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Abstract

This paper presents a method of reconstruction a pri-
mary structure of a protein that folds into a given geo-
metrical shape. This method predicts the primary struc-
ture of a protein and restores its linear sequence of
amino acids in the polypeptide chain using the tertiary
structure of a molecule. Unknown amino acids are de-
termined according to the principle of energy minimiza-
tion. This study represents inverse folding problem as
a quadratic optimization problem and uses different re-
laxation techniques to reduce it to the problem of convex
optimizations. Computational experiment compares the
quality of these approaches on real protein structures.

1. Introduction

A protein is a sequence of basic molecules of amino
acids. Proteins are essential compounds of all living
organisms, they are involved in almost all structural,
catalytic, sensory, and regulatory functions. Proper-
ties and functions of proteins mostly depend on their
structure. Protein engineering is aimed at studying of
protein structures and it finds applications in a num-
ber of areas. For example, the design of proteins with
desired shapes and properties is required in such areas
as medicine, biotechnology, synthetic biology, nanotech-
nologies, etc.

While computational protein folding predicts the
structure of a given sequence, the goal of computational
inverse protein folding problem is to find amino acid se-
quences that would fold best into a given 3D shape or
scaffold. It can be referred as computational protein

design (CPD), which targets at choosing a sequence of
amino acids to perform a particular task. As there are
20 possible amino acids for each position in the protein
chain, the variety of sequences for a specific 3D shape
grows exponentially. In CPD, the inverse folding prob-
lem is formulated as an optimization problem, aimed at
the minimization of the energy of the protein.

The inverse folding problem is usually solved in-
cluding the fact that each residue can adopt multiple
conformational states, which are most often grouped
into a finite number of conformational isomers (ro-
tamers). Two approximations are common for this
problem. First, it is assumed that the protein’s back-
bone is fixed. Second, the continuous domain of avail-
able conformations for the side-chains is approximated
using a finite set of discrete conformations, defined by
inner dihedral angles. The CPD is then formulated
as the problem of determining the conformation cor-
responding to the minimum energy from that finite set.

A variety of algorithms was developed to solve
the inverse folding problem. In [1], the problem is
expressed as a Cost Function Network (CFN), also
known as the Weighted Constraint Satisfaction Prob-
lem (WCSP). The interaction energies are represented
as cost functions, and the unknown variables are the
sets of pairs (amino acid, conformation). Then, the
problem is solved using the dead-end elimination/A∗

algorithm (DEE/A∗). More precisely, first, the DEE
algorithm reduces the computational cost of the prob-
lem, excluding from the consideration conformations
that are unlikely to be optimal. Then, the A∗ algo-
rithm allows to expand a sequence-conformation tree, so
that sequence-conformations are extracted and sorted
on the basis of their energy values. The CFN prob-
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lem is solved using the toulbar2 solver. The investiga-
tion [1] also compares the CFN approach with several
other optimization models. CPD is expressed as a 0/1
linear programming (01LP) problem, which is defined
by a linear criterion to optimize over a set of Boolean
variables under a conjunction of linear equalities and
inequalities. It is also represented as a problem of 0/1
quadratic programming (01QP), which has a quadratic
criterion to optimize with the same types of constraints
as in 01LP. To solve these both models, the authors
used the cplex solver and compared the results with the
CFN approach.

In [6], the inverse folding problem is solved using ge-
netic algorithm. This algorithm optimizes the sequence
of amino acids in a protein chain with a stochastic
search similar to natural selection in evolution. This
approach was later improved in [8] by expressing the
problem as a highly multi-modal optimization problem.
This is achieved by using a diversity measure as the
objective function through multi-objectivization. The
common feature of all genetic algorithms is that they
rely on evolutionary information of existing structures.

Investigation [7] studies the Answer Set Program-
ming (ASP) approach for the inverse folding problem.
It uses DEE in combination with branch and bound al-
gorithms to eliminate high number of non-optimal pairs
(amino acid, conformation), as in [1]. Then the prob-
lem is represented in the ASP model and solved with
solver clingo4.

All the aforementioned investigations determined
both amino acid and conformation for all positions in
the polypeptide chain. These approaches used energy
functions which consider interactions between all pos-
sible pairs of rotamers, for example, energy function,
implemented in the CPD dedicated tool osprey 2.0 [17].
The mentioned works compare the efficiency of different
algorithms, i.e. the time these algorithms need to find
the minimum of energy for given instances. The CFN
model demonstrated the best results overall, although
even it could not solve all the instances in reasonable
time. However, the quality of prediction of the primary
structure (the coincidence between the found structure
and the native one) is not investigated in these works.
This quality depends on the choice of energy potential,
and there is a challenging problem to find a practical
scoring potential, which does not always match with
the true potential function [18].

The main distinction of our investigation is that
only the amino acids in the protein chain are predicted,
and spatial conformations (rotamers) are not consid-
ered. This approach decrease the computational com-
plexity of the problem significantly. It allows to re-
ceive basic information about the primary structure of
a protein using much less resources, and allows to find
the sequence of amino acids even for the most compli-
cated instances. Thus, this study uses energy functions

[14, 15], which describe only interactions between all
possible pairs of amino acids, but not rotamers.

In this study the inverse protein folding problem
is reduced to the quadratical programming problem,
which can be written as

minimize f0(~x)

subject to fi(~x)≤ 0, i = 1,2, . . . ,N,
(1)

where

fi(x) =~xTAi~x + 2~bT

i~x + ci, i = 0,1, . . . ,N.

The initial problem is not convex, because the matri-
ces Ai are generally indefinite, therefore the problem is
NP-hard and can not be solved efficiently. This paper
studies semidefinite relaxation , Lagrangian relaxation
[3] and continuous relaxation of the problem (1) to con-
vex one, which can be solved in practical time. The
solution of the relaxed problem provides a lower bound
of the optimal value of (1). We use the rounding of
the relaxed solution to find an upper bound and an ap-
proximate the optimal value. This paper also suggests
Sequential Quadratic Programming (SQP) [4] and Sim-
ulated Annealing approaches to solve (1). Finally, we
compare these relaxations and techniques and estimate
the efficiency and the quality of primary structure pre-
diction of using different approaches on real proteins
structures from the SCWRL4 test set [5].

2. Problem statement

Let the protein chain consist of N amino acids.
The set C = {1,2, . . . ,20} contains indexes that encode
all 20 possible amino acids. Let ~y = (y1, . . . ,yN) be
the sequence of residues, where yi ∈ C . Let functions
Ekl : C 2 → R define symmetrical pairwise interaction
energies between residues k and l. Then the problem of
energy minimization is represented as

N

∑
j=1

N

∑
i=1

Ei j(yi,y j)→ min
y1,y2,...,yN∈C

. (2)

The problem can also be written in the following way:

minimize
~x=[~xT1 ,...,~x

T
N ]T

~xTQ~x

subject to ~xk ∈ {0,1}20, k = 1, . . . ,N,

‖~xk‖0 = 1, k = 1, . . . ,N,

(3)

where

Q =


[E11] [E12] · · · [E1N ]
[E21] [E22] · · · [E2N ]

...
...

. . .
...

[EN1] [EN2] · · · [ENN ]

 ,
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Ei j =


Ei j(c1,c1) Ei j(c1,c2) · · · Ei j(c1,c20)
Ei j(c2,c1) Ei j(c2,c2) · · · Ei j(c2,c20)

...
...

. . .
...

Ei j(c20,c1) Ei j(c20,c2) · · · Ei j(c20,c20)

 ,
Q ∈ R20N×20N , Ei j ∈ R20×20.

Finally, it is practical to re-write the problem as

minimize
~x∈{0,1}20N

~xTQ~x

subject to A~x = 1N ,
(4)

where

A =


1 · · ·1 0 · · ·0 · · · · · · 0 · · ·0
0 · · ·0 1 · · ·1 · · · · · · 0 · · ·0

...
...

. . .
...

0 · · ·0︸ ︷︷ ︸
20

0 · · ·0︸ ︷︷ ︸
20

· · · · · · 1 · · ·1︸ ︷︷ ︸
20

 , A ∈ {0,1}N×20N .

To estimate the quality of primary structure predic-
tion, we use the scoring matrix BLOSUM62 [9]. This
matrix is a substitution matrix used for calculating the
degree of matching between two protein sequences.

Let B represents the BLOSUM62 matrix. Then,
the score B(yi, ŷ j) is the score for the substitution of
residue yi for ŷ j at j-position in the chain. If the score
is positive, the residues are interchangeable (or equal).
Otherwise, this substitution is less likely to occur, and
the prediction is wrong. Let ~ynat,~ypred ∈ C N be na-
tive and predicted sequences of length N, respectively.
Then, the quality function can be defined as

S(~ynat,~ypred) =
∑

N
k=1 B((~ynat)k,(~ypred)k)

∑
N
k=1 B((~ynat)k,(~ynat)k)

(5)

A good quality prediction corresponds to S > 0, and the
best predictions have values of S close to 1. Negative
values of S mean poor quality predictions.

The aim of this study is to compare different op-
timization approaches to solve the problem (4). The
value of S is considered as the quality of the primary
structure prediction, while the optimization power of al-
gorithms is estimated from the ability of the algorithm
to predict the sequence with the lowest possible energy.

3. Algorithms and relaxations

3.1. Greedy algorithm

Given a problem (2)

N

∑
j=1

N

∑
i=1

Ei j(yi,y j)→ min
y1,y2,...,yN∈C

,

consider the greedy search algorithm to find an approx-
imate solution:

Algorithm 1 Greedy algorithm

Require: ~ystart = (y0
1, . . . ,y

0
N), y0

k ∈ C , k = 1,N
Ensure:~ypred = (y1, . . . ,yN)

repeat
num changed← 0
for all k ∈ {1, . . . ,N} do

ŷk := argmin
y′k∈C

f (y1, . . . ,yk−1,y′k,yk+1, . . . ,yN)

if ŷk 6= yk then
yk := ŷk
num changed := num changed + 1

until num changed > 0

On each iteration, this algorithm searches for a pro-
tein conformation of a lower energy than the current
one among conformations in the neighborhood of the
current conformation. On each step it determines for
each position of the chain whether there exists such an
amino acid ŷk that would decrease the energy of the
protein by substitution yk with ŷk. It stops when there
is no position to change, so this algorithm returns at
least the local minimum of the problem (2).

3.2. Continuous relaxation

The matrix Q in (4) could be relaxed to semidefinite
positive by shifting its spectrum. Denote

Q̂ = Q−λmin(Q) · I20N , c = λmin(Q) ·N. (6)

Then

~xTQ̂~x =~xT (Q−λminI20N)~x =~xTQ~x−λmin~xT~x.

Considering~x∈ {0,1}20N and A~x = 1N , we have~xT~x = N.
Therefore, optimization problem (4) can be written as:

minimize
~x∈{0,1}20N

~xTQ̂~x + c

subject to A~x = 1N .
(7)

Now the matrix Q̂ is semidefinite positive due to (6),
because all its eigenvalues are nonnegative. Consider
continuous relaxation of (7) by relaxing constraints ~x ∈
{0,1}20N to ~x≥~020N :

minimize
~x≥~020N

~xTQ̂~x + c

subject to A~x = 1N .
(8)

The problem (8) is convex now, and therefore can be
solved efficiently. The solution of (8) also gives the
lower bound for the optimum of the primary problem
(4). An approximate solution of (4) and an approxi-
mate optimum are found from ~x = [~x1

T, . . . , ~xN
T]T as fol-

lows:
yk = argmax

j=1,20
x j

k, k = 1, . . . ,N.
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The solution could be also improved by using the greedy
algorithm 1 with the solution of (8) as a starting posi-
tion. The final approximation will be the upper bound
for the optimum value of the initial problem (4).

3.3. Semidefinite relaxation (SDP)

SDP relaxation is described in [2]. Applying it to
the problem (4) we have

minimize
X∈R20N×20N

~x≥~020N

Tr(QX)

subject to X�~x~xT,

Xii = xi, i = 1,20N,

A~x =~1N ,

where S n
+ = {X ∈ Rn : X = XT � 0} is the set of sym-

metric semidefinite positive matrices of dimension N.
By Schur’s complement [10], the problem is equivalent
to

minimize
X∈R20N×20N

~x≥~020N

Tr(QX)

subject to

[
X ~x
~xT 1

]
∈S 20N+1

+ ,

Xii = xi, i = 1,20N,

A~x =~1N .

(9)

Again, the relaxed problem is convex and can be solved
efficiently using the methods of convex programming.
The optimum of (9) gives the lower bound for (4). The
binary vector~x and the upper bound for the initial prob-
lem (4) are recovered from the solution in the same way
as in the previous case (continuous relaxation).

3.4. Lagrangian relaxation

The Lagrangian relaxation [3, 10] is a good method
for getting a cheaply computable lower bound on the
optimal value of a non-convex quadratic optimization
problem. This method uses the fact that the dual of a
problem is always convex, and the weak duality guar-
antees the optimum value of a dual problem to be the
lower bound to the initial one.

The Lagrangian of (4) is

L(~x,~λ ,~u) =~xTQ~x +
20N

∑
i=1

λi(x2
i − xi)+~uT(A~x−~1N) =

=~xT

(
Q + D(~λ )

)
~x−~λ T~x +~uT(A~x−~1N) =

=~xT

Q + D(~λ )︸ ︷︷ ︸
P(~λ )

~x−

~λ T−~uTA︸ ︷︷ ︸
~qT(~λ ,~u)

~x−~uT~1N︸︷︷︸
r(~u)

.

The dual function is then

g(~λ ,~u) = inf
~x∈R20N

L(~x,~λ ,~u) = inf
~x∈R20N

~xTP(~λ )~x−~qT(~λ ,~u)~x− r(~u) =

=


− 1

4~q
T(~λ ,~u)P+(~λ )~q(~λ ,~u)− r(~u), if P(~λ )� 0 and

~q(~λ ,~u)⊥KerP(~λ ),

−∞, otherwise.

Finally, the Lagrangian relaxation of (4) is:

maximize
~λ∈R20N ,~u∈RN

γ− r(~u)

subject to γ ≤ 0,[
P(~λ ) 1

2~q(~λ ,~u)
1
2~q

T(~λ ,~u) −γ

]
∈S 20N+1

+ .

(10)

3.5. Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) [4, 11]
is one of the most effective methods for constrained
nonlinear optimization. The idea of SQP is to solve
nonlinear problem using a sequence of quadratic pro-
gramming (QP) subproblems. The objective function
of the subproblem on each step is a convex quadratic
approximation of the Lagrangian function.

First, we relax the constraints of the initial problem
(4) in order to apply the SQP method. The constraints
xi ∈ {0,1} should be substituted for 0≤ xi ≤ 1:

minimize
~x∈R20N

~xTQ~x

subject to A~x = 1N ,

020N ≤~x≤ 120N

(11)

The Lagrangian of (11) is

L(~x,~λ ,~µ,~u) =~xTQ~x−~λ T~x +~µT(~x−120N)+~uT(A~x−~1N).
(12)

Now let us formulate the QP subproblem for the k-th
step of the algorithm:

minimize
~d∈R20N

1
2
~dTHk~d + 2~xk

TQ~d

subject to A
(

~xk + d
)

= 1N ,

020N ≤ ~xk + d ≤ 120N .

(13)

Here Hk is a positive definite approximation of the Hes-
sian matrix of the Lagrangian function (12), and ~xk is
a current iterate. The solution of (13) is used to form

a new iterate (~xk+1,~λk+1,~µk+1,~uk+1).
Each iteration of the algorithm consists of three steps:

1. Updating the Hessian Matrix

2. Solving a Quadratic Program

3. Line Search and Merit Function
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1. At each iteration a quasi-Newton approximation of

the Hessian ∇2
xxL(~xk+1,~λk+1,~µk+1,~uk+1) is calculated us-

ing the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [12]
method. Denote

~sk =~xk+1−~xk,

~yk = ∇xL(~xk+1
~λk+1,~µk+1,~uk+1)−∇xL(~xk,~λk,~µk,~uk)

Then the BFGS approximation for the next iteration
has the form

Hk+1 = Hk +
~yk~yT

k
~yT

k~sk
−

Hk~sk~sT

kHT

k
~sT

kHk~sk
. (14)

This approximation keeps Hk positive definite during
the iterations.

2. With iterate (~xk,~λk,~µk,~uk) and a quasi-Newton ap-
proximation of Hessian Hk, the subproblem QP (13) is
formulated. Considering the condition on Hk to be pos-
itive definite, QP is convex and can be solved efficiently.

New iterates for dual variables ~λk+1,~µk+1,~uk+1 are de-
termined from the solution immediately as the values of
the dual variables of (13) in the optimal point. The new

iterate for the primal variable is set to ~xk+1 =~xk +αk~dk,
where ~dk is the solution of QP (13), and the optimum
length of the step αk is determined at the next step.

3. The step length parameter αk is determined in order
to produce a sufficient decrease in a merit function. We
use the following function:

Ψ(~x) =~xTQ~x +~wT~x+ +~pT

(
~120N− x̃

)
+

+~rT (A~x−1N) ,

(15)
Here, if ~m = [~wT,~pT,~rT]T, then ~m is calculated as

~mi = (~mk+1)i = max
{

πi,
(~mk)i + πi

2

}
, i = 1, . . . ,41N,

where vector ~π =
[
~λ T,~µT,~uT

]T
is the vector of dual vari-

ables of QP (13). The parameter αk is calculated then
from the minimization of the univariate function

Ψ(~xk + αk~dk)→min
αk

.

The problem (11) is then reduced to a sequential
solving of convex quadratical optimization problems.

3.6. Simulated Annealing

Simulated Annealing (SA) [13] is used to compare
different approaches. It is a probabilistic method, and
although it is unlikely to find the global optimum solu-
tion, it may often find a solution very close to it.

Let T : Z+→ (0;+∞) be the exponentially decreas-
ing function of the temperature, and S be a finite set of

states – all manner of possible sequences. The set N(x)
is a set of neighbors to the state x ∈ S. The energy
function F(x) is the objective function. x0 ∈ S is the
starting position. Then the iteration of SA algorithm
is:

1. Randomly choose the state from the neighbors of
a current state xk+1 ∈ N(xk)

2. Assess the energy of the chosen state Fk+1 =
F(xk+1)

3. Compare Fk+1 and Fk and decide, whether to ac-
cept selected move. If Fk+1 < Fk, the move is ac-
cepted. Else, the move is accepted with the prob-

ability exp
(
−Fk+1−Fk

T (k)

)
.

In this investigation problem, the set S is the set of
all possible sequences of amino acids for a given length,
neighbors N(x) for the sequence x are the sequences,
in which 5 or less residues differ from x. The energy
function F(x) is the energy of the protein structure.

4. Solution

This section describes the process of solving the
problem (4) using methods, presented in the previous
section. First, we build the energy matrix for a pro-
tein structure. In the current study, we use two coarse-
grained distance-dependent potentials. One of them is
described in [14]. Another is DFIRE-Ca potential [15],
whose parameters are kindly provided by the authors.
They both require only the distance between two Cα

carbon atoms in a pair of amino acids to estimate the
energy of interaction between these residues. So, by ex-
tracting coordinates of Cα atoms of the backbone of a
given protein, we can build the energy matrix. That is,
for each pair of positions i, j in the chain, we calculate
the distance di j between Cα atoms at these positions.
Then, the energy of the interaction between all 210 pairs
of amino acids located at distance di j are estimated, and
this is how matrices Ei j are obtained. By doing so for
all i, j ∈ 1,N, we build the matrix Q.

Then different relaxations are applied to the prob-
lem (4):

• Lagrangian relaxation (10) is used to receive the
lower bound for the optimum value. It does not
provide an approximate solution to the problem,
because there is no strong duality between (4) and
its dual.

• Greedy algorithm 1 is initialized with a random
starting position.

• Continuous and SDP relaxations find both lower
bound and approximate optimum of the problem.
We improve received solutions with the greedy al-
gorithm in the next step.
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• SQP and Simulated Annealing give an approxi-
mate optimum of the energy.

Finally, we estimate the quality of optimization and pre-
diction for each method at each test protein structure.
The quality of prediction is obtained from (5) using the
BLOSUM62 matrix.

5. Computational details

All the tested algorithms were implemented in
Python, using the CVXPY package [16] to solve dif-
ferent convex problems that are obtained after the pro-
posed relaxations. For the SQP algorithm, we used
its MATLAB implementation from the Global Opti-
mization Toolbox. The computation experiment was
set on a quad-core Intel Core(TM) i7-4700HQ CPU @
2.40GHz PC with 12 GB of RAM running on Ubuntu
14.04 LTS OS.

6. Results and Discussion

To compare the quality of different relaxation ap-
proaches in solving non-convex quadratic problems, we
performed a series of computational experiments. More
precisely, we used six algorithms, described in the sec-
tion 3, to find the minimum of the protein energy. The
computational experiments were set on a test set of
protein structures extracted from the SCWRL4 bench-
mark. The average length of sequences for these pro-
teins was 110 amino acids, so the dimension of ~x was
about 2000.

Figure 1 presents the results of optimization the
energy using the potential from [14].

From this figure we can see that among the com-
pared methods, SQP and SA demonstrated the best
power of optimization. They returned very proximate
optimum energy values and predicted similar sequences
of amino acids. The continuous relaxation approach
minimizes the objective function worse than SA and
SQP, but still returns the sequence with the energy,
lower than the native. We should note that the SDP
and Lagrangian relaxations methods cannot be applied
to large optimization problems. This is because the
number of their variables is quadratic with respect
to the length of vector ~x, and also because the com-
putational requirements for these approaches exceed
the available resources for the sequences of a practi-
cal length. For example, for N = 100 the number of
variables for these methods is more than 2 ·106.

For all the techniques and all the test structures,
we measured the time spent on finding the solution of
the optimization problem. It was done in the following
way – for different lengths of sequences from 5 to 155,
we truncated the length of the structures of proteins
this upper limit. Then, we applied all the tested op-
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Figure 1. Approximate energy optimum for different
relaxations computed on the test set.

0 20 40 60 80 100 120 140 160

Length of chain

10-2

10-1

100

101

102

103

104

C
o
n
su

m
e
d
 t
im

e

ContGreedy

RandGreedy

Anneal

SQP

SDP

LagrRelax

Figure 2. Computational time as a function of the
length of a protein chain for all the algorithms in
logarithmic scale.

timization methods to solve the problem with cropped
backbones, and the average time for each length was
measured. Also, we computed the mean of quality of
prediction for such sequences. The dependences of com-
putational time and quality on the length of a protein
chain are shown in Figs. 2 and 3, respectively.

Figure 1 clearly demonstrates that all the relax-
ations and all the tested methods found sequences of
amino acids with the energy lower, than the one of
the native state. The greedy algorithm with a native
sequence of amino acids as the starting position also
returned the sequence with a lower energy for all the
tested potentials. This means that the native struc-
tures are not even the local minimum for the potential
energy function used in this experiment. Therefore, the
two tested potentials do not satisfy the crucial assump-
tion, i.e., that the native conformation has the lowest
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Figure 3. Dependence of prediction quality on the
length of a protein chain for all the tested methods.

energy between all possible states for a given fixed back-
bone, and thus the quality of primary structure predic-
tion is extremely poor. In searching for a minimum of
energy, the algorithms select residue types with the low-
est contact energies. This happens to be observed for
pairs of cysteine-cysteine and tyrosine-tyrosine. As the
result, the predicted structure often consist fully either
of cysteine residues, or of tyrosine residues.

7. Conclusion

In this paper we proposed to formulate the Inverse
Protein Folding Problem as a quadratic optimization
problem, where the objective function is the energy of
the protein, which is assumed to have the lowest value
for the native conformation. The results shows that the
SQP and SA approaches have the best optimization
power on the test set of protein structures extracted
from the SCWRL data set. These two methods
returned very similar approximate optimums for nearly
all the structures. The SDP approach turned out to
increase the computational cost of the relaxed problem
rapidly and required unreasonable time for the solution
for any practical case. Continuous relaxation gave the
worse approximation for all the test cases, compared
to SQP and SA, but consumed less time to compute
the answer. All materials needed for conducting an
experiment can be found at https://sourceforge.

net/p/mlalgorithms/code/HEAD/tree/Group374/

Ryazanov2016InverseFolding/code/.
Although the tested algorithms demonstrated a

good capacity in solving the optimization problem, the
actual quality of the primary structure prediction was
poor. This is mainly because the potential functions
that we used for the energy estimation do not follow
the assumption that the native sequence has the lowest
energy for a given geometrical shape. Therefore, the

structures that were found using the introduced tech-
niques, had much lower energy than the native one,
however the native and the predicted sequences coin-
cided very weakly. We strongly believe that in order
to achieve better prediction results, an improvement of
the potential functions for the inverse folding problem
is needed.
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