ ` x : A

Γ ` A : Type Γ, x : A ` B : s
(Prod)

Γ ` Π(x : A). B : s

Γ ` A : Type Γ, x : A ` B : s Γ, x : A ` t : B
(Prod)

Γ ` λ(x : A). t : Π(x : A). B

Γ ` t : (Π(x : A). B) Γ ` t′ : A
(App)

Γ ` (t t′) :
{
t′�x
}
B

Γ ` t : A Γ ` A : s Γ ` B : s (when A ≡β B)
(Conv)

Γ ` t : B

Figure 1: λΠ-calculus

Dedukti λΠ−calculus modulo Syntactic Construct
x:A => b λx : A.b Abstraction

x : A -> b Πx : A.b Product
A -> B A→ B Arrow Type

def x : A. x : A De�nable symbol declaration
x : A. x : A Static symbol declaration

[x_1,...,x_n] l �> r. l −→ r Rewrite Rule

Figure 2: Dedukti syntax

But de�ning precisely this judgment is di�cult. Details on how to infer such judgment is de�ned
in [Sai15]. Especially, since higher order uni�cation is undecidable, only Miller patterns [Mil91] are allowed
on the left side of the rules (roughly such pattern is a symbol applied to some arguments).

So, we add a rule for deriving well-typed contexts:

Γ well-formed Γ ` l −→ r
(Rule)

Γ, l −→ well-formed

Finally, the convertibility test is now enhanced with rewriting rules so that ≡βΓ refers to the congruence
induced by β−reduction and by the rewriting rules in Γ:

Γ ` t : A Γ ` B : s A ≡βΓ B
(Conv)

Γ ` t : B

Since we are going to write some dedukti code, we give in Figure 2 a small description of the syntax
used in dedukti. Notice that dedukti makes a di�erence between de�nable symbols and static symbols.
The di�erence is that the head symbol of a rewrite rule have to be de�nable. This information is used by
dedukti to deduce that static symbol are injectives since they cannot appear at the head of a rewrite
rule.

The following example shows how to write in dedukti the function plus:

nat : Type.

0 : nat.

S : nat -> nat.

def plus : nat -> nat -> bat.

[y] plus 0 y --> y.

[x,y] plus (S x) y --> S (plus x y).

2.2 coq/ matita

coq and matita are two proofs checker based on the Calculus Of Inductive Constructions (CiC). CiC
is composed of the Calculus Of Constructions (CoC) plus inductive types. CoC is no more than the
λΠ−calculus with polymorphism and type constructors. That is, to the rules of �gure 1, we add the
following rules

Γ ` A : Kind Γ, x : A ` B : s
(Prod)

Γ ` Π(x : A). B : s

These rules allow to add polymorphism and type constructors in the system. Polymorphism allows to
express functions of type:

∀α, α→ α

where α is a sort, and so its type is Kind while type constructors allow to construct the type of lists
parameterized by the type of its elements. Indeed, it is now possible to construct the type Type→ Type,
and we can declare a variable list of type Type→ Type and so build the types list nat, list bool, etc.

2.3 Inductive types

Inductive types are built with three kinds of rules:

• constructors

• a recursor rule

• elimination rules

One of the most famous inductive type is the natural numbers. Its constructors are:

(Zero)
0 : N

(Succ)
S : N→ N

its recursor rule is:

Γ ` P : N→ Type Γ ` a : P 0 Γ ` f : Π(x : N). P x→ P (S x)
(Nrec)

Γ ` RN P a f : Π(n : N). P n)

and its elimination rules3 are:

(RN P a f 0) : N
(R0)

a : N
(RN P a f (S x)) : N

(RS)
(f x (RNP a f x)) : N

The recursor allows to write inductive de�nitions on type. For example, the function plus may be
de�ned as

plus : N→ N→ N ≡ λ(x : N). (RN (Π(x : N). N) x (λx λy (S y)))

In coq and in matita, the recursor rule and the elimination rules are added automatically from the
constructors.

type : Type.

o : type.

i : type.

arrow : type -> type -> type.

def eta : type -> Type.

[x,y] eta (arrow x y) --> eta x -> eta y.

impl : eta o -> eta o -> eta o.

forall : a:type -> ((eta a) -> (eta o)) -> eta o.

def eps : (eta o) -> Type.

[x,y] eps (impl x y) --> eps (x) -> (eps y).

[a, p] eps (forall a p) --> x:(eta a) -> eps (p x).

Figure 3: hol in dedukti

2.4 hol

As it is suggested by its name, hol is a logic that allows quanti�cation at all orders. It has been imple-
mented in several proof assistants like hol light and hol 4, to name a few. In hol, terms have only
two sorts that are the basic types ι and the logical propositions o. We give in Figure 3 an embeding of
hol in dedukti.

We now give a small explanation of this embedding. The symbol type represents hol types in dedukti.
An encoding of the identify function λx.x needs to be able to express arrow types in hol. However,
arrow i i is not a type of dedukti, therefore we need a lift operator eta that transport types of hol
to types of dedukti.

But the following term is ill-typed since eta(i) → eta(i) is di�erent from arrow i i.

def id : eta(arrow i i) := (x:eta i) => x

This justify the �rst rewriting rule. Then to encode the proposition

∀x, x⇒ x

one needs to add the ∀ connective named forall and the ⇒ connective named impl.
But one more time, checking the term

def id_prop : eta(forall o (x => impl x x)) := (x:eps prop) => x

implies to add the two other rewriting rules. From this simple and minimal logic, every other usual
logical connectives may be de�ned.

2.5 checkers

checkers has been developed in the purpose to check proofs coming from automatic provers. checkers
is implemented in λ−prolog and is based on the FPC using a classical focused calculus [CMR13].

A focused proof system is a calculus that allows to reduce the search space while searching for a proof
of a theorem. It was �rst invented for linear logic by Andreoli in [And92] but it has been extended to

3In practice, elimination rules are implemented as rewriting rules and not deductive rules

constructive logic and classical logic by Liang & Miller in [LM09]. A focused system alternates between
asynchronous and synchronous phases.

Asynchronous phases are made of inference rules that are invertible. In sequent calculus, such rules
are for example

Γ, A,B ` ∆
(∧ left)

Γ, A ∧B ` ∆

Γ ` A,B,∆
(∨ right)

Γ ` A ∨B,∆

But if we take the right existential rule

Γ `
{
t�x
}
A,∆

∃ Right
Γ ` ∃x.A,∆

it is not invertible since the goal may be true but not the premise. In particular, guessing the good t
may be di�cult. Such information could be �nd inside a certi�cate for example.

Therefore, checkers only apply invertible rules during the asynchronous phase while during the
synchronous phase, checkers may use (if needed) information from the certi�cate.

checkers is built around a kernel that only implements a focusing framework named LKU with a
slightly modi�cation. To each rule, a predicate is added as premise:

• on invertible rules, this predicate is called a clerk,

• on non-invertible rules, this predicate is called an expert.

Experts predicate are the one that may extract information from the certi�cate while clerks only
manage some bookkeeping. The LKU system may be found in [LM11].

Supporting a new certi�cate only asks to modify experts behavior to take into account this new format.
If the expert is badly implemented, this will not produce an incorrect proof since experts are just helpers.
So the correctness of the system is unchanged, it is proved once and for all.

3 From matita to hol using dedukti

matita is a proof checker based on the CiC while hol is just an acronym for Higher-Order-Logic. But
since Higher-Order-Logic is strictly embedded in the CiC, some proofs of matita can not be expressed
in hol. However, most of the proofs written in matita do not need all of the features of the CiC even if
the proofs use these features. For example, we shall see that every terms in matita uses a feature called
�universes�. However, in hol there is no universe and still it is possible to write arithmetic proofs. So it
is reasonable to believe that the concept of universe is not necessary to construct arithmetic proofs.

Since it is possible to prove arithmetic theorems in hol, there must be a way to express arithmetic
proofs of matita in hol. In order to do so, we use dedukti.

dedukti is an handy tool for this, since it allows us to separate the logic from the proofs themselves.
Because we are going to modify the logic, then it will be easier to identify which parts of the logic are
used and to locate where inside a proof term.

In [Ass15], Ali Assaf proves that CiC can be encoded in the λΠ−modulo theory adding rewrites
rules to encode eliminator rules and recursive de�nitions. This encoding is implemented in krajono

that transforms proofs and theorems from matita to dedukti. So most of the work of this internship
consists in transforming these proofs from dedukti to hol. If A.ma is a matita proof �le, then krajono
will produce a �le A.dk. Since there is a separation between proofs and the logic, the �le A.dk will
depend on another �le that is cic.dk which is a hand-written �le that contains an encoding of the CiC
in dedukti([Ass15] [CD07]). This encoding is provided in Appendix C.

A �rst goal is for every proof �le that comes from matita, change its dependency so that the �le no
longer depends on cic.dk but on hol.dk that is an other hand-written �le that contains an encoding of
hol in dedukti(the samme as in Figure 3). A second goal will be then to transform these proofs from
dedukti to hol.

In order to achieve the �rst goal, there is 4 features of matita that we need to remove/transform:

1. universes

2. propositional dependents products

3. inductive types and recursive functions (on any inductive type)

4. logical connectives

In this master internship we have focused on the �rst and the second objectives. We have started
investigating the third and the fourth but they are left for future work.

3.1 The matita arithmetic library

Using krajono, it is possible to translate the matita arithmetic library into dedukti. This constitute
about 30Mo of proofs spread in 30 �les. Among these 30 �les, we use 20 of them that contains classical
theorems on arithmetic library. The �gure 5 in Appendix B shows the dependency between these �les.

Since some proofs might not be expressible in hol or because it might be tedious to do so, we are
going to cut some proofs (or even �les among them). However, we set an intermediate goal that is to proof
the Fermat's little theorem in hol from the proof in matita.

3.2 Removing universes

The development of the matita arithmetic library expressed in dedukti uses seven universes. However,
in hol, such universes do not exist. We explore in the following paragraphs how it is possible to suppress
universes from matita proofs.

Universes in Matita

Universes of matita in dedukti are expressed this way

Sort : Type.

z: Nat.

s : Nat -> Nat.

prop : Sort.

type : Nat -> Sort.

A universe is a term of type Sort and it has the form prop or type n for every natural number n.
Seven universes are used in the matita arithmetic library. But we know that to express these proofs

in hol, only two are necessary : prop and type 0. Therefore, one need to plane dedukti terms to have
only these two universes.

Unfortunately, there is no easy way to do this. One may try to replace each universe type (n+1) by
type n but eventually, there is going to have a type checking issue.

To solve this problem, I have built a tool named universo. This tool takes a dedukti �le using the
CiC logic and tries to minimize the number maximal of universes needed. This tool represents about 500
hundred lines of Ocaml and has been developed in less than a week. However, it makes the assumption
that the maximal number of universes needed is two.

The tool procedes in four steps:

convertibility issue constraints generated

?1
?
= ?2 ?1 = ?2

?1
?
= succ ?2 ?2 < ?1

?1
?
= rule ?2 ?3 ?1 = ?3

Table 1: constraints generated

1. First, replace each terms of type sort by a universe variable except for prop

2. Second, generate some constraints on these variables

3. Third, solve these constraints

4. Fourth, replace the universe variable by its solution

Since universes is a hierarchy indexed by natural number, the solver assign a natural number to each
universe variable. And so, the constraints might use the natural order on natural numbers. Two types of
constraints are used :

• uv1 = uv2

• uv1 < uv2

Typing terms is obviously needed to generate the constraint, that is why universo uses dedukti to
generate the constraints.

We list here the other constructors of type sort.

def succ : Sort -> Sort.

[] succ prop --> type z.

[i : Nat] succ (type i) --> type (s i).

def rule : Sort -> Sort -> Sort.

[s1 : Sort] rule s1 prop --> prop.

[s2 : Sort] rule prop s2 --> s2.

[i : Nat , j : Nat] rule (type i) (type j) --> type (m i j).

def max : Sort -> Sort -> Sort.

[s1 : Sort] max s1 prop --> s1.

[s2 : Sort] max prop s2 --> s2.

[i : Nat , j : Nat] max (type i) (type j) --> type (m i j).

The �rst step replaces universes constructors by a universe variable.
After the �rst step, dedukti terms are ill-typed since all information on universes is lost. But, we can

use the convertibility test of dedukti to recover these information.
The type-checker of dedukti raises a typing error when it can not convert two terms. So universo

bypass the convertibility test by adding some cases.
For example, suppose that dedukti tries to convert uv1 with uv2, then universo adds a case returning

OK, but adding the constraint uv1 = uv2. The other constraints are detailed in table 1. One may notice
that no constraint are generated for the constructor max. This is because dedukti can always use one
rewriting rule on max since prop is not replaced by a universe variable.

One may notice that for the constructor rule, the constraint generated is false, but it is true if there
are at most two universes. This is one reason that explains why universo is not correct in general.

If at the end there exists i and j such that uvi = uvj and uvi < uvj , then we get an inconsistency.
Otherwise, there is a solution.

Since we are in the hypothesis that there is at most two universes, the constraint ?1 <?2 is interpreted
by S?1 =?2.

Despite of these approximation, universo applied to the matita arithmetic library produces �les
that are well-typed, well almost!

First, I got an inconsistency. I had to change a lemma used in a proof. The reason is because the proof
used an inductive principle of equality on the sort type 0 but now, when minimizing universes, only prop

was needed.
Second, the result �les did not type check because only three times, there was an occurrence of a third

universe. Since my generation of constraint was inconsistent with three universes, it is not surprising.
However, it was su�cient to modify by hand these terms so that they well-type. The idea was to replace
by hand some occurrence of type 0 by type 1 were it was needed. This occured when the constructor
rule was used to type check the �le.

On this three terms, two occurs inside a rewriting rule. And it was possible to suppress this third
universe by modifying the rule:

If for example there were a symbol A such that:

def A : Sort -> Type -> Type.

[x,y] A x y --> y.

and that this symbols occurs this way :

def B : Type -> Type.

B n --> A (type 1) n.

Then, it is possible to replace this last rule by

B n --> n.

For the third term, it was the proof of a theorem, and I decided to transform the theorem into an
axiom for now. This theorem expresses a property on big operators like Σ and Π expressing that

Σi∈[a;b]∧p(i)f(i) = Σb
a≤i∧p(i)f(i)

So �nally, we get a library in which there is only two universes at most. For the moment, universo
is not completely automatic. For matita, it needed some help to replace one lemma, and at the end to
replace some terms. This leads us to wonder if it is possible for such a tool to be fully automatic or it at
some point, it will always need human intervention.

Moreover, universo does not deal with bound variables, and therefore it remains variables of type
Sort. Since hol does not have a notion of universes, these variables have to disappear. One easy way
to make these variables disappear is to duplicate terms that contains these variables. A case where the
variable will be Prop and one case where the variable will be Type for each variable. By chance, there is
at most one such variable in a term.

In order to do so, I developed an other tool: deduktipli. For performances matter, dedukti does
not keep in memory an AST of every symbol de�nition. Therefore, it is not possible for the user to have
a global view of the �le that is parsed. So one goal of deduktipli was to add an AST to dedukti.
Besides, Raphaël Cauderlier � an other member of Deducteam � and I needed to generate side e�ects
while a dedukti�le was parsed, we decided to add monads inside of deduktipli, it allows us to add
de�nitions and terms easily.

I used deduktipli so that it can catch bound variables of type Sort in these terms and so that it
may replace every occurrence of the old terms by the new one. Deciding which one should be use wasn't
very di�cult, since every universe is in canonical form (thanks to universo).

deduktipli is a tool that is written in Ocaml (300 hundred lines of code) in top of dedukti.

3.3 Dependent products

In the CoC4, there are the four following rules5:

prodPP : (a : prop) -> (TermP a -> prop) -> prop

prodPT : (a : prop) -> (TermP a -> type) -> type

prodTP : (a : type) -> (TermT a -> prop) -> prop

prodTT : (a : type) -> (TermT a -> type) -> type

However, only three of them are allowed in hol namely prodPP, prodTP and prodTT. hol does not
allow to create a type that depends on proofs.

But prodPT is used several time in the matita arithmetic library (only 25 but on critical de�nitions
and theorems). By looking at terms, we noticed that in general, the �nal type was not depending on a
proposition as in the following example:

a:Prop => prodPT a (a':Prop => nat)

where it safes to replace the term above by just the term

a:Prop => nat

This may be done also by using deduktipli. Although, doing such modi�cation in a theorem may
have several repercussions. In particular, this will ask to modify every term that uses this theorem. And
sometimes, just removing the argument might not work since it can be used somewhere else.

Doing such transformation in the matita arithmetic library implies the suppression of some theorems
for the reason above. About 20 theorems have been removed but none of them was used to prove the
Fermat little theorem.

3.4 Logical connectives of matita in hol

Logical connectives in matita are inductive types. But translating inductive types in hol is problematic.
One way to get around this is to �rst translate logical connectives of matita to an encoding of constructive
predicate logic in dedukti. This encoding is detailed in Appendix D.

This is not completely easy, since the return type of the matita connectives is a dependent type. For
example conjonction in matita is encoded in dedukti as

def And : Prop -> Prop -> Prop

the only way to construct and and type is by using the constructor conj

def conj : A:Prop -> B:Prop -> A -> B -> And A B.

which takes two propositions A and B a proof of these propositions.
The recursor rule (called match) is

def match_And_prop :

A:Prop -> B:Prop ->

return_type: ((And A B) -> Prop) ->

case_conj:(a:A -> b:B -> (return_type (conj A B a b))) ->

z:(And A B) -> (return_type z).

The computational rule associated to the recursor rule is :

[__1 , __, case_conj , return_type , _B, _A]

match_And_prop _A _B return_type case_conj (conj _A _B __ __1)

-->

case_conj __ __1.

4rules of CoC are in appendix Appendix C
5here we use the holnotations. In CoC, prop is Type and type is Kind

The problem is that when we translate the matita conjonction to the one of dedukti, the computa-
tional rule becomes

[return , case , x, A, B] match_And_prop A B return case x -->

case (fst A B x) (snd A B x).

and we loose the information that a type and can only be constructed by the constructor conj that
makes this last rule ill-typed because the left member of the rule has not the same type as the right
member of the rule. A solution is to change the type of return_type to Prop. This may be achieved the
same way as we did for the product rule by using deduktipli.

4 Reconstruction of proofs from certi�cates

When one asks an automatic prover to solve a problem in linear arithmetic (the Quanti�er Free Linear
Real Arithmetic (QF_LRA) logic), this latter generally reduces the problem to solving n linear inequalities
and using the simplex algorithm. The objectives of this section is to

1. to explain what kind of certi�cate is needed to reconstruct the proof the problem and,

2. to identify arithmetic lemmas needed to reconstruct the proof,

3. to give that proof in sequent calculus.

We choose the sequent calculus since the focused system in checkers is based on sequent calculus.
We also choose QF_LRA logic because it allows to express arithmetic theorems but also as we shall

see, the certi�cate format will be very simple. This follows on from the fact that proving any theorem
in QF_LRA logic may be reduce to proving several contradictions with a context that contains only
inequalities. Proving a contradiction from inequalities in the QF_LRA logic is equivalent to prove an
inequality of the form n < 0 with n positive or n ≤ 0 with n positive. We decided that this inequality is
produced by computing a linear combination of these inequalities where the coe�cients ni will be given
by the certi�cate. This is the only information contained inside the certi�cate.

The full proof is organized as follow:

1. Transform the sequent

Γ ` A

to the sequent

σ1, . . . , σn ` ⊥

where σ1, . . . , σn are inequalities.

2. Use the certi�cate to compute the following sum for each sub-goal generated at the previous step:∑
ci × σi

3. Using arithmetic properties, computing the previous sum to get a contradiction.

This is summarized in �gure 4 where Πi is the proof computed at step i.
In the next sections we are going to describe the terms used in the QF_LRA logic and also the proofs

Π2 and Π3. The proof Π1 is left for future work.In this internship, we focused on the case were inequalities
are only strict inequalities. The case were there is both large and strict inequalities is left for future work.
We also make the assumption that inequalities are in normal form that will be detailed in 4.1.

σ11 , . . . , σ1n1
,
∑
ni × σi, n < 0 ` ⊥
Π3

σ11 , . . . , σ1n1
,
∑
ni × σi ` ⊥

Π2

σ11 , . . . , σ1n1
` ⊥ . . .

...
σm1 , . . . , σmnm ` ⊥

Π1

Γ ` A

Figure 4: sketch of the full proof

4.1 Statement of the problem

Before stating the formal problem, we need to introduce some de�nitions. Let us specify �rst the syntax
of terms that is used.

The grammar of terms is composed of formulas (σ1, σ2, . . .), of expressions (e1, e2, . . .) and of variables
(x1, x2, . . .) following this speci�cation:

• For each integer c there is an expression in the grammar c. If moreover, c is non-negative, then we
use the notation n.

• If e1 and e2 are two expressions, then e1 + e2 is also en expression

• If c is an integer and e is en expression, then c× e is also an expression

• If e is en expression then e < 0 is a formula

• If e1 and e2 are two expressions, then e1 = e2 is a formula

The following notation will be useful to represent the left part of inequalities.

Notation 1. If l and l′ are two natural numbers, e and ei (l ≤ i < l′) are expressions, then

[e]
l′

+
i=l

ei :=

e if l′ < l(
[e]

l′−1
+
i=l

ei

)
+ el′+1 if l′ ≥ l

This de�nition looks like the de�nition of the operator
∑

in which we specify an associativity order
on the terms and the sum is parameterized by the �rst term.

We also introduce the following notations that overload the symbols + and × on inequalities:

Notation 2. If n is an natural number and σ is a formula of the form e < 0, then

n× σ := (n× e) < 0

Notation 3. If σ1 and σ2 are two inequalities of the form e1 < 0 and e2 < 0, then

σ1 + σ2 := e1 + e2 < 0

Moreover, we introduce a × operator in order to be able to make the di�erence when e is an expression
of the form e1 + e2 between c× (e1 + e2) and c× e1 + c× e2.

Notation 4. If c is an integer, l and l′ are two natural numbers, and σ is an inequality of the form

[d]
l′

+
i=l

ci × xi < 0

then

c×σ := [c× d]
l′

+
i=l

(c× ci × xi) < 0

as for × we also de�ne a + operator

Notation 5. σ1 and σ2 are two inequalities of the form

[d]
l′

+
i=l

ci × xi < 0

then

σ1+σ2 := [d1 + d2]
l′

+
i=l

(ci1 + ci2)× xi < 0

Finally we are going to use the following notation

Notation 6. n×σ1,...,i denotes the inequality in normal form obtained by adding the inequalities n1×σ1, . . . , ni×σi

For this proof, we set m as the number of inequalities, and k as the number of variables. In order to
make the things easier, let us do the following assumptions:

• Each inequality σi with 0 ≤ i < m is given in a normal form

[di]
k
+
j=1

(cj × xj) < 0

• The certi�cate computed by the SMT solver contains n coe�cients n0, . . . , nm−1 (natural numbers)
such that the computation of

m−1∑
i=0

ni × σi

gives an inequality m < 0 with m a natural number

4.2 Axiom schemas

Instead of using traditional axioms with a ∀ quanti�er, we use axiom schemas using the for all of the
meta-language. A �rst reason for that is that it makes proofs easier. A second reason is that each instance
of these axioms might be proved using a more general axiom using the ∀ operator. These allow us to be
more general in the theory that will be e�ectively used. The axiom schemas that we need are listed below:
for every constant c, c1, c2, for every natural number n, for every expression e, e1, e

′
1, e2, e

′
2 and for every

varialbe x,
c1 + c2 = c1 + c2 (AS1)

e2 = e′2 ⇒ (e1 + e2) = (e1 + e′2) (AS2)

e1 = e′1 ⇒ (e1 + e2) = (e′1 + e2) (AS3)

e = e′ ⇒ e < 0⇒ e′ < 0 (AS4)

e < 0→ n× e < 0 (AS5)

n× (e+ c× x) = n× e+ n× c× x (AS6)

c× (e× x) = (c× e)× x (AS7)

e1 < 0→ e2 < 0→ (e1 + e2) < 0 (AS8)

e1 + e2 = e2 + e1 (AS9)

(e1 + e2) + e3 = e1 + (e2 + e3) (AS10)

e1 + (e2 + e3) = (e1 + e2) + e3 (AS11)

n× x+ c× x = (n+ c)× x (AS12)

e1 + 0× e2 = e1 (AS13)

e+ 0 = e (AS14)

AS1 is needed to transform the term 2 + 2 into 4. AS2, AS3 and AS4 are instanciation of Leibniz
equality. They will be used to rewrite sub-terms inside a term. All the other axioms are arithmetic
properties that are needed during the proof.

Using the equality t = u inside a large term A, needs as many congruence axioms as the depth of t. To
apply an equality inside a term, we de�ne a notion of context proof parameterized by a proof Π de�ned
by the following grammar schema:

C[Π] ::= [Π] | C[Π] + e | e+ C[Π]

where e is an expression. These new proofs are de�ned inductively as:

[Π] is de�ned as the proof Π.

C[Π] + e is de�ned as the following proof :

Γ ` AS3

[Π′]
app2

Γ ` e1 = e′1
Γ ` e1 + e = e′1 + e

Where Π′ is the proof of C[Π].

e+ C[Π] is de�ned similarly than C[Π] + e using the AS2 axiom.

Using this new de�nition, we overload the de�nition

[d]
l′

+
i=l

ei

with

[Π]
l′

+
i=l

ei

that is the proof de�ned inductively as

[Π]
l′

+
i=l

ei :=

[Π] if l′ < l

C[[Π]
l′−1
+
i=l

ei] + el′+1) if l′ ≥ l

It is generally more convenient to work with modus ponens when applying an axiom schema to an
argument. Even if modus ponens is not a rule in sequent calculus, this rule may be derived in sequent
calculus:

[Π0]

Γ ` A⇒ B

[Π1]

Γ ` A axiom
B ` B left ⇒

Γ, A⇒ B ` B
cut

Γ ` B

More generally, one can prove by induction that for all n, the appn rule is admissible:

[Π0]

Γ ` A1 ⇒ · · · ⇒ An ⇒ B

[Π1]

Γ ` A1 . . .
[Πn]

Γ ` An appn
Γ ` B

4.3 Proof

During the proofs, we are going to use the following shortcuts:

• Γ denotes the list of inequalities σ1, . . . , σm

• Σ denotes the list of axiom schemas de�ned previously

• ∆ denotes the list of inequalities n1×σ1, . . . , nm×σm

• Θ denotes the list of inequalities σ1, . . . , σ1,...,m

Moreover, if L is a list, we note Li the list that contains the �rst i elements of L. We recall that we
want to prove the following sequent

Σ, σ1, . . . , σm ` ⊥

from the certi�cate n1, . . . , nm.

First step

The goal of the �rst step is to prove the inequalities ni×σi for all i such that 0 ≤ i < k and adding them
to the context with a cut. The proof of the �rst step is then

[Πn1×σ1]

Σ,Γ ` n1×σ1

[Πn2×σ2]

Σ,Γ, n1×σ1 ` n2×σ2

[Πa]
cut

Σ,Γ,∆ ` d < 0

...
cut

Σ,Γ, n1×σ1 ` d < 0
cut

Σ,Γ ` d < 0

where Πni×σi is a proof that distributes the constant ni to the inequality σi that it detailed just below
while Πa will be detailed after.

A proof of ni×σi: suppose that σi = e < 0 with

e = [di]
k
+
l=1

cl × xl

Let ej denotes the term

[ni × [di]
j
+
l=1

cl × xl]
k
+

l=j+1
ni × cl × xl

Notice that e0 < 0 is n×σ and ek < 0 is n× σ. Then, the proof Πn×σ is:

axiom
Σ,Γ ` AS4

[Πei+1=ei]

Σ,Γ ` e1 = e0

axiom
Σ,Γ ` AS5

axiom
Σ,Γ ` ek < 0

app1
Σ,Γ,` ek < 0

... app2
Σ,Γ ` e1 < 0

app2
Σ,Γ ` e0 < 0

If one denote Πi as the following proof

instance of AS6

Σ,Γ ` n× [d]
i+1
+
l=0

cl × xl = n× [d]
i
+
l=0

cl × xl + (n× ci+1)× xi+1)

Then Πei+1=ei is de�ned as [Πi]
k
+

l=i+1
cl × xl. It remains to construct the proof Πa.

Second step

The purpose of the second step is to add two inequalities together and get a new inequality in normal
form. Applying the axiom schema AS8 is not su�cient since the inequality obtained is not in normal form.
Therefore one needs to use associative and commutative properties of the addition to get an inequality in
normal form. Here is the proof Πa:

[Πσ1,2
]

Σ,Γ,∆ ` σ1,2

[Πb]

Σ,Γ,∆,Θ ` d < 0

...
cut

Σ,Γ,∆, σ1,2 ` d < 0
cut

Σ,Γ,∆ ` d < 0

The proof [Πσ1,...,m
] relies on the following lemma:

For all expressions e1, e2, constants c1, c2 and variable x,

(e1 + c1 × x) + (e2 + c2 × x) = (e1 + e2) + c1 + c2 × x (L15)

The proof of L15 is given informally here but a formal proof may be easily reconstructed:

(e1 + c1 × x) + (e2 + c2 × x) = e1 + (c1 × x+ (e2 + c2 × x)) (by AS10)

= e1 + (c1 × x+ (c2 × x+ e2)) (by AS9)

= e1 + ((c1 × x+ c2 × x) + e2) (by AS11)

= e1 + ((c1 + c2)× x+ e2) (by AS12)

= e1 + (e2 + (c1 + c2)× x) (by AS9)

= (e1 + e2) + (c1 + c2)× x (by AS10)

Now, suppose that σ1,...,i = [d]
k
+
l=1

cl × xl < 0 and that σi+1 = [d′]
k
+
l=1

c′l × xl < 0. We de�ne Πo as

instance of L15

[d]
o−1
+
l=1

cl × xl + co × x) + ([d′]
k
+
l=1

c′l × xl + c′o × x) = ([d]
o−1
+
l=1

cl × xl + [d′]
k
+
l=1

c′l × xl) + co + c′o × xo

Now we can give the proof [Πn×σ1,...,i+1]:

Σ,Γ,∆ ` AS4 [Πo]
k
+
l=k

cl × xl [Πσ1,...,i,ni+1×σi+1]

Σ,Γ,∆ ` ek < 0

[AS1]
k
+
l=0

cl × xl

Σ,Γ,∆, ek, . . . , e2 ` σ1,...,i+1

axiom
Σ,Γ,∆, ek, . . . , e1 ` σ1,...,i+1

cut
...

cut
Σ,Γ,∆, ek ` σ1,...,i+1

cut
Σ,Γ,∆ ` σ1,...,i+1

where eo denotes the expression

[[d]
o−1
+
j′=1

cj′ × x+ [d′]
o−1
+
j′=1

c′j′ × x]
k
+
j=o

cj + c′j × x

and Πσ,σ′ denotes the proof

Σ,Γ,∆ ` AS8 Σ,Γ,∆ ` σ Σ,Γ,∆ ` σ′
app2

Σ,Γ,∆ ` σ + σ′

Third step

At this point, the environment of the sequent contains the inequality σ1,...,i+1 that should be

[d]
k
+
j=1

0× xj < 0

otherwise the certi�cate is incorrect. Let ei denotes the expression

[d]
k
+
j=i

0× xj

Notice that σ1,...,i+1 = e1 < 0. It remains to apply the AS13 for each variable. Let Πi denotes the
proof

instance of AS13

Σ,Γ,∆ ` d+ 0× xi = d

and let Πei denotes the proof

[Πi]
k
+
j=i

0× xj

then the proof of the fourth step is

Σ,Γ,∆, σ1,...,i+1 ` AS4

[Πek]

Σ,Γ,∆, σ1,...,i+1 ` ek = d

axiom
Σ,Γ,∆, σ1,...,i+1 ` e1 < 0

...
Σ,Γ,∆, σ1,...,i+1 ` ek < 0

app2
Σ,Γ,∆, σ1,...,i+1 ` d < 0

This conclude the proof of the sequent

Σ, σ1, . . . , σm ` ⊥

5 Conclusion

In this master thesis, we have explored two ways to answer to re-usability problems with proof checkers:

• Translate a proof from one proof checker into an other

• Reconstruct proofs from a certi�cate

On the dedukti side, we have seen that this asks to develop some new tools. These tools allows us
to remove some features like universes or depend products when it is possible. However, this process may
discard some theorems. One main di�culty is to known what can be done automatically and what should
be done manually. That is why experimental tools like Universo and Deduktipli may be enhance in several
ways.

Future work is to �nish the translation of matita proofs to hol and also to improve the tools universo
and deduktipli.

universo only works with two universes. It should be interesting to extend it so that it works with
any number of universes. This asks to add a ∨ and ≤ operators on constraints. To solve these constraints,
the easiest way probably would be to use an SMT solver. However, the solution might not be easy to use
to reconstruct terms. This would ask to add lifting in some places and for now it is not easy to see where
these lifting would be necessary.

deduktipli is an experimental tool. One regret with that tool is that it is mostly used to rewrite terms
without using directly the rewriting system of dedukti. It would be nice if it would be possible to use
rewrite rules of dedukti to rewrite terms with deduktipli.

On the checkers side, we have given a proof in the sequent calculus that allows to reconstruct proofs
coming from SMT solvers expressed in the QF_LRA logic. Future work is to implement this proof in
checkers. Even if for now the proof is quite complete, it would be nice to use the proof search part
of checkers (implemented by the focusing) to avoid all these complicated things with associative and
commutative properties of the operator plus.

Appendix A Bibliography

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. Log. Comput.,
2(3):297�347, 1992.

[Ass15] Ali Assaf. A framework for de�ning computational higher-order logics. (Un cadre de dé�nition

de logiques calculatoires d'ordre supérieur). PhD thesis, École Polytechnique, Palaiseau, France,
2015.

[CD07] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-calculus
modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi and Applications, 8th

International Conference, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings, volume
4583 of Lecture Notes in Computer Science, pages 102�117. Springer, 2007.

[CM16] Zakaria Chihani and Dale Miller. Proof certi�cates for equality reasoning. Electr. Notes Theor.
Comput. Sci., 323:93�108, 2016.

[CMR13] Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof certi�cates in �rst-order
logic. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 - 24th International

Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings,
volume 7898 of Lecture Notes in Computer Science, pages 162�177. Springer, 2013.

[Gon07] Georges Gonthier. The four colour theorem: Engineering of a formal proof. In Deepak Kapur,
editor, Computer Mathematics, 8th Asian Symposium, ASCM 2007, Singapore, December 15-17,

2007. Revised and Invited Papers, volume 5081 of Lecture Notes in Computer Science, page 333.
Springer, 2007.

[Gon13] Georges Gonthier. Engineering mathematics: the odd order theorem proof. In Roberto Gia-
cobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL '13, Rome, Italy - January 23 - 25, 2013, pages
1�2. ACM, 2013.

[KW10] Chantal Keller and Benjamin Werner. Importing HOL light into coq. In Matt Kaufmann and
Lawrence C. Paulson, editors, Interactive Theorem Proving, First International Conference, ITP

2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172 of Lecture Notes in Computer

Science, pages 307�322. Springer, 2010.

[LM09] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and classical
logics. Theor. Comput. Sci., 410(46):4747�4768, 2009.

[LM11] Chuck Liang and Dale Miller. A focused approach to combining logics. Ann. Pure Appl. Logic,
162(9):679�697, 2011.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple uni�cation. J. Log. Comput., 1(4):497�536, 1991.

[Sai15] Ronan Saillard. Typechecking in the lambda-Pi-Calculus Modulo : Theory and Practice. (Véri-

�cation de typage pour le lambda-Pi-Calcul Modulo : théorie et pratique). PhD thesis, Mines
ParisTech, France, 2015.

Appendix B matitaarithmetic library

The following picture is a dependency graph between �les of the matitaarithmetic library. If B depends
on A and if there exists a C such that C depends on A and B depends on C, then the dependency of A
to B is not shown for sake of readability.

Figure 5: matita arithmetic library

Appendix C CiC in dedukti

Nat : Type.

z : Nat.

s : Nat -> Nat.

def m : Nat -> Nat -> Nat.

[i : Nat] m i z --> i.

[j : Nat] m z j --> j.

[i : Nat , j : Nat] m (s i) (s j) --> s (m i j).

(; Sorts ;)

Sort : Type.

prop : Sort.

type : Nat -> Sort.

(; Universe successors ;)

def succ : Sort -> Sort.

[] succ prop --> type z.

[i : Nat] succ (type i) --> type (s i).

(; Universe cumulativity ;)

def next : Sort -> Sort.

[] next prop --> type z.

[i : Nat] next (type i) --> type (s i).

(; Universe product rules ;)

def rule : Sort -> Sort -> Sort.

[s1 : Sort] rule s1 prop --> prop.

[s2 : Sort] rule prop s2 --> s2.

[i : Nat , j : Nat] rule (type i) (type j) --> type (m i j).

def max : Sort -> Sort -> Sort.

[s1 : Sort] max s1 prop --> s1.

[s2 : Sort] max prop s2 --> s2.

[i : Nat , j : Nat] max (type i) (type j) --> type (m i j).

(; Types and terms ;)

Univ : s : Sort -> Type.

def Term : s : Sort -> a : Univ s -> Type.

univ : s : Sort -> Univ (succ s).

def lift : s1 : Sort -> s2 : Sort -> a : Univ s1 -> Univ (max s1 s2).

def prod : s1 : Sort -> s2 : Sort -> a : Univ s1 ->

b : (Term s1 a -> Univ s2) -> Univ (rule s1 s2).

[s : Sort] Term _ (univ s) --> Univ s.

[s1 : Sort , s2 : Sort , a : Univ s1] Term _ (lift s1 s2 a) --> Term s1 a.

[s1 : Sort , s2 : Sort , a : Univ s1, b : (Term s1 a -> Univ s2)]

Term _ (prod s1 s2 a b) --> x : Term s1 a -> Term s2 (b x).

(; Canonicity rules ;)

[s : Sort] max s s --> s.

[s1 : Sort , s2 : Sort , s3 : Sort]

max (max s1 s2) s3 --> max s1 (max s2 s3).

[s1 : Sort , s2 : Sort , s3 : Sort]

rule (max s1 s3) s2 --> max (rule s1 s2) (rule s3 s2).

[s1 : Sort , s2 : Sort , s3 : Sort]

rule s1 (max s2 s3) --> max (rule s1 s2) (rule s1 s3).

[s : Sort , a : Univ s] lift s s a --> a.

[s1 : Sort , s2 : Sort , s3 : Sort , a : Univ s1]

lift _ s3 (lift s1 s2 a) -->

lift s1 (max s2 s3) a.

[s1 : Sort , s2 : Sort , s3 : Sort , a : Univ s1, b : Term s1 a -> Univ s2]

prod _ s2 (lift s1 s3 a) b -->

lift (rule s1 s2) (rule s3 s2) (prod s1 s2 a b).

[s1 : Sort , s2 : Sort , s3 : Sort , a : Univ s1, b : Term s1 a -> Univ s2]

prod s1 _ a (x => lift s2 s3 (b x)) -->

lift (rule s1 s2) (rule s1 s3) (prod s1 s2 a (x => b x)).

Appendix D Constructive Predicate logic in dedukti

prop : Type.

type : Type.

eps : prop -> Type.

eta : type -> Type.

def True : prop

[] eps True --> z:prop -> (eps z) -> (eps z).

def False : prop.

[] eps False --> z:prop -> eps z.

def Imp : prop ->

prop -> prop.

[x,y] eps (Imp x y) --> eps x -> eps y.

def Not : prop -> prop.

[x] eps (Not x) --> eps (Imp x False).

def And : prop ->

prop -> prop

[x,y] eps (And x y) -->

z:prop -> (eps x -> eps y -> eps z) -> eps z.

def Or : prop ->

prop -> prop.

[x,y] hol.TermP (Or x y) -->

z:prop -> (eps x -> eps z) -> (eps y -> eps z) -> eps z.

def Ex : A:type -> (eta A -> prop) -> prop.

[A, f] eps (Ex A f) --> z:prop -> (x:eta A -> eps (f x) -> eps z)

-> eps z.

def I : eps True := __ => z => z.

def pair : A:prop -> B:prop -> eps A -> eps B -> eps (And A B)

:=

A => B => a => b => z => f => f a b.

def fst : A:prop -> B:prop -> eps (And A B) -> eps A :=

A => B => and => and A (a => b => a).

def snd : A:prop -> B:prop -> eps (And A B) -> eps B :=

A => B => and => and B (a => b => b).

def injl : A:prop -> B:prop -> eps A -> eps (Or A B) :=

A => B => a => z => fa => fb => fa a.

def injr : A:prop -> B:prop -> eps B -> eps (Or A B) :=

A => B => b => z => fa => fb => fb b.

def split : A:prop -> B:prop -> C:prop ->

eps (Or A B) -> (eps A -> eps C) -> (eps B -> eps C) -> eps C :=

A => B => C => or => fa => fb => or C fa fb.

def ex_witness : A:type -> f:(eta A -> prop) -> eps (Ex A f) -> eta A.

[A, f, x, p] ex_witness A f (z => f => f x p) --> x.

def ex_proof : A:type -> f:(eta A -> prop) -> E:eps (Ex A f)

-> eps (f (ex_witness A f E)).

[A, f, x, p] ex_proof A f (z => f => f x p) --> p.

