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Abstract

The B Method is a formal method heavily used in the railway industry to specify
and develop safety-critical software. It allows the development of correct-by-construction
programs, thanks to a refinement process from an abstract specification to a deterministic
implementation of the program. The soundness of the refinement steps depends on the
validity of logical formulas called proof obligations, expressed in a specific typed set theory.
Typical industrial projects using the B Method generate thousands of proof obligations,
thereby relying on automated tools to discharge as many as possible proof obligations. A
specific tool, called Atelier B, designed to implement the B Method and provided with
a theorem prover, helps users verify the validity of proof obligations, automatically or

interactively.

Improving the automated verification of proof obligations is a crucial task for the speed
and ease of development. The solution developed in our work is to use Zenon, a first-order
logic automated theorem prover based on the tableaux method. The particular feature of
Zenon is to generate proof certificates, i.e. proof objects that can be verified by external
tools. The B Method is based on first-order logic and a specific typed set theory. To
improve automated theorem proving in this theory, we extend the proof-search algorithm of
Zenon to polymorphism and deduction modulo theory, leading to a new tool called Zenon

Modulo which is the main contribution of our work.

The extension to polymorphism allows us to deal with problems combining several
sorts, like booleans and integers, and generic axioms, like B set theory axioms, without
relying on encodings. Deduction modulo theory is an extension of first-order logic with
rewriting both on terms and propositions. It is well suited for proof search in axiomatic

theories, as it turns axioms into rewrite rules. This way, we turn proof search among
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axioms into computations, avoiding unnecessary combinatorial explosion, and reducing the
size of proofs by recording only their meaningful steps. To certify Zenon Modulo proofs,
we choose to rely on Dedukti, a proof-checker used as a universal backend to verify proofs

coming from different theorem provers, and based on deduction modulo theory.

This work is part of a larger project called BWare, which gathers academic entities
and industrial companies around automated theorem proving for the B Method. These
industrial partners provide to BWare a large benchmark of proof obligations coming from
real industrial projects using the B Method and allowing us to test our tool Zenon Modulo.
The experimental results obtained on this benchmark are particularly conclusive since
Zenon Modulo proves more proof obligations than state-of-the-art first-order provers. In
addition, all the proof certificates produced by Zenon Modulo on this benchmark are well

checked by Dedukti, increasing our confidence in the soundness of our work.

Keywords : B Method, Set theory, Zenon Modulo, Automated deduction, Deduction
modulo theory, Tableau method, Sequent calculus, Polymorphism, Dedukti, AIl-calculus

modulo theory, Proof certification.



Résumé

La Méthode B est une méthode formelle de spécification et de développement de logiciels
critiques largement utilisée dans 'industrie ferroviaire. Elle permet le développement de
programmes dit corrects par construction, grace a une procédure de raffinements successifs
d’une spécification abstraite jusqu’a une implantation déterministe du programme. La
correction des étapes de raffinement est garantie par la vérification de la correction de
formules mathématiques appelées obligations de preuve et exprimées dans la théorie des
ensembles de la Méthode B. Les projets industriels utilisant la Méthode B générent générale-
ment des milliers d’obligation de preuve. La faisabilité et la rapidité du développement
dépendent donc fortement d’outils automatiques pour prouver ces formules mathématiques.
Un outil logiciel, appelé Atelier B, spécialement développé pour aider au développement de
projet avec la Méthode B, permet aux utilisateurs de décharger les obligations de preuve,

automatiquement ou interactivement.

Améliorer la vérification automatique des obligations de preuve est donc une tache
importante. La solution que nous proposons est d’utiliser Zenon, un outils de déduction
automatique pour la logique du premier ordre et qui met en ceuvre la méthode des tableaux.
La particularité de Zenon est de générer des certificats de preuve, des preuves écrites
dans un certain format et qui peuvent étre vérifiées automatiquement par un outil tiers.
La théorie des ensembles de la Méthode B est une théorie des ensembles en logique du
premier ordre qui fait appel a des schémas d’axiomes polymorphes. Pour améliorer la
preuve automatique avec celle-ci, nous avons étendu ’algorithme de recherche de preuve de
Zenon au polymorphisme et a la déduction modulo théorie. Ce nouvel outil, qui constitue

le coeur de notre contribution, est appelé Zenon Modulo.

L’extension de Zenon au polymorphisme nous a permis de traiter, efficacement et sans
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encodage, les problemes utilisant en méme temps plusieurs types, par exemple les booléens
et les entiers, et des axiomes génériques, tels ceux de la théorie des ensembles de B. La
déduction modulo théorie est une extension de la logique du premier ordre a la réécriture
des termes et des propositions. Cette méthode est adaptée a la recherche de preuve dans les
théories axiomatiques puisqu’elle permet de transformer des axiomes en régles de réécriture.
Par ce moyen, nous passons d’une recherche de preuve dans des axiomes a du calcul,
réduisant ainsi l’explosion combinatoire de la recherche de preuve en présence d’axiomes et
compressant la taille des preuves en ne gardant que les étapes intéressantes. La certification
des preuves de Zenon Modulo, une autre originalité de nos travaux, est faite a ’aide de
Dedukti, un vérificateur universel de preuve qui permet de certifier les preuves provenant

de nombreux outils différents, et basé sur la déduction modulo théorie.

Ce travail fait partie d’un projet plus large appelé BWare, qui réunit des organismes
de recherche académiques et des industriels autour de la démonstration automatique
d’obligations de preuve dans I’Atelier B. Les partenaires industriels ont fourni a BWare un
ensemble d’obligation de preuve venant de vrais projets industriels utilisant la Méthode B,
nous permettant ainsi de tester notre outil Zenon Modulo. Les résultats expérimentaux
obtenus sur cet ensemble de référence sont particulierement convaincants puisque Zenon
Modulo prouve plus d’obligation de preuve que les outils de déduction automatique de
référence au premier ordre. De plus, tous les certificats de preuve produits par Zenon
Modulo ont été validés par Dedukti, nous permettant ainsi d’étre trés confiant dans la

correction de notre travail.

Mots clés :  Méthode B, Théorie des ensembles, Zenon Modulo, Déduction automatique,
Déduction modulo théorie, Méthode des tableaux, Calcul des séquents, Polymorphisme,

Dedukti, AII-calcul modulo théorie, Certification de preuve.
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Introduction

The year 2016 will be remembered as a milestone in the rise of autonomous vehicles.
While the web company Google has started Google Car, its project of autonomous cars,
several years ago — the fleet of vehicles has already been tested on almost three million
kilometers —, official disclosures of new projects of autonomous cars were released in the
first half of 2016. Most of the worldwide automobile manufacturers released statements
about the advent of self-driving cars within five years. For instance, the US automaker
Ford announced in August a fully automated driverless car — without a steering wheel or
pedals — for 2021 [Sage and Lienert| |2016]. In the city of Pittsburgh, PA, the transportation
network company Uber released in August a fleet of self-driving test-cars to transport

clients, along with safety drivers for the moment [Chafkin| 2016].

The rise of self-driving cars is surely a good news, and it will be a relief for a large
number of persons, in particular those suffering from reduced mobility. Once released,
this new means of transportation should quickly outpace the old-fashioned car. But all
these positive aspects should not hide some legitimate concerns about safety, a self-driving
car being clearly a life-critical system. An autonomous car relies on dozens of sensors,
microchips and embedded software to operate it. The development of software for safety-
critical system requires specific expertise and painstakingness, which seems to lack in the

automotive industry.

The recent Toyota “unintended acceleration” affair, as reported by Bagnara in the
12th Workshop on Automotive Software & Systems in 2014 [Bagnara, [2014], reveals
questionable practices. In 2000, the car manufacturer Toyota adopted an Electronic
Throttle Control System (ETCS for short) for most of its new car models, replacing a
mechanically operated throttle pedal by an electronic one. In 2010, the National Highway

19
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Traffic Safety Administration reported that 89 deaths may be linked to this affair, in
addition to thousands of car accidents. In 2013, the first trial in which the plaintiffs alleged
that the unintended acceleration was caused by a malfunction of the ETCS system, has used
the testimony of Baar [Barr| 2013], an embedded software expert, and Koopman |[Koopman
2014], professor at Carnegie Mellon University, who were both allowed to investigate the
source code of the ETCS embedded software. Their conclusions revealed that the software
was, at least, very far from the expected standards for safety-critical systems. For instance,
they reported that the development process did not follow strictly the MISRA-C guidelines
— a discretionary standard developed by the Motor Industry Software Reliability Association.
They also described the C source code as “spaghetti code”, containing more than 10,000
read/write global variables. Finally, they pointed out the lack of certification requirements

for software in safety-critical systems for US automakers.

In 2014, Toyota reached a $1.2 billion settlement with the US Department of Justice,
ending a criminal investigation into the unintended acceleration affair. All the consequences
of this affair are not yet fully documented sixteen years after the release of the ETCS
system. But it can already be considered as a relevant case study and a turning point for

functional safety in critical software systems.

An interesting conclusion of this story, which goes beyond the limited context of this
case, is the lack of mandatory standards for US automotive industry when developing
safety-critical software. Other transportation sectors, like aeronautic and railway industries,
have successfully performed their electronic revolutions thirty years ago. For instance,
the aircraft manufacturer Airbus released in 1984 the A320, the first airliner to fly with
an all-digital fly-by-wire control system [Favre] 1994]. In the railway industry, the first
autonomous vehicles, a new fully automatic and driverless subway line in the city of Lille

in France, appeared in 1983 [Lardennois [1993].

The high level of safety in these two sectors has been achieved with the application of
specific mandatory standards for electronic devices and embedded software. The standard
TIEC 61508 is the generic international standard for electrical, electronic and programmable

safety-related systems, published by the International Electrotechnical Commission. It

20



INTRODUCTION

has been specified for each particular sector. For instance in the railway industry, the
standard EN 50128 applies to safety-related software for railway control and protection
systems. Omne of the important notions defined by this standard is the Safety Integrity
Level (SIL for short), a quantity that measures the relative level of risk-reduction provided
by a safety function. The standard defines four SIL levels, from SIL 1 (the lowest level of
risk reduction) to SIL 4 (the highest level of risk reduction).

Safety functions of a system that requires a SIL 4 certification level are typically the
most critical of the whole system, for instance the speed control system of a fully automatic
driverless train. In software engineering, a large family of development methods, called
formal methods, have been designed to develop highly trusted software. The general
idea of formal methods is to prove that a program satisfies some particular mathematical
properties. These mathematical properties translate the desired behaviour of a system,
and are gathered into the specification, a formal model of the system. The notion of
specification is a central concept in formal methods, because all these methods allow us to
prove only relative correctness of a program with respect to a specification. Thus, specifica-
tions must be described in a formal language, typically a language without ambiguity, like
logic-based languages, unlike natural languages. There exists a large number of different
formal methods, covering all or part of the development cycle, from specification of a

system to implementation.

The B Method is a formal method developed by Abrial and presented in its reference
book, called the B-Book and published in 1996 |Abriall [1996]. The B Method is based
on previous work of Hoare and Dijkstra about the correctness of programs. It is mainly
used in the railway industry to specify and develop safety-critical software. For instance, it
has been successfully used to develop the command control system of the fully automatic
driverless trains of the subway line 14 in the city of Paris in France in 1998 |[Behm, Benoit.
Faivre, and Meynadier| 1999]. The B Method covers all the development cycle of a program,
from the formal specification of a system, called the abstract machine, to a deterministic
implementation of the program. The resulting programs are said correct-by-construction,

thanks to a refinement process from the abstract machine to the last and fully deterministic
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B machine, called BO. The last stage of source code extraction consists in a mere syntactic
translation of the BO machine. The soundness of the refinement steps depends on the

validity of logical formulae, called proof obligations, expressed in the specific B set theory.

Common industrial projects using the B Method generate thousands of proof obligations,
thereby relying on automated tools to discharge as many proof obligations as possible.
A specific tool, called Atelier B [ClearSy 2013], designed to implement the B Method
and provided with a theorem prover, helps users verify the validity of proof obligations,
automatically or interactively. The automated theorem prover (ATP for short) of Atelier B
proves around 85% of proof obligations in common industrial projects, letting thousands of
proof obligations requiring a human interaction to be proved. This lack of automation in

the B Method is a major cost factor for industrials, slowing its wide diffusion.

Our work aims to improve the automated verification of B proof obligations, with
a particular focus on the soundness of the generated proofs. Our main contribution
consists in the development of a first-order ATP called Zenon Modulo. This tool extends
Zenon |Bonichon, Delahaye, and Doligez 2007], a first-order ATP based on the Tableau
method. The Tableau method |D’Agostino, Gabbay, Héahnle, and Poseggal 2013 is an
automatic proof search algorithm for the sequent calculus without cuts. In proof theory,
sequent calculus |Gentzen| [1935] is a family of syntax-directed formal systems used to
write formal proofs. It is defined by a set of inference rules, logical objects defining a
syntactic relation between a set of formulae called premises and another set of formulse
called conclusions, and corresponding to an elementary deduction step. These kinds of
system are called proof systems. Tableau method proofs can be easily translated into

sequent calculus proofs, as it is just a syntactic reformulation.

We do not need in our work to deal with all the B Method notions, in particular those
related to the B language. We focus only on the mathematical reasoning of the B Method,
consisting mainly in the B set theory. Improving the proof search algorithm of Zenon for
the B Method leads to the development of two extensions, the former being an extension to
first-order logic with polymorphic types, the latter being an extension to deduction modulo

theory. The motivation of these two extensions is to deal efficiently with the B set theory.
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The B Method set theory differs from other ones, like the Zermelo-Fraenkel set theory.
The main difference consists in the addition of typing constraints to expressions, embedded
into a set theoretic level, in the sense that there is no syntactical distinction between types
and sets. To verify the well-typedness of expressions, the B-Book provides a set of typing
inference rules, defining a type-checking procedure, which has to be applied once before
proving. We show in Chap. [4] that B axioms and hypotheses can be seen as polymorphic
formulze, in the sense that they are defined for generic types. Once the proof obligation —
which is not polymorphic — is fixed, the generic types of axioms and hypotheses have to be

instantiated with types coming from the proof obligation.

The B set theory is made of six axioms, in addition to a large number of derived
constructs. These derived constructs, like the union between sets, the domain of a relation
and the set of total injective functions, are important in the B Method since they are
well represented in proof obligations. Therefore, it is crucial to deal efficiently with these
constructs. We choose to benefit from deduction modulo theory [Dowek, Hardin, and
Kirchner| 2003 to improve proof search in the B set theory. Deduction modulo theory is a
formalism that extends first-order logic with rewrite rules on both terms and propositions,
and improves proof search in axiomatic theories by turning axioms into rewrite rules. It
allows us to distinguish deduction and computation steps, and to reason over equivalence

classes of formulee under a congruence generated by the rewrite system.

ATPs are generally large software, using sophisticated functionalities and complex
optimizations. For instance, Zenon Modulo is made of more than 40,000 lines of OCaml
code. Hazard growing up with size and complexity, potential causes of bugs and malfunctions
exist in ATPs. When verifying proof obligations for the development of safety-critical
software, guaranteeing the soundness of proofs is a very crucial task. Barendregt and
Barendsen |Barendregt and Barendsen| [2002] proposed to rely on the concept of proof
certificate, a proof object that contains a statement and its formal proof, and that can be
verified by an external tool. The originality of this approach is to separate the generation
of the proof certificate, made by the ATP, and the verification of the soundness of the
proof, made by an external proof checker. Ideally, the proof checker should be built on

a light and auditable kernel. From this point of view, another important contribution
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to Zenon Modulo is the development of a backend that generates proof certificates for
the proof checker Dedukti |Assaf, Burel, Cauderlier, Delahaye, Dowek, Dubois, Gilbert.
Halmagrand, Hermant, and Saillard| 2016]. Dedukti is a lightweight implementation of the
MlI-calculus modulo theory, an extension of the simply typed A-calculus with dependent
types and rewriting. Dedukti is commonly used as a backend to verify proofs coming from

ATPs, like Zenon Modulo, and also proof assistants, like Coq [Bertot and Castéran [2013)].

Concerns may legitimately arise about the relevance of using Zenon Modulo, an ATP
whose underlying logic is polymorphic first-order logic (Poly-FOL for short), to prove B
proof obligations expressed in a specific set theory. We answer this issue in an original
way by defining an encoding of B formule into Poly-FOL, where one of the particularities
resides in the generation of type information in the resulting Poly-FOL expressions. This
was made possible thanks to an externally defined type inference procedure for B bound
variables. Then, we give a syntactic translation function of Zenon Modulo sequent calculus
proofs into B natural deduction. Finally, we show that the resulting B proof is a proof of
the original proof obligation. This closes the loop and gives us additional confidence in the

correctness of our approach.

This work is part of the BWare project [Delahaye, Dubois, Marché, and Mentré [2014],
an industrial research project supported by the “Agence Nationale de la Recherche” (French
Research National Agency). BWare intends to provide a mechanized framework to help
the automated verification of proof obligations coming from the development of industrial
applications using the B Method. The BWare consortium gathers academic entities (Cedric,
LRI and Inria) as well as industrial partners (Mitsubishi Electric R&D, ClearSy and OCamlPro).
The methodology of the BWare project consists in building a generic platform of verification
relying on different deduction tools, such as first-order ATPs, and Satisfiability Modulo
Theory (SMT for short) solvers. This platform is built upon Why3 [Bobot, Filliatre, Marché.
and Paskevich 2011], a platform for deductive program verification. The deduction tools
used in the BWare framework are the ATP Zenon Modulo, the ATP iProver Modulo [Burel
2011] and the SMT solver Alt-Ergo [Bobot, Conchon, Contejean, Iguernelala, Lescuyer!

and Mebsout| 2013]. The diversity of these theorem provers aims to allow a wide panel
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proof obligations to be automatically verified by the platform. Beyond the multi-tool
aspect of this methodology, the originality of BWare resides in the requirement for the
deduction tools to produce proof certificates. To test the BWare platform, a large col-
lection of proof obligations is provided by the industrial partners of the project, which
develop tools implementing the B Method and applications involving the use of the B
Method. This has allowed us to perform an experiment over this benchmark, where we

have compared our tool Zenon Modulo with the other BWare tools and state-of-the-art ATPs.

This manuscript is organized as follows. In Chap. [I} we introduce the logic of the B
Method. In particular, we present its proof system, set theory and type system. In Chap.
we present a type inference procedure for B bound variables. This procedure allows us
to annotate variables with their types, an information required in the following. We also
present a sound elimination procedure of sets defined by comprehension. In Chap. [3] we
introduce polymorphic first-order logic, denoted Poly-FOL, and present LLproof, the typed
sequent calculus used by Zenon to output proofs. In Chap. |4} we define an encoding of B
formulee into Poly-FOL, and show how to rebuild B proofs from Zenon proofs. In Chap.
we show the soundness of LLproof=, the extension of LLproof to deduction modulo theory,
with respect to LLproof. In Chap. [6] we present Zenon and its extension to polymorphism
and deduction modulo theory, resulting in our new tool Zenon Modulo. In Chap. [7, we
introduce Dedukti and the All-calculus modulo theory. Then, we present the encodings
of Poly-FOL and LLproof= into the All-calculus modulo theory. Finally, in Chap. 8] we
present the BWare project. Then, we give the rewrite system corresponding to the B set
theory and used in BWare. We conclude this last chapter with the experimental results

obtained over the BWare benchmark.
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Chapter 1

The B Method

This chapter presents the logic of the B Method, i.e. its syntax, proof system, set

theory and type system.

It is a faithful presentation of the core logic of the B Method as presented in the first
two chapters of the B-Book [Abrial| [1996], dealing with mathematical reasoning and set

theory. It does not contain any new contribution.

1.1 Presentation

The B Method is a formal method that covers all the development process of programs,
from the formal specification of a system to its actual implementation in a programming
language. The formal specification, called an abstract machine, is described using the B
language, a high level language that manipulates programs using the concept of generalized

substitutions, a central notion of the B Method to describe the dynamic parts of B machines.

The evolution from a specification to an implementation is done step-by-step by a
refinement process of B machines that removes indeterminism from the machines. At
the end of the refinement process, the last B machine, called B0, uses fully deterministic
algorithms and data structures that are close to programming language ones, allowing us

to generate the source code of the program by a mere syntactic translation.

The consistency of abstract machines and the soundness of the refinement steps depend
on the validity of mathematical formulae called proof obligations. These formulse are

expressed in the framework of first-order logic with set theory. But, as we shall see later,
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the set theory behind the B Method is rather specific, compared to common set theory like

the Zermelo-Fraenkel set theory.

The work presented in this manuscript deals with the mathematical aspects of the B
Method. In particular, we focus on the provability of proof obligations with respect to
the B set theory, without any concern about the upstream concepts of B machines and

generalized substitutions.

1.2 Logic

In this section, we present the syntax, the proof system, the set theory and the type

system, which form the core logic of the B Method.

1.2.1 Syntax

We present in Fig. the syntax of the B Method. It is made of four syntactic

categories, i.e. formulee, expressions, variables and sets.

A formula P is built from the logical connectives conjunction, implication and negation
and the universal quantification. A formula may also be the result of a substitution in a

formula, an equality between two expressions or membership to a set.

An expression E may be a variable, the result of a substitution in an expression, an

ordered pair, an arbitrary element in a set or a set.
A wvariable x is either an identifier or a list of variables.

Finally, a set s is built using the elementary set constructs, i.e. the cartesian product,
the powerset and the comprehension set, or may be the infinite set BIG (axiomatized

below).

Remark In the B Method, common constructs like existential quantification, disjunction,
equivalence and subset are defined as syntactic sugar. The B-Book gives the following

rewrite rules as definitions:

E—F = EF dx-P := —Vx--P
PVQ = -P=Q Pes@ = (P=Q)AQ=P)
sCt = seP(t) sCt = sCtAs#t
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P = PANP (conjunction)
| Pi=P (implication)
| P (negation)
| Vz-P (universal quantification)
| [x:=E|P (substitution)
| Ep=E (equality)
| FEes (membership)
E == xz (variable)
| [z := E1]Es (substitution)
|  Ei,E9 (ordered pair)
| choice(s) (choice function)
| s (set)
x = identifier (variable identifier)
| x1,29 (list of variables)
s = 81 X S (cartesian product)
| P(s) (powerset)
| {z|P} (comprehension set)
| BIG (infinite set)

Figure 1.1: The B Method Syntax

1.2.1.1 Non-Freeness

In the B Method, non-freeness provisos are often used. For instance, inference rules
of the B proof system (see Fig. , axioms of the set theory (see Fig. and inference
rules of the type system (see Fig. use non-freeness properties.

A variable z is said to have a free occurrence in a formula or in an expression if: (1) it
is present in such a formula and (2) it is present in a sub-formula which is not under the
scope of a quantifier ranging over x itself.

A variable z is said to be non-free in a formula or in an expression if: (1) it is not present

in such a formula or (2) it is only present in sub-formulee under the scope of some quantifier.

We present in Fig. the rules that define the notion of non-freeness for all syntactic

constructs of the B Method.

29



CHAPTER 1. THE B METHOD

In the following, a context, denoted I, is a set of formulee. If x is a variable and H a
formula, '\ H means that z is non-free in H. In addition, if " is a set of formulee, 2\’
means '\ H for each H of T; if I is another set of formulee, I' C I means that I' is included

in I'/; and if P is a formula, P E I means that P occurs in T'.

Mo e et

Figure 1.2: Non-Freeness Rules for B Constructs

Remark The B-Book extends the notion of substitution to all expressions and formulee
by defining rewrite rules to normalize expressions. Since we have limited our field of work
to the verification of proof obligations, we do not need to introduce them here. We can
make the legitimate assumption that expressions are already normalized in the context of

proof obligations.

1.2.2 Proof System

The proof system of the B Method is an adaptation of Natural Deduction |Gentzen
1935] with sequents to the syntax of the B Method. In addition to this proof system, the
B-Book defines derived rules used in a decision procedure to prove formulse. In the following,

we focus only on the original proof system of the B Method, as presented in [Abriall [1996].
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The rules are summarized in Fig.

BR1 Fl_BP F‘:F/
Pl—BP F/I—BP BR2
PET 'gP TI,PFgQ@Q
BR3
F"BP FI—BQ BR4
TreP ThgP=Q ke P THp@
' Q ' PAQ
F"BP/\QR2 F'Fe PAQ ,
F"BP Pl_BQ ?
I'Ptg Q@ R3 IW—BP:>QR4
I'tg P=Q I'Prkg Q
F7 _‘Q Fg P Fa _'Q l_B -P RS Fa Q l_B P Fa Q l_B -P R6
I'tg @ I'tg =@
:L‘\F Fl—BP Fl—BV(L'-P
————— R7 R8
T hgve P Thglz:=E|P
Trg E=F Thglz:=E|P e
R =
rgfz—=F|P ° PreE=FE

Figure 1.3: The Proof System of the B Method

1.2.3 B Set Theory

As presented in the B-Book, the B Method set theory is a simplification of standard set
theory |Abriall [1996]. Some common axioms, like the foundation axiom, are not needed in
this context (see Sec. , leading to a theory made only of six axioms. Actually, axioms
presented below are axiom schemata that have to be instantiated with proper expressions.

The first column represents non-freeness proviso.

It should be noted that the axiom SeET3, which have an implicit quantification over a
predicate symbol P, is not pure first-order logic. Such issues have already been studied, we
can mention the theory of classes [Kirchner| 2006] for instance. We explain in Sec. how

we deal with this axiom in our work.
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E,Fesxt < (FEesNFet) SET1

x\(s,1) sePt) & Vr-(xe€s=z€Et) SET2
z\s Ee{z|zesANP} & (E€sAz:=E|P) SET3
z\(s,t) Ve-(zxe€seoret) = s=t SET4
z\s Jz - (x € s) = choice(s) € s SET5
infinite(BIG) SET6

Figure 1.4: The B Set Theory
1.2.3.1 Example

As an example of a proof in the B set theory, we prove, given a set u, the property:
u € P(u)
We need the instance of the axiom SET2:
uelPu)e Ve - (reu=x€cu)

which will be abbreviated by Ax in the following.

The resulting proof is:

BR3
Ax,xeutpzrecu

AxtFgreu=x€u 3R7 AXI—BAXBRl
AxFg Vo - (x €u=z €u) AxFgVr-(x €u=z€u)=ucP(u)
uePlu) eV - (rcu=xecu)rgucP(u)

R2’
MP

1.2.3.2 Derived Constructs, Binary Relations and Functions

The B Method relies on various usual set theory constructs, derived from the basic ones
previously introduced. It should be noted that these new constructs are syntactic sugar
and can always be replaced by their definitions. Thus, these definitions may be seen also

as rewrite rules.

Basic Derived Constructs
First, we introduced in Fig. [I.5]the basic set theory constructs for the union, the intersection,
the difference of two sets, then the empty set, sets defined by extension and finally the set

of non-empty subset of a set.
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In the following, s and ¢ are two sets such that they are both subsets of the same set w.

The first four definitions use an external set called u. This set is used to guarantee that

the set defined by comprehension is well typed. This notion is explained in Sec. [I.3]

The definition of the empty set uses the difference between BIG and itself, because it is
the only set explicitly given so far. Using the extensionality axiom, we can show that the

empty set can be defined using any set.

sUt :={{alacun(aesVaect)} (
sNt:={{alacun(acshact)} (intersection)
s—t:={alacun(aeshagt)} (difference)
{E} = {a|lacuna=E} (singleton)
{L,E} = {L} U{E} (extension)
o = BIG - BIG (empty set)
Pyi(s) := P(s) — {@&} (non-empty powerset)

Figure 1.5: Basic B Set Theory Derived Constructs

Binary Relation Constructs: First Series
In the B Method, binary relations are important to modelize data structures. We present

in Fig. [I.0] the first series of constructs dealing with binary relations.

The first definition is the set of binary relations from one set s to another set ¢, denoted
by s <> t. Since a relation is a set, all the previous constructs dealing with sets can
be applied to relations. Then, we introduce the notions of the inverse of a relation, the
domain and the range of a relation. Then, we present the composition and the backward
composition of relations, the identity relation and various forms of relational restrictions of

relations.

In the following, u, v and w are sets, a, and ¢ are some distinct variables, and p, ¢, s

and t are such that:

PEULV qgeEvV W sCu tCuo
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u+rv = Pluxv) (relation set)
p ! = {ba|(ba) €vxuA(a,b)c p} (inverse)
dom(p) := {ala€uAnT-(bevA(ab)€p)} (domain)

ran(p) := dom(p~1!) (range)
piq = {a,c| (a,c) EuxwAIb-(bevA(a,b) epA(brc)€q)}
(composition)

gop = piq (backward composition)
id(u) = {a,b| (a,b) €uxuAa=>b} (identity)
s <Ip = id(s);p (domain restriction)
p >t = p;id(t) (range restriction)
s<p := (dom(p) —s) <p (domain subtraction)
pBt = p> (ran(p) — t) (range subtraction)

Figure 1.6: Binary Relation Constructs (Part 1)

Binary Relation Constructs: Second Series

We present in Fig. the second series of constructs dealing with binary relations. It
introduces the notion of image of a set under a relation, overriding of a relation, direct
product of two relations, projections for ordered pairs, and finally parallel product of two

relations.

In the following, s, t, u and v are sets, a, b and ¢ are distinct variables, and p, w, ¢, f,

g, h and k are such that:

pEST wCs geEst feseou
geEs+<v hesvu ket u

plw] = ran(w < p) (image)
g < p:= (dom(p) <q)Up (overriding)
f®g = {a,(bc)|a,(bc)€sx(uxv)A (cz,b) S A (a,)c) €g}
composition
pri;(s,t) := (id(s) ® (s x t))_ (projection 1)
pris(s,t) = ((t x s) ®id(¢))~* (projection 2)
h|lk = (prji(s,t); h) @ (prig(s,t); k) (parallel product)

Figure 1.7: Binary Relation Constructs (Part 2)
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Functions
In the B Method, a function is a special case of relation where two different elements of
the range cannot be related to the same element of the domain. We present in Fig. the

different sets of functions, where s and t are sets, and r and f are variables.

s+t = {r|resetArr) Cidt)}
s—t {fl|fes+ tAdom(f)=s}
st = {f|feswtnflecte s}
s—1 = s=>1tNs—1t

partial function)
total function)
partial injection)
total injection)

P

s+t = {f|festAran(f) =1t} partial surjection)
s>t = s+ tNs—>t total surjection)
Srvt = s tNs+»t partial bijection)
s>t = sr—tNs—>t total bijection)

Figure 1.8: Sets of Functions

1.3 Type System

The B Method set theory differs from other ones, like the Zermelo-Fraenkel set theory.
The main difference consists in the addition of typing constraints to expressions, and the
application of a type-checking procedure before proving. This avoids ill-formed formulae
such as 3z - (x € x), whose negation is provable in Zermelo-Fraenkel set theory, thanks to

the foundation axiom, unlike for the B Method.

1.3.1 A Hierarchy in Set Inclusion

The proposed typing discipline relies on the monotonicity of set inclusion. For instance,
if we have an expression F and two sets s and t such that £ € s and s C t, then E € t.
Going further with another set u such that ¢ C u, we have then ¥ € u. The idea, as
explained in the B-Book, is that, given a formula to be type checked, there exists an upper
limit for such set containment. This upper limit is called the superset of s and the type of

E. Then, if u is the superset of s, we obtain the typing information E € u and s € P(u).
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1.3.2 Type Checking Syntax

The type checking procedure presented below uses two syntactic categories Type and
Type__Pred as presented in Fig. The former corresponds to the different kinds of types

of expressions. The later may be seen as the type of propositions.

In the following, we use ty, su and ch as abbreviations for the keywords type, super and

check respectively.

As stated in the B-Book, the type of an expression F is either an identifier (see the
notion of given set below), the powerset of a type or the cartesian product of two types;
and for the particular case of sets, the type of a set is necessarily the powerset of some
type.

If E is an expression, s is a set and P a formula, ty(F) is the type of the expression F,
su(s) is the superset of s — i.e. the largest set that contains s — and ch(P) verifies that P

is a formula.

Type = type(E) (type of expression)
| super(s) (superset of set)
| Type x Type (product type)
|  P(Type) (powerset type)
| identifier (given set)
Type_Pred := check(P) (type of a predicate)
|  Type = Type (equality of type)

Figure 1.9: B Type-Checking Syntax

1.3.3 Type Checking

Type checking is performed by applying, in a backward way, the inference rules presented
in Fig. In addition, the B-Book requires to follow the numerical order of rules, in the
sense that rules with a lower number have priority. This allows us to have a deterministic
procedure. For rules T9 to Ti18, i.e. those with a particular typing expression on the
left-hand side of the typing equivalence symbol = and with an arbitrary expression on the

right-hand side, the B-Book defines the symmetric rule where the conclusion is inverted
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with respect to symbol of equivalence. These rules are denoted with the same name primed
and are not presented in Fig. [[.10]
For instance, the rule T9’ is defined as follows:

r€SEA  ArU=su(s)
Al U =ty()

T9

If this decision procedure terminates and does not fail, then the formula is said to be

well-typed.

The type system of Fig. [[.10]is divided in three categories of inference rules. The first
set of inference rules, from T1 to Tg¢/, allows us to decompose the logical connectives of
formulee. The second set of inference rules, from T9 to T18 and the primed versions, allows
us to eliminate the typing constructors ty and su. Finally, the third set, made of the three

last rules T19, T20 and T21, deals with the set theory constructs.

The B-Book does not give us some usual properties about the type system that we
might expect, like the completeness and the unicity of typing — there exists a unique and

valid typing derivation for all well-typed formulze.

We do not need such strong properties in the context of our work, in particular
completeness. But we still need to state the unicity of typing. Since the type inference
procedure proposed in the next chapter occurs only after the verification of well-typedness,

we can consider only formuleae that are well-typed and which have a valid typing derivation.

Proposition 1.3.1
Given a well-formed formula P, if the type checking decision procedure terminates well,

then the corresponding typing derivation is unique.

Proof The ordering for rule application implies that the type checking decision procedure

is deterministic, leading to the unicity of typing derivation.
1.3.4 Notion of Given Sets

A type-checking sequent like A . ch(P) means that, within the environment A, the

formula P is well-typed. The environment A is made of atomic formula of the form x € s,
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A |_tc Ch(P) A l_tc Ch(Q) T A l_tc Ch(P) A '_tC Ch(Q) T
At ch(PAQ) At ch(P = Q)
A Fc ch(P) s z\s 2\A A,z € sk ch(P) 4
A Fic ch(=P) Al ch(Vx - (x € s = P))
At ch(Vz-(zes=Vy-(y et = P))) -
A b ch(V(z,y) - (z,y € s xt = P))
At ch(Vx- (P = (Q AR))) 6 A b ty(E) = ty(F)
A ch(Vz- (PAQ) = R)) A Fe ch(E = F)
A b ty(F) = su(s) . A Fesu(s) = su(t) o
A Fi ch(E € s) A by ch(s C t)
rESEA Abysu(s)=U o A b ty(E) X ty(F) EUTIO
Abcty(z) =U Abwty(E,F)=U
Abisu(s) =U A b P(su(s)) =U
T11 T12
A Fc ty(choice(s)) = U At ty(s) =U
r€SsEA Akl su(s) =P0) 15 A b su(s) xsu(t) =U 14
Atbyesu(z)=U Abiesu(sxt)=U
At P(su(s)) =U s gil)EA AbyI=U 1
At su(P(s)=U Abesu(l)=U
Abich(Ve-(x € s=P)) Aklgsu(s)=U 16
Abisu{x |z esANP})=U
A l_tC SU(S) = P(U) T1s A '_tC T=U T19
A Fc su(choice(s)) = U AF P(T) =PU)
AL T=U Ab V=W gi(l)E A
A TxV=Uxw % A I=1 """

Figure 1.10: The Type System of the B Method
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where x is non-free in s. All free variables in P have to be associated with some atomic
formula in A. The only exception is for variables in P representing some abstract given
sets, introduced at a meta-level discourse like: “Given a set s ...”. Such a given set s, which
will be used to type other sets, is introduced in the environment A by the keyword given(s)
(gi(s) for short), telling us that s is free in the formula to be type-checked, and has the
specific property that su(s) = s.

1.3.5 Example

Given two sets s and t, the formula Pay:

Pox = Y(a,b) - (a,beP(s xt) xP(s xt) = {z |z €arz b} Csxt)

will be used as a running example in the following.

We want to verify that this formula is well-typed, 7.e. verify that the following sequent

is derivable:

gi(s),gi(t) Fic ch(V(a,b) - (a,b € P(s xt) xP(s xt) = {x |z €anx b} Csxt))

Using the following notations:

A = gi(s),gi(t),a e P(s xt),beP(sxt)
A" = gi(s),gi(t),aeP(sxt),beP(sxt),x €a
And denoting II; the following derivation:
T21 T2

Al s=s 17 Al t=t 17

A Fie s =su(s) 1 A bt =su(t)
A Fe su(s) = su(s) A Fesu(t) = su(t)
X su

A Fic su(s) t) = su(s) x su(t)

T17

T20

T14

( su
A Fiesu(s x t) = su(s) x su(t)
A Fre P(su(s x 1)) = P(su(s) x su(t)) :iz
A Fie su(P(s x t)) = P(su(s) x su(t)) 13

A Fic su(a) = su(s) x su(t)

We obtain, by applying the rules of Fig. the following typing tree:
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A, l_tc S=S T2_][-_17/ A/ l_tc t=t T211_17l
A e s = su(s) 17 A" by t = su(t) 7
A’ e su(s) = su(s) A’ e su(t) = su(t) 20
A’ e su(s) x su(t) = su(s) X su(t)
T4/
A’ e su(s) x su(t) = su(s x t) e
A Fiesu(s x t) =su(s x t)
T19
A" b P(su(s x t)) = P(su(s x t)) g
A" b P(su(s x t)) = su(P(s x t)) Ty
A Fye su(s x t) = su(b) 10
A" Fe P(su(s x t)) = P(su(b))
T15
A e su(P(s x t)) = P(su(b)) 3

A’ e su(a) = su(b)
A’ e ty(z) = su(b) T
A,z € aby ch(z €D) T4

AFch(Vo - (x € a=x €D)) T,

At su({z |z €anxeb})=su(s) xsu(t)

Abisu({z |z €anxeb}l) =su(sxt)

gi(s),gi(t),a € P(s xt),beP(sxt)Frech({z |z €anz b} Csxt)
gi(s),gi(t),a € P(s xt) b ch(Vo- (beP(sxt) = {x |z carxz b} Csxt))

T16
T14/

/

T4

gi(s),gi(t) Feech(Va- (a € P(sxt) =Vb-(beP(sxt)={z |z canz b} Csxt))) T4

gi(s),gi(t) Fic ch(V(a,b) - (a,b e P(s x t) x P(s x t) = {z |x €aNx €b} Csxt)) TS
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Chapter 2

Type Inference for B Variables

This chapter introduces some modifications of the B Method syntax that will be used
in the following chapters. In particular, we present in Sec. a type inference procedure
for bound variables, and in Sec. [2.3] a skolemization procedure to eliminate sets defined by
comprehension. These contributions are a personal work and they have been published

in [Halmagrand| [2016].

2.1 A Lack of Information

As can be seen in Sec. the B Method is based on a typed set theory, in the sense
that we have to verify that a formula is well-typed before proving it. To achieve this, the
B Method provides a decision procedure made of a set of inference rules (see Fig. .
Unfortunately, these rules do not provide the actual type of expressions, in particular
variables. For instance, the rule Tie:

AFich(Ve-(x € s=P)) Aklysu(s)=U
Abisu{z |z esANP})=U

T16

decomposes comprehension sets and generates two branches, the former checking that a
universally quantified formula is well-typed, the later verifying some typing constraints
about a particular set coming from the comprehension set. As we can see, the type of the

bound variable z is not given explicitly.

This is because the type system of Fig. is a decision procedure that verifies

the well-typedness of formulee, unlike a type inference procedure that gives the type of

41



CHAPTER 2. TYPE INFERENCE FOR B VARIABLES

expressions.

For the rest of this manuscript, we need to carry more typing information about
expressions in B formulze. In particular, we need that bound variables carry their type for
the embedding of B formula into first-order logic with polymorphic types presented in
Sec. 3.2

2.2 Type Annotation for B Variables

We present in the sequel of this section a type inference procedure for bound variables.

This method is performed right after type-checking if this latter step succeeds.

2.2.1 Bound Variables

In the B syntax presented in Sec. two constructs introduce new bound variables:
universal quantification Va - P and comprehension set {z | P}. It should be noted that
the typing rules T4 and T16 dealing with these two syntactical constructs use the specific
forms Vo -x € s = P and {x | x € s A P}. Thus, in practice, all the comprehension sets
and universally quantified formulse have to be of this specific form to be type-checked.
The reason is that they must mention explicitly the set that contains the bound variable
introduced. The formula x € s is therefore used to type the bound variable x:

z\s z\A Az € sty ch(P)
A b ch(Vz - (z € s = P))

T4

The rule T4 is the only one that adds new variables in typing contexts A — T16 relies on a

further application of T4 to do so.

2.2.2 New Syntactic Category for Types

We define a new syntactic category T for types:

T ::= identifier (given set)
| Th x Ty (product type constructor)
| P(T) (powerset type constructor)

T

And we introduce the notation x* meaning that the variable z has type T
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This new syntactic category is based on the type-checking syntax presented in Fig.
We just keep the three constructs that denote types, i.e. identifiers, product of types and
powerset of type. The other cases are not needed. In particular, the two keywords type and
super (which respectively compute the type of an expression and a set in the type-checking

algorithm presented in Fig. [L.10)) and the T'ype Pred category are not type constructors.

2.2.3 Typing Contexts

The annotation procedure given below will use the environments A, also called typing
contexts, to annotate variables. We need to go further than the B-Book, and formalize the

structure of these typing contexts.

2.2.3.1 Syntax

Typing contexts A contain two kinds of declarations: given sets (see Sec.[1.3.4]) and

variables. They follow the syntax:

A =0 (empty context)
| A, gi(s) (given set)
| Ajxzes (bound variable)

In the formula = € s, s is necessarily a set. It can therefore only be a composition of
the two type constructors IP and x applied to sets. In the following, we denote by the
symbol k of arity n arbitrary compositions of the two type constructors P and x. The

formula x € s can be written in a more precise way:
x € k(s1,...,8n)
where s1,...,s, are all set variables or given sets already declared in A.

2.2.3.2 Well-Formedness

Typing contexts A are augmented only by the rule T4, thus they grow following an

introduction order. Contexts are then ordered sets, thus they can be seen as lists.

We say that a typing context A is well-formed if it satisfies the following property.

When a formula x € k(s1,...,s,) is added, then it must not be already declared in A, and
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all s1,...,s, have to be already declared in A — in particular because of rules T9 and T13 —,
as a given set or in a formula like s; € P(k(¢1,...,t,)) such that the context A at this time

is well-formed.
2.2.3.3 Annotated Typing Contexts

The annotation procedure transforms all the leaf typing contexts A, i.e. the typing
contexts of the leaves of a typing derivation that follows the rules of Fig. into annotated
typing contexts A*, where all variables and given sets are annotated with their type. Then
it uses these annotated typing contexts to rebuild the typing tree by applying the same
typing derivation but in a forward way, allowing us to obtain the annotated initial formula

at the end.

Here is the syntax of the annotated typing contexts A*:

A* = g (empty context)
| A% gi(s7) (annotated given set)
| A*, 2k Tn) ¢ k:(s]f(Tl), e SE(T”)) (annotated bound variable)

Remark It should be noted that the syntax presented above is purposely a restricted
syntax. The reason is to annotate variables with their proper type, as we will show in
Prop. The type of a given set s is the powerset of itself — a direct consequence
of the property of given sets, being equal to themselves — and the type of a variable
S k(slf(Tl), e SE(TH)) is k(T1,...,T,). Also, the identifiers used in types T1,...,T), are

only given sets.
2.2.4 Annotation Procedure

We can now introduce the annotation procedure:
1. For all the leaf typing contexts A:

1.1. For all gi(s), we annotate s by its type P(s), and then substitute all occurrences
of s in A by sF();
1.2. Following the introduction order in A, for all x € k(s]f(Tl), .. .,sﬁ(T")), we

annotate x with its type k(T1,...,T,), and we substitute all occurrences of x in

A by xk‘(Tl,...,Tn);
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2. Rebuild the (annotated) initial formula by applying the type-checking tree in a

forward way, i.e. from the leaves to the root.

We define inductively the relation which associates respectively to an expression E and
a formula P, the expression E* and formula P* where all variables are annotated. We have,

for instance (Py A P2)* = Py A Py, P(s)* = P(s*) and 2* = 2T where T is the type of z.

Proposition 2.2.1 (Conservativity of the Annotation Procedure)
The annotation procedure preserves well-typedness.

We have, for any two expressions A and B and any formula P:

1. If Abyc A= B, then A* b A* = B*.

2. If At ch(P), then A* b ch(P*).

Proof
This property is correct because the annotation procedure does not change the structure
of formulee or the type of expressions. Thus, we can apply the same typing derivation on

type-checking sequents where expressions have annotated variables.

Item 1. If A Fi. A = B, then there exists a typing derivation II such that:

o

A l_tc A=B
We prove by induction on the structure of II that there exists a typing derivation IT*, which
is exactly the same derivation than II where all expressions have annotated variables.

The base case is when II is an application of rule T21.

gi(s)E A
.= =22/=-=
Abis=s b

Then, we obtain the following typing tree:

o _ g hea
. A* by sP6) = gP6)

The generalization deals with rules T9 to T20. We present the case of rule T9.
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Hl
IMI:= z€sEA Atresu(s)=U
At ty(z)=U

T9

Then, we obtain the following typing tree:

1H
I

T e s*E A A* by su(s*) = U*
A* b ty(2T) = U*

II* =

T9

Item 2. The proof of the second property follows exactly the proof of item 1. The base
cases are now rules 77 and T8, where premises use results of item 1. The generalization

deals with rules T1 to T6. We do not present the proof which is straightforward.

Proposition 2.2.2 (Soundness of the Annotation Procedure)
The annotation is sound, in the sense that we annotate variables with their very type. We
have, for a variable x:

If 27 is declared in A*, then A* b ty(z?) = T*.

Proof
We perform a proof by induction on the structure of A. We give in 1. the base case for
given sets, then we present in 2. the particular case where the variable is a set typed using

only given sets, and finally in 3. the general case for all kind of variables.

1. If z is a given set, we denote it by s, and it is then declared in A* with gi(s*(®)). We

obtain the following derivation:

A* e sP() = SP(S) s

A* Ftc SU( P(S ) =S
A* b P(su(sP9)))
A* by ty(sP0)) =

T17

< ©)
P(s70)

T19

T12
2. If x is a variable which is a set and typed only by given sets, we have:
xP(k(sh..‘,sn)) c P(k(S]f(SI), o SE(S”))) E A

Then, we obtain the following derivation:
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T21 T21
A* Fie S]f(sl) = S]ib(sl) A* by SITP;(sn) — SE(sn)

T1
A* Fye su(sy ) = 57" e A besu(sn ) = 5,00

7

A l_tc SU(k(SIE(Sl)’ ceey SE(STL))) = k<3]f(81)7 7822(871)) T19
A boe Blsu(k(s; ™, s0™)) = Plk(5,™,. . 5 ")))
P(s1) P(sn) P(s1) P(sn) T15
A* e su(P(k(sy . 50 ™)) = P(k(sy Y, sn ™) .
A* '_tC ty(xP(k(517...78n))) = P(k(SI:[LD(Sl)7 . I’S(Sn))

where the decomposition of the sequent
A* Fyesu(k(ss D By = go(sF) L gBlen)y

into the n sequents

A" e su(sf(s")) =s;

is performed by applying the chains T14-T20 for x, and T15-T19 for PP.

3. Now, we make the induction hypothesis that all the variables declared in A* are well

annotated, i.e. that we have, for all variables x;:

A" Fic ty(xiTi) =T

7

In particular, if a variable x; is a set, we denote it s; and we have:

A" Fic ty(s]f(Ti))

P(T)

which reduces to:

A su(sf(Ti)) =Tr

because, by the deterministic nature of the type-checking procedure, we know that
rules T12 and T19 have been applied.

Then, for the following well-formed context:

A*, gFTTa) ¢ k(sT(Tl), ..., sEn))y

we obtain the derivation:
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IH IH
AN su(sT(Tl)) =TF ... A*Fesu(s (T”)) =T

A* b su(k(ss ™ e @Yy = k(TE, .. TF)
A* e ty(2F T an>) = k(Ty,...,TY)

T9

Universal Closure
Once the annotation procedure is done, we take the universal closure of all free variables
corresponding to given sets in axioms and hypotheses, and consider them as constants in

goals.

In the following, the notation P* denotes the universal closure of the annotated formula.
Provability
The B proof system of Fig. is neutral with respect to variable annotation, and it is

always possible to apply the same proof derivation to an annotated formula. The provability

of well-typed formulee is then preserved. We have:
kg P iff T" kg P*
Example Going back to the running example of Sec. we obtained the following
environment A’ for the leave of the left branch:
A= gi(s),gi(t),a € P(s x t),b e P(s x t),z € a

It leads to the annotated environment A’*, where only the first occurrence of a variable is

annotated:
A = gi(sT®)), gi(tF D), P38 e P(s x 1), PN e P(s x ), 25t € a
Finally, we obtain the annotated formula (Pey)*:

V(P> pPExDY L (a,b € P(sP) x tP0) x P(s x t) = {5 |z €a Az € b} C s x 1)
2.2.5 Annotated Set Theory

Axioms SET5 and SET6 are introduced in the B Method set theory for theoretical reasons,
like defining function evaluation and building natural numbers, and are never used in

practice, in particular in proof obligations. So, we remove them from our work.
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We now define in Fig. [2.1] the annotated version of the axioms presented in Fig. In

addition, we take the universal closure for all free variables.

Vsl (wiP0) L (Wat . (VY (z,y Es Xt e (x €sAY E1)))))  SETL*
vsPW L (viPW) (s e P(t) & Vot (z € s = x € 1)) SET2*
VsP) L (vye (ye{z*|zesNP}t s (yesA[x:=y|P))) SET3*
Vsl (viP) L (Vat . (r€s e ret) = s=1)) SET4*

Figure 2.1: The Annotated Axioms of the B Set Theory

2.3 Dealing with Comprehension Sets

Comprehension sets are very useful to define sets, in particular in the B Method, where
many derived constructs use them. Unfortunately, comprehension sets cannot be directly

embedded into first-order logic, due to the presence of a predicate symbol into it.

2.3.1 A Skolemization of Comprehension Sets

We propose an elimination procedure of comprehension sets inside formulse, based on
the definition of new function symbols. The idea to skolemize comprehension sets is not

new, see for instance |Dowek and Miquel| [2007; |Jacquel 2013].

Given an annotated formula P*, if u is a subexpression of P* of the form:

’U,_{yT|Q(y,81 7"‘78£n)}

we apply the following procedure:
1. Generate a fresh function symbol fF(I) of arity n and annotated by P(T);
2. Add to the B set theory, the axiom:
Vs (e (Vs (Ve (e RO, s e Qa8 84))))
3. Replace all the occurrences of u by fF)(sy,..., s,).

The resulting skolemized formula is then denoted P**.
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Lemma 2.3.1

Given a well-typed and annotated formula P* containing a subexpression u = {yT |

Q(y, slTl, ..., sk} if we denote f the generated fresh function symbol, we can prove, in B:
fP(T)(Sflv s 75571) = {yT ‘ Q(yv 5{17 B 35”)}

Proof

In the following, we denote s1, ..., s, the n sets slTl, o8

Axiom SET3* tells us that:

vl . (x € {yT | Q(y, $1,---,80)} © [y :=2]Q(y, $1,.-.,5n))

‘We have:

vl . (x € {yT | Q(y,81,.-.,80)} < Q(z,51,...,5,))

In addition, we know that:
Vol - (z e fPD(sy,... 80) < Qz,51,...,51))
We deduce that:
Vol (e fP D sy, sp) ez e {y' | Qy,s1,...,52)})
Using axiom SET4*, we obtain:
FFO 15 s0) = {y" [ Q515+ 50))

Proposition 2.3.2 (Soundness)
The skolemization procedure of comprehension sets is sound.
Given a well-typed and annotated formula P* and a set of well-typed and annotated formule

I'* containing the axiom SET3*, we have:
I'**rg P* = TI*kgP*

where I'** is the union of I'* and all the axioms added by the skolemization procedure.

Proof

Let f1,..., fn be the n function symbols defined by the skolemization procedure.

If we denote II° the proof:

50



CHAPTER 2. TYPE INFERENCE FOR B VARIABLES

HS

we want to replace all applications of functions symbols in the proof ITI® by the corresponding
comprehension sets. This is done using rewriting.

First, we define the rewrite system:

fl(x%a"ww}nl) — {y‘Ql(yvx%w“?x}nl)}

falats o) — Ay @nly, o, 20, )}
This rewrite system is confluent because of the absence of critical pair — fresh head symbol
and trivial pattern with only variables — and it is terminating for the strategy that applies
rewrite rules following the reverse numerical order, from f,, to fi — since @1, ..., Q@ do not

contain fg, ..., fn.

We prove by induction over the structure of II° that there exists a proof II such that:

o
I* g P*

where we have replaced all the applications of function symbols f; by the corresponding
comprehension sets. The induction is straightforward because the B proof system presented
in Fig. [[.3]is stable with respect to the confluent and terminating rewrite system defined

above.

Remark Unfortunately, the skolemization of comprehension sets is not complete: it is no
more possible to define a new set by comprehension during proof search if we drop axiom

SET3*, only to deal with the ones at hand (the Skolem symbols).

Example Applying skolemization to the running example leads to add the following axiom

to the theory:
VaPext) . (wpPext) . (yesxt . (p e P (0 b) &z € a Az € b))
And we obtain the skolemized formula (Pey)**:
V(P> pPEXDY L (a,b € P(sP) x PO x P(s x t) = fFEXD(a,b) C s x t)
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Remark The skolemization of comprehension sets presented here is applied to annotated
formulae, as for the elimination of skolem symbol in the proof above. The extension of both

the skolemization and its elimination to non-annotated formule is straightforward.

2.4 Updated Syntax and Proof System

To conclude this chapter, we present the new version of the B syntax in Fig. with
annotated variables, function symbols and without comprehension sets, choice function or
BIG. In addition, we suppose that expressions are normalized in the sense that substitutions
are reduced, as it is for proof obligations. We also merge the two categories for expressions

and sets in a single category called E.

To lighten the B proofs in the next chapters, we introduce the new symbols 1 and T

defined as follows:
1l = PA-P
T = L

where P is a fixed closed formula.

Finally, we enrich the B proof system of Fig. with the two derived basic rules BR5

and BR6 dealing with 1 and T:

e LPAP Qg PASP E2R3 ,PA—P,~QFg PA—P 253
[,1lrgQ =" T,PA-P,~Qfg P [LPA-P-Qtg P
T.PA-PrgQ

BR6 ._ I Ltg Q BRS 'l g —|Q E:S

'k T TFg =1
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identifier
T1 X T2
P(T)

1

T
PiNAP
P=P
-P

val . P
Ey = E,
Fi € By
$T

Ey, Ey
E1 X E2
P(E)

FFO(B, ...

identi fier
€1, T2

, En)

(type identifier)
(product type)
(powerset type)

(

(true)
(conjunction)
(implication)
(negation)
(
(
(

unlversal quantification)
membership)

(variable)
(ordered pair)
(product set)
(powerset)
(function symbol application)

(variable identifier)
(list of variables)

Figure 2.2: Modified B Method Syntax
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Chapter 3

Polymorphically Typed Sequent
Calculus

This chapter presents a typed sequent calculus called LLproof and polymorphically
typed first-order logic, denoted by Poly-FOL, and used by LLproof.

In Sec. |3.2] we introduce the syntax and the type system of Poly-FOL. This section is
a mere adaptation of [Blanchette, Bohme, Popescu, and Smallbone, 2013 Blanchette and

Paskevich 2013].

In Sec. we present the typed sequent calculus LLproof. This proof system is an
extension to Poly-FOL of the initial LLproof proof system of the automated theorem prover
Zenon, as presented in |[Bonichon, Delahaye, and Doligez 2007]. This contribution is a

collaborative work and it has been published in |[Cauderlier and Halmagrand, 2015].

3.1 First-Order Logic and Types

Reasoning with several theories together may sometimes be necessary. For instance, in
the B Method, proof obligations often combine set theory, booleans and arithmetic. Then,
some theory-specific axioms can be defined; for instance, a legitimate axiom about booleans

could be:

Vx. x = true V x = false

Instantiating this axiom with a term that is not of type bool leads to an unsound

formula. To prevent this issue, a solution is to provide type information to terms. For
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instance, we can change the previous axiom by the following one:
Vz : bool. x = true V x = false

where the notation x : bool means that x is of type bool.

This kind of logic is usually called a monomorphic and many-sorted logic. In this logic,

we deal with a finite set of sorts, like bool or int, and all terms are typed.

In set theory, we usually want to define some generic axioms, in the sense that we can
instantiate them with different types. For instance, we could define membership to the

union of two sets as follows:
Vs :set(a). Vt :set(a). Ve :a. x € sUt S x €sVa et

where « is a type variable, set a type constructor, and s : set(a) means that s is a set of

objects of type a. We call this logic a polymorphic logic.

In the following, we denote polymorphic first-order logic by Poly-FOL, monomorphic/many-
sorted first-order logic by Sorted-FOL, and untyped first-order logic by FOL (also called

monomorphic/mono-sorted first-order logic sometimes).

3.2 Poly-FOL: Polymorphic First-Order Logic

In this section, we present Poly-FOL. This presentation is inspired by [Blanchette!
Bohme, Popescu, and Smallbone| 2013; Blanchette and Paskevichl 2013].

3.2.1 Syntax

Poly-FOL Signature
We start by fixing a countably infinite set A of type variables, usually denoted by «, and a

countably infinite set V of term wvariables , usually denoted by x.

We call a Poly-FOL signature a triple ¥ = (T, F,P), where:

e 7 is a countable set of type constructors T with their arity m, denoted by T :: m

e F is a countable set of function symbols f with their type signature o, denoted by

f:o
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e P is a countable set of predicate symbol P with their type signature o, denoted by
P:o

Type

The set T'ypes; is the set of types 7 in signature X, built inductively with type variables
a from A and type constructors T from 7. We define Type, which is meant to be the
type of the elements of Types. We suppose that all types in Types are inhabited. By
convention, nullary type constructors are called type constants, or sorts. We say that a

type is polymorphic if it contains type variables; and monomorphic or ground otherwise.

T = o« (type variable)
| T(71,...,7m) (type constructor application)

Type Signature

Type signatures o of function and predicate symbols are type schemes, using type quan-
tification II over a list of type variables aj ...y, — sometimes denoted by & when m is
known from the context — and a list of types 7 X ... X 7, — sometimes denoted by 7 —,
and returning a type 7 for function symbol and the pseudo-type omicron, denoted by o, for
predicate symbols. Omicron is a pseudo-type because we do not want to instantiate type
variables with it. In the following, we do not allow the overloading of different arities for
function and predicate symbols. In addition, we may sometimes omit type arguments & to
function and predicate symbols when it is clear from context.

o = Haj...apm. 71 X ... X Ty =T (function type signature)
| Haj...apm. 71X ... XTp =0 (predicate type signature)

Term

A term t can be a (term) variable x from V or the application of a function symbol f from
F to m type arguments and n term arguments at once. To help reading formulse, we use a
semicolon to separate type and term arguments in function and predicate symbols.

t = =z (variable)
| [Ty Tty oy tn) (function application)

Formula

A formula ¢ can be built from T and 1, an equality between two terms ¢; and t5 having
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the same type 7, or the application of a predicate symbol P to m type arguments and n
term arguments. It can also be built inductively by the logical connectives for negation —,
conjunction A, disjunction V, implication = and equivalence <. Finally, a formula can be
built using universal quantification V and existential quantification 3 over term variables.
By convention and without loss of generality, we assume that (type and term) variables

are bound only once in a formula.

o u= T|L1 (true, false)
| t1=rt2 (term equality)
| P11, Tty tn) (predicate application)
- (negation)
| w1 A (conjunction)
| p1 Vi (disjunction)
| ©1= p2 (implication)
| 1< @2 (equivalence)
| FJz:T1. 9 (existential quantification)
| Va:T. @ (universal quantification)

Type-Quantified Formula
A type-quantified formula o is built using universal quantification over type variables.
or = @ (formula)
|  Va. or (type quantification)

It should be noted that this inductive presentation guarantees that quantification over
type variables is always universal and at the top of the formula. Thus, we say that type
quantification is prenez. In the following, we may sometimes call formula both formulae and
type-quantified formulse, when it is clear from the context. In addition, we call expression,

denoted by e, both terms and formulze.

Local Context
We also define the notion of local context I't,, which is a set of pairs made of a type variable

a and its type Type, denoted by « : Type, or a (term) variable x and its type 7, denoted

by z : 7.
I, == @ (empty context)
|  Ty,a: Type (type variable declaration)
| Tp,x:7 (term variable declaration)
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Global Context
Finally, a global context I'c is a set containing the declarations of type constructors 1" with

their arity m and function and predicate symbols f and P with their type signatures o.

I'c 1%} empty context)

= (

| Tq,T:=m (type constructor declaration)
| Tq,f:0 (function declaration)

| Tg,P:o (predicate declaration)

Remark In the following, we sometimes denote by I' the pair of contexts I'g;I'r,. In
addition, if f is either a function symbol or a predicate symbol, I', f : o denotes I', f : o; 'L..

Finally, I', o : Type and ',z : 7 denote I'q; ', : Type and I'g; 'y, x : 7 respectively.

In addition, if z is either a type or a term variable, we denote by = € I'y, (respectively
x ¢ T'y) the fact that the variable x is declared in I'y, (respectively not declared). This
notation is extended to global contexts I'¢ with type constructors 7', function symbols f

and predicate symbols P.

Example To illustrate this presentation of Poly-FOL, we introduce a global context I'g
made of a nullary type constructor 7', a unary type constructor set, a function symbol for
powerset P, a predicate symbol for membership € and a constant u. In addition, we define
a polymorphic formula ¢, which is an axiom defining membership to the powerset and a

monomorphic formula ¢, which can be seen as a goal.

T =0
set 1
I'g = ¢ P : Ila. set(a) — set(set(w))
€ : Ia. axset(a) = o
u o oset(T)

Yoz = Vo Vs :set(a),t : set(a). € (set(a);s,P(a;t)) & (Vo : a. € (a;2,8) = € (o2, t))
gl € (set(T);u,P(T;u))

Later in this manuscript, we will often use an infix notation with subscript type
parameters when dealing with standard symbols, like the predicate symbol € or the

function symbol P.
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The presentation of the previous example shall then be:

T =0
set 1
g =< P(-) : Hao. set(a) — set(set(a))
-€- : Ia. axset(a) = o
u : set(7)

Paz = Va. Vst :set(a). s Eget(a) Palt) & (Vo :ia. 7 €4 s = T €4 t)
Pgl = U Eeex() Pr(u)

3.2.2 Typing System

Free Variable
We denote by FVr(e) the set of type variables occurring freely in an expression e, either in
type arguments of polymorphic symbols or in the types of variables. We denote by FV(e)

the set of term variables occurring freely in an expression e.

Monomorphic/Polymorphic Formula
A formula ¢ is said to be monomorphic if it is not a type-quantified formula and if FVy(p)
is empty. Otherwise, the formula is said to be polymorphic. A formula ¢ is said to be

closed if both FVp(¢) and FV(p) are empty.

Type Substitution
We call type substitution a mapping p := [ /71, ..., /Tm] that associates type variables

Qai, ..., 0, with types 71, ..., 7.

We define the predicate symbol wf(T'g; ') meaning that the context ' := T'g; 'y, is

well-formed.

A typing judgment I' - t : 7 means that the term t is well-typed of type 7 in the

well-formed context T

A typing judgment I' - ¢ : 0 means that the formula ¢ is well-typed in the well-formed

context I

We present in Fig. [3.1] the inference rules for well-formedness of contexts, and in Fig.

the inference rules of the type system of Poly-FOL.
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- WF,; ¢y Dg;I'Lk7:Type
wf(2; 2) wf(lg; Ty, x 2 7) Wi
a gl Wf(Fg; PL) W T&T'aq Wf(rg; @) WE,

wf(Tg; 'L, « = Type) wf(Tg, T :: m; @)

Fg;aq: Type,...,qp : Typeb 7 : Type,i=1...n
féla Tg;aq : Type, ..., Type = 7 : Type

WF
Wf(FGaf:Ha1-~-Oém.7'1X...XTn—>T;®) 5

PdTg Tgjor:Type,...,ap : Typek 7;: Type,i=1...n
wf(Pg, P : oy ...ap. 71 X .. X Ty = 0; D)

WFg

Figure 3.1: Context Well-Formedness in Poly-FOL

Remark It should be noted that we explicitly impose in rules of Fig. that variable
symbols are declared only once in local contexts, and type constructor, function and

predicate symbols are also declared only once in global contexts.

In addition, in rules of Fig. dealing with term variables like Var or V, we do not

impose to verify that 7 is a type in « : 7 since this is guaranteed by rule WFs.

Lemma 3.2.1 (Unicity of Typing)
Given a well-formed context ', for all typable terms t, there exists only one type T such
that:

I'kHt:7

Proof By induction on the typing relation.
If t is a variable, it is true thanks to rules Var and WFs.

If ¢ is the application of a function symbol f (7, ..., 7).;

ti,...,ty), by the rule Fun, ¢1,...,t,
are well typed, and by induction hypothesis, each t1,...,t, has a unique type. If we have
f:lag...oum. 11 X ... X1, = 7', then, 7 = 7/p where p = [a1/7],...,Qm/7},], thus T is

unique.

Example We want to verify that the formula ¢4 introduced in the previous example is

well-typed.
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x:TGFVar

a:Typeel
TFa: Type L Var F'kFaz:7

I'Fa: Type

T:mel FI—n:Type,z'zl...mTC .
TFT(r,...,7m) : Type onstr

FE7/:Type,i=1...m

fHay...apmm X...X1 —>717€Tl
't :mp,i=1...n

p=loa/, ... cm/T})]
Fun

TEf(r], .., Thitt, e ytn) s Tp

Fk7/:Type,i=1...m

P:llay...a0mm1 X ...X7, —>0€T
Fl—ti:np,izl...n
Pred

p=loa/,. .., Qm/T))]
TEP(r,...,7);t1, ... tn) i 0
T TF Lo~

'T:o
'Fei:o Fl—gogzov
'FpiVes:o

F'Fei:o F"QOQIO/\
I'FpiAps:o

I'Fei:o I‘|—<,02:0<:>

I'Fei:o Fl—gpg:o:>

I'Fpr1=¢2:0 I'Fo1 e pa:0
I'Fe:o 'bt1:7 FI—tQ:T:
I'F—-p:o I'Ft1=rt2:0

Tx:7Fy:o0 'x:7Fy:o0

F'Fdx:7.p:0 I'EVz:T.p:0

I’,a:Type}—ngzov
I'FVYa. or:o T

Figure 3.2: Type System of Poly-FOL

We use the following notation I' = I'g; &.

TConstr

I'ET: Type TConstr —— —V,
't set(T) : Type O TR set(T)) o
Pred

'€ (set(T);u,P(T; u))

Where II is:
TET: Type LY TE 4 set(T) ;/ar
T F P(T;u) : set(set(T)) b
I

62



CHAPTER 3. POLYMORPHICALLY TYPED SEQUENT CALCULUS

Remark We say that Poly-FOL uses an explicit typing syntax in the sense that we provide

to function and predicate symbols their type parameters.

This logic is a simplified version of ML-polymorphism, which is known to have a
decidable type inference [Strachey| 2000]. So, we could have chosen to use an implicit

typing syntax, ¢.e. without type parameters.

3.3 LLproof: A Typed Sequent Calculus

We present in Fig. and Fig. the typed sequent calculus LLproof used by the
automated theorem prover Zenon to output proofs. This proof system is an extension to
polymorphic types of the initial sequent calculus LLproof of Zenon presented in [Bonichon!

Delahaye, and Doligez 2007].

3.3.1 A Tableau-Like Proof System

This sequent calculus is close to a Tableau method: all formula are on the left-hand
side of the sequent and we are looking for a contradiction, given the negation of the goal
as an hypothesis along with the regular hypotheses. In addition, we always keep the main
formula as an hypothesis for each rule, therefore leading to a growing context I', and

removing the need for an explicit contraction rule.

3.3.2 Dealing With Special Rules

In Fig. we define only one special rule called Subst, unlike the initial presentation
of LLproof in [Bonichon, Delahaye, and Doligez 2007], where there were five distinct rules.
It should be noted that the three rules called Def, Ext and Lemma in [Bonichon, Delahaye:

and Doligez 2007] are not necessary for our work.

The following two rules called Pred and Fun in [Bonichon, Delahaye, and Doligez 2007]
are admissible from Subst. These rules allow us to identify subterms of predicate and

function symbols if their type parameters are equal.

Aﬂh#‘r{ up =L Avtﬂ#ﬁlunkj—

Ly P(Tiy ey T iy ooy b))y 2P (1, ooy T UL, ey U ) b

n Pred
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Closure and Quantifier-free Rules

T.1F L~ T -TrLl '
TP -Pr L% Rt#TH—L#
m DPFL ToPEL
Tt wut tF LY TFL ut
=P, PF L IPAQ,PQF L
T——PF L T.PAQF L

I'~(PAQ),~-PF L T,~(PAQ),-QF L
I,~(PAQ)F L A

IPVQPFL TPVQQFL,
T,PVQF L

Lo(PVQ).-P-QFL
I'-(PVQ)F L

I''P=Q,-P+r L 1“,P:>Q,QI—L:>
IhP=QH+_L

Fa_‘(PiQ)a‘P?_'Q'_—L
I,~-(P=Q)F L

ILP&Q-P-QFl T.P&QPQEL
T PoQF L

[-(P&Q),-PQFL T ~(P&Q.P-QFL
I -PeQ)F L )

Figure 3.3: LLproof Inference Rules of Zenon (Part 1)

where A :=TUP(T1,...,Tm;t1, . tn), 7 P(T1, .oy Ty UL, - ooy Up)

AtiFqmbl o AtiEgur L
D, f(ma, ey Tty e ostn) i f(T1y ooy T ULy ooy Up) B L

Fun

where A :=TU f(71, ..., Tmit1, -y tn) Zr f(T1ye ooy Ty Uy ooy Up)

In the following, we give the derivation of an application of the inference rule Pred
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Quantifier Rules

I'Va. P(a), P(T) F L where 7 is
vtype d
I'Va. P(a) F L any ground type

I3z : 7. P(z),P(c) - L .
D3z:7. P(z)F L

where ¢: 7 is a

T, —Vz: 7. P(z),~P(c) F L ' fresh constant
[,—-Vz:7. Plx)F L B

I\Vz:7. P(z),P(t) - L
Ve :7. P(z)F L

where ¢ : 7 is

I,—=3z:7. P(z),-P(t) - L any ground term
-3z :7. P(z)F L B

Special Rule

T,P(t),t# ub L T,P(t),Pu)F L
T,P(t)F L

Subst

Figure 3.4: LLproof Inference Rules of Zenon (Part 2)

using n applications of the rule Subst. To lighten the presentation, we do not repeat the

contexts.

II; I, I,

tl#‘r{ull_l tQ#TéUQ'_J— tn#r{lunFJ— Pred =
re

P(Tl,...,Tm;tl,tg,...,tn),—\P(Tl,...,Tm;ul,UQ,...,un) Ll

1,

tn #rr up = L P(Tl,...,Tm;u1,u2,...,un)I—J_AX
P(T1, ..oy T U1, U2y« ooy Up—1, ) F L Subst
1D} :
Hl tQ 7575 U2|_J_ P(Tl,...,Tm;ul,’LLQ,...,tn)|—J_S b
i1 757.{ up L P(Tl,...,Tm;ul,tQ,...,tn)|—J_ g btu st
ubs

P(Tl,...,Tm;tl,tg,...,tn),—\P(Tl,...,Tm;ul,UQ,...,un) F L1

The case of the rule Fun is also straightforward. Here is the derivation for an application

of the rule Fun:
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owm oW,
tl#T{ull—J_ tn#f{lunl_J— =

Fun
f(Tl,...,Tm;tl,tg,...,tn) #T f(ﬁ,...,Tm;ul,u2,...,un) L

1L, 4
tn o up B L f(T, o T ut, ) F F(TL e T UL, - Ug) L
H1 .
- - Subst
th 7&7{ up L Fr, sty e oy tn) e f(T1, oo Ty U, oy un) B L Subt
ubs

Fr, oo sty oo ytn) e f(T1, ooy T ULy ooy un) B L
3.3.3 Admissibility of Rules Dealing with Vv, < and 3

In the B Method, logical connectives V and <, and existential quantification 3 are

derived from other symbols (see Sec. [1.2.1)):

PvQ@ = -P=Q
Pes@ = P=Q NQ=P)
dx- P := —=Vx--P
Thus, in Sec. we consider LLproof rules except V, -V, <, = <, 3 and -3, and
we show the admissibility of these rules here. It should be noted that B goals and formulae
will never contains such connectives/quantifiers. In the following, we omit to repeat the

contexts.

3.3.3.1 Inference Rules V and —V

For the disjunction, we have PV @) := =P = ). We obtain the following derivations:

Pl __
-—PF L QFL
=
“P=QF L
-P,-QF L N

(~P=>Q)FL
3.3.3.2 Inference Rules < and - <

For the equivalence, we have P < @ := (P = Q) A (Q = P). We obtain the following

derivations:

66



CHAPTER 3. POLYMORPHICALLY TYPED SEQUENT CALCULUS

P-QFl —PPFLI™ O0FrLl™ QprrL

PO=PrL QQ=PFL_
P5QQ=Prl |
(P=Q)N(Q@=P)F L

P-QF L N Q,-PF L _
-(P=Q)F L -(Q=P)F L
(P=QNQ@=P)FL

3.3.3.3 Inference Rules 3 and —3

For the existential quantification, we have Jx. P := —Vx. =P. We obtain the following
derivations:
P(c) - L

P L
—Vz:7. ~P(z)F L

v

~P(t)F L
Ve :7. -P(z)F L
—-—Vz:7. =P(z)F L
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Chapter 4

Proving in B through Sequent
Calculus

This chapter shows how to use the typed sequent calculus LLproof to prove B formulse.
This is done using an encoding of B formule into Poly-FOL, followed by a mere syntactic

translation of LLproof proofs into B Natural Deduction proofs.

This chapter is a personal contribution and it has been published in [Halmagrand| [2016].

4.1 Translating B Formulae into Poly-FOL

This section presents the encoding of B Method formulse into Poly-FOL. We first give
in Sec. the type signatures of the primitive constructs, followed in Sec. by the

general encoding function.

4.1.1 Type Signatures of Primitive Constructs

We start by defining a general skeleton for the type signatures of the B basic constructs.
We introduce two type constructors set and tup corresponding respectively to the B type
constructors P and x. Then, we define the function symbols (-,-) for ordered pairs, P(-) for
powersets and - X - for product sets. Finally, we define a predicate symbol for membership.

For easier reading, we use an infix notation with subscript type arguments (see Ex. 3.2.1)).
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set 1
tup 2
T (-,-) : Hogag. ag X ag — tup(aq, ag)
ske =) P(-) : Ma. set(a) — set(set(a))
- x - @ Iogas. set(ayg) x set(ag) — set(tup(ag, az))
-€- : Ia. axset(a) = o

4.1.2 Encoding of B Formulze into Poly-FOL

In the following, P, F and T denote respectively a B formula, a B expression and a
B type. In addition, we suppose that formule are well-typed and that the annotation

procedure of Sec. and the skolemization of Sec. have been applied successfully.

We present in Fig. the encoding functions (P)¢, (E), and (T'), which translate

e
respectively B formulzae, expressions and types into Poly-FOL formulae, terms and types.

In addition, we define a function # which returns the Poly-FOL type of a B expression.

The roles of A and Q in Fig. are detailed in Sec. [4.1.2.1

4.1.2.1 Target Theory

During the translation of a set of B formulee, we carry a target Poly-FOL theory T
containing the skeleton Tg defined in Sec. and previously translated formulee. In
addition, we increase it by new type constructors when translating new type identifiers in a
goal, and new type signatures in two cases, when translating a symbol that is not declared
in the local context A of bound variables — then it is a constant (a given set) —, and when

translating a function symbol.

Also, for each formula to be translated, we carry a set €2 for type variables and type
constructors (see Sec. 4.1.2.2)), and a Poly-FOL local context A of bound variables and
their type.

Once a B formula P is translated, we take the universal closure of the translation of P

with respect to the type variables of €2, denoted (P):
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9(F)» = match E with

| o7 — A(x)

| E1, By — tup(0(E1)>, 0(Ea)*>)

| Eq x E — set(tup(0(E1)2, 0(E2)™))
| P(E) — set(A(E)?)

) = (T,

(T'), = match T" with
| id when flag = ax — if id & 2 then Q := Q, (id, )
return (id)
| id when flag =gl —if id¢ Qthen T :=7T,T::0; Q:=Q,(id,T)
return (id)

| Ty x Ty — tup((T1), , (T2),)
| P(T) — set((T),)
(E)eA = match F with
| 2T —if e € Athen T :=T,2:(T),
return x
| Ev, B> = ((B))2, (B2)2)z 5
| By x By — (E1)2 x5 = (E2>eA
| B(B) = Px(E)7)

‘fT(El,...,En) —>iff:Ha1...am.Tl><...><Tn—>7¢7'
then 7 :=7T,f: Sz’g(fT(El,...,En))

return f(rf, ..., Thi (DS ... (En)2)

<P>fA = match P with

| L — L

| T =T

| PLA R = (P A (Pa)p

| P =P — () = (P)p

| -P — —\<.P>fA

| Va©' - P — Va1 (T), . ()™ T

| V@1t 25%) - P =V (1) Vo & (T (P) 2 {Thoeai (Ta),

| By = Ey — (E1)5 == (Ea)5

| El S E2 — <E1>eA E;rv <E2>eA

Figure 4.1: Translation from B to Poly-FOL
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4.1.2.2 B Type Identifier Translation

One important point in this encoding is the interpretation given to B type identifiers

coming from the type annotation procedure (see Sec. .

When starting to translate a formula, we define a set {2 that contains pairs of B identifier

and Poly-FOL type variable or type constructor.

For axioms and hypotheses, we interpret B type identifiers as type variables. For a new
identifier id, we generate a fresh type variable symbol « and store the pair (id, «) into €.
Once the translation of an axiom is done, we take the universal closure with respect to all

the type variables stored in €.

For B goals, i.e. formule that we want to prove, B type identifiers are interpreted as
type constants, i.e. nullary type constructors. For a new identifier id, we generate a fresh

type constructor symbol T and store the pair (id,T’) in €.

This allows us to get polymorphic axioms in Poly-FOL and a monomorphic many-
sorted goal. To achieve this, we add to all B formula to translate a flag ax for axioms and

hypotheses and gl for the goal.
4.1.2.3 Generation of Type Signature for Function Symbols

The skolemization of sets defined by comprehension presented in Sec. generates new
function symbols. In addition, it generates new axioms defining the membership to the set

corresponding to (the application of) these function symbols.

We suppose that the translation of a set of formulae starts with these axioms. During
the translation of these axioms, we have to add to the Poly-FOL theory the type signatures
of the new function symbols. We define a function called Sig(f(...)), where f is a B

function symbol, that computes the type signature of f.

We extend the function FV(e), returning the free variables of an expression e, to a list

of expressions ey, ..., ey, denoted FV7(e;) and returning the union of all the sets of free
variables.
Sig(f1(Br,...,Ey)= I & 0(B) x...x0(E,) = 6(T
oG (B B) = T 6 0(5) (Bn) = 6(T)
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4.1.2.4 Type Parameters for Function and Predicate Symbols

When translating function and predicate symbols, like P, we have to find the proper
type parameters for the corresponding Poly-FOL symbol. For instance, if we have to
translate the B term P(a), where a is a variable declared in A such that a : set(T') for a

type constant T, we want to find 7 such that we obtain the Poly-FOL term P, (a).

We know that the function 6 will give us 6(a)® = set(T), and that we have P(-) :

Ia. set(a) — set(set(«)), leading to solve the equation set(a) = set(T).

This is a standard syntactic unification problem that we have to perform each time
we need to find the type parameters. When we translate a B term f(FE,..., E,) into
a Poly-FOL term f(71,...,7/,; <E1>eA e (En>eA), where the Poly-FOL f is such that

f oy ..., 71 X ... X T, = 7, we perform a syntactic unification to solve the system:

67(El)A =7
0(Ep)> = 1
in order to find the type parameters 74,..., 7/ .

In Fig. we use the notation 7 to denote that the type 7 has been found that way.
4.1.2.5 Example

We want to apply this encoding to the B formule of the running example of Chap.

We have a B theory made of the axioms SET1*, SET2* and SET4*, the axiom coming from
the skolemization and the goal (Pex)*® (see Ex. [2.3.1)):

VsPW) o PO) Ly v (g esxt e (zesAy €t))
Vsl i) (s € P(t) & Vot - (z € s = z € 1))
Vsl yiP(W) (Yt (reseoxet) = s=1t)

\v/aIP’(th) . Vb]P)(th) LSt (.’L’ e fP(SXt)(CL, b) S realx € b)
v(a]P’(sxt)’ b]P’(th)) . (a, bhe P(SP(S) X tP(t)) < P(S X t) = fP(SXt) (a7 b) C s X t)

We first obtain the three set theory axioms (SET1*), (SET2*) and (SET4*):

Vaq, ae. Vs i set(aq),t : set(ae), z : a1,y : as.

(x7y)a1,a2 Ctup(a,az) § Xai,a2 t < (x €a1 SNY €ay t)
Va. Vs :set(a),t : set(a). s €ger(a) Palt) & (Vo 1. 7 €4 s = 7 €4 1)
Va. Vs :set(a),t :set(a). (Voo @ €4 8 € T €at) = 8 =geq(a) t
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The remainder of the theory, i.e. the declaration of the two type constants 77 and 75
coming from the translation of the goal, the signatures of the two constants s and ¢ (the

given sets), the signature of f and the axiom defining f, is:

T ::0

T5::0

s @ set(T)

t: set(Ty)

f:Hajag. set(tup(a, ag)) x set(tup(ay, ag)) — set(tup(ai, az))

Vo, ag. Va : set(tup(ai, ag)),b : set(tup(ag, az)),  : tup(ag, as).
T Ctup(ar,o) fOé17a2 (CL, b) Ang ('CC Ctup(ar,a) @ Nz Ctup(ar,a2) b)

Finally, the translation of the goal ((Pex)*®) — we unfold the C definition and remove

the subscript type arguments of function and predicate symbols to lighten the formula — is:

Va : set(tup(11,13)),b : set(tup(11,13)). (a,b) € P(s x t) x P(s x t) = f(a,b) € P(s x t)
4.2 'Translation of LLproof Proofs into B Proofs

The last section of this chapter presents the translation of LLproof proofs into B Method
Natural Deduction proofs. This translation of proofs relies on an encoding of Poly-FOL

into B, restricted to monomorphic formulze.
4.2.1 Encoding of Poly-FOL into B

In the following, ¢ is a monomorphic Poly-FOL formula and ¢ is a monomorphic
Poly-FOL term. In Fig. 4.2, we present the two encoding functions (¢);' and <t>'e1 which
translate respectively monomorphic Poly-FOL formulse and terms into B formulse and

terms.

Lemma 4.2.1

For any B expression E and any B formula P such that (E*®), and (P*®); are monomorphic,

e
we can prove, in B:
-1 -1
((E™)e)e = E7 (P*)) & P°
where E* and P? correspond respectively to E*° and P** where we erase type annotations

on variables.

This is in particular the case for B goals.
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) = match t with
| = - T
‘ (tla tQ)Tm'z - <t1>;1 ) <t2>e1
|t Xpm to = (e x {t2)g
| R) - (D)
| f(T{V"vT?/n;tla'“vtn) - f(<t1>_e17"'7<tn>;1)
(p)f' = match ¢ with
| L - 1
| T - T
| p1 A2 = (p1)i A (o)t
| 1= o = {o1)f = (p2)f
| e — (o)
| Vz:71. ¢ — V- <go>f1
I — (t)e = (t2)g
|t € to — (), € (ta)y

Figure 4.2: Translation from Poly-FOL to B

Proof

The proof, by induction on the structure of expressions and formulee, is straightforward
because the translation of Fig. just erase type information of Poly-FOL monomorphic
expressions and formulae. As we will see, the only case that modify the actual shape of

expressions and formulee is the quantification over list of variables.

For expressions, we have:

((=).). - @

(B, B5*)e), — ((Bf")oa ((E5%) )
(B x B5),) = (B x (B5),)
(P <E*8>>>1 Lo BB
(fFOEr,.. B) ) = FUERDS - (B

By induction on E — where x is the base case — we have ((E**) e>é1 = FE*
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For formulze, we have:

(L)ef - L

(Thef - T

((PFs A P5o) o7t = ((PE)ei A ((Ps)e)f
<<Pz*8:»PQ*S>f>;1 = (P = (PFo)e)f
(P = (P
((vaT-Pr) ) — Vo ((P))7

-1

((Hatoaz?y Pe)o) 0 = o (P
(Bf° = B3 )i = (Bi)e)e = (E5°)e)
(B} € E3*)e)t = (Bt € (B

We remark that, without considering type annotation erasure, the only case that modifies

the syntax is the quantification over a list of variables, here over two variables:
V(z]! Py ) Vay - Vag - ((P*))7
(Ml ag?) - Pr=) ) = Var-Va - {(P));
But the Theorem 1.5.3 of the B-Book tells us that, if z\y
V(z,y) - P < Va-Yy- P
So, by induction on P, we have <<P*S>f)]}1 & Ps

Corollary 4.2.2

For any B expression E and any B formula P such that (E*®), and (P*®); are polymorphic,

e

we can prove, in B:

<<E*s>mono>—el — ES <<P*S>?’L0’n0> &= PS

e

where (E**)""° and (P**){"""" are any monomorphic instance of (E**), and (P*®); re-
spectively.

This is in particular the case for B axioms.

4.2.2 Translation of LLproof Proofs Into B Proofs

We first extend to LLproof sequents the translation from Poly-FOL to B:

(P,...,PaiL Q)7 = (P (P e Q)
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Then, we give in Fig. and Fig. the translations for each LLproof proof node.
Each node can be translated into a B derivation where all LLproof sequents are translated
into B sequents, leading to a B proof tree. To lighten the presentation, we omit to indicate
the context I' and useless formulee — removable by applying BR2 — on the left-hand side of
sequents, and we use - for k. For instance, the translation of the LLproof Axiom rule is

actually:

— BR3 — BR3
<F,P, -P, -1 P> <F,P, P, -1 —\P>

(T,P,—PFy L)*

R5

Remark The translation is straightforward because of the use of the cut rule BR4 almost
systematically. Otherwise, it would require an induction on the proof tree. The problem of
cut elimination in the final B proofs is not relevant here since we only care about having

valid B proofs.

In addition, we do not present the translations for LLproof rules dealing with V, <
and 3 since these symbols are not primitive in B. We have previously given the LLproof

derivations for these rules in Sec. [3.3.3

4.2.3 Conservativity of Provability

Theorem 4.2.3 (Proof Translation)
For a set of B formule I' and a B goal P, if there exists a LLproof proof of the sequent
(T*s) , = (P**) b L, then there exists a B proof of the sequent T' g P.

Proof

1. Let I be a set of B formulee containing axioms and hypotheses, and P a B goal.

We suppose that we have a LLproof proof II such that:

1I
<F*s> , <P*5> I_LL J_

2. Given the proof IT of the sequent (I'*), = (P*5) | L, there exists a proof Il g eene

of the same sequent, starting with all applications of Ve rules on polymorphic
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Axiom

————BR3 ————BR3

(P+ P) (=P + —P) o

(P,~PF 1)*
7 — R10 7 BR3
(Ft=,1) (~(t =7 t) F =(t =, 1)) e
(=(t =7 t) L)
Sym
< BR3 — R10
(t=rukt=ru) (Ft=-t)
T BR3 1 R9
<ﬁ(u =, t) '- ﬁ(u = t>_ <t =+ Uu l_ U =r t>_ RS
(t =7 u,~(u=7t)F L)*
o S — BR3 1 BR3
(=P F —P) (=P —=—P) -
(-—PF P)* (~—-P,PF L1)!
(==PF L) o
A
BR3
s (PAQFPAQ)! o
(PAQEPAQT (PAQF Q) (PAQPQEL™
(PAQF P)? (PAQ,PF L)! -
(PAQF L)*? *
=
1 D BR6
(P=Q,-PF 1) (F L) o ors
(P=Q+ P)! <P:QI—P:>Q>'1MP
(P=QF Q)" (P=Q,Q+ L)' ra
(P=QF L)'

Figure 4.3: Translation of LLproof Rules into B Proof System (Part 1)
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=A
((PAQ)L-PF L 1) O ((PAQL-QF L) F )T
C(PAQ P CPAQ QT
CPAQFPAQ)T n

(~(PAQ)F L)

where IL= (P A Q) F ~(PAQ)YT

- =
BR6

<_‘(P = Q)7 Pa _'Q H J—>_1 <F _'J->_1
C(P=Q)PFQT
(~(P=QFP=Q" (~(P=Q)F~(P=Q)"
(~(P=Q)F L)

R5

BR3

R5

-
(~Vz : 7. P(z),-P(c) F L) (F-1)?
(~Vz : 7. P(z) F P(c))™
(~Vz : 7. P(z) FVz: 7. P(z))" (~Vz : 7. P(z) F YV : 7. P(2))"!
(~Va : 7. P(z)F L)*

BR6

R5

v
(Vz : 7. P(z) F Vo : 7. P(z))™* R
(V& : 7. P(z) F P(t))™ (Vo : 7. P(z),P(t) - L)

BR3

V& :7. P(z) F L)*! o
Subst
(P(t),~(t =7 u) F L) (- —L1)! :6 s
(P(t) Ft =7 u)" (P(t) - P(t))" fo
(P(t) - P(u))” (P(t), P(u) - L)

(P(t) L)

Figure 4.4: Translation of LLproof Rules into B Proof System (Part 2)
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formulze.

We apply the idea of permutation of inference rules of Kleene [Kleene| [1951]. It is
possible because type variable quantification is prenex, thus we can permute these
inference nodes to shift them down to the root. As an example, we give below the
permutation for a =A node when both premises are Viype nodes. The generalization

to all LLproof inference rules is straightforward.
The proof node (we omit to repeat the contexts):

1L 11y
—\Q,P(7'1> |—|_|_ 1 —|R,P(T2) l_LLL
Va. P(a),~Q,Fu L ™™ Va. P(a), "Rty L
IWa. P(a),~(QAR) b L

Viype

—

is transformed into:

1L Iy
P(7'1>,P(T2),—\Q l_LLJ— P(Tl),P(TQ),—!R l_LLJ— “A
~(QAR),P(11),P(r2) b L
Va. P(a),7(Q ANR),P(11) b L
F,Va. P(a), _\(Q A R) l_LL 1

vtype

vtype

3. As all the type instantiations are done at the root of Ilgjeene, we take the subproof
IL0n0 of I kcene, Where we removed all the Vi pe nodes at root and the remaining

polymorphic formula at each nodes.
So, if we denote (I'**)™"° the set of monomorphic instances of formulee of (I'*%), we

have:

Hmono

<1"*S>m0n0 , <P*s> l_LL J_

It should be noted that (I'**)"°" may contained several monomorphic instances of

the same polymorphic formula, see the permutation example above.

4. Using the translation (-)" on monomorphic instances of the translation of the B
axioms leads to erase type information inside formulae. So, we get back the same B
axiom than at the beginning, except for quantification over a list of variables (see

lemma and corollary (4.2.2)). It should be noted that we obtain actually the
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universal closure of the B axioms (not anymore the axiom schemata) as presented in

Sec. [2:2.5] and without type annotations, which are no longer needed.

We obtain:

<Hm(mo>_1
()™ = (P by L)

where (Hmmw)'l is a B proof.

It leads to:

<Hmono>_1
((Esymeneyt S (P) e L

Then we have (see lemma and corollary 4.2.2)):

<Hmono>_1
s, -Pstg L

Finally, we have the proof:

<Hmono>_1 BR6
[,~Prgl T, -Pkg-l
Trg P

where we eliminate the skolem symbols from the proof by applying the procedure of

Prop. 2:32]

4.2.4 Example of Proof Translation

The LLproof proof of the example of Sec. is already quite large, the resulting B

proof being larger, we cannot present it here. Instead, we present the proof translation of
the example of Sec. [[.2.3.1]

Given a set u, we want to prove the goal P:
u € P(u)
By applying the annotation procedure of Sec. we obtain P*:
uFW e P(u)
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We also need the axiom SET2*, presented in its annotated and explicitly quantified form:
Vst L (v (s e P(t) & Vab - (z € s = z € 1))

The former leads to the type declarations:

T:0
u : set(T)

and the monomorphic Poly-FOL formula (P*):
u eset(T) PT(“)
And the latter leads to the polymorphic Poly-FOL formula (SET2*):

Va. Vs :set(a),t 1 set(a). s Eger(a) Palt) & (Vo 1. 7 €4 s = 7 €4 1)

We obtain the LLproof proof, given that A < B is considered as a notation for

(A= B)A (B = A), and that = ¢ s is an abbreviation for —(z € s):

CGTu,chul—LLJ_AX

“(c€ru=cepu)b L v

“(Vx:T.x€pu=ze€pu) b L U Egeq(1) Pr(u) Frr L

(Vo :T. 2 €ru=x € u) = u Egee(py Pr(u) b L

U Eger(r) Pr(u) & (Vo : T. v €ru= 2 € u) FL L
Vt :set(T). u €y Pr(t) & (Vo :T.x €Eru=x € t) by L
Vs :set(T),t :set(T). 8 Eger(r) Pr(t) & (Vo : T .z €r s = w €pt) b L
VauVs i set(a),t 1 set(a). s Egera) Palt) & (Vo :a. v €4 s = 7 €4 t),
U Zser(1) Pr(u0)

- =

Ax

v

type
'_LL 1

We extract the monomorphic subproof by removing the quantification over type vari-

ables:

cETu,chul—LLJ_AX

—“(c€ru=cepu)b L L
-(Vz:T.x €pu=x€pu) b L U Eger(r) Pr(u) Fr L
(Vo :T.z €ru=x €7 u) = u Eger(r) Pr(u) b L
U Egeq(1) Pr(u) & (Vo : T v €ru=x € u) b L
Vt :set(T). u Egeqr) Pr(t) & (Vo : T v €ru=z €pt) b L
Vs :set(T),t :set(T). s Egeq(r) Pr(t) & (Vo : T. v €7 s = w €7 1),
U Zeer(r) Pr(u)

- =

Ax

v
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We can now translate the proof above to obtain a B proof IIg such that, given a set u:

II
VS-(Vt-(sEP(t)@(Vx'(xBeséxet)))) Fg u € P(u)

It should be noted that the left-hand side of the sequent above is exactly the universal
closure of the axiom SeT2 (without type annotation) as presented in Sec. and the

right-hand side corresponds to the initial B goal of the example.

Finally, we give in the following the proof Ilg resulting in the translation of the
monomorphic LLproof proof above, and using the derivations provided in Fig. and in
Fig. [4.4

Since the proof is large, we present the translation of the LLproof nodes step-by-step,
from the root to the leaves, keeping only the needed formulee on the left-hand side of the
sequents. This corresponds to implicit applications of the rule BrR2. In addition, we use the

symbol I instead of kg, and we remove some parentheses.

The B proof starts with:

Iy
Vs -Vt-seP(t)e Ve-zes=xect),ugPlu)- L l__d_E:
Vs-(Vt-(seP(t) e Vo-(res=xet)))) FeucP(u)

6

The first node V:

II;
Al YVieuePlt)e Vr-zcecu=zet)ugPlu)F L
Vs-Vt-seP(t)e Ve-zes=>xect),ugPlu)- L
1o

where A is:

BR3

Vs-Vt-seP(t)e Ve-zes=xet)FVs-Vi-seP(t) e (Ve -z €s=zct) R

Vs Vt-sePt)e Ve-zes=axet)FVt-uelP(t)s Vo-x €u=xet)
Ay

The second node V:

I,
Ao uwePlu)e Ve-zcecu=zcu),ugPlu)t- L
Vi-ueP(t)e Ve-zcu=azet),ugPlu)- L
I

BR4
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where Ay is:

Vi-uePt)e Ve-zxcu=acect)FVi-uePt)s Ve -z ecu=zct) BRS

Vi-uePt)e Ve-zcu=cect)FuelPu)e Ve-vcu=x€u)

R8’

Ay
The third node A:
II3
A3 (Vm-x€u:>x€u):>u€]P’(u),u§Z]P’(u)I—J_BR4
AL ueIP’(u)(:)(Va:~a:€u=>a;€u),u¢P(u)l—LBR4
uePlu)e Vr-zecu=recu),ugPlu) L
Iy

where A} is:

BR3

uelPlu)e Vr-rcu=zcu)rFuecP(u)s Vr-z€u=x€cu) .

uelPu)e Vr-rcu=zcu)rFuecP(u)= Vr-zcu=x€cu)
A3

and where A3 is:

BR3

uelPu)e Vr-rcu=zcu)rFueclP(u) s Vr-zcu=x€cu) o

uePu)e Ve-zecu=zcu)k V- zcu=zcu)=ucP(u)
A3

The fourth node =:

s BR6
V- -xEu=>xrcuk L l—ﬁJ_R5
FVr-xceu=x€u Ay P 114
Ve-zeu=zecu)=>uecP(u)FuelP(u) ue€P(u),u g Plu) - L
Ve-zeu=zecu)=>ucPu),ugPlu)r- L
13

BR4

where Ay is:

Ve-zeu=zcu)=ueclPlu)FVr-zcu=x€cu) =ucP(u) BR

Ay

The first (and only) node of the right-hand branch Ax:

BR3

u € P(u) Fu e P(u) " ¢ Pu) Fu g P(u) RS

u€ Plu),u & Plu) - L
114

The first node of the left-hand branch —V:
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I1g

BR6

“(ceu=ceu) kL l—ﬂJ_R

5

Feceu=cecu
R7 BR3
FVer-x€cu=xcu —|Va:~m€u=>x€ul—ﬂVac-x€u:>xeuR5
Ve -z €u=zcuk L

II5

The second node of the left-hand branch — =

17
BR6
ceu,cgut L I——\J_RS
ccukbceu
R3 BR3
Fceu=ceu “(ceu=cecu)F-(ceu=cecu)
R5
“(ceu=ceu)kF L

g
Finally, the third (and last) node of the left-hand branch Ax:
chl—cGuBR3 c%ul—c%ui?

ceu,cgut L
117

Remark This proof is larger than the one given in Sec. and it contains some
unnecessary steps. This is because we follow rigorously the translation of LLproof nodes
given in Figs. and This method is still scalable to large LLproof proofs since the size
of the generated B proofs depends linearly of the size of the LLproof proofs, the growing

factor being constant.
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Chapter 5

Deduction Modulo B Set Theory

This chapter presents the extension to deduction modulo theory of the typed sequent
calculus LLproof, denoted LLproof=. In addition, it shows that LLproof= is sound with
respect to LLproof. At the end of this chapter, it becomes possible to build a B proof from
a LLproof= proof thanks to the results of Chap.

In Sec. we give an informal introduction to the formalism of deduction modulo

theory.

In Sec. we give some definitions about deduction modulo theory, then we present
the extension of LLproof to deduction modulo theory. This section is an extension of results
presented in |[Dowek, Hardin, and Kirchner| 2003| to polymorphically typed theories. This
contribution is a collaborative work and it has been published in [Bury, Delahaye, Doligez.

Halmagrand, and Hermant| |2015b; |Cauderlier and Halmagrand [2015].

In Sec. we show the soundness of LLproof= with respect to LLproof. This contribu-

tion is a personal work and it is inspired by |[Dowek, Hardin, and Kirchner| [2003].

In Sec. we present the extension of the Poly-FOL version of the B set theory to
deduction modulo theory. In particular, we discuss in Sec. the consequences for the B

derived constructs presented in Chap. [I} This contribution is a personal work.
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5.1 Introduction to Deduction Modulo Theory

Deduction modulo theory [Dowek, Hardin, and Kirchner| 2003] is a formalism that
extends first-order logic with rewrite rules on both terms and propositions. These rewrite
rules can be applied anywhere in a proof and then interleaved with deduction rules. The

motivation of deduction modulo is to distinguish deduction and computation in proofs.

5.1.1 Deduction: Inference Rules and Axioms

Generally, we distinguish the concept of logic and the one of theory. We usually
characterize a logic by providing a syntax — a set of symbols used to write formulee — and a
proof system — a set of inference rules giving an interpretation to these symbols and used
to write proofs of the formulse. A logic is a general formalism to write formulze and their

proofs.

A theory is generally seen as a more specific framework, dealing with a particular
concept, like set theory or arithmetic. It is defined by a set of axioms — logical formulee

assumed to be true.
But this distinction may not be as clear as it seems. For instance, in LLproof, we have

the following —— inference rule:

TP 1
T,—PF L

used to erase two negation symbols when trying to prove false. But this rules may be

replaced by the axiom scheme, given any formula P:
P =P

which states exactly the same property.

Actually, this axiom can be proved in LLproof — with the restriction that it requires to

use the Cut rule —, being no more an assumed statement, but a proved lemmas:

P,———P-PF L™ PP -—PFL"¥

P,_|_|_‘P}_J_
- =
~(P=——=P)F L

ut
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On the contrary, we can also interpret axioms as inference rules. This is for instance the
idea of super-deduction , proposed by Prawitz, as explained in [Brauner, Houtmann, and
Kirchner| |2007]. The idea is to enlarge a proof system by adding new inference rules coming
from axioms. This technique allows to improve automated proof search, in particular for

set theory |Jacquel, Berkani, Delahaye, and Dubois 2012].
5.1.2 Computation: Rewrite rules

Deduction modulo theory introduces a third concept in addition to inference rules and

axioms: rewrite rules.

The Poincaré principle, as stated by Barendregt and Barendsen [Barendregt and
Barendsen 2002|, makes a distinction between deduction and computation. Deduction may
be defined using a set of inference rules and axioms, while computation consists mainly in
simplification and unfolding of definitions. When dealing with axiomatic theories, keeping
all axioms on the deduction side leads to inefficient proof search since the proof-search

space grows with the theory. For instance, proving the following statement, in FOL:
fst(a,a) = snd(a, a)
where a is a constant, and fst and snd are defined by:
Va,y. fst(z,y) = x Va,y.snd(z,y) =y
and with the reflexivity axiom:
Ve.z =z

using a usual automated theorem proving method such as Tableau, will generate useless
boilerplate proof steps, whereas a simple unfolding of definitions of fst and snd directly

leads to the formula a = a, that should be provable in one reflexivity step.

Deduction modulo theory was introduced by Dowek, Hardin and Kirchner [Dowek!
Hardin, and Kirchner| 2003] as a logical formalism to deal with axiomatic theories in
automated theorem proving. The proposed solution is to remove computational arguments
from proofs by reasoning modulo a decidable congruence relation = on formulse. Such a

congruence may be generated by a confluent and terminating system of rewrite rules.
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In our example, the two definitions may be replaced by the rewrite rules:

fst(z,y) — x snd(z,y) — y

And we obtain the following equivalence between propositions:

(fst(a,a) = snd(a,a)) = (a =a)

5.1.2.1 Example in Set Theory

Deduction modulo theory strongly reduces the size of proofs in general. For instance in

untyped set theory, proving the following statement:
aCa
where a is a constant set, and given the axiom defining the subset predicate:

Vs,t. sCteVr.zes=x €t

will generate the many-step proof:

Ax

ce€a,~(cea)k L
—“(c€ea=c€a)F L
-V Ax
Vrx.x€a=>x€calt L aCa,~(aCa)k L
aCaeVe.zca=zvc€a,~(aCa)kF L
Vi.aCteVr.oca=zet,~(aCa)k- L
Vs,t.sCtevVe.xes=zect,~(aCa)k L

=

The definition may be replaced by the rewrite rule:

sCt—Vz.xe€s=>xct

leading to the shorter non-branching proof:

Ax

cea,~(c€a)k L
“(c€ea=ce€a)F L

Vr.x€a=>x€alt L
—(aCa)k L

=

-

Rewriting C
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5.2 LLproof=: Extension of LLproof to Deduction Modulo The-
ory

5.2.1 Deduction Modulo Theory

Deduction modulo theory [Dowek, Hardin, and Kirchner| 2003| reasons over equivalence
classes of formulee under a congruence generated by rewrite rules. Compared to [Dowek!
Hardin, and Kirchner| 2003|, we extend deduction modulo theory to Poly-FOL. The
language is that of Sec. In the following, we introduce the definitions of term and

proposition rewrite rules, and the notion of RE-rewriting.

Rewrite System
A term rewrite rule is a pair of terms [ and r together with a local context I't, and
denoted [ —, r. In addition, we impose that [ is not a variable and that we have

FVr(r) CFVy(l) C Ty and FV(r) CFV(l) CTy.

A proposition rewrite rule is a pair of formulee [ and r together with a local context I'y,
and denoted | — 1, 7. In addition, we impose that [ is an atomic formula and that we

have FVr(r) CFVy(l) CT'y and FV(r) CFV(l) C Ty

Rewrite rules are said to be well-formed in a global context I'¢ if [ and r have the same
type in I'q; L. We extend the context well-formedness rules of Fig. by adding the

following rule for rewrite rules:

FVr(r) CFVp(l) C Ty

INCH N Fg;Tpbr:T FV(r) CFV() C Ty,
Wf(Fg,l — T ’f‘;@)

WEFE7

A rewrite system, denoted RE, consists of the union of a set of proposition rewrite
rules — denoted R — and a set of term rewrite rules — denoted £. It is well-formed in a

global context I'g if all the rewrite rules are well-formed in I'g.

RE-Rewriting

Given a global context I'q and a rewrite system RE that is well-formed in I'g, a formula
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¢ is said to RE-rewrite to ¢, denoted ¢ —rre ¢ if @, = (Ip)o and ¢’ = ¢[(rp)o].,, for
some rewrite rule | —p, r € RE, some occurrence w in ¢, some type substitution p, some
term substitution o and where ¢, is the expression at occurrence w in ¢, and p[(rp)ol., is

the expression ¢ where |, has been replaced by (rp)o.

The reflexive-transitive closure of the relation —gg is written —%,. The relation

=re is the congruence generated by RE.

The relation =g¢ is not decidable in general, but this is in particular the case when

—re is confluent and (weakly) terminating [Dowek, Hardin, and Kirchner| |2003)|.

In the following, when the sets of rewrite rules are clear from the context, we may

denote by = the congruence relation =r¢.

5.2.2 Extension of LLproof to Deduction Modulo Theory

Given a global typing context I'q and a rewrite system RE well-formed in ', extending
LLproof to deduction modulo theory consists in adding to the proof search rules of Fig. (3.3

and Fig. 3:4] the following conversion rule:

rLor.L

/Y  CcOonvp=
T, PEL @

The resulting proof system is called LLproof modulo, and denoted LLproof=.

5.2.3 Example
If we go back to our example of Sec. given the axiom:
Va. Vs :set(a),t : set(a). s €ger(a) Pa(t) & Vria. (€4 s = 1 En )

and the goal:
U Eset(T) PT(U)
for a given sort T" and a constant w : set(7), we obtained the following LLproof proof:
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Ax

cEru,cruty L
_'(CETUZ>CETU) Foo L
“(Ve:T.x€pu=z€pu) b L a U Ege(1) Pr(u) Frr L
(Vo:T. 2 €ru=x € u) = u Egee(y Pr(u) FrL L
U Eger(r) Pr(u) & (Vo : T. v €Eru= o €pu) b L
Vit : set(T). U eset(T) PT(t) = (VZ’ T.x€ru=x€erp t) Foo L
Vs :set(T),t :set(T). s €Eger(r) Pr(t) & (Vo : T .z €r s = v €pt) b L

- =

Ax

v

Va.Vs i set(a),t 1 set(a). s Eger(a) Palt) & (Vr:a. v €4 s = 7 €4 t), e

u Q/set(T) P (u)

In deduction modulo, the previous axiom can be replaced by the rewrite rule:

Foo L

S Eset(a) Pa(t) T (a:Type,s:set(a), t:set(a)) Vo a. (:C Ca §= T €q t)

Therefore, the proof in LLproof= is:
Ax

cEru,crubt =1
—(ceru=ceru)t =1
“(Vz:T.x €Eru=x€ru) k=1
(U Eser() Pr(u)) Fri= L

- =
v

conv

5.3 Soundness of LLproof= with Respect to LLproof

In this section, we show that the proof system LLproof= is sound with respect to

LLproof, i.e that if we have a LLproof= proof of a Poly-FOL statement, then we can build

a LLproof proof of a certain associated statement.

5.3.1 Generating Theories from Rewrite Systems

Given a set of proposition rewrite rules R and a set of term rewrite rules £, we apply

the following procedure for all rewrite rules.

If we have a propositional rewrite rule of the form:

P—)FLQ

where P is an atomic formula, @ is any formula, and FV1(Q) C FVp(P) C I't, and

FV(Q) CFV(P) CI't; we generate the axiom:

werva () veryp” D@8 < Qldl |7])

93



CHAPTER 5. DEDUCTION MODULO B SET THEORY

where |@| and |Z| denote respectively the sets FVT(Q) and FV(Q) and satisfy |@| C & and
|7 C Z.

If we have a term rewrite rule of the form:
S —ry, t

where s is a term that is not a variable, ¢ is any term, and FVr(¢t) C FVp(s) C I', and

FV(t) CFV(s) CI'L; we generate the axiom:

A n. V2 os(a,x) =-t(lad|,|T
aEFVT(s)a zeFV(s)x 5(@, %) (Iatl,|1)

where 7 is the type of s and ¢, and where |d@| and |Z| denote respectively the sets FVp(t)

and FV(t) and satisfy |@| C @ and |¥| C Z.

At the end, we have generated a set of axioms, which is the generated theory from the

rewrite system RE. We denote this resulting theory 7.

5.3.2 Soundness

We show that the conversion rule introduced in Sec. is admissible, in the sense that
we can produce a LLproof derivation of the conversion rule. More precisely, we show that,
given a rewrite system RE, the proof system LLproof= is sound with respect to LLproof

with the theory T generated by RE. We have the following theorem:

Theorem 5.3.1 (Soundness of LLproof~)

Given a rewrite system RE and a set of formule T, if the sequent:
D= L

is provable and II is a LLproof= proof of this sequent, then there ewists a LLproof proof II'
of the sequent:
T, D' L

where T is the theory generated from RE.

In order to prove this conservativity theorem, we will incrementally consider the different

cases of rewriting. Firstly, we consider in Sec. the case of one step rewriting, i.e. the
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application of one proposition rewrite rule and for the head symbol. Then, we extend in
Sec. [5.3.4] the one step and propositional rewriting to any subformula. We continue in
Sec. with the case of one step rewriting for terms. Finally, we conclude in Sec.
with the final case of multiple step rewriting for both terms and propositions. Once the

admissibility of the full-fledged conv rule is proved, the soundness theorem [5.3.1] follows.

5.3.3 One Step, Propositional and Head Rewriting

Lemma 5.3.2
Given a set of proposition rewrite rules R and the theory T generated from R, if P’ and
Q' are two formule that are one-step and head convertible with respect to R (denoted

P =% Q' ), we have:

L,Q k=1
TP F = L

7—7 Fa Q, I_LL 1

If L% T o
T.T,P L

conv _,~1
P/ERQ/ Then

Proof
If P and ' are one-step and head convertible, then there exists a rewrite rule in R of the

shape:

P —)FL Q or Q —)FL P

such that P —x Q' or Q) —x P’. Without loss of generality, we consider the case

P —p, Q. The theory T generated from R contains the axiom (see Sec. |5.3.1)):

v V. V Z P, 7)s v, |7
0V (P) 2eFV(P) (a,7) < Q(l|al, |7])

It should be noted that, when writing P’ — @', we speak about an instance of the
rewrite rule P —p, @, where P and () have been instantiated with some type parameters
7 and term parameters £. So, if we denote respectively p = [@/7] and ¢ = [Z/t] the type

substitution and term substitution, then we have:

P'=(Pp)o = P(7,1) and Q"= (Qp)o = Q(|7], [¢])
We have to following derivation:
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T7F7Qla|_LL L
» " Ax - »
TvFv_‘P(7-7t‘>v_‘Q(|7-|v ‘ﬂ)>Pl P L T,F,P(T,ﬂ,Q“TL ‘ﬂ)>Pl P L PN
T7FaP(7?7E> <~ Q(‘FL |ﬂ)7p/ l_LL 1
T,F,Vf- P(F7 f) ~ Q(|f|7 ‘:L_:Dapl '_LL 1
T,T,Va.vz. P(a,7) < Q(|d|, |z]), P’ FuL L

VXxn

Vtype X m

5.3.4 One Step, Propositional and Deep Rewriting

We generalize the previous lemma to rewriting of subformulee. In the following, if P is

a subformula of F', we denote F' by F[P], and the replacement of P by @ in F by F|[Q)].

Lemma 5.3.3
Given a set of proposition rewrite rules R and the theory T generated from R, if P and Q

are two formule that are one-step and head convertible with respect to R, we have:

L, FQ] = L
I, F[P] Fo= L

T, T, F[Q] kL L
T7F7F[P] '_LL L

If

conv j~1
PZLQ Then

Proof

First, by applying the Cut rule, we have:

T.LEPLFQFW L T.IFPL-FQFL L
T,T,F[P] kL L

ut

The left branch corresponds to the premise of the rule:

TvFaF[Q] l_LL uE
Taer[P] FLL uE

So, we have to show that the right-hand branch:
T,T, F[P],-F[Q] FrL L
can be closed. We perform a proof by induction on the structure of F'. The base case is:
T, I, P,-Q L L

and is true since it is a direct consequence of the previous lemma:

Tv F7 Q) "Q I_LL L Ax

T,F,P7ﬁQ '_LL L
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The induction hypothesis tells us that the following sequent can be closed:

IH
7,0, F'[P],~F'[Q] FrL L

for F’ strict subformule of F.

To lighten the presentation, we may sometime omit some irrelevant parameters like

contexts I'.

1. F[P]:=—F'[P]:

IH
T,T,-F'[P], F'[Q] FrL L
T,0,—F'[P],-—F'[Q] FLL L

Since P%%QQ implies Q%%QP, we can apply directly the induction hypothesis in this case.
2. F[P]:= Fi[P| N\ F3:

IH
A
T,F\[P),Fo,~Fi[Q| b L T, Fi[P], Fo,~Fy by L ﬂj(\
T,F1[P), Fo, ~(F1[Q] N Fp) b L

T, Fi[P] A Fo, ~(F1[Q] A Fo) i L

3. F[P|:= R[P] = Fy:
TH
T,-F[P,FiQ],~Fo b L T,F, Fi[Q],~Fa b L
T,F\[P] = Fp, Fi[Q],~F> L L _
T, Fl[P] = FQ,_‘(F]_[Q] = FQ) |—|_|_ i

Ax
=

4. We do not present the cases for V, < and all the cases where P occurs in F5 instead of

F1, since they are very close to the previous ones.

5. F[P]:=Vx:71. F'[P]
IH
T, F/[P(C)L_‘F/[Q(C)] oo L
T,V : 7. F'[P(x)], ~F'[Q(c)] FLL L
T No:7. F'[P(x)], Vo : 7. F/[Q(#)] Fo. L

\4

Since if P(x)=Q(z), then P(c)=xQ(c).

6. We do not present the case for 3 which is very close to the previous one.
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5.3.5 One Step Term Rewriting

Lemma 5.3.4
Given a set of term rewrite rules £ and the theory T generated from &, if s and t' are two

terms that are one-step convertible with respect to € (denoted s E}g t'), we have:

If

/
D E[t] Fu= L convy—iy  Then LD EFu L
I, F[s'| = L ¢ T,T,F[s'] FrL L

Proof

If s and t' are one-step convertible, then there exists a rewrite rule in £ of the shape:
s — t or t—r, S

such that s’ —s¢ t/ or t/ —¢ s’. Once again, without loss of generality, we consider the

case s —r, t. The theory 7 generated from R contains the axiom (see Sec.[5.3.1)):

V& V& s(@z) = t(al, |z
aeFVT(s)a mEFV(s)x S(Oé,w) (‘Oé‘ |$’)

If we denote respectively p = [@/7] and o = [Z/u] the type substitution and the term

substitution, we have:
S = (sp)o = s(7,@) and ¢ = (tp)o = t(|7, |4

We have the following derivation:

pa— v Ax
s(7, 1) =7 t(|7],]4]), s’ #+ t' b L

VZ. (7, %) =, t(|7], 7). #r ¢ Fu L
Va. VZ. s(d, Z) =, t(|al, |7]), 8 #r ¢ Fo L
T V. VE. (@, &) = t(|a)], |Z]), F[s] Fo L

Corollary 5.3.5
Given a rewrite system RE and the theory T generated from RE, if F and F' are two
formule that are one-step convertible with respect to RE (denoted F E%zg F’), we have:

T, F b= L
T,F =L

T.LE R L

If AT L N e
TI,Fry L

COHVFE%zg J ol Then
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5.3.6 Multiple Step Rewriting

The last case of this section deals with multiple steps rewriting, both for propositions

and terms.

Given a rewrite system RE, we remind that two formulse P and @ are convertible with
respect to RE (denoted P =r¢e Q), if there exists a finite number of rewrite rules of RE

and n formule Ry, ..., R, such that:
P =Re Ri =g¢ .- =ge Rn =pe Q

Lemma 5.3.6
Given a rewrite system RE and the theory T generated from RE, if P and Q are two

formule that are convertible with respect to RE (denoted P =re Q), we have:

0Q =1 convp=r.o Then T L

I 2 = - _
/ P, =1 T, I,PH L

Proof The proof is a direct consequence of the definition of conversion. If P =r¢ @, then

there exists n formule Ry, ..., R, such that:
_1 _1 _1 _1

Then, we have:

IQhy=1 CONVp —1 o
IRy =L re
L'\ Ry 'LLLE L conv

P=L_R
T,Phy=1 ReT

Finally, thanks to the previous corollary we obtain:

T7 Pa Q l_LL L
7—7 Fa Rn l_LL L

T,I Ry b L
T,I,PH L
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5.3.7 Soundness of LLproof= With Respect to LLproof

We can conclude this section with a straightforward proof of theorem [5.3.1}

Given a rewrite system RE and the theory T generated form RE, we suppose given a

LLproof= proof II such that:

_ o
D= L
then, we build a LLproof proof Il such that:
H/

We perform the construction by induction on the structure of II. All the cases are
straightforward since we replace all LLproof= nodes by their corresponding LLproof ones,

and use lemma [5.3.6] in case of a conversion. For instance:

11 I
DR,y b= L A T,0,Fy, Fo b L
F,Fl/\FQ l_LLE 1 T,F,Fl/\Fg |—|_|_J_

5.3.8 Translation of LLproof Cut Rule into B

In Sec. we used the LLproof Cut rule to translate LLproof= proofs. So, we need to
extend Figs. [4.3] and [4.4] by defining the translation of the LLproof Cut rule into B Natural

Deduction.

The derivation of the Cut rule in B Natural Deduction is:

BR6
(T,PH L)Y (D, P -t .
(T —P)! (T, =Pk L)? -
4
(T L)1

5.4 B Set Theory Modulo

Expressing the B Method set theory as a theory modulo consists in building an adequate
rewrite system RE such that the theory 7 generated by RE is equivalent to the B theory.
To do so, we transform whenever possible the axioms and definitions of the Poly-FOL B

Method set theory into rewrite rules.
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In this section, we present a B theory modulo resulting from the previous translations
presented in Sec. [4.1] In this presentation, all the rules of the rewrite system come from
the B syntax. Unfortunately, we will see in Chap. |8 that the resulting rules are not well

suited for automated theorem proving in practice.

5.4.1 Axiomatic Set Theory

Core Theory The core B set theory consists in the translation into Poly-FOL of the
three annotated axioms of Fig. We remind in the following the Poly-FOL version of

the B set theory signature and axioms as introduced in Sec.

set 1

tup 2

(-,-) : HMogas. a1 X ag — tup(ag, az)

P(-) :Ha. set(a) — set(set(a))

- x - : HMagag. set(ag) x set(ag) — set(tup(a, az))
-€- la. a xset(a) —» o

Yo, ag. Vs :set(aq),t @ set(ag), x : ag,y @ ao.

(Z,Y) a0 €tup(ar,az) S Xaran t € (x €Eay SAY Eqy t) SET1
Va. Vs :set(a),t : set(a).

5 €set(a) Palt) & (Vo a. €4 s = 1 €4 t) SET2
Va. Vs : set(a),t : set(a).

(Vo7 €n s T E€t) = 8 =get(a) SET4

New Function Symbols In addition, the Poly-FOL version of the B set theory contains
axioms coming from the skolemization of the comprehension sets (see Sec. [2.3)). These

axioms are of the following shape:

where f is a function symbol with type signature:
filag...am. 71 X ... X 7 — set(T)

and where ¢ is a polymorphic formula.
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5.4.2 Generated Rewrite System

We obtain the rewrite system (to lighten the presentation, we omit to indicate the local

contexts I'p,):

(xay)oq,az Ctup(a,eg) § Xaq,a2 t P T Cap SAY Cay 'l
5 Eset(a) Palt) — Vr:a. x€ys=>1T ELt
x Eal,...,aml fl(ah ey Q3815 Sn1) — Sol(alv ey O3 Ty 81500 73711)
T €ay,iam, folot, .o, 81,0 80,) — @p(Q1, ..., Qi 2,51, .0, 5p,)
where f1,..., f, are the p new function symbols and ¢1,..., ¢, are the corresponding p

polymorphic formulse.

It should be noted that the extensionality axiom has not been turned into a rewrite
rule since the left hand side of the rule would be an equality, which may not be efficient in

practice. Thus, it is left as an axiom in the theory.

This presentation complies with all the previous result of conservativity presented in
this manuscript. So, it is always possible to retrieve an original B proof coming from a

LLproof= proof with this rewrite system.

Unfortunately, this general scheme does not fit well for derived construct, as we will see

in the following section.
5.4.3 Derived Constructs

The derived constructs presented in Sec. [1.2.3.2] are quite important in the B Method
since they are often used in proof obligations. The treatment of those constructs is therefore

important.

Derived constructs are mostly defined using comprehension sets. Thus, they are
translated as function symbols, as presented in Sec. We show in the following the
treatment of the derived constructs with the union operator as an example, where s, t and

u are sets such that s C uw and ¢ C u, and a is an element of u.

In the B Method, the basic set operators union U, intersection N, set difference —

and singleton { } are defined by comprehension (see Sec.|1.2.3.2)), therefore they have the
shape {z | z € u A P}. We saw in Sec. that the formula x € u represents some typing

102



CHAPTER 5. DEDUCTION MODULO B SET THEORY

information used to verify that a formula is well typed. For instance, the union between

two sets s and ¢ is defined as follows:
sUt := {alacuNn(aesVact)}

In this definition, u does not provide any logical information. It is here only to guarantee

that the variable a has the proper type.
If we apply the annotation procedure described in Sec. [2.2] we obtain:
SO U@ = g% | a e A (a e S va e tPW))
Then, the skolemization of comprehension sets presented in Sec. leads to:

SP(u) U tIP(u) — fIP(u) (uP(u) SIP’(u)7 t[P(u))

)

and to add the axiom, where as usual we do not repeat the typing annotation on variables:
v ysP) ogP@) oyt g e fPW s t) s e un (zesVaet)

Finally, the translation scheme from B to Poly-FOL presented in Sec. gives us the

Poly-FOL axiom:
Va. Vu @ set(a), s @ set(a),t :set(a),x : . & €o fasu,s,t) & v €quN(x €y sV T Egt)
where f has the type signature:
f: Ha. set(a) x set(a) x set(a) — set(w)
At the end, the rewrite rule generated for the union between two sets is:
T €q flasu,s,t) —p, TEQUN(T Eq SV T ELTL)

where I't, := « : Type,z : a,u : set(a), s : set(a),t : set(«)

As we can see, the left-hand side of this rewrite rule has nothing to do with an intuitive
definition of the union between two sets. The left-hand side deals with three different sets

and the right-hand side starts with a conjunction.

This example illustrates that this approach — despite its usefulness in the theoretical
part of our work — is not well-suited for derived constructs of the B Method in practice.
From a simple definition of the union between two sets, we obtain at the end an axiom

defining a construct dealing with three different variables.
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Chapter 6

Automated Deduction:
Zenon Modulo

This chapter presents the automated theorem prover (ATP for short) Zenon and its
extensions to polymorphism and deduction modulo theory, resulting to a new tool called

Zenon Modulo.

In Sec. we present the principles of the Tableau method, the proof-search method
used by Zenon. This section is inspired by [Bonichon, Delahaye, and Doligez| 2007
D’Agostino, Gabbay, Hahnle, and Posegga, 2013].

In Sec. we first present the extension of the syntax and type system of Poly-FOL to
deal with the proof-search format of Zenon, called MLproof. Then, we present the extension
of MLproof to polymorphic formulee and discuss the implication on the proof-search
algorithm. This contribution (and its corresponding implementation) is a collaborative
work and it has been published in |[Bury, Cauderlier, and Halmagrand| 2015a; Bury:
Delahaye, Doligez, Halmagrand, and Hermant| 2015b)].

In Sec. [6.3] we present the extension of MLproof to deduction modulo theory, denoted
MLproof=, an heuristic to automatically transform axioms into rewrite rules and the
rewriting algorithm used by Zenon Modulo. This contribution (and its corresponding
implementation) is a personal work and it has been published in [Bury, Delahaye, Doligez.
Halmagrand, and Hermant| 2015b; [Delahaye, Doligez, Gilbert, Halmagrand, and Hermant
2013blfal.
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In Sec. [6.4] we present the experimental results over two different benchmarks. In
particular we compare the different versions of Zenon introduced in this chapter and also

Zenon to other polymorphic deduction tools.

6.1 Zenon: A Tableau Method Automated Theorem Prover

In this section, we present the ATP Zenon [Bonichon, Delahaye, and Doligez| 2007] and

its proof-search method called the Tableau method.

6.1.1 Presentation of the Tableau Method

The Tableau method is an automatic proof search algorithm for the sequent calcu-
lus without cut. It is usually seen today as a tree method, proposed by Smullyan in
1968 [Smullyan| 1995], that unifies and simplifies the analytic Tableau method of Beth in
1955 [Beth! [1955], and the theory of model sets of Hintikka in 1955 [Hintikka [1955].

Tableau is a proof by contradiction method. To prove a formula, we have to show that
the negation of the formula is unsatisfiable. To do so, the algorithm breaks the logical
connectives of the formula until it reaches elementary atomic formulae or negation of atomic
formulee. This process generates branches corresponding to different possibles cases. Once
a contradiction is reached in a branch, i.e. the branch contains an atomic formula and its
negation, the branch is said to be closed. A Tableau proof is a tree where all branches are

closed.

6.1.2 Common Use of the Tableau Method

In the past few years, the popularity of the Tableau method in first-order classical
logic has decreased, letting other automatic proof-search methods step in. For instance,
in the CASC competition [Sutcliffe| 2016], considered as the world-cup competition for
first-order classical logic ATPs, tools using methods like resolution |[Robinson| 1965] or
superposition |[Nieuwenhuis and Rubio| 2001] are widely represented, unlike tools using the

Tableau method.

Today, the Tableau method is still often used for other kind of logics. In particular, it
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is very popular for non-classical logics like modal logic |[Goré 1999].

One important advantage of the Tableau method, compared to other methods like
resolution or superposition, is its ability to generate strong proof traces [Bonichon, Delahaye.

and Doligez 2007].

The Tableau method can be seen as a proof system which corresponds to an upside-down
sequent calculus where all formulee are on the left-hand side of the turnstile. Therefore, it

is straightforward to generate proof traces in a standard sequent calculus format.

6.1.3 Key Features of Zenon

Zenon [Bonichon, Delahaye, and Doligez| 2007] is an ATP for first-order classical logic
with equality and based on the Tableau method. It was originally designed to be the
dedicated ATP of the FoCaLiZe environment |[Hardin, Pessaux, Weis, and Doligez |2009],

an object-oriented algebraic specification and proof system.

The key feature of Zenon is the possibility to generate formal proof certificates that can
be verified by the interactive theorem prover Coq [Bertot and Castéran| 2013], used as a
proof checker in that case. This feature is very specific to Zenon compared to other ATPs.
The benefit provided by this approach is to guarantee by an external tool the soundness of

the proofs produced by Zenon.

6.2 Extension of Zenon to Polymorphism

Most of first-order automated deduction tools do not implement polymorphism. For
the time being and as far as we know, besides our version of Zenon, only three different

tools deal natively with polymorphism.

Alt-Ergo, a Satisfiability Modulo Theory (SMT for short) solver released in 2008 [Bobot!
Conchon, Contejean, Iguernelala, Lescuyer, and Mebsout| 2013, was designed to be the
dedicated tool of the verification platform Why3 [Bobot, Filliatre, Marché, and Paskevich

2011], which the native language, called WhyML, is based on polymorphism.

The two other tools dealing with polymorphism, one called Zipperposition [Cruanes 2015]
and the other one being a prototype [Wand| |2014] based on the ATP SPASS [Weidenbach
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1999], are both based on superposition and were both released in 2014.

It should be noted that some well-known ATPs implement monomorphic/many-sorted
first-order logic (denoted Sorted-FOL), like E [Schulz| [2013] or Vampire [Riazanov and
Voronkov, [1999).

6.2.1 Extending Poly-FOL to MLproof

Zenon has two different formats to write proofs. The first, called MLproof, is the proof
search format, based on the Tableau method. The second, called LLproof (see Sec. , is

based on the sequent calculus.

6.2.1.1 Syntax

We present in Fig. [6.1] and Fig. [6.2] the comprehensive syntax for types, type schemes,
terms, formulse, type quantified formulae, local contexts and global contexts of MLproof=.

This is an extension of the Poly-FOL syntax presented in Sec. [3.2.1]

It should be noted that constructs that were already defined in Sec. do not change.
We add only three constructs in type and term categories called term metavariables, type

metavariables and e-terms. We also add the notion of rewrite rule in global contexts, used

later (see Sec.[6.3).
6.2.1.2 Type System

We present in Fig. the rules for well-formedness. The only modification compared
to the presentation in Fig. is the addition of the rule WF7 introduced in Sec.

that deals with rewrite rules.

However, we have to extend the type system of Poly-FOL of Fig. [3.2] by defining typing

rules for metavariables and e-terms. We give in Fig. [6.4] the extended type system.

6.2.2 Extension of MLproof to Polymorphism

In this section, we present the proof search system MLproof and discuss about the

extension to polymorphism of its original version.
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Type

T

(0%
AType

T(T1y.. s Tm)

Type Scheme

o =

Term

Formula

HOq .
Ha1 .

Q. TLX e X Ty, — T
Q. T X oo X Ty — 0

T|L

-

w1\ P2

w1 V2

p1 = P2

$1 < P2

1 =7 t2
P(11,. . Tm;t1, .-
dr:7. o

Ve 7. ¢

, tn)

Type Quantified Formula

YVa. T

(type variable)
(type metavariable)
(type constructor application)

(function type signature)
(predicate type signature)

(variable)
(metavariable)
(

(

function application)

(true, false)
(negation)
(conjunction)
(disjunction)

(implication)
(equivalence)

(term equality)

(predicate application)
(existential quantification)
(universal quantification)

(formula)
(type quantification)

Figure 6.1: Poly-FOL Syntax Extended for MLproof= (Part 1)
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Local Context

I'L, a: Type

I'n, = ©
|
| Ty, z:7

Global Context

I'a %]

om

U N

|

| Tg, o
| o
|

)1
a

— T, T

(empty context)
(type variable declaration)
(term variable declaration)

(empty context)

(type constructor declaration)
(function declaration)
(predicate declaration)
(rewrite rule)

Figure 6.2: Poly-FOL Syntax Extended for MLproof= (Part 2)

wi(2; ) W

agly wf(lg;I'y)
wf(L; T, o : Type)

WF;

¢y Dg;I'Lk7:Type
wf(lg; Ty, x 2 7)

WFq

T&T'q Wf(rg;g)

F
wf(Tg, T :: m; @) WE

Fg;aq: Type,...,qp : Typeb 7 : Type,i=1...n
féla Ig;aq : Type, ..., : Type = 7 : Type
WF;5
wf(lg, f: oy ...apm. 71 X ... X Ty = T3 Q)
PdTg Tgyor:Type,...,ap,: Typek 7;: Type,i=1...n
WFg
wf(Pg, P : oy ...apm. 71 X ... X Ty = 0; D)
FVT(T) - FVT(Z) C FL
;T FL:T IFg;I'ybrer FV(r) CFV(l) C Ty
WF7

wf(Lq, —7L 7 )

Figure 6.3: Context Well-Formedness for Poly-FOL
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I'E7:Type
I'F Atype : Type TMeta ml\/{eta
a:Typeel rz:Tel
TFa: Type 1V Thazor ™
'k 7: Type F,:E:Tl—gp(:r):o(€
Fke(@:7). o(x): T
T:mel' Tkr7:Type,i=1...m
LET(r,...,7m) : Type TConstr
fillag...amm X ...xm =76l k7 :Type,i=1...m
p=loa/m, ..., m/T})] FHti:mpi=1...n
/ 7 Fun
D f(T e Tty oo tn) 1 7p
P:Moy...amm X...x1 w0l ThE7/:Type,i=1...m
p=lar/m,. ..,am/T)] F'kt:mpi=1...n
; ; Pred
Lk P(r,...,7h5t1,.. . ty) 10
Pl——l':oT Fl—_L:OJ_
I'Fei1:o F'_QDQZO/\ I'Fei:o Fl—g@:ov
F'FeiApa:o 'FpiVes:o
I'Fpi:o Fl—npgzo:> I'Fpi:o Fl—npg:o@
'Fpr1=¢2:0 'Fp1 e p2:0
T'Fp:o 'Et1:7 FI—tQ:T:
I'F=p:o I'Hti=rts:0
Iz:7Fy:o0 I'z:7Fy:o0
'Fdz:7m.¢p:0 'EVz:7T.p:0
I‘,ouType}—ng:ov
I'EYa.or:o T

Figure 6.4: Extended Poly-FOL Type System for MLproof
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Closure Rules

o Rules

5 Rules

0 Rules

v-Rules

i P -P R (T, Tim; a,a)
o9 o ® Or
-T Rs(11,. .., Tm;a,0), " Rs(T1,...,Tm; b, a)
@ ®_‘T @ @S
P PAQ, APVQ) AP=Q)
P P,Q -P,-Q P-Q
PVvQ 3 (P AQ) 5 P=Q 3
P | Q" P -Q " -P | Q"7
PsQ 3 (P < Q) 5
-P,-Q | PQ"7 -P,Q | P-Q"7
Jz : 7. P(x) —Vz : 7. P(x)
43

P(e(x: 7). P(x))

Va. P(a)
P(AType)

Vo : 7. P(x)
P(X,)

-3z : 7. P(x)

~P(X,)

WMT‘/PS

WM

Y-3IM

Va. P(a)
P(r)

Winst—rype
7 : Type

Vo :71. P(x)

P(t) ;)'Vzir;st
-3z : 7. P(x)
—|P(t) Y—3inst

t:T

Figure 6.5: Proof Search Rules of MLproof (Part 1)
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Relational Rules

P(Ti, .o Tm; a1, ..oy an), " P(T1,. .., Ty b1, .o by)
pred
a1 757—{ by | e ’ Qn #T,’L bn
fr, o s mmsar, - ovan) # (71, ooy Tmi b1y o by)
fun
ai 757.{ b1 ‘ . ‘ Qnp 7&7-,’1 bn
Rs(11,. .., Tm;a,0), " Rs(T1, ..., Tm; ¢, d) sym
it d | bAc
_\RT(Tl,---,Tm;G, b) q
a7é7— b —-re
Ri(T1,y ..oy Tm;a,b), " Ry(T1, ..., T ¢, d)
trans
¢#ra,~Ri(11,...,Tm; ¢ a)
| b 7é7' d7 _'Rt(Tl7 <oy Tmy b7 d)
Rts(le .. 'aTm;aab)a_'Rts(Tla ce oy Tms Gy d) transsym
d #: a,—Ri(11,...,Tm;d,a)
| b#: ¢, 7 Rs(T1, ..., Tim; b, €)
a =r ba _'Rt(Tlv <5 Tms G d)
transeq
& 7£T a, _'Rt(Tla -- oy Tm; G, (L)
| " R(T1, ... Tm;c,a), " Re(T1, ..., Tim; b, d)
| b#: d,—Ry(11,...,Tm;b,d)
a=r b, Rs(11,...,Tm;¢,d)
transeqsym
d #: a,~Rs(m1,...,Tm;d,a)
| =Ris(T1y -y Tmsa,d), = Rys(T1, -« o, T3 b, €)

| b#+ c,~Rys(T1,. .., Tm; b, ¢)

Figure 6.6: Proof Search Rules of MLproof (Part 2)
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6.2.2.1 Inference Rules of MLproof

We present in Fig. and Fig. the inference rules of the proof-search system of

Zenon, called MLproof.

A Tableau Method Proof System

The inference rules of MLproof are applied following the standard Tableau method, i.e.
starting with the negation of the goal and by applying the rules in a top-down fashion to
build a tree. We use the notation “|” to symbolize the separation of two branches, like in

rules f.

A branch is said to be closed when it ends with an application of a closure rule,
symbolized by “©®”. When all branches are closed, the proof tree is closed and this proof

tree is a proof of the goal.

The two closure rules ®, and ®g deal with reflexive R, and symmetric R relations

respectively. For instance, if the reflexive relation R, is the equality, the rule ©®, is then:

a

a
@T ©r

As mentioned later, the only such relation in the context of our work is actually the equality

relation.

An Ordering for Rule Application

The inference rules are divided into five distinct classes which is reflected in an ordering.
The idea is to minimize the size of the proof tree to reduce the proof search space. The
proof-search algorithm of Zenon will apply the rules with the following order relation <,

where the relational rules of Fig. are identified as [ rules:

O<a<i<pB=<y

The reason of this ordering is simple. We always start by trying to close a branch with
a ©® closure rule. If we cannot close the branch, we try to apply the « rules that deal

with logical connectives and that pursue with one branch. The § rules also continue with
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one branch and generate an e-term. Then, we try to apply the S rules which deal with
logical connectives but generate two branches. Finally, we apply the v rules that deal with

universal quantification and generate new metavariables.

The fairness of this procedure is ensured because all formule are decomposed into
atomic formule at the end, thanks to rules «, 5 and ¢ which are terminating — and obviously
for rules ®. The only category of rules that are not terminating is the v rules which may

generate an infinite number of new formulee.

It should be noted that this algorithm is applied in a strict depth-first order: it closes

the current branch before starting to work on another branch.

Pruning

Pruning is a method to reduce the size of the proof tree. As explained in [Bonichon!
Delahaye, and Doligez| [2007], when a branching node N has a closed subtree as one of its
branches B, it is possible to determine which formuls are useful. If the formula introduced
by N in B is not in the set of useful formulse, Zenon removes N and grafts the subtree at

its place since the subtree is a valid refutation of B without N.

A formula is said to be useful in a subtree if it is one of the formulse appearing in the

hypotheses of a rule application on that subtree.

We present an example of pruning in Sec. [6.2.2.2

Metavariables
In the original and untyped version of Zenon, there was only term metavariables. These
metavariables, sometimes called free variables in the Tableau-related literature, are not

real variables in the sense that they are never substituted with terms inside formulae.
With the original untyped Zenon, when meeting a universally quantified formula of the

shape Vz. P(x), Zenon applies the v rule

Vz. P(z)

P(X) WM

that introduces a new metavariable X, which is linked to this universal formula, and

generates the formula P(X). If Zenon reaches later a state where there is another formula
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like = P(t) — or one of its subformula —, where ¢ is a closed term, then it reaches a possible
contradiction with P(X) — or the corresponding subformula. Another common case is
ending with a formula of the form X ## t. At this point, Zenon instantiates the original
universally quantified formula linked to the metavariable X with the proper term ¢ in the
current branch by applying the rule Yyinst

Vz. P(z)

P(t) YWinst

Since we have extended Zenon to polymorphism, we have universal quantification over
type variables. Then, we need to define also metavariables for type variables and the

corresponding rules in MLproof.

We discuss in more detail in Sec. [6.2.2.2| the role of type metavariables and the difference

compared to term metavariables during proof search.

Hilbert’s e-Terms

When dealing with existential quantification, Zenon uses Hilbert’s e-terms [Giese and
Ahrendt| |1999|. For a formula P(z), the term “c(x). P(z)” is an arbitrarily chosen term
that satisfies P(z), if such a term exists. The use of e-term is an alternative to Skolem
terms. The main benefit of e-terms in the context of the proof search of Zenon is to keep
the information of the linked formula, unlike for Skolem terms, allowing to reuse the same

e-term at different places.

Type Parameters in MLproof Rules
For some closure and relational rules, their application is conditioned by the fact that the

predicate symbols are applied to the same list of type parameters. For instance, here is the

pred rule:
P(11,..sTmi a1, yapn), " P(T1, ..o T b1, - oo, by)
pred
ai 75.,.{ b1 ‘ . ‘ an, ?51-7’1 bn
We see that we have P(7y,...,Tm;a1,...,a,) and = P(71,...,Tm; b1, ..., by), where the
type parameters 71,..., 7, must be the same. Then, the application of the pred rule

116



CHAPTER 6. AUTOMATED DEDUCTION: ZENON MODULO

generates n branches of the form a; #,/ b;. It should be noted that the type 7/, which is

the type of the two terms a; and b;, has no reason to be the same type than ;.

The fact that these type parameters have to be equal can be seen as a precondition.

Equality Reasoning
In Fig. we present the rules dealing with relations. These rules are defined for reflexive
relations denoted R,, symmetric relations denoted Rg, transitive relations denoted R; and

finally transitive and symmetric relations denoted Rys.

In practice, the only relation that is concerned by these rules in our work is the equality

relation.

6.2.2.2 Dealing with Type Metavariables

In Zenon, term metavariables, introduced by the rule vv,s play a special role, as we
have seen above. They serve to simulate a closure rule to determine a substitution by

unification.

In presence of polymorphism, type metavariables may also be introduced, by the rules
Y Mrype A0A V-3, But the behavior of type metavariables differs from the behavior of
term metavariables, it is no more possible to wait to reach a possible contradiction of the

form Atype # 7.

The role of type metavariables is to generate type instances that allow to apply inference
rules bearing conditions on types, like rule pred. Thus, when trying to apply such a rule, we
look for a type metavariable substitution that satisfies the constraints. In case of success,
we instantiate the initial formula with rule V¥instType - This shortcut minimizes both the

search space and the size of proof trees.

As an example, consider that we have a type 7 : Type, two constants a : 7 and b : T,

and a predicate symbol P with signature P : [la. a X @ — 0. We assume:
Va. Ve, y: a. Pla;z,y)

And we want to prove:

P(7;a,b)
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The proof, before pruning of useless formulae, is given below.

Va. Vo,y : a. Pl x,y), ~P(7;a,b)
Va,y: AType- P(AType; l"y) oy
Vy - AType- P(AType§ XATypey y)

® WM

P(AType§ XATypea YAType) ]
@ 'Wmst-rwe
Va,y: 7. P(1;2,y)
Yy : 1. P(1; X7,
@i (7; X7, 9) o
@ P(r; X;,Y7)
Xr #ra Y: #7

YVinst
WM

WM Type

WM

5 pred

Yy : 1. P(T;a,9)
P(ria,Y])
aF#ra Y/ #:b
2T, T7T7
© P(7;a,b)

©

pred
VWinst

We remark that, @ when we introduce the formula P(Atype; X Atyper YAType), we would
like to apply the rule pred with =P(7;a,b). But (2) Zenon needs first to instantiate the type
metavariable Aty,e with the type 7. Then, @ it generates some new (term) metavariables
X, and Y, with the proper type. @ We finally apply the rule pred and identify the
subterms of P(7; X;,T,) with the those of =P(7;a,b), leading to generate two branches.
Then, Zenon reaches a potential contradiction with the formula X # a, thus it instantiates
the linked formula of X, with a. Doing the same with Y, Zenon can finally close the local

branch.

The proof search is done. Thanks to pruning of useless formulae, the open right-hand

branch can be erased, leading to the following proof tree:

Vo. Ve, y : a. Pl x,y), ~P(7;a,b)

Winstrype
Va,y: 7. P(1;2,y) e
Vinst
Yy : 7. P(T;a,y) N
vi
P(71;a,b) st
o) ©)

6.3 Extension of Zenon to Deduction Modulo Theory

In this section, we discuss the extension of Zenon to deduction modulo theory.
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6.3.1 MLproof= and Deduction Modulo Theory

In practice, and unlike the presentation in Sec. of the extension of LLproof to
deduction modulo theory, we do not record the conversion steps by adding an explicit
conversion rule. Instead, we merge the conversion rule with all inference rules of MLproof,

leading to a deduction modulo theory proof-search system called MLproof=.

Given a rewrite system RE and a formula P in normal form with respect to RE, we
denote by [P] any formula congruent to P modulo =gg¢. Then, we can easily extend
the inference rules of MLproof to reason modulo a congruence relation by replacing the

hypothesis of a rule P by its class [P].

For instance, the rule By dealing with the disjunction is:

[PV Al

P

We do not present all the MLproof= system since it is straightforward.

6.3.2 Generation of the Rewrite System

Turning axioms into rewrite rules is a crucial point in deduction modulo theory. In

Zenon Modulo, we propose two solutions to achieve that.

6.3.2.1 User-Defined Rewrite System

When dealing with a specific theory, it is possible to define manually which axiom could
be turned into a rewrite rule, in the sense that it is done outside Zenon Modulo. To do
that, it is possible to tag axioms in TPTP files using a special keyword “rewrite”. This

solution is used to prove B proof obligations.

6.3.2.2 Heuristic to Build a Rewrite System

The second solution to turn axioms into rewrite rules is to rely on a heuristic.

The main advantage of the heuristic is to be fully automatic. But it may also generate

some inappropriate rewrite rules, leading to a rewrite system that does not enjoy good
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properties — like confluence and termination — and that does not allow to have an efficient

proof search.

We present in the following a heuristic, implemented in Zenon Modulo, that allows to

generate both term and propositional rewrite rules.

The main idea is to transform into term rewrite rules, axioms of the shape:
Va. V.t =u

where t is a term that is not a variable and w is any term; and to transform into propositional

rewrite rules, axioms of the shape:
Va. V. P< @

where P is a predicate symbol and ¢ is any formula.

But we have to be more restrictive to avoid catching some particular kind of axioms,
like those expressing commutativity properties of symbols — it would lead to immediate

non-termination.

In the following, P denotes a predicate symbol which is not an equality, ¢ denotes an
arbitrary formula, ¢ a term which is not a variable and w an arbitrary term. In addition,
we denote FV(p) and FV(¢) the union of the free term and type variables of ¢ and ¢
respectively.

For propositional rewrite rules, we let:

Va. Vi, P > P—T
Va. V&, -P > P— 1
Va.Vi. P& > P—

The last transformation rule is under the proviso that FV(y¢) C FV(P) C @ U Z and that

P is not unifiable with ¢ or any subformula of .

For term rewrite rules, we let:
Ya.Vi. t=u > t—u

provided that FV(u) C FV(t) C & U Z and that ¢ is not unifiable with u or any subterm of

u.
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Verifying that the left-hand side of a rewrite rule is not unifiable with any subformula /-
subterm of the right-hand side allows us to eliminate some trivial cases of non-termination.
Unfortunately, it does not guarantee that our final rewrite system is terminating, since we
do not test this criterion for all the rewrite rules. But this heuristic is terminating and

rather efficient, thus we consider it as a good compromise.

6.3.3 Rewriting Algorithm

The implementation of deduction modulo theory into Zenon Modulo consists in per-
forming normalization of formulse during proof search. This step of normalization is done

after the application of each inference rule to all the formulae newly generated.

The normalization procedure goes as follows:

1. We normalize only the literals, i.e. atomic formula or their negation;
2. We normalize with respect to term rewrite rules;
3. We apply one step of propositional rewriting;

4. If the formula is still unchanged, we quit; otherwise we go back to item 1.

This algorithm allows us to normalize an atomic formula up to the point, when we have

either a normal form with respect to the rewrite system, or a non-atomic formula.

6.4 Experimental Results

6.4.1 Presentation of TFF1

TPTP [Sutcliffe] [2009] is a well-established project for the automated theorem proving
community. It provides a large library of problems — around 20,000 problems all categories
together — to test and benchmark automated deduction tools. It also promotes the use
of standard syntaxes for problems and proofs. The most known format is called FOF and
deals with untyped first-order logic (denote FOL). We can also cite the format TFFO for

monomorphic/many-sorted first-order logic (denoted Sorted-FOL).
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The TFF1 format [Blanchette and Paskevich| 2013| is a new format proposed to
the TPTP community in 2013. It extends the format TFFO to polymorphic types. The

polymorphic problems of TFF1 is not yet an official category in the competition CASC.

The syntax of TFF1 is close to the presentation of Poly-FOL in Sec. This format

is used by Zenon Modulo as its input format for polymorphic problems.
6.4.2 Encoding of Poly-FOL into FOL

A solution to use untyped provers with polymorphic theories is to rely on encodings
of Poly-FOL into FOL. This question was largely studied and leads to many different

encodings |[Blanchette, Bohme, Popescu, and Smallbone 2013].

The verification platform Why3 [Bobot, Filliatre, Marché, and Paskevich 2011] imple-
ments different encodings of Poly-FOL into FOL proposed by Blanchette in [Blanchette:
Bohme, Popescu, and Smallbone, 2013]. The default encoding is called “featherweight tags”
(denoted t7?) in [Blanchette, Bohme, Popescu, and Smallbone| [2013] and the second one
tested in the following is called “featherweight guards” (denoted g?7). These encodings are
used in the rest of this chapter to compare the untyped version of Zenon to the one using

the new extension to polymorphism.

In the following, we present the encodings into TFF1 and FOF of the example of
Sec.

6.4.2.1 A Polymorphic Problem in WhyML

The syntax of WhyML is close to the syntax of Poly-FOL. The main differences are
the explicit type variable quantifications in Poly-FOL, which no longer occurs in WhyML,
and the type parameters of function and predicate symbol in Poly-FOL, that are not used
in WhyML. We say that WhyML uses an implicit typing notation.

The example of Sec. in WhyML is:

theory Example
type set ’a
predicate mem ’a (set ’a)
function power (set ’a) : set (set ’a)
axiom mem_power
forall s t : set ’a.
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mem s (power t)

<-> (forall x : ’a. (mem x s) -> (mem x t))
type t
constant u : (set t)

goal example
mem u (power u)
end

6.4.2.2 Translation of the Problem into TFF1

The encoding of the example by Why3 into TFF1 leads to the following code. The
syntax of TFF1 is very close to Poly-FOL, $tType and $o being keywords of the language

and corresponding to Type and o.

tff (t, type,

t: $tType).
tff (u, type,

u: set(t)).
tff (set, type,

set: $tType > $tType).
tff (mem, type,

mem: !>[A : $tTypel: ((A * set(A)) > $0)).
tff (power, type,

power: !>[A : $tTypel: (set(A) > set(set(A)))).
tff (mem_power, axiom,

'[A : $tTypel]: !'[S:set(A), T:set(A)]:

(mem(set(A), S, power(A, T))

<=> 1[X:A]: (mem(A, X, S) => mem(A, X, T)))).
tff (example, conjecture,

mem (set (t), u, power(t, u))).

6.4.2.3 Translation of the Problem into FOF using t7?

The default encoding, called featherweight tags t77, of Poly-FOL into FOF defines two
new function symbols sort — which allows to verify the type of expressions — and witness —
that states the existence of a witness. Then, it changes the original axiom by adding some

constraints to verify the types of expressions.

fof (witness_sort, axiom,

'[A]:

(sort(A, witness(A)) = witness(A))).
fof (power_sort, axiom,

'[A]: '[X]:

(sort(set(set(A)), power (A, X)) = power (A, X))).
fof (mem_power , axiom,
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'[A]: !'[S, T]:
((mem(set(A), S, power (A, T))
=> 1[X]:
(mem (A, X, S) => mem(A, X, T)))
& ('[X]:
((sort(A, X) = X) => (mem(A, X, S) => mem(A, X, T)))
=> mem(set(A), S, power (A, T))))).
fof (u_sort, axiom,
(sort(set(t), u) = u)).
fof (example, conjecture,
mem (set (t), u, power(t, u))).

6.4.2.4 Translation of the Problem into FOF using g??

The second encoding implemented in Why3, called featherweight guards g??, of
Poly-FOL into FOF is very close to the previous one. This time the newly defined symbol

sort is a predicate symbol.

fof (witness_sort, axiom,
1[A]:
sort (A, witness(A))).
fof (power_sort, axiom,
'[A]: '[X]:
sort(set(set(A)), power (A, X))).
fof (mem_power , axiom,
'[A]: '[S, T]:
((mem(set(A), S, power (A, T))
=> 1 [X]:
(mem (A, X, S) => mem(A, X, T)))
& (V'[X]:
(sort (A, X) => (mem(A, X, S) => mem(A, X, T)))
=> mem(set(A), S, power (A, T))))).
fof (u_sort, axiom,
sort(set(t), u)).
fof (example, conjecture,
mem (set (t), u, power(t, u))).

6.4.2.5 Remarks about the Encoding

The two encodings of Poly-FOL into FOF presented above have two main consequences

on the input theory:

1. It increases the number of axioms leading to a larger search space, from one to four

axioms in our examples;
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2. It modifies the shape of the original axioms, adding some conditions that have to be

fulfilled.

3. The TFF1 version of the axiom mem_power is well-suited to be turned into a rewrite
rule using the heuristic presented above, unlike the two FOF versions that cannot be

turned into rewrite rules.

Thus, the main reason to extend Zenon to polymorphism is to be able to use deduction

modulo theory.

6.4.3 Experimental Results

To test our new tool Zenon Modulo dealing with Poly-FOL and rewriting, we perform
an experiment over two different benchmarks, the former coming from the TPTP TFF1

library and the later from the B set theory.

In the following, we call Zenon FOF the original untyped version of Zenon, Zenon TFF1
the extension of Zenon to polymorphism, and Zenon Modulo the extension to deduction

modulo theory of Zenon TFF1.

All these versions of Zenon are actually the same tool Zenon Modulo 0.4.2, using different
options of the command line. The source code of Zenon Modulo is freely accessible at:

http://zenon.gforge.inria.fr/
6.4.3.1 TPTP TFF1

We select all the polymorphic problems of the TFF1 library with status “theorem” —
those which are known to be provable — leading to a benchmark made of 356 problems.

We present in Tab. [6.I] and Tab. [6.2] the experimental results.

In Tab. we compare Zenon FOF with the two encoding t7? and g?? presented
in Sec. Zenon TFF1 and Zenon Modulo with the heuristic presented in Sec.
We indicate the number of problems proved by each provers, and between parentheses
the number of problems that are proved only by the concerned prover. In the second
line, we give the mean time spent to prove problems. Finally, the third line gives the

number of proved problems that are well-checked by Dedukti [Assaf, Burel, Cauderlier!
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Delahaye, Dowek, Dubois, Gilbert, Halmagrand, Hermant, and Saillard| [2016]. In Tab.

we compare Zenon TFF1 to the ATP Zipperposition and the SMT solver Alt-Ergo.

Zenon FOF Zenon FOF Zenon Modulo
356 Prob. . . Zenon TFF1 ] o
with t77 with g?? with heuristic
Proved
115 (4) 124 (8) 124 (6) 91 (7)
(only by)
Mean Time
) 13.3 13.5 9.7 2.7
in seconds
Checked by
) 113 122 117 84
Dedukti

Table 6.1: Experimental Results over the TPTP TFF1 Benchmark (Part 1)

356 Prob. Zenon TFF1 Zipperposition Alt-Ergo
Proved
124 (9) 145 (8) 225 (65)
(only by)
Mean Time
) 9.7 18.4 4.6
in seconds

Table 6.2: Experimental Results over the TPTP TFF1 Benchmark (Part 2)

These results are not conclusive yet. The results of Tab. show that Zenon FOF
with encoding g?? and Zenon TFF1 prove more problems than Zenon FOF with encoding
t77 and Zenon Modulo with heuristic. Zenon Modulo with the heuristic is not efficient in
this benchmark. The reason is that the heuristic generates some non-terminating rewrite

system. It should be noted that each of the four versions of Zenon presented here uniquely

prove some problems.

The results of Tab. show us that Zenon TFF1 proves fewer problems than Zipper-
position and Alt-Ergo. But there are nine problems that are proved only by Zenon TFF1.

Also, Zenon is the only prover considered to generate proof certificates.
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Zenon FOF Zenon FOF Zenon Modulo
320 Prob. ) ] Zenon TFF1 . o
with t77 with g7? with heuristic
Proved
5 (0) 4 (0) 3 (0) 123 (117)
(only by)
Mean Time
. 7.5 10.4 26.6 1.4
in seconds
Dedukti
5 4 3 121
Checks OK

Table 6.3: Experimental Results over the B-Book Lemmas Benchmark (Part 1)

Zenon Modulo ) .
320 Prob. ) o Zipperposition Alt-Ergo
with heuristic
Proved
123 (60) 6 (0) 61 (0)
(only by)
Mean Time
) 1.3 9.7 0.07
in seconds

Table 6.4: Experimental Results over the B-Book Lemmas Benchmark (Part 2)

6.4.3.2 The B Set Theory

We build a benchmark in the WhyML format, made of 320 Poly-FOL problems coming
from the B-Book. These problems are B set theory lemmas stated in the chapter 2 of the
B-Book, and dealing with all the B operators defined. In addition, we define directly in
WhyML the B set theory.

In Tab. we compare the same versions of Zenon, than in Tab. [6.I between each
other. In Tab. we compare Zenon Modulo with the heuristic to the ATP Zipperposition
and the SMT Alt-Ergo.

The results of Tab. [6.3]show that Zenon Modulo with the heuristic is much more efficient
than the other versions of Zenon. The difference is very significant, both for the number of

proved formulee and for the mean time.

The results of Tab. show that Zenon Modulo with the heuristic is also more efficient

than Zipperposition and Alt-Ergo on this benchmark.
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The main reason is that the B set theory is made of axioms that fit well deduction

modulo theory and our heuristic.
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Chapter 7

Proof Certification Using Dedukti

This chapter presents the certification of the proofs produced by Zenon Modulo using the
proof-checker Dedukti. We present in Sec. the All-calculus modulo theory, an extension
of the simply typed A-calculus with dependant types and rewriting, and the proof-checker
Dedukti which implements the AlI-calculus modulo theory. This presentation of Dedukti
is inspired by [Assaf, Burel, Cauderlier, Delahaye, Dowek, Dubois, Gilbert, Halmagrand.
Hermant, and Saillard 2016; |Cauderlier| 2016; [Saillard 2015].

In Sec. [7.3] we present the encoding of Poly-FOL into the All-calculus modulo theory.
This contribution (and its corresponding implementation) is a collaborative work and it
has been published in |[Cauderlier and Halmagrand [2015].

In Sec. we present the encoding of Zenon Modulo proofs in Dedukti, and we provide
an example of proof certificate. This contribution (and its corresponding implementation)

is a collaborative work and it has been published in [Cauderlier and Halmagrand [2015].

7.1 A Proof Checker Dealing with Rewriting

A key feature of Zenon, compared to other ATPs, is its certifying approach (see
Sec. [6.1.3)). It consists in generating proof certificates that can be verified by external

proof-checkers.

The original version of Zenon — without polymorphism and deduction modulo theory —

uses the proof assistant Coq |Bertot and Castéran 2013| as a proof checker.
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The extension of Zenon to deduction modulo theory leads to introduce rewriting steps
inside proofs. In addition, these rewriting steps are not recorded in order to reduce the

size of proofs.

Coq is not well-suited to check proofs using rewriting techniques. This would require to
rebuild all the rewriting steps formally, and provided them to the proof certificates, leading

to unnecessary larger files.

Instead, we choose to use another proof checker, called Dedukti |Assaf, Burel, Cauderlier!
Delahaye, Dowek, Dubois, Gilbert, Halmagrand, Hermant, and Saillard 2016|, which deals

natively with rewriting.

7.2 The AI-Calculus Modulo Theory and Dedukti

The Mll-calculus is an extension of the simply typed A-calculus with dependent
types |[Barendregt, Dekkers, and Statman| [2013]. It is commonly used as a logical

framework to encode logics [Harper, Honsell, and Plotkin| [1993].

The All-calculus modulo theory, denoted by AII= in the following, is an extension of the
MI-calculus to rewriting. We do not claim to give a rigorous and exhaustive presentation
of MIT= here, since it is out of the scope of our work. We only introduce the basic notions
needed for the certification of Zenon Modulo proofs. An inquisitive reader should have a
look at |Assaf, Burel, Cauderlier, Delahaye, Dowek, Dubois, Gilbert, Halmagrand, Hermant
and Saillard| [2016} Saillard| [2015] for a comprehensive presentation of AII=.

7.2.1 Syntax of MI=

We present in Fig. [7.1] the syntax of AII=.

In this calculus, types are not syntactically distinguished from terms. Only two terms,
Type and Kind, are defined in a particular syntactic category and are called sorts, denoted

S.

Type is the sort of the types used to type terms. For instance, if we have the typing
judgment T' - ¢ : A where ¢ is a term and A is its type, then we have T' - A : Type. In this

case, we say that t is an object.

130



CHAPTER 7. PROOF CERTIFICATION USING DEDUKTI

s = Type (sort of types)
|  Kind (sort of Type)
t o= =z (variable)
| 1ty (term application)
| Az ity to (lambda abstraction)
| Iz :ty. to (product)
| s (type)
A = O (empty local context)
| Azt (variable declaration)
r "= o (empty global context)
| T,a:t (variable declaration)
| T t1 —ate (rewrite rule declaration)

Figure 7.1: The Syntax of the All-Calculus Modulo Theory

The second sort Kind is introduced to type Type (see rule Sort in Fig. , and other
types built using Type, like A — Type, ... Thus, if we have the two typing judgments
I'FA:BandID'F B:Kind, we say that A is a type.

A term t is either a variable z, or built inductively from term application, lambda
abstraction and product. It should be noted that the arrow type — is a particular case
of the product type. For instance, A — B is actually Ilz : A. B where z does not occur

freely in B. Finally, a term can also be a sort.

In AII=, local contexts, denoted A, are used to type variables which occur freely in
terms of a rewrite rules. A local context A is a set of variable declarations, i.e. pairs made

of an identifier of a variable and its type.

The last category in Fig. is the global context I', containing variable declarations

and rewrite rules.

7.2.2 Typing Rules

We present in Fig. the typing rules of \I=.
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Well-formedness

wf(T,z: A) Decl

wf(2)

IAFL:A I'AFA: Type
AFr: A FV(r) CFV()C A
Wf(F,l‘—)A 7“)

cW

Typing
wf(T) wf(IT) xz:Ael
— Sort
I' - Type : Kind F'Fzx:A

Var

T’Ft1:llz:AB TFty:A
'ty to: Blx/ts]

App

I'FA:Type TI,z:Art:B F,x:AI—B:sA
'FX:A t:1llz:AB

S

'FA:Type Ix:AFB:s
I'-Ilx: AB:s

Prod

I'bt:A THB:s A= B
THt¢:B

Conv

Figure 7.2: The AI-Calculus Modulo Theory

A variable declaration ',z : A is well-formed if x is not yet declared in I" and if the
type of A is either Type or Kind. A rewrite rule declaration I',l <> r is well-formed if

both term [ and r have have the same type and if  does not introduce new free variables.

It should be noted that we factorize some rules. For instance, in rule Abs, in the

premise I',x : A+ B : s the sort s may be either Type or Kind.

In typing rule App, the notation B[z /ts] denotes the substitution in B of z by to. The
most interesting rule is the rule Conv which tells us that we can replace a type A by

another type B if these two types are SI'-convertible.

The particularity of AII= resides in this rule Conv. I' contains all the rewrite rules
defined, thus the SI'-convertibility deals with both g-reduction and reduction with respect
to the custom rewrite system. When this rewrite system is both strongly normalizing and

confluent, each term gets a unique normal form (up to a-conversion), and both conversion
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and type-checking become decidable.

7.2.3 Dedukti

Dedukti is a proof-checker for the AII=, developed by Saillard [Saillard 2015] and made
of around 2,000 lines of OCaml code. It is used as a backend to verify proofs coming from
ATPs, like Zenon Modulo and iProver Modulo [Burel 2011}, 2013], and from proof assistants,
like Coq [Boespflug and Burel 2012, HOL |Assaf and Burel| 2015] and FoCaLiZe |Cauderlier
2016].

Dedukti implements some powerful features, like higher-order rewriting, making it highly
expressive. In addition, experiments show that its implementation is quite effective in

practice, allowing us to verify proofs quickly.

7.3 Encoding of Poly-FOL into A=

In this section, we present the embedding of Poly-FOL into AII=. This work is an
extension of the embedding of FOL into AII= proposed by Burel [Burel 2013].

This embedding relies on two encodings: a deep encoding, denoted || for a Poly-FOL
formula ¢, in which logical connectives are simply declared as Dedukti constants; and a
shallow encoding, denoted ||¢|| := prf || for a Poly-FOL formula ¢, using a decoding
function prf to translate connectives to their impredicative encodings. We present in
Sec. the deep embedding and in Sec. the shallow embedding of Poly-FOL into
MI=.

7.3.1 Remarks about Poly-FOL and LLproof=

In the following, when speaking about Poly-FOL, we are referring to the syntax extended
to deduction modulo theory, with rewrite rules, but without metavariables and e-terms.
So, it corresponds to the syntax presented in Fig. and Fig. without type and term
metavariables and without e-terms.

In addition, the considered proof system LLproof= does not have an explicit conversion

rule (like in Sec. |5.2.2), instead we merge the conversion rule with all inference rules of
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LLproof= (as for MLproof= in Sec. |6.3.1]).
7.3.2 Deep embedding

We present in Fig. the declarations of Poly-FOL symbols as Dedukti constants,

corresponding to a deep embedding of Poly-FOL. We call I'y the set of declarations of
Fig.

Primitive Types

Prop : Type prf : Prop — Type
type : Type term : type — Type

Primitive Connectives

T : Prop
L : Prop
—- : Prop — Prop
-A- : Prop — Prop — Prop
-V - : Prop — Prop — Prop
-=-: Prop — Prop — Prop
- & - : Prop — Prop — Prop
V-- : Ila : type. (term a — Prop) — Prop
3-- : I : type. (term o — Prop) — Prop
Viype- : (type — Prop) — Prop
-=_-: lla: type. term a — term o — Prop

Figure 7.3: Dedukti Declarations of Poly-FOL Symbols

Our embedding uses two primitive types, Prop and type. Notice that we have type : Type
— case matters. The former is the type of propositions, like T : Prop. The latter corresponds
to the type of Poly-FOL types, like for type variables « : type. In addition, we define two
functions prf and term that embed our encoded Poly-FOL terms and formulae into the

native Dedukti type Type.

7.3.3 Shallow Embedding

We present in Fig. the shallow definitions of the Dedukti constants declared in
Fig. In Dedukti, definitions are given as rewrite rules, denoted with the symbol <.
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prf T < IIP : Prop. prfP — prfP

prf L < IIP : Prop. prfP

prf (—A) — prfA — prfL

prf (ANB) < IIP: Prop. (prfA — prfB — prf P) — prfP

prf (AV B) < IIP : Prop. (prfA — prfP) — (prf B — prfP) — prfP
prf (A= B) — prfA— prfB

prf (A< B) — prf((A= B)A(B=A))

prf (V7 P) — Ilz:term 1. (P x)

prf (37 P) < IIP:Prop. (Ilz : term 7. prf(P x) — prf P) — prfP
prf (Vgype P) — Il : type. prf(P «)

prf (x=ry) << IIP: (term 7 — Prop). prf(P x) — prf(P y)

Figure 7.4: Shallow Definitions of Poly-FOL Symbols in Dedukti

We claim that this embedding is shallow in the sense that our new symbols — corre-
sponding to the Poly-FOL symbols — are normalized into primitive symbols of Dedukti.

For instance, in the following definition of an implication:
prf(A=B) < prfA— prfB

we use the native arrow “—” of Dedukti to define the encoded Poly-FOL implication “=-".

Similarly, for universal quantification, we are encoding “V” with the Dedukti “II”.

Remark The main benefit of a shallow encoding — compared to a deep one — is to benefit
from the computational aspect of Dedukti. In addition, it helps to share proofs coming

from different systems.

For instance, Burel in [Burel [2013] uses a similar encoding to verify proofs coming
from the ATP iProver Modulo. So, it should be quite straightforward to combine proofs

coming from Zenon Modulo with those of iProver Modulo.

7.3.4 Translation Functions from Poly-FOL into \II=

We present in Fig.[7.5and in Fig.[7.6] the translation function of Poly-FOL types, terms,

formulae, local contexts and global contexts into Dedukti.
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Translation of Types 7

la] = «
T(T1y...,Tm)| = T |11| ... |Tml
Translation of Type Schemes o
Moy ...am. 11 X ... X1 = 7| = Ilag : type...au, : type.

term |11| — ... — term|7,| — term ||
Moy ... m. 71 X ... X7 = o] = Tag :type...ayp, : type.

term|m| — ... — term|7,| — Prop

Translation of Terms ¢

|| = =z
lf (71, oy Tty ey tn)| = ] oo 7l [E1] oo - [t
Translation of Formulae ¢
IT| == T
| L] = L
mel = =yl
[p1 Ao == J1| A el
lp1 Vipo| = e1| V|2
o1 = 2| = o1] = |2l
o1 & 2| = 1] & |2
t1 =7 t2o| = [ta] = [t2]
Vo :71. 0] = V|7 (Az:term |7|. |p])
|[Fz:7. | = 3 |7| (Az:term |7]. |p|)
Va. o] = Viype (A : type. [¢])
|P(T1, .y T tay e oytn)| = Pom] ... |l |t1] - |tn]

Figure 7.5: Translation Functions from Poly-FOL into A\II= (Part 1)

136




CHAPTER 7. PROOF CERTIFICATION USING DEDUKTI

Translation of Local Contexts I'y,

o] = @
II'n, a: Type| = |I'L|, a:type
Iy, z:7| = |[L], z:term |7

Translation of Global Contexts I'

|@| = I

m times
g, T::m| := |Ig|, T :type — ... — type — type
Ta, f:o] = [Lal, f:]o]
Ta, P:o| = [Ic|, P:lo]
Te, { —wry vl == |Tal, I =y Ir|

Figure 7.6: Translation Functions from Poly-FOL into AII= (Part 2)

Proposition 7.3.1
The translation from Poly-FOL into N\II= presented in Fig. is correct in the sense that:

1. If T, 'L 7 : Type, then |Ug|,|T'L|F |7|: type
2. If Tg,TLbEt:7, then |Tg|,|TL|F || : term |7]

3. If e, TLF ¢:o, then |T'q|,|IL|F |¢|: Prop

Remark It should be noted that in Prop. the three typing judgments:
I'g, 'L 7: Type I, I, Ft:T I'g,TpkFe:o
refer to the Poly-FOL typing system of Fig. whereas the three others:
ICql, |TL| F |7] : type ITq|, |TL| F |t] : term |7 ITal, |TL| F |¢| : Prop

refer to A\[I= of Fig.

Proof

1. We perform a proof by induction on the structure of 7.

The base case is I'q,I't, F o : Type.
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a. By TVar of Fig. [6.4 we have o : Type € T'y,

b. The translation of Fig. tells us that o : type € |T'y|, so [T'L| F « : type
The general case is I'g, 'y F T'(71,...,7m) : Type

a. TConstr of Fig. tells us that T :: m € I'q and ', 'y, - 75 : Type
b. By induction hypothesis, for i = 1,...,n |Ug|,|TL| F || : type
c. By the translation of Fig. [7.5] T": type — ... — type — type € |I'g]

d. Then, rule App of Fig. tells us that [Tg|,|TL| F T |71 ... |7m| : type

2. We perform a proof by induction on the structure of ¢.

The base case is I'g,I', Fz : 7.

a. By rule Var z : 7 € T'f, thus the translation implies z : term |7| € |T' |

b. Thus we have |I'g|,|I'L| F 2 : term |7
The general case is g, 'L F f(71,. .o, T b1, ooy tn) T

a. By rule Fun, we have f:Iag...qm. 7 X ... x 7, = 7 €Tg and I'g, 'L F 7 : Type

fori=1,....,m

b. By translation, we have f : Ilag : type...q,, : type. term|r{| — ... — term|7),| —

term |7'| € |Tg|
c. By item 1. we have |T'g|,|TL| F || : type
d. By rule Fun, we have also, for i =1,...,n I'g, 'y b t; : 7/[a1 /71, - ., 0o /T
e. Thus, by induction hypothesis |U'g|, |T'L| F [t] : term |7/ [a1 /71, -« G /T
f. And by rule App |Tg|, |TLIF flm] .- |mmllt1] - |tn]  term |7/ [an /71, - o con /T
g. T="7[an/m1,. .., qm/Tm] thus, |Tg|, |TL|E £l |mm| [t1] - - - |tn] : term |7]
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3. We perform a proof by induction on the structure of ¢.

The base cases T and L are direct and cases for logical connectives and the equality are
straightforward.

We present the universal quantification: I'g, 'L FVz : 7. p: 0

We have to show that |Tg|, |T'L| F V|7| (Az : term |7].|p]|) : Prop

a. We have V : Ila : type. (term o — Prop) — Prop

b. By rule App it is equivalent to show that |Ug|,|TL| F Az : term |7].|p]| : term |7] —

Prop
c. By rule Abs, we have to verify that [I'g|,|I'L| F |¢| : Prop

d. Which is true by induction hypothesis

7.4 Translation of Zenon Modulo Proofs into Dedukti

In this section, we present the embedding of Zenon Modulo proofs into Dedukti. Once
again, we define first the Dedukti constants corresponding to the inference rules of LLproof=,

then we give the definitions of these constants in Dedukti by means of rewrite rules.

7.4.1 Deep Embedding of LLproof= into AII=

We present in Fig. and in Fig. the deep embedding of LLproof= into AII=. This

is done by defining constants for each inference rule.

Remark The types of the Dedukti constants declared in Fig. and Fig. translate
exactly the corresponding LLproof= inference rules. If we see sequents as typing contexts,
then I' H L is prfA; — ... — prfA,, — prfl and the deduction rule itself is seen as a

function that associates the conclusion with the premises.

Below, we present the correspondence between the inference rule V and the Dedukti
constant Ry. In this example, we do not consider contexts, the general case will be done

later.
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Closure Rules and Cut

Ry : prfl — prfl

Rt : prf(=T) — prfL

Raz : IIP: Prop. prfP — prf(=P) — prf L

Ry : Ha:type. IIt : term o prf(t #4 t) — prfL

Rsym : Ia :type. ITt, u : term a. prf(t =4 u) — prf(u #q t) — prf L
Reowt @ P : Prop. (prfP — prfl) — (prf(=P) — prfLl) — prfL

Quantifier-free Rules

R~ : IIP:Prop. (prfP — prfl) — prf(=—=P) — prfL
Ry @ P, Q : Prop. (prfP — prf@Q — prf L) — prf(P A Q) — prfL
Ry : IIP,Q : Prop. (prfP — prf 1)

— (prf@Q — prfL) — prf(PV Q) — prf L
Re : IIP,Q : Prop. (prf(—=P) — prfl)

— (prf@Q — prfL) — prf(P = Q) — prfL
Re @ IIP,Q : Prop. (prf(—=P) — prf(=Q) — prf L)

— (prfP — prf@ — prfl) — prf(P < Q) — prf L
Ron @ IIP,Q : Prop. (prf(—=P) — prfl)

— (prf(—=Q) — prfL) — prf(=(P A Q)) — prfL
R.v : IIP,Q : Prop. (prf(—=P) — prf(=Q) — prf L)

— prf(=(PVQ)) — prfL
R.= : IIP,Q : Prop. (prfP — prf(=Q) — prfLl)

— prf(=(P = Q)) — prfL
R.e : IIP,Q : Prop. (prf(—=P) — prf@ — prf L)

— (prfP — prf(—=Q) — prfl)

— prf(~(P < Q)) — prfL

Figure 7.7: Deep Embedding of LLproof= into AII= (Part 1)

Given two propositions P and @), proving the Poly-FOL sequent:
PvQr_L

is done in LLproof= by applying the V rule, resulting in the proof node:

Pl QFL
PVQF L

Then, we have to prove the two sequents P+ L and Q + L.
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Quantifier and Special Rules

Ry  :Ia:type. IIP : (term a — Prop). IIt : term a.
(prf(P t) — prfl) — prf(V a P) — prf L

R.g :Ila:type. IIP : (term o — Prop). IIt : term a.
(prf(=(P t)) — prfL) — prf(=(3 a P)) — prf L

Ry  :Ia:type. IIP : (term o — Prop). (IIt : term «. prf(P t) — prfl)
— prf(3 a P) — prf L

Ry :Ila:type. IIP : (term a — Prop). (IIt : term a. prf(=(P t)) — prfl)
— prf(=(Y a P)) — prfL

Ryyee : P : (type — Prop). lla : type.
(prf(P o) — prfLl) — prf(Viype P) — prfL

Rsupst : Il : type. IIP : (term oo — Prop). It, to : term av. (prf(t1 #q t2)
— prfL) — (prf(P t2) — prfl) — prf(P t1) — prf L

Figure 7.8: Deep Embedding of LLproof= into AII= (Part 2)

The corresponding Dedukti constant Ry, has type:
Ry : IIP, @ : Prop. (prfP — prf L) — (prf@Q — prfL) — prf(PV Q) — prf L
As an informal explanation, we can identify the turnstile - with the logical implication.

This means that, for two given propositions P and @, if we give to Ry a proof that P

implies | and a proof that @) implies |, then we obtain a proof that PV ) implies L.
7.4.2 Shallow Embedding of LLproof= into AII=

We present in Fig. and Fig. and Fig. the shallow embedding of LLproof=
derivation rules into AII=. This amounts to turn the static constants just defined in Fig.
and Fig. [7.8 into rewrite rules.

Remark The shallow embedding gives a meaning to constants. For instance, if we consider

the constant R, the deep embedding of Fig. is:
R, : prfl — prfL

The type of this declaration corresponds to the statement “false implies false”. For the

moment, this statement is just an axiom.

141



CHAPTER 7. PROOF CERTIFICATION USING DEDUKTI

ExMid(P : Prop) : IIQ : Prop. (prfP — prf@Q) — (prf(=P) — prf@) — prf@

NNPP(P : Prop) : prf(——P) — prfP
= )\Hl : prf(—|—|P), ExMid P P ()\HQ . prfP H2) ()\Hg : prf(—|P) H1 H3 P)

Contr(P : Prop,Q : Prop) : prf(P = Q) — prf(-Q = —P)
= \H; : pl’f(P = Q) AHs : prf(—\Q). AHs : prfP. Ho (Hl Hg)

Closure Rules and Cut

[ Ry
— \H :prfl. H

[JR-1
— AHj : prf(=T). Hy (AP : Prop. AHy : prfP. Hy)

[P : Prop| Ra, P
— )\Hl : prfP. )\HQ : prf(—\P). HQ H1

[ : type,t:term o) Ry a t
— AHy : prf(t #4 t). Hy (A\z : (term o — Prop). AHy : prf (2 t). Ha)

[ : type,t : term o, u : term o] Rgym a t u
— AHj @ prf(t =4 w). AHa : prf(u #4 t). Ha (Az : (term a — Prop).
AH3 :prf(z w). Hy (Ax :term a. (z ) = (2 t)) (AHy : prf(z t). Hy) H3)

[P : Prop] Rowt P
— AHj : (prfP — prfl). AHy : (prf(=P) — prfl). Hy H;

Quantifier-free Rules

[P : Prop] R.— P
— AHy : (prfP — prfl). AHy : prf(=—P). Hy H;

[P : Prop,@ : Prop] R\ P @
— AH; : (prfP — prf@Q — prfL). AHy : prf(P A Q). H2 L H;

Figure 7.9: Shallow Embedding of LLproof= into A\II= (Part 1)
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Quantifier-free Rules (Sequel)

[P : Prop,@ : Prop] Ry P Q
— AHp : (prfP — prfL). AHy : (prf@Q — prfl).
AHj; - prf(P\/Q). Hs | Hy Ho

[P : Prop,@ : Prop] Ro. P @
— AH;p : (prf(=P) — prfl). AHy : (prf@Q — prfl).
)\Hg : prf(P = Q) Hl(CORtT P Q Hj Hz)

[P : Prop,Q@ : Prop] R P Q

— AH;p : (prf(=P) — prf(=Q) — prfL). AHs : (prfP — prf@Q — prf L1).
AHs :prf(P < Q). H3 L (AHy : (prfP — prfQ). AHs : (prf@Q — prfP).
(Hy (Contr P Q Hy (AHg : prfQ. (H2 (Hs Hg)) Hg)))
(AH7 : prfQ. (Hs (Hs Hry)) Hr))

[P : Prop,@ : Prop] R.A P Q

— AH; : (prf(=P) — prfL). AHs : (prf(=Q) — prfL).
AH3 : prf(=(P A Q)). Hi (AHs : prfP. Hy (AHg : prfQ. H3 (AZ : Prop.
AHy : (prfP — prf@Q — prfZ). Hy Hs Hg)))

[P : Prop,@ : Prop] R-y P Q

— AH; : (prf(=P) — prf(=Q) — prfL). AHs : prf(=(P V Q)).
H, (Contr P (PV Q) (AHs : prfP. \Z : Prop. AHy : (prfP — prfZ).
AHs : (prfQ — prfZ). Hy H3) Hy) (Contr @ (PV Q) (AHg : prfQ@.
AZ : Prop. AHy : (prfP — prfZ). AHg : (prfQ — prfZ). Hg Hg) Ha)

[P : Prop,@ : Prop] R.—. P Q
— AHj : (prfP — prf(=Q) — prfL). AHy : prf(=(P = Q)). H2 (AH3 : prfP.
(H1 H3) (AH4 : per. H2 ()\H{) : prfP. H4>) Q)

Figure 7.10: Shallow Embedding of LLproof= into AII= (Part 2)
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Quantifier-free Rules (Sequel)

[P : Prop,@ : Prop] R P Q
— AHj : (prf(=P) — prf(=Q)). AHa : (prf P — prf(=—Q)).
AHs : prf(=(P < Q)). (AHy : prf(=P). Hs (AZ : Prop.
AHs : (prf(P = Q) — prf(Q = P) — prfZ). Hs (AHg : prfP.
Hy He Q) (\H+ : prfQ. Hy Hy Hy P))) (\Hs : prfP. Hy Hy (\H, : prfQ.
Hs (AZ : Prop. AHyp : (prf(P = Q) — prf(Q = P) — prfZ). Hio
()\Hu : prfP. Hg) ()\ng . per. HS))))

Quantifier Rules and Subst

[ : type, P : term « — Prop,t : term o) Ry a P ¢
— AHy : (prf(P t) — prfl). AHs : prf(¥ « P). Hy (Ha t)

[ : type, P : term o« — Prop,t:term a| R.g a P t
— AHy : (prf(=(P t)) — prfl). AHy : prf(=(3 « P)). Hy (AHy : prf(P t).
Hy (AZ : Prop. AHs : (x : term o — prf(P x) — prfZ). Hs t Hy))

[ : type, P : term o« — Prop] R3 a P
— AHy : (t:term o« — prf(P t) — prfL). AHy : prf(3 a P). Hy L Hy

[ : type, P : term o« — Prop] Ry a P
— AH; : (t:term a — prf(—(P t)) — prfl). AHa : prf(=(V o P)).
Hy (M :term a. NNPP (P t) (H; t))

[P : type — Prop,a : type] Ry, P «
— AHy @ (prf(P a) — prfl). AHy : prf(Viype P). H1 (H2 )

[ : type, P : term a — Prop, t1 : term a, to : term o] Rgupst « P t1 ta
— AHp : (prf(ty #a t2) — prfLl). AHy : (prf(P to) — prfl).
)\Hg : prf(P tl). H1 ()\H4 : prf(t1 =a tg). H2 (H4 P Hg))

Figure 7.11: Shallow Embedding of LLproof= into A\II= (Part 3)

144



CHAPTER 7. PROOF CERTIFICATION USING DEDUKTI

In Fig. [7.9] we turn the type declaration into the rewrite rule:

[]RL— AH :prfl. H

where [ ] denotes the (empty) local context A. The term AH : prf L. H is an inhabitant
of the type prf L — prf L. In AII=, providing a term of a particular type can be seen as a
proof of the corresponding statement. Consequently, the statement “false implies false” is

a proved lemma.

We introduce in Fig. [7.9] the constant ExzMid, which corresponds to the law of the
excluded middle, and we do not provide any definition for it — it remains as a type
declaration. As AII= is a constructive framework, it does not enjoy this property for free,
and we must add it as an axiom. This is the only axiom that is added to Dedukti in our
work. We need it to prove the lemma called NNPP in Fig.[7.9] a direct corollary that

allows us to prove the LLproof= rule -V, a classical rule.

We also define a lemma Contr, corresponding to the law of the contraposition, as a

convenience to prove some LLproof= inference rules also.

All the proofs of LLproof= inference rules given in Fig. and Fig. and Fig.
have been well checked by Dedukti.

7.4.3 Translation of LLproof= Proofs

We now present the extension of the translation functions of Fig. [7.5 and Fig. [7.6]
to LLproof= proofs. We first introduce the translation of LLproof= sequents into typing

contexts.

|01, von B L = xg, sprfleon], ... 2y, prflen]

The formulee @1, ..., p, correspond to the axioms and hypotheses of the problem. The

translation of an axiom ¢ is done by defining a new constant x, which has the type prf [¢|.
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The general function to translate proofs is:

Hl Hn
Ly, HY,...,H-1 ... T, H! . . .  HY
[,C,...,Cp L

l_

1
Rule(Argy, ..., Arg,)

RRule |AI‘g1| ‘Argr|
Az prf |HY|. ... Azgm : prf [H]'] . [IT1])

(Azp : prf |H}|.

Toy. ... To,
where zc,, ..., zc, are variables declared of type prf |C1], ..., prf|C}| respectively,
Hi,...,HP ... H! ... HZ are all the subformule of C1,...,C, generated by the appli-

n

cation of the rule, and I',I'y, ..., I, are contexts.
For instance, we want to translate the following proof tree:

IIp g
ILPVQ,PFL T,PVQ,QF L
T.PVOF L

By applying the translation of Fig. [7.5| and Fig. and its extension to proofs given above,

we obtain the Dedukti proof term:
Ry [PHQ[(Azp : prf|P|. [IIp[) (Azq : prf|Q[. [Ig]) zpvq

It should be noted that we do not have to make a A abstraction over P V @) again since

we already have a constant xpyg coming from a previous A abstraction or an axiom.

Remark We check that a LLproof= proof II is a valid proof of the LLproof= sequent I' - L,
by checking the AII= typing judgment |T'| - [II| : prf L.

7.5 Proof Certificate Example

To illustrate the certification of proofs with Dedukti, we present an example in B set

theory. The Poly-FOL theory 7T consists of three axioms defining membership to the
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empty-set, membership to set difference and equality between sets which have been turned
into rewrite rules. It should be noted that the equality considered here is not the common
equality =, but a particular predicate symbol defined only for sets. We denote it =t and use
the extensionality property of it (axiom SET4 of the B theory). Consequently, the signature

of = is different than the one of the common equality =.

In the following signatures, We do not indicate type arguments, only term arguments

with the symbol -:

set 1 1
-€- : Ila. a xset(a) = o
-E L a. set(a) x set(a) — o
@ : Ta. set(a)
- —- : Ila. set(a) x set(a) — set(«)

And the rewrite rules, where type arguments are subscripted:

set
s=qt 7 (: Type,s:set(a),t:set(ar)) Vr:ia. v €y s Tt

T €q Da (o Type,z:02) 1

T E€as—al 7 (a:Type,s:set(a),tiset(a)) L CasNX ga t

We prove the formula, given a type 7:
Vs :set(r). s —r s =, @,

The LLproof= proof tree generated by Zenon Modulo is (we omit to repeat the context I'):

Ax

N C2 €1 C1,C2 g’r c L
ﬁ(C2 €r €1 —r 01)762 € I L C2€rC — 7 cl’_‘(CZ €r QT) H L _
—\((02 &rc1 —~ 01) == (CQ cr @7—)) F L v

—|(Cl —r C1 s:etT @T) L v

set

(Vs :set(r). s—r s =, ;) F L

Remark It should be noted that some normalization steps are hidden in the proof. The
first normalization occurs before the third application from the bottom of rule =V, where the

atomic formula ¢; —; ¢1 sétT @, has been rewritten into Vo : 7. (x €, ¢c1 —r 1) & (x €7 F7).

A second normalization occurs before the application of the closure rule L on the
left-hand branch, and the last one occurs before the application of the rule A on the

right-hand branch.
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We obtain the Dedukti proof certificate of Fig. and Fig.

set - : type — type
T . type

- €. -: lla : type. term o — term set a — Prop

- =_-: lla: type. set a — set o« — Prop
a_: Ila : type. set

- —o-: o : type. set o — set a — set «

st V(o) Az : (term a). © €4 5 = T €4 1)
TEQG Ty — L
TELS—aql— TELSANT &yt

Figure 7.12: Dedukti Proof Certificate in B Set Theory (Part 1)
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Goal : prf(—(V(set 7)(As : (term set 7).5 —r s =, @,))) — prfL

[|Goal —
set

Axg : prf(—(V(set 7)(As : (term set 7).s — s =, D;))).
R_v(set 7)
(As : (term set 7).5 — s =, ;)
(Acy : (term set 7).
Axg :prf(ci —7 1 Fset + Dr)-
R-v(T)
Az : (term 7).(x €7 c1 —r 1) © (v €7 D))
(Acg @ (term 7).
Axyg:prf(=((ce €7 1 —7r 1) © (c2 €7 D1))).
Roo(c2 €7 c1 —7 1)
(c2 €7 D7)
(Axs : prf(=(c2 € c1 —7 1)).
Axg : pr(ce €7 D).
R176)
(Az7 @ prf(cq €7 ¢1 —7 €1).
Azg : prf(—(ce € D7)).
Ra(e2 €7 c1)
(c2 &7 c1)
(Azg : prf(ca € c1).
Az @ pr(cs €- c1).
Raz(c2 &7 c1)
Z10
Z9
x7)
.%‘4)
x3)
1’2)

Figure 7.13: Dedukti Proof Certificate in B Set Theory (Part 2)
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Chapter 8

The BWare Project

We present in this chapter the BWare project and the experimental results of our work.

We make a short presentation of the BWare project in Sec. In Sec. we introduce

the different tools involved in the BWare toolchain.

In Sec. we present the B set theory expressed as a Poly-FOL rewrite system. This
contribution is a personal work and it has been published in |[Bury, Delahaye, Doligez.

Halmagrand, and Hermant| 2015b].

In Sec. we present the experimental results obtained over the BWare benchmark.
In particular, we compare our tool Zenon Modulo to other state-of-the-art automated
deduction tools. These experimental results have been published in [Bury, Delahaye!

Doligez, Halmagrand, and Hermant| 2015b].

8.1 Presentation of the BWare Project

The BWare project |Delahaye, Dubois, Marché, and Mentré [2014] is an industrial
research project which intends to provide a mechanized framework to help the automated
verification of proof obligations coming from the development of industrial applications using
the B Method. The BWare consortium gathers academic entities — Cedric |[Centre d’Etudes
et de Recherche en Informatique et Communications|, LRI |[Laboratoire de Recherche en
Informatique] and Inria [Inria] — as well as industrial partners — Mitsubishi Electric R&D [Mit+

subishi Electric R&D Centre Europe|, ClearSy [ClearSy| and OCamlPro [OCamlPro].
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The methodology of the BWare project consists in building a generic platform of
verification relying on different ATPs, such as first-order provers, and SMT solvers. This
platform is built upon Why3 [Bobot, Fillidtre, Marché, and Paskevich| 2011], a platform
for deductive program verification which provides a rich language for specification and
programming, called WhyML, and that relies on external provers to discharge verification
conditions. The automated deduction tools used in the BWare framework are the ATP
Zenon Modulo, the ATP iProver Modulo |[Burel 2011] and the SMT solver Alt-Ergo [Bobot.
Conchon, Contejean, Iguernelala, Lescuyer, and Mebsout| [2013]. The diversity of these
theorem provers aims to allow a wide panel proof obligations to be automatically verified

by the platform.

Beyond the multi-tool aspect of this methodology, the originality of BWare resides
in the requirement for the verification tools to produce proof objects, which have to be

checked independently.

To test the BWare platform, a large collection of proof obligations is provided by the
industrial partners of the project, which develop tools implementing the B Method and

applications involving the use of the B Method.

8.2 The BWare Toolchain

From B proof obligations to proof certificates, the BWare project relies on a series of

tools. We present in the following the toolchain involved.

8.2.1 Generating Proof Obligations

The generation of B proof obligations involves two different tools, the B integrated devel-
opment environment Atelier B [ClearSy| [2013] and a translation tool called bpo2why [Mentré.

Marché, Filliatre, and Asuka 2012].

8.2.1.1 Atelier B

Atelier B [ClearSy| 2013] is developed and distributed by ClearSy. This tool implements

the B Method and has been designed to cover all the development stages of B projects. In
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particular, it allows to write specifications and refinements, to generate the corresponding
proof obligations, to prove these proof obligations automatically or interactively, and finally

to extract the resulting source code of a B project.

In the context of BWare, Atelier B is used to generate the proof obligations in their

native format, denoted B-PO format.

8.2.1.2 bpo2why

bpo2why [Mentré, Marché, Fillidtre, and Asuka, 2012] is a tool developed by Mit-
subishi Electric R&D for the BWare project. It allows to translate proof obligations from the
B PO format into WhyML, the language of the Why3 platform. For the moment, bpo2why
is a proprietary software.

The translation scheme implemented by bpo2why is not a simple syntactic translation.
It performs some non-trivial type inferences on proof obligations to rebuild typed proof
obligations in the WhyML format. It also eliminates some non-first-order B constructions,

like sets defined by comprehension.

8.2.2 Proving Proof Obligations

The second stage of the BWare toolchain concerns the verification of proof obliga-
tions. Why3 is the central tool of the platform and calls the automated deduction tools

Zenon Modulo, iProver Modulo and Alt-Ergo.

8.2.2.1 The Why3 Platform

Why3 [Bobot, Filliatre, Marché, and Paskevich| [2011], a project carried by LRI, is a
platform dedicated to program verification and which relies on external provers. The native
language of Why3, called WhyML, is based on polymorphic first-order logic and is close
to Poly-FOL (see Sec. . Besides external provers, Why3 is provided with the SMT

solver Alt-Ergo.

In the context of BWare, it is used to call provers on proof obligations. It manages the

different input formats of provers, using particular encodings if needed through drivers.
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8.2.2.2 Deduction Tools

As presented in Sec. the three automated deduction tools of BWare are Zenon Modulo,
iProver Modulo and Alt-Ergo.

iProver Modulo [Burel [2011], developed by Burel, is an extension of the resolution
and instantiation based first-order logic ATP iProver [Korovin 2008] to deduction modulo
theory. The input files of iProver Modulo are typically in the TPTP FOF format — it does
not understand polymorphism. The proof obligations provided by Why3 to iProver Modulo
are in the TPTP FOF format, resulting in an encoding of polymorphism into untyped

first-order logic (see Sec. [6.4.2)).

Alt-Ergo [Bobot, Conchon, Contejean, Iguernelala, Lescuyer, and Mebsout 2013,
developed by OCamlPro, is the first SMT solver to natively deal with polymorphism. It
was originally designed to be the dedicated deduction tool of the platform Why3, thus the
proof obligations provided by Why3 to Alt-Ergo are in its native format.

Zenon Arith [Bury and Delahaye [2015] is an extension of Zenon to linear arithmetic
developed by Bury. This extension can be used through Zenon Modulo, as we will see in

experimental results in Sec. 8.4
8.2.2.3 Proof Checkers

The last stage of the BWare toolchain consists in the proof checker Dedukti. Only

Zenon Modulo and iProver Modulo can produce proof certificates for the moment.

8.3 The B Set Theory

As shown in Sec. the tool bpo2why translates B proof obligations into WhyML. But
we did not mention the B set theory yet. We have to provide the theory to Why3 in WhyML
format. The solution chosen in BWare is to define the B set theory directly in WhyML. This
solution differs from the presentation proposed in Sec. therefore it is not consistent
with the theoretical results presented in previous chapters. Nevertheless, these theoretical
results ensure us that Poly-FOL is a fair candidate to define the B set theory. In addition,

a hand-made B theory in WhyML allows us to choose the most effective definitions of
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B operators while being faithful to the original B definitions (see the discussion at Sec.|5.4.3]).

The solution proposed is to define directly the rewrite rules for the derived constructs.
The resulting rewrite rules are mostly propositional and based on the membership predicate

symbol. In addition, we preserve the proper typing constraints coming from the real axioms.

The translation of the definition of the union, as presented in Sec. lead us to

define a function symbol f such that we have the rewrite rule:
T €q flasu,s,t) —p, TEQUN (T Eq SV T ELL)

where I', := (a : Type,z : a,u : set(«a), s : set(a),t : set(a)).

In the rewrite rule above, the variable v is not needed anymore to preserve the well
typedness, since we have the typing constraints represented in I'y, for z, s and t. So, we

choose to define the rewrite rule for set union as follows:
TEqSUal —1, TELSV I ELL

where I't, := (o : Type,x @ o, s @ set(a),t : set(a)), and the function symbol U(a; s, t) is

noted with an infix syntax.

We now introduce the hand-made B set theory modulo used by Zenon Modulo in BWare.

The definitions of these rewrite rules are done in the spirit of the example above.

The presentation follows the order of Sec. [[.2.3.2l We give, for all the introduced
symbols, its type signature and the corresponding rewrite rule. In addition, we use an infix
notation and subscript type parameters. For type signatures, we point out the position
of term arguments with the symbol “-” and we do not explicitly write type arguments.
Finally, to lighten the presentation, we do not give local contexts of the rewrite rules since

types of arguments are given in type signatures.

The translation tool bpo2why uses a particular predicate symbol for set equality (see
Sec. [7.5). This allows us to reduce equality between sets using the extensionality, which is

quite effective in practice. In the following, we use:

-E o set(a) x set(a) — o
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to denote the set equality, which is supposed to be different from the usual equality

-=-:Ilao. axa—o

Core Theory
First, we present the signatures of primitive symbols (see Sec. [4.1.1]).

set :: 1

tup :: 2
(-,-) : Hogag. ag X ag — tup(aq, ag)
P(-) : Ia. set(a) — set(set(a))
-x - @ Iagag. set(ag) x set(ag) — set(tup(ag, az))
-€- : Ho. a xset(a) = o

- = . set(a) X set(a) — o

Then, we turn the three axioms SET1, SET2 and SET4 into rewrite rules.

(:E?y)ahag etup(oq,az) S Xal,CVQ t —x 60{1 WA Yy €a2 t
5 €set(a) Pa(t) — Vr:a. z€qs=a €t

set

S=qt —Vr:a.x €8x ELQL

We do not remove the axiom SET4 (with the common equality symbol =) from the resulting

theory because it may be necessary for some proof obligations.

Set Inclusion
The two constructs for set inclusions can be seen as syntactic sugar, using the membership

to the powerset.
- C- :Ila. set(a) x set(a) — o
- C - : Ila. set(a) x set(a) — o

sCal —s Cset(a) Pa(t)

set

$Cat —sCutA(s=4t)

Basic Set Theory Derived Constructs
The following rewrite rules for union, intersection, difference and singleton do not use

the typing set u of the original B definition (see Sec.[5.4.3). In addition, we change the
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definition of the empty-set because we do not want to use the set BIG in practice.

-U- : Ha. set(a) x set(a) — set(a)
set(a) x set(a) — set(«)

- —- : Ia. set(a) x set(a) — set(a)
{-} Ta. o — set(a)
o : la. set(«)
Pi(-) : e set(a)

— set(set(a))

T ELSsSUglt — T ELSsVITELT
T ELSNyl — T ESANT ELT
TEQLS—aql — T ELSANT Et
xE€q {ata — =00
T €YDy — L
Pia(s) — Pa($) —set(a) {Daset(a)

Binary Relations: First Series
The first series of constructs related to binary relations. In the following, we omit type

parameters to enlighten notation when it is clear from the context.

- - oo, set(ag) x set(ag) — set(set(tup(ai, a2)))

(
-~1 Mo ag. set(tup(ag, az)) — set(tup(ag, a1))
dom(-) : Ilayas. set(tup(aq, ag)) — set(ay)
ran(-) : Iajas. set(tup(ag, a)) — set(az)

1
;- Hajagas. set(tup(ag, ag)) X set(tup(ae, ag)) — set(tup(ai, ag))
-o- :lajagas. set(tup(ag, as)) x set(tup(a, o)) — set(tup(aq, as))
id(-) : Ila. set(a) — set(tup(a, @)
- < - Hajag. set(ag) x set(tup(ag, ag)) — set(tup( )
- > - Hajag. set(tup(ag, ag)) x set(ag) — set(tup( )
- < - Toagag. set(aq) x set(tup(ag, ag)) — set(tup(ai, ag))
- B - Hogag. set(tup(ag, ag)) X set(ag) — set(tup( )
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P Cset(tup(ar,az)) U SFajan V7
Vo a1 Yy oo (2,Y) €wplar,an) P = T €ay UNY Eay ¥
(¥, %) €rup(anm) Pagar — () Erup(ar,az) P

T €ay dOMay 0y (p) — 3b: 2. (2,0) Eup(aya0) P

Y €ay raNa; a0, (p) — 3a: 1. (a,Y) Eruplas,az) P
(7, 2) €tup(ar,as) Piarazas @ — 30 aa. (2,0) Eruplar,an) PA (0, 2) Eruplas,as) 4

q %ay,a2,03 P — Dion,a0,a3 4
(7,9) Cruplasa) ida(u) — T €Eq uNT =4y

Y) Ctuplar,az) 5 D a0l — (z,y) Ctup(ar,az) PANT €ay 8

(Z,Y) Etuplar,an) P > anoat — (T,Y) Etuplar,an) PAY €ay t

( y) Etup(oq,oeg) s < ar,aaP — (l‘vy) Etup(al az) P ANz ¢a1

(z,y) Ctup(ar,a2) P B o100t — (z,y) Ctup(ar,az) PAY Zas t

Binary Relations: Second Series

The second series of constructs related to binary relations.

-[-] : Togag. set(tup(ag, an)) x set(ay) — set(az)
-<- : Hogoe. set(tup(ag, ag)) x set(tup(ag, az)) — set(tup(ag, ag))
-® - Hajagas. set(tup(a, ag)) X set(tup(ag, ag))

— set(tup(aq, tup(ag, as)))
pri1(-) : Hajas. tup(set(aq), set(as)) — set(tup(tup(ay, as), aq))
pri2(-) : Hajag. tup(set(ay), set(ae)) — set(tup(tup(ag, az), as))

-|]- : Hagagasay. set(tup(ag, ag)) X set(tup(as, ay))
— set(tup(tup(ai, a3), tup(ae, ay)))

T €ay PlWarap — Ja a1, a €ay WA (a,T) Eqyplar,ag) P
(z,y) Ctup(a,eg) T<Ftar,a2l —

((z,y) €tup(ar,az) 4N T Eay doMa, a, (P) V (z,y) Ctup(a,az) P
(z,(y,2)) Ctup(ay,tup(ag,as)) f ®ar 02,05 9 —

(Z,Y) €tuplar,an) f N (%5 2) Eruplar,az) 9
(%, 4), 2) Crup(tup(as,an),a1) Plilag.as(8:1) —

((%,9): 2) Erp(tup(ar,az),a1) (8 Xa1,a0 1) Xtup(ar,az)ar S AT =ay 2
(%, 9), 2) Erup(tup(an,as),az) Pi2ay a0 (5:1) —

((z,9),2) Stup(tup(ar,a2),a2) (5 Xay,a0 t) Xtup(ar,as),as t AN Y =ay Z
(( )7 (Zv )) Etup (tup(a1,a3),tup(az,aq)) h’|01,04270437a4k —

(T,2) €tuplar,an) I A (U, W) Eruplas,aq)
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Function Constructs

The constructs related to functions.

-+ - Hajag. set(ag) x set(ag) — set(set(tup(aq, az)))
- — - Hogag. set(ag) x set(ag) — set(set(tup(a, a2)))
- -0 Hagag. set(ag) X set(ag) — set(set(tup(aq, az)))
-— - Hojas. set(ag) x set(ag) — set(set(tup(ay, a2)))
- +» - Hajag. set(ag) x set(ag) — set(set(tup(aq, az2)))
- — - Hogag. set(ag) x set(ag) — set(set(tup(ay, az)))
- - Hajag. set(ag) X set(ag) — set(set(tup(aq, a2)))
- - [lagag. set(a) x set(ag) — set(set(tup(ay, asg)))

J Eset(tup(ar,az)) S T a1,a0t —
I Eset(tup(ar,az)) S Far,as A
(Ve : 1. Vy, 2 : ao. (x,y) €tup(ar,az) f N (7, 2) Ceuplar,ae) [ = Y =as 2)
f Cset(tup(ar,az)) S ~Ta,a2 t—
f Esetltup(on.an)) S T anast Adomay ay(f) Zay s
J Eset(tup(ar,az)) S 1T ar,ast —
J Eset(tup(ar,az)) S T a1,a0t A 0711,012 Eset(tup(ar,az)) t 17 az,a1 S
J Eset(tup(ar,a0)) § arae t
J Eset(tup(ai,az)) 5 1 an,a0t A f Eset(tup(ar,az)) § aras t
J Eset(tup(ar,az)) S T a1,a0t —
[ Eset(tup(ar,an)) 8 T ar,a2t ATanay oy (f) S':etw t
[ Cset(tup(ar,az)) § aran t —
[ Eset(tup(ar,a2)) S T araot N f Eset(tup(ar,az)) § aran t
J Eset(tup(ar,az)) S arant —
f Eset(tup(ar,az)) 81 1,00t A f Eset(tup(araz)) 5 T a1,a0t
f Eset(tup(ar,az)) 5 ~Par,a2 T —

f Eset(tup(ozl,az)) S "ay,a0 A f Eset(tup(cn,cxg)) S ag,a t

8.4 BWare Experimental Results

We present in this section the experimental results obtained over the BWare benchmark.

These results allow to test our tool Zenon Modulo.
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8.4.1 The BWare Proof Obligations Benchmark

The set of B proof obligations (POs for short) provided by the industrial partners of the
BWare project is a very valuable resource. It is usually difficult for academic researchers to

get access to real industrial datas to test their tools.

8.4.1.1 Presentation

Mitsubishi Electric R&D and ClearSy have provided to BWare a set made of 12,876
proof obligations coming from real industrial projects. These POs have been anonymized,

allowing us to use and to distribute them.

After this anonymization and the translations through bpo2why and Why3 drivers, it
is difficult to understand the mathematical meaning behind the input files corresponding
to POs. But the industrial partners have chosen precisely this set of POs to have a wide
spectrum, that reflects well the different kinds of mathematical formulae that appear in B

projects. Then, all the B operators defined in Sec. are represented in this benchmark.

It should be noted that one important challenge represented by these POs are their
sizes and their large contexts. For instance, the mean size of input files in TPTP TFF1
format is 515 KiB — with a maximum of 2,690 KiB — which represents thousands of lines.
In addition, each PO is provided with hundreds of useless axioms and hypotheses, all these
formulae being quantified over dozens of variables. Consequently, the proof search space is

generally very large, requiring us to implement efficient deduction tools.

All the POs of the benchmark are provable since they have been proved inside Atelier B,
automatically or interactively. The automated theorem prover of Atelier B, called “main
prover” and denoted mp, is able to prove automatically 85.4 % of this benchmark, the

resulting 14.6 % requiring a human interaction to be proved.

8.4.1.2 Availability

The benchmark is publicly available, under the CeCILL-B license, at: http://bware.
1ri.fr/. CeCILL is a French free software license, compatible with the GNU GPL (see:

http://www.cecill.info/licences.en.html).
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Several formats are proposed and divided into several archives. The considered formats

are the following:

e TPTP FOF (regular TPTP format for mono-sorted first order logic);
e TPTP TFF1 (TPTP format for first order logic with polymorphic types);
e SMT-LIB v2 (regular SMT format for many-sorted first order logic);

e Alt-Ergo (input native format of Alt-Ergo).
8.4.2 Experimental Protocol

The experiment was run on an Intel Xeon E5-2660 v2 2.20 GHz computer, with a timeout
of 120 s and a memory limit of 1 GiB. For each tool (except mp, which was tested directly
over the native format of POs coming from Atelier B, thus not through the Why3 platform),
the following input formats and command lines (where %t is the timeout, %m the memory

limit, and %f the file name) were used:

e Zenon Modulo 0.4.1 (Zenon with types, deduction modulo, and arithmetic):
Input format: TPTP TFF1;
Command line: “zenon_modulo -p0 -itptp -b-rwrt -rwrt -x arith

-max-size %mM -max-time %ts %f”.

e iProver Modulo v0.7+0.2:
Input format: TPTP FOF;
Command line: “iprover_modulo_launcher.sh %f %t --strategies
’Id;Equiv(ClausalAll)’ --normalization_type dtree --omit_eq

false --dedukti_out_proof false”

e Alt-Ergo 0.99.1:
Input format: Alt-Ergo;

Command line: “alt-ergo -timelimit %t %f”.

e Vampire 2.6:
Input format: TPTP FOF;
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Command line: “vampire --proof tptp --mode casc -t %t %f”

e E1.8:
Input format: TPTP FOF;

Command line: “eprover --auto --tptp3-format %f”.

e CVC4 1.4:
Input format: SMT-LIB v2;

Command line: “cvc4 --lang=smt2 --rlimit %t000 %f”.

o 734.3.2:
Input format: SMT-LIB v2;

Command line: “z3 -smt2 -rs:42 %f”.

8.4.3 Experimental Results

We present in this section the experimental results obtained by Zenon Modulo over the
BWare benchmark. First we compare the different extensions implemented in Zenon. Then,

We compare Zenon Modulo to other deduction tools.

8.4.3.1 Zenon Extensions

We summarize in Tab. the results obtained by the different extensions of Zenon
over the 12,876 POs of the BWare benchmark.

The first column gives the results of the Atelier B prover, called mp. Then, we give in

the next five columns the results for the different versions of Zenon.

The column “Zenon” corresponds to the original untyped implementation of Zenon (with
the TPTP FOF input format). The column “Zenon Typed” corresponds to the extension
of Zenon to polymorphism presented in Sec. The column “Zenon Arith” presents the
results obtained by the extension of Zenon to linear arithmetic done by Bury |[Bury and

Delahaye, 2015] (this is not our work).

The next column “Zenon Modulo” gives the results obtained by our tool Zenon Modulo,

i.e. Zenon extended to polymorphism and deduction modulo theory. Finally, the last
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All Tools (12,738 / 98.9%)

Zenon Zenon Zenon Zenon
12,876 mp Zenon ) i

Typed Arith Modulo Mod-+Ari
Proofs 10,995 337 6,251 7,406 10,340 12,281
Rate 85.4% 2.6% 48.5% 57.5% 80.3% 95.4%
Time (s) - 6.9 2.3 2.5 3.0 2.6
Unique 329 0 0 0 34 946

Table 8.1: Experimental Results over the BWare Benchmark (Part 1)

column “Zenon Mod-+Ari” corresponds to the combination of Zenon Modulo and Zenon Arith.

The lines “Proofs” and “Rate” correspond respectively to the number and the percent-
age of POs that have been proved by the corresponding tool. The line “Time” gives the
mean times, in second, taken to prove a PO. Finally, the line “Unique” gives the number

of POs proved only by the corresponding tool.

The results of Tab. are very conclusive. We remark that each extension improves

the number of POs being proved.

Our first contribution, the extension of Zenon to polymorphism, allows to improve the
number of proved POs from 337 to 6,251, i.e. an increase of 1,755 %. We can conclude
from this result that dealing natively with polymorphism is better than relying on an

encoding, at least for this benchmark.

Our second contribution to Zenon, the extension to deduction modulo theory, is also
very conclusive. It allows to prove 4,089 more POs, corresponding to an increase of 65 %
with respect to polymorphic typed version. We can conclude from this result that deduction
modulo theory is quite effective to improve proof search in the B set theory. In addition, if
we combine Zenon Modulo and Zenon Arith, we raise the number of proved POs to 12,281,
i.e. a percentage of 95.4 %. This is exactly ten percentage points more than mp, the native

prover of Atelier B (which also deals with arithmetic).

The combination of Zenon Modulo and Zenon Arith performs well. We remark that Zenon
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Mod+Ari proves 1,941 more POs than Zenon Modulo, and that Zenon Arith proves 1,155
POs more than Zenon Typed. Thus, we can deduce that Zenon Modulo helps Zenon Arith
to prove 786 POs which need arithmetic reasoning and that it could not prove before. This

is an unexpected and satisfying behavior.

It should be noted also that a mean time per PO smaller than 3 seconds is reasonable.

The experimental protocol does not allow us to compare this mean time to the one of mp.

Finally, the last important information provided by these results are the number of
POs proved only by one tool. We remark that mp proves 329 POs that no version of Zenon
manages to prove. But it is also the case for Zenon Modulo (34 POs) and for the combination
of Zenon Modulo and Zenon Arith (946 POs). An unexpected behavior of the combination of

Zenon Modulo and Zenon Arith is to lose some problems that Zenon Modulo may prove alone.

We present in Fig. [8.1] the same results than in Tab. The goal of this figure is to

@ Zenon

30 + (2) Zenon Typed
(3) Zenon Arith

(4) Zenon Modulo
@ Zenon Mod+Ari

@ ®

20

Time (ks)

10

/O .
0 2000 4000 6000 8000 10000 12000
Number of Proved POs

Figure 8.1: Cumulative Times According to the Numbers of Proved POs
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represent the cumulative time spent to prove all the POs. We select only the POs that
have been proved, and, for each tool, we ordered them from the fastest to prove to the

longest.

We remark that for the four implementations of Zenon using polymorphism, the
cumulative time is increasing linearly for around the first 80 % POs. In fact, the mean
time spent for these 80 % POs is less than 0.5 seconds, which is much lower than the 3
seconds of Tab. BRIl

Remark Zenon Modulo can generate proof certificates for all the 10,340 proofs found. All
these 10,340 proofs certificates are checked well by Dedukti (this output was switched off
for the benchmark).

This is not yet possible to generate proof certificates for Zenon Arith, thus for its

combination with Zenon Modulo.
8.4.3.2 General Results

We compare in Tab. the results of Zenon Modulo to the tools of BWare on the
left-hand side, and to the state-of-the-art provers mentioned in Sec. on the right-hand

side.

The BWare provers are mp, the combination of Zenon Modulo and Zenon Arith (denoted

Zen M+A), iProver Modulo (denoted iProv Mod) and Alt-Ergo. The state-of-the-art provers

All Tools (12,797/99.4%)
BWare Tools (12,772/99.2%) Other Tools
Zen iProv Alt
12,876 mp Vamp E CvC4 Z3
M+A Mod Ergo
Proofs| 10,995 | 12,281 | 3,695 | 12,620 | 10,154 | 7,919 | 12,173 | 10,880

Rate 85.4% 95.4% 28.7% | 98.0% 78.9% 61.2% | 94.5% | 84.5%

Time - 2.6 5.5 0.56 12 4.7 0.69 0.31
Unigq.1 109 4 0 65
Uniq.2| 84 0 0 13 o | o | 1 | 1

Table 8.2: Experimental Results over the BWare Benchmark (Part 2)

165



CHAPTER 8. THE BWARE PROJECT

are the ATP Vampire (denoted Vamp), the ATP E, the SMT solver CVC4 and the SMT

solver Z3.

The lines “Proofs”, “Rate” and “Time” are the same as in Tab. The lines “Uniq.1”
and “Uniq.2” are the same as “Unique” in Tab. except that “Uniq.1” considers only
the BWare tools, and “Uniq.2” deals with all the tools presented in Fig.

The results of Tab. are once again conclusive. The most important result is that,
compared to all the other tools presented in this table, the combination of Zenon Modulo
and Zenon Arith is the second prover that proves the most of POs, exceeded only by Alt-Ergo.
The fact that this combination proves more POs than the two SMT solvers CVC4 and Z3,
which both deal with arithmetic, is quite unexpected since these two tools are considered
as the most efficient tools in their domain. But we remark that CVC4 and Z3 are faster

than the combination of Zenon Modulo and Zenon Arith.

The two ATPs Vampire and E, which are known to be the most efficient first-order
theorem provers [Sutcliffe] 2016], do not deal with arithmetic reasoning. Zenon Modulo
alone, which proves 10,340 POs, outperforms both Vampire and E, also when looking the

time spent to prove POs.

One explanation of these results could be that the extensions of Zenon and Alt-Ergo
are the only tools presented here to deal with polymorphism, whereas the other tools rely

on encodings.

Finally, we present in Fig. the cumulative times spent to prove POs for all the tools
of our experiment. It should be noted that, for the SMT solvers, the cumulative time is

increasing linearly, unlike for ATPs, which is an expected behavior.

We remark that for the first ten thousands POs, the combination of Zenon Modulo and
Zenon Arith is faster that CVC4. This confirms that deduction modulo theory have a strong

impact on proof search in axiomatic theories.
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Figure 8.2: Cumulative Times According to the Numbers of Proved POs
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Conclusion

Improving the automation of proof in the B Method, while ensuring the highest level of
confidence in their soundness, was the guiding principle underpinning the work presented
in this manuscript. Our main contribution is the development of the automated theorem
prover Zenon Modulo, an extension of the Tableau-based first-order automated theorem
prover Zenon to polymorphism and deduction modulo theory. We choose to implement
these extensions to allow an efficient proof search in the B Method set theory in the

framework of the BWare project.

The BWare framework requires having the B proof obligations encoded in the polymor-
phic first-order logic of WhyML, the native language of the program verification platform
Why3. We have extended Zenon to deal natively with polymorphically typed fomulse, thus
avoiding to rely on external encodings of polymorphism, which tend to transform the
shape of axioms. In addition, we use the formalism of deduction modulo theory, which
improves proof search in axiomatic theories by turning axioms into rewrite rules, and which

is well-suited for the B set theory.

The experimental results obtained over the BWare benchmark, a set made of 12,876 B
proof obligations coming from real industrial projects, was very conclusive and allowed us
to validate our work on Zenon Modulo. In particular, this experiment showed that each of
the two extensions implemented in Zenon Modulo improves strongly the total number of

proof obligations that are proved by Zenon Modulo.

To increase the confidence in the soundness of the proofs produced by Zenon Modulo,
we choose to generate proof certificates, proof objects that have to be verified by external

tools. We relied on Dedukti to certify our proofs, an efficient proof checker that implements
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the All-calculus modulo theory, and which is well-suited to check proofs that use rewriting
techniques. This allowed us to verify all the proofs produced by Zenon Modulo in the
BWare benchmark.

In addition to this development work, we have presented in this manuscript some
theoretical results about the upstream chain of the BWare framework. Before being proved
by Zenon Modulo, proof obligations are translated from B logic into polymorphic first-order
logic. Concerns may arise about whether Zenon Modulo proofs are consistent with the
original B proof obligations. In practice, the translation is done by a proprietary tool,
called bpo2why, which performs some sophisticated transformations, in particular a type
inference of expressions. It would have been very difficult to certify the correctness of
bpo2why, even if we could have had access to its source code. Instead, we showed that we
can translate Zenon Modulo proofs into B proofs. This was made possible by defining an
encoding of B formule into polymorphic first-order logic, and a syntactic translation of
the typed sequent calculus inference rules of Zenon Modulo into the B natural deduction
proof system. Finally, we show that the resulting B proofs are valid proofs of the initial
proof obligations. This gives us extra confidence that the approach of the BWare project

to rely on the WhyML language is relevant.

We see two interesting perspectives of our work. The first one deals with the trans-
lation of Zenon Modulo proofs into B proofs, and the second with an alternative use of

Zenon Modulo as a proof certificate generator.

An effective implementation of the translation of Zenon Modulo proofs into B proofs
could be a very interesting project. The main benefit would be to remove the several
translation steps of the proof obligation from the “trusted zone”. Currently, the input
formula is translated by bpo2why from B into WhyML, then by Why3 from WhyML into
TFF1, and finally by Zenon Modulo from TFF1 into Dedukti. A desired solution would be
to produce a B proof of the initial B formula. In this approach, Zenon Modulo would take
as input the translated proof obligation, then would eventually find a proof, and finally
it would generate a proof certificate that contains only the proof in the B proof system,

1.e. without the input formula. This method would allow us to use the translation chain
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and Zenon Modulo as a black-box, without any concerns about the correctness of the tools
inside. Unfortunately, it is not yet possible to apply this method because it requires to

have a proof checker for the B proof system.

The second perspective is an alternative use of Zenon Modulo, inspired by the work of
Blanchette et al. in Sledgehammer and presented in [Blanchette, Bohme, Fleury, Smolka.
and Steckermeier| |2016]. The idea is to benefit from output of external ATPs to generate
formal proof certificates through Zenon Modulo. For instance, the ATP E can generate
proof traces in a specific format called TSTP. These proof traces contain the set of axioms
needed to prove the statement, and a list of intermediate lemmas. Thus, these proof
traces could improve the proof search of Zenon Modulo by reducing the proof-search space
with the selected axioms, and by cutting a difficult proof into a list of smaller proofs of
the intermediate lemmas. A proof of concept of this idea have already been tested by

Pham [Pham| [2016], and gave some promising results.

Finally, these two ideas could be combined to use Zenon Modulo as a generator of formal
B proofs using proof traces from external tools. The main benefit from this approach would
be its adaptive use in an industrial context. The certification requirements for an industrial
use would only deal with the B proof checker, letting all external tools out of the “trusted

zone” and allowing us to benefit from improvements made by ATP developers.
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Résumé de la theése

Introduction

L’année 2016 marque une étape importante dans le développement des véhicules
autonomes. Alors que 'entreprise de technologie de I'information Google a lancé il y a
plusieurs années son projet de voitures autonomes Google Car — la flotte de véhicules a déja
été testée sur pres de trois millions de kilometres —, des annonces officielles de nouveaux
projets de voitures autonomes ont été publiées pendant la premiere moitié de I'année
2016. Un grand nombre de constructeurs automobiles de premier plan ont annoncé I'arrivé
de véhicules autonomes dans les cing prochaines années. Par exemple, le constructeur
américain de voiture Ford a annoncé en aofit la sortie d’une voiture completement autonome
— sans volant ni pédale — pour l’année 2021 [Sage and Lienert| 2016]. Dans la ville de
Pittsburgh en Pennsylvanie, la société de réseau de transport Uber propose depuis le mois
d’aolit a ses clients d’utiliser une flotte de voitures autonomes, accompagné d’un conducteur

de secours pour le moment [Chafkin| 2016].

L’arrivée des véhicules autonomes est certainement une bonne nouvelle. Ce sera une
libération pour un grand nombre de personnes, en particulier ceux souffrant d’une mobilité
réduite. Une fois lancé, ce nouveau moyen de transport prendra une place de plus en plus
grande et dépassera rapidement les voitures telles que nous les connaissons. Mais tous
ces points positifs ne doivent pas cacher les inquiétudes légitimes que 1’on pourrait avoir
quant a la sécurité de ces voitures autonomes. En effet, un véhicule autonome de transport
de personne est un systéeme critique, au sens ou une défaillance de ce systéme pourrait
mettre en danger des vies humaines. Une voiture autonome utilise des dizaines de capteurs,

processeurs et programmes embarqués pour fonctionner. Le développement de logiciels
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embarqués dans les systémes critiques exige une rigueur et une expertise spécifique, ce qui

semble manquer pour le moment dans I'industrie automobile.

La récente affaire des “accélérations involontaires” de Toyota, telle que rapportée par
Bagnara pendant le 12th Workshop on Automotive Software & Systems en 2014, révele
des pratiques contestables |Bagnara, 2014]. En I’an 2000, Le constructeur automobile
japonais Toyota a adopté un systéme électronique de contrdle d’accélération (Electronic
Throttle Control System, ETCS) pour la plupart de ses nouveaux modeles de voiture,
remplacant ainsi une pédale d’accélération mécanique par un systeme électronique. En
2010, ’agence gouvernementale américaine National Highway Traffic Safety Administration
rapporte que 89 déces pourraient étre liés a cette affaire des accélérations involontaires,
en plus de milliers d’accidents de voiture. En 2013, le premier proces au cours duquel les
plaignants affirment que les accélérations involontaires ont été causées par un mauvais
fonctionnement du systeme ETCS, fait témoigner l’expert en systémes embarqués Baar [Barr
2013] et le professeur Koopman [Koopman [2014] de 'université Carnegie Mellon, tous
deux ayant pu examiner le code source du logiciel embarqué dans le systeme ETCS. Leurs
conclusions ont révélé que le logiciel en question était tres éloigné des standards attendus
pour des logiciels de systemes critiques. Par exemple, ils rapporterent que le processus de
développement n’avait pas suivit rigoureusement les recommandations MISRA-C — une
norme non-contraignante proposée par la Motor Industry Software Reliability Association.
Ils ont aussi décrit le code source C en question comme étant du “code spaghetti”, contenant
plus de 10.000 variables globales en lecture/écriture. Finalement, ils soulignérent I’absence
de contrainte de certification des logiciels dans les systémes critiques pour les constructeurs

automobiles américains.

En 2014, Toyota parvint a un accord avec le département de justice du gouvernement
fédéral américain et régla une amende de 1,2 milliards de dollars américains, mettant ainsi
fin & 'enquéte criminelle a propos de l'affaire des accélérations involontaires. Toutes les
conséquences de cette affaire ne sont toujours pas connues seize ans apres la sortie du
systeme ETCS. Mais elle peut déja étre considérée comme une étude de cas pertinente et

un tournant pour la stireté fonctionnelle des systemes critiques.
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Une conclusion intéressante de cette histoire, et qui va plus loin que son propre contexte,
est la constatation d’'un manque de normes obligatoires concernant les constructeurs
automobiles dans le développement de logiciels pour des systemes critiques. D’autres
secteurs du transport de personnes, telles que les industries aéronautique et ferroviaire,
ont effectué avec succes leur révolution électronique trente ans auparavant. Par exemple,
le constructeur aéronautique européen Airbus lanca en 1984 1’A320, le premier avion de
ligne avec un systéme de contrdle de vol entierement numérique |[Favre [1994]. Dans
I’industrie ferroviaire, les premiers véhicules autonomes, un nouveau systeme complétement
automatique et sans conducteur de métro dans la ville francaise de Lille, apparurent en

1983 [Lardennois [1993].

Le haut niveau de sécurité de ces deux secteurs industriels a été atteint grace a
I’application de normes obligatoires et spécifiques pour les composants électroniques et les
logiciels embarqués. La norme IEC 61208 est la norme générique internationale pour les
systemes critiques électriques, électroniques et programmables, et publiée par la commission
internationale électrotechnique IEC. Cette norme a été spécifiée pour chaque secteur
particulier. Par exemple, dans l'industrie ferroviaire, la norme EN 50128 s’applique au
logiciels critiques des systémes de controle et de protection. Une des notions importantes
définies par cette norme est le niveau d’intégrité de sécurité SIL, une grandeur qui mesure
le niveau relatif de réduction des risques fourni par une fonction de sécurité. La norme
définit quatre niveaux SIL, de SIL 1 (le plus bas niveau de réduction des risques) a SIL 4

(le plus haut niveau de réduction des risques).

Les fonctions de sécurité d’un systéme qui exige un niveau de certification SIL 4 sont
généralement les parties les plus critiques de ’ensemble du systéme, par exemple le systéme
de controle de la vitesse d’'un métro automatique sans conducteur. En génie logiciel, des
méthodes de développement logiciel, appelées méthodes formelles, ont été congues pour
développer des logiciels ayant un haut niveau de fiabilité. L’idée centrale des méthodes
formelles est de prouver qu’un programme informatique vérifie des propriétés mathéma-
tiques particulieres. Ces propriétés mathématiques traduisent le comportement souhaité
du systeme et sont regroupées dans la spécification, une description formelle du systeme.

La notion de spécification est tres importante dans les méthodes formelles, car toutes ces
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méthodes de développement ne nous permettent que de prouver une correction relative du
programme par rapport a sa spécification. Ainsi, les spécifications doivent étre décrites
dans un langage formel, typiquement un langage sans ambiguité tels que les langages
logiques, a l'inverse des langages naturels. Il existe un grand nombre de méthodes formelles
différentes, couvrant tout ou partie du cycle de développement d’un logiciel, depuis sa

spécification jusqu’a son implémentation.

La méthode B est une méthode formelle créée par Jean-Raymond Abrial et présentée
dans son livre de référence, appelé le B-Book [Abrial {1996] et publié en 1996. La méthode
B s’inspire des travaux antérieurs de Hoare et Dijkstra & propos de la correction des
programmes. Cette méthode est principalement utilisée dans I’industrie ferroviaire pour
spécifier et développer des logiciels de systemes critiques. Par exemple, la méthode B a
été utilisée avec succes pour développer le systéme de controle de commande des rames
du métro automatique et sans conducteur de la ligne 14 du métro parisien en France en
1998 [Behm, Benoit, Faivre, and Meynadier| 1999]. La méthode B couvre tout le cycle
de développement d’un logiciel, depuis la spécification formelle du systéme, appelée la
machine abstraite, jusqu’a son implémentation concrete. Les programmes informatiques
ainsi développés sont dits corrects par construction, grace a un processus de raffinement de
la machine abstraite jusqu’a une derniére machine B complétement déterministe, appelée
BO0. La derniére étape d’extraction du code source consiste en une traduction pratiquement
syntaxique de la machine B0 vers un sous-ensemble d’un langage impératif de bas niveau
tels que les langages C ou ADA. La correction de chacune des étapes de raffinement dépend
de la validité de formules logiques, appelée obligations de preuve, et exprimées dans une

théorie des ensembles spécifique a la méthode B.

Les projets industriels utilisant la méthode B génerent en général des milliers d’obligations
de preuve. Ils dépendent donc fortement d’outils automatiques pour décharger le plus grand
nombre possible d’obligations de preuve. Un environnement de développement intégré
spécifique au développement de logiciels avec la méthode B, appelé Atelier B [ClearSy| [2013],
est fourni avec un outil de démonstration de théoreme qui aide les utilisateurs a vérifier

la validité des obligations de preuve, automatiquement ou interactivement. L’outil de
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déduction automatique de 1’Atelier B prouve environ 85% des obligations de preuve des
projets industriels communs, laissant ainsi des milliers d’obligations de preuve a décharger
interactivement, c’est-a-dire avec une intervention humaine. Le manque d’automatisation
dans le développement de projets en méthode B est un facteur de coiit tres important pour

les industriels, ralentissant ainsi sa diffusion et son utilisation.

Notre travail vise & améliorer la vérification automatique des obligations de preuve de
la méthode B, avec une attention particuliere portée sur la correction des preuves produites.
Notre principale contribution est le développement d’un outil de déduction automatique
au premier ordre appelé Zenon Modulo. Cet outil étend Zenon [Bonichon, Delahaye, and
Doligez 2007], un outil de déduction automatique au premier ordre implémentant la
méthode des tabeaux. La méthode des tableaux [D’Agostino, Gabbay, Hahnle, and Posegga,
2013| est un algorithme de recherche automatique de preuve pour le calcul des séquents
sans coupure. En théorie de la preuve, le calcul des séquents |[Gentzen| |1935] est une famille
de systemes formels dirigés par la syntaxe et utilisés pour écrire des preuves. Un calcul
des séquents est défini par un ensemble de régles d’inférence. Une régle d’inférence est un
objet logique définissant une relation syntaxique entre un ensemble de formules, appelées
prémisses, et un autre ensemble de formules, appelées conclusions, et correspondant a une
étape de déduction élémentaire. Ces types de systémes sont appelés des systemes de preuve.
Les preuves obtenues par la méthode des tableaux peuvent étre facilement traduites dans

le calcul des séquents, puisque qu’il ne s’agit que d’une reformulation syntaxique.

Dans notre travail, nous n’avons pas besoin de toutes les notions présentes dans la
méthode B, en particulier celles relatives au langage B. Nous nous concentrons uniquement
sur le raisonnement mathématique dans la méthode B, ce qui consiste principalement a
étudier la théorie des ensembles de la méthode B. Améliorer la recherche automatique de
preuve de Zenon pour la méthode B nous a mené au développement de deux extensions.
La premiere est une extension de la logique aux types polymorphes et la seconde est une
extension a la déduction modulo théorie. La motivation de ces deux extensions est de gérer

efficacement la théorie des ensembles de la méthode B.

La théorie des ensembles de la méthode B differe des autres telle que la théorie des
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ensembles de Zermelo-Fraenkel. La principale différence consiste en ’addition de contraintes
de typage aux expressions du langage. Ces contraintes de typage sont exprimées a I’aide des
constructions ensemblistes du langage, ce faisant il n’y a aucune distinction syntaxique entre
les types et les ensembles. Pour vérifier la bon typage des expressions, le B-Book fournit
un ensemble de regles d’inférence de typage, définissant une procédure de vérification de
type qui doit étre appliquée avant la recherche de preuve. Nous montrons dans le Chap. [4]
que les formules de la méthode B qui sont des axiomes et des hypothéses peuvent étre
interprétées comme des formules polymorphes, au sens ou elles sont définies pour des types
génériques. Une fois I'obligation de preuve fixée, qui elle n’est pas polymorphe, les types
génériques des axiomes et des hypotheses doivent étre instanciés avec les types concrets

venant de I'obligation de preuve.

La théorie des ensembles de la méthode B est composée de six axiomes, en plus d’un
grand nombre de constructeurs dérivés. Ces constructeurs dérivés, comme 1'union de deux
ensembles, le domaine d’une relation et ’ensemble des fonctions injectives totales, ont un
role majeur dans la méthode B car ils sont tres présents dans les obligations de preuve.
Ainsi, il est important de traiter efficacement ces constructeurs dérivés. Nous avons choisi
d’utiliser la déduction modulo théorie [Dowek, Hardin, and Kirchner 2003| pour améliorer
la recherche de preuve dans la théorie des ensembles de la méthode B. La déduction modulo
théorie est un formalisme qui étend la logique du premier ordre avec des regles de réécriture
sur les termes et les propositions, permettant ainsi d’améliorer la recherche de preuve dans
les théories axiomatiques en transformant les axiomes en regles de réécriture. Cela nous
permet de distinguer les étapes de déduction des étapes de calcul en raisonnant sur des
classes d’équivalence de formules, modulo une relation de congruence générée par le systeme

de réécriture.

Les outils de déduction automatique sont généralement des outils logiciels de taille
importante, utilisant des fonctionnalités sophistiquées et implémentant des optimisations
complexes. Par exemple, Zenon Modulo est composé de plus de 40.000 lignes de code
OCaml. Le risque augmentant avec la taille et la complexité, des sources potentielles
de mauvais comportements et de bugs peuvent apparaitre dans les outils de déduction

automatique. Lorsque I’on cherche a vérifier la validité d’obligations de preuve dans le
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cadre d'un développement de logiciel critique, garantir la correction des preuves produites
par les outils de déduction automatique est une tache fondamentale. Barendregt et
Barendsen |Barendregt and Barendsen| 2002] ont proposé de s’appuyer sur le concept de
certificats de preuve, des objets de preuve qui contiennent un énoncé et sa preuve formelle
et qui peuvent étre vérifiés par des outils externes. L’originalité de cette approche est
de séparer la génération des certificats de preuve, effectuée par les outils de déduction
automatique, et la vérification de la correction des preuves, déléguée au vérificateur externe.
Idéalement, le vérificateur de preuve utilisé doit étre basé sur un noyau léger et auditable, au
sens ot il doit étre sensiblement plus petit que 'outil de déduction automatique. De ce point
de vue, une autre contribution importante a Zenon Modulo est le développement d’une sortie
qui géneére des certificats de preuve pour le vérificateur de preuve Dedukti. Dedukti |Assaf.
Burel, Cauderlier, Delahaye, Dowek, Dubois, Gilbert, Halmagrand, Hermant, and Saillard
2016] est une implémentation légere du AI-calcul modulo théorie, une extension du A-calcul
simplement typé aux types dépendants et a la réécriture. Dedukti a été congu pour étre
utilisé comme un vérificateur universel de preuve, pouvant provenir autant d’outil de
déduction automatique tel que Zenon Modulo que d’assistant de preuve tel que Coq |Bertot

and Castéran 2013].

L’utilisation de Zenon Modulo, dont la logique sous-jacente est la logique du premier
ordre avec typage polymorphe, pour prouver des obligations de preuve exprimées dans
la logique de la méthode B et sa théorie des ensembles, peut légitimement soulever des
questions. Nous avons répondu a cette problématique d’une maniere originale en définissant
un encodage des formules B dans la logique du premier ordre avec typage polymorphe.
Une des particularités de cet encodage se situe au niveau de la génération des types des
expressions dans la logique polymorphe. Cet encodage repose sur une étape d’inférence
des types des variables liées des formules B. De plus, nous avons défini une traduction des
preuves de Zenon Modulo, exprimées dans un calcul des séquents typé, vers le systeme
de preuve de la méthode B, une adaptation de la déduction naturelle a la syntaxe de la
méthode B. Enfin, nous avons montré que la preuve B ainsi obtenue correspond bien a une
preuve de I'obligation de preuve initiale. Cette méthode nous permet ainsi d’augmenter la

confiance globale quant a la correction de notre approche.
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Notre travail fait partie du projet BWare [Delahaye, Dubois, Marché, and Mentré| |2014],
un projet de recherche industrielle soutenu par 1’Agence Nationale de la Recherche. BWare
a pour objectif de fournir une plateforme intégrée pour la vérification automatique des obli-
gations de preuve provenant du développement de projets industriels utilisant la méthode
B. Le consortium qui compose BWare regroupe des centres publics de recherche (Cedric,
LRI et Inria) et des industriels utilisant la méthode B (Mitsubishi Electric R&D, ClearSy
et OCamlPro). La méthodologie du projet est de construire une plateforme générique de
vérification qui repose sur différents outils de déduction automatique, tels que des outils
de déduction automatique au premier ordre et des solveurs satisfiabilité modulo théorie
(SMT). La plateforme du projet BWare est basée sur Why3 [Bobot, Fillidtre, Marché, and
Paskevich| 2011], une plateforme pour la vérification de programme. Les outils de déduction
automatique utilisés dans le projet BWare sont les outils au premier ordre Zenon Modulo et
iProver Modulo [Burel 2011] et le solveur SMT Alt-Ergo [Bobot, Conchon, Contejean, Iguer,
nelala, Lescuyer, and Mebsout| 2013]. La diversité de ces outils de preuve doit permettre la
vérification d’un large panel d’obligations de preuve. En plus de cette approche multi-outils,
une autre originalité de ’approche de BWare réside dans l’exigence pour les outils de
déduction de produire des certificats de preuve. Enfin, pour tester la plateforme BWare, une
large bibliotheque d’obligations de preuve a été fournie par les partenaires industriels du
projet qui développent des outils implémentant la méthode B et des applications utilisant la
méthode B. Cette bibliotheque nous a permis de faire une comparaison expérimentale de nos

outils de déduction avec les autres outils de BWare, ainsi que des outils externes de référence.

Ce manuscrit est organisé comme suit. Dans le Chap. [I} nous introduisons la logique
de la méthode B. En particulier, nous présentons son systéme de preuve, sa théorie des
ensembles et son systeme de type. Dans le Chap. nous présentons une procédure
d’inférence de type pour les variables liées des formules B. Cette procédure nous permet
d’annoter les variables avec leur type, une information nécessaire dans les chapitres suivants.
Nous présentons aussi une procédure correcte d’élimination des ensembles définis par

compréhension. Dans le Chap. [3| nous introduisons la logique du premier ordre avec
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typage polymorphe, ainsi que le systéme de preuve LLproof, un calcul des séquents typé
utilisé par Zenon Modulo pour produire des preuves. Dans le Chap. 4l nous définissons
un encodage des formules B dans la logique du premier ordre avec typage polymorphe,
puis nous montrons comment reconstruire des preuves dans le systéme de preuve de la
méthode B a partir de preuve LLproof. Dans le Chap. [5| nous montrons la correction
relative de LLproof=, ’extension de LLproof & la déduction modulo théorie, par rapport a la
correction de LLproof. Dans le Chap. [6] nous présentons 'outil de déduction automatique
Zenon, puis les deux extensions de Zenon au typage polymorphe et a la déduction modulo
théorie, obtenant ainsi le nouvel outil Zenon Modulo. Dans le Chap. [7| nous introduisons
le vérificateur de preuve Dedukti et le All-calcul modulo théorie. Puis, nous présentons
les encodages de la logique du premier ordre avec typage polymorphe et du calcul des
séquents avec typage et réécriture LLproof= dans le AI-calcul modulo théorie. Enfin, dans
le Chap. 8] nous présentons le projet BWare et les outils outils le composant. Puis, nous
donnons le systeme de réécriture correspondant a la théorie des ensembles de la méthode
B et utilisé par Zenon Modulo dans BWare. Nous concluons finalement notre travail en
donnant les résultats expérimentaux obtenus avec la bibliotheque d’obligations de preuve

fournie par les partenaires industriels de BWare.

Conclusion

Améliorer 'automatisation des preuves pour la méthode B, tout en garantissant le plus
haut niveau de confiance possible quant a leur correction, a été le principe directeur du
travail présenté dans ce manuscrit. Notre principale contribution est le développement de
I'outil de déduction automatique Zenon Modulo, une extension de ’outil au premier ordre
implémentant la méthode des tableaux Zenon au typage polymorphe et & la déduction
modulo théorie. Nous avons choisi d’implémenter ces extensions dans le but d’obtenir une
recherche automatique de preuve efficace dans la théorie des ensembles de la méthode B,

dans le cadre du projet BWare.

La plateforme du projet BWare nous impose d’avoir les obligations de preuve B encodées
dans la logique du premier ordre avec typage polymorphe du langage WhyML, le langage de

la plateforme de vérification de programme Why3. Nous avons étendu Zenon pour traiter
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directement les problemes utilisant un typage polymorphe, évitant ainsi de dépendre d’un
encodage externe du polymorphisme qui tend & déstructurer la forme des formules. De
plus, nous avons utilisé le formalisme de la déduction modulo théorie, congu pour améliorer
la recherche de preuve dans les théories axiomatiques, et montré que ce formalisme est

adapté a la théorie des ensembles de la méthode B.

Les résultats expérimentaux obtenus a partir de la bibliotheque d’obligations de preuve
du projet BWare, composé de 12.876 obligations de preuve B provenant de projets industriels,
ont été particulierement concluant, nous permettant ainsi de valider expérimentalement
notre travail sur Zenon Modulo. En particulier, cette expérimentation a montré que chacune
de deux extensions implémentées dans Zenon Modulo ont fortement augmenté le nombre

total d’obligations de preuve prouvées.

Dans le but d’augmenter la confiance dans la correction des preuves produites par
Zenon Modulo, nous avons choisi de générer des certificats de preuve, des objets de preuve
qui peuvent étre vérifiés par un outil externe. Nous avons décidé d’utiliser le vérificateur
de preuve Dedukti pour certifier les preuves produites par Zenon Modulo, un vérificateur
universel de preuve implémentant le All-calcul modulo théorie et qui est particulierement
adapté pour vérifier les preuves utilisant de la réécriture. Cela nous a permis de vérifier
toutes les preuves produites par Zenon Modulo dans 'expérimentation sur la bibliotheque

d’obligations de preuve de BWare.

En plus de ce travail de développement, nous avons présenté dans ce manuscrit des
résultats théoriques a propos de la chaine amont du projet BWare. Avant d’étre prouvées
par Zenon Modulo, les obligations de preuve B sont traduites de la logique de la méthode B
vers la logique du premier ordre avec typage polymorphe par un outil de traduction. Des
questionnements sur la cohérence des preuves de Zenon Modulo par rapport aux obligations
de preuve originelles peuvent légitimement apparaitre. En pratique, cette traduction est
faite par outil propriétaire appelé bpo2why qui effectue des transformations sophistiquées,
en particulier de I'inférence de types des expressions. Il aurait été difficile de certifier
formellement la correction de cet outil de traduction, méme si nous avions pu avoir un
acces a son code source. A la place, nous avons montré qu’il est possible de traduire les

preuves de Zenon Modulo, exprimées dans un calcul des séquents typé, en preuves dans le
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systeme de preuve de la méthode B. Cela a été rendu possible en définissant un encodage
des formules de la méthode B vers la logique du premier ordre avec typage polymorphe,
puis une traduction syntaxique de sous-preuves monomorphes du calcul des séquents typé
de Zenon Modulo vers la déduction naturelle de la méthode B. Enfin, nous avons montré que
les preuves ainsi obtenues correspondent bien a des preuves des obligations de preuve ini-
tiales. Cela nous a permis d’augmenter la confiance globale quant a I'utilisation du langage

WhyML pour exprimer les obligations de preuve et la théorie des ensembles de la méthode B.

Nous voyons deux perspectives intéressantes a notre travail. La premiere concerne
la traduction des preuves de Zenon Modulo en preuves dans le systeme de preuve de la
méthode B. La seconde perspective concerne 1'utilisation de Zenon Modulo pour certifier

les traces de preuve provenant d’autres outils de déduction automatique.

Une implémentation concrete de la traduction des preuves de Zenon Modulo en preuves
B pourrait étre un projet treés intéressant. Le principal avantage serait de retirer les
différentes étapes de traduction des obligations de preuve de la “zone de confiance”. Pour
le moment, la formule initiale est traduite par bpo2why de la méthode B vers WhyML,
puis par Why3 de WhyML vers TFF1, le format d’entrée de Zenon Modulo, puis enfin par
Zenon Modulo de TFF1 vers Dedukti. Une solution serait de produire une preuve B de la
formule initiale en B. Avec cette approche, Zenon Modulo recevrait en entrée I'obligation
de preuve traduite, et renverrait un certificat de preuve contenant uniquement la preuve
dans le systeme de preuve de B. Cette méthode nous permettrait d’utiliser Zenon Modulo
comme une véritable boite noire, sans avoir aucune inquiétude quant a la correction des
outils qui la compose. Pour cela, il faudrait avoir un vérificateur de preuve B, ce qui fait

pour le moment défaut.

La seconde perspective est une utilisation alternative de Zenon Modulo, inspirée par
le travail de Jasmin Blanchette sur Sledgehammer [Blanchette, Bohme, Fleury, Smolka.,
and Steckermeier| 2016]. L’idée serait de profiter du travail d’autres outils de déduction
automatique qui savent produire des traces de preuve pour générer des certificats. Par
exemple, 'outil de déduction automatique E peut générer des traces de preuve dans le

format TSTP, un format standard de traces de preuve. Une trace de preuve TSPT est
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composée d’une liste de formules correspondant a la liste des axiomes nécessaires pour
prouver le but et éventuellement a une liste de lemmes intermédiaires. La réduction de la
taille de ’espace de recherche, ainsi que les étapes intermédiaires données par les lemmes,
constitue une aide potentiellement tres intéressante pour améliorer la performance de

Zenon Modulo.

Enfin, ces deux approches pourrait étre combinées pour utiliser Zenon Modulo comme un
générateur de preuve formelles en B a partir d’autres outils de déduction automatique. La
principale motivation de cette approche serait son adaptabilité dans un contexte industriel.
Les problemes de certification des outils logiciels dans un cadre industriel rendent souvent
trés contraignant les améliorations et les mises & jours des outils certifiés. En effet, il est
souvent nécessaire de recommencer presque intégralement un processus de certification d’un
outil modifié. Dans I’approche proposée ci-dessus, seul un vérificateur de preuve B devrait

étre certifié, laissant possible toutes modifications des outils de déduction automatique.
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Automated Deduction and Proof
Certification for the B Method

Abstract :

The B Method is a formal method used in the railway industry to specify and develop safety-critical
software. The soundness of the development depends on the validity of logical formulas called proof
obligations, expressed in a specific typed set theory. We improve the automatic verification of B Method
proof obligations by developing an automated theorem prover called Zenon Modulo. This new tool is an
extension to polymorphic types and deduction modulo theory of the Tableau-based automated theorem
prover Zenon. We also increase the confidence in the soundness of the proof generated by Zenon Modulo

by generating proof certificates, proof objects that can be verified by an external proof checker called
Dedukti.

Keywords :
B Method, Set theory, Zenon Modulo, Automated deduction, Deduction modulo theory, Tableau method,
Sequent calculus, Polymorphism, Dedukti, All-calculus modulo theory, Proof certification.

Résumé :

La Méthode B est une méthode formelle de spécification et de développement de logiciels critiques utilisée
dans 'industrie ferroviaire. La correction du développement est garantie par la vérification de la correction
de formules mathématiques appelées obligations de preuve et exprimées dans la théorie des ensembles de la
Méthode B. Nous avons amélioré la vérification automatique des obligations de preuve dans la Méthode B en
développant un outil de déduction automatique appelé Zenon Modulo. Ce nouvel outil est une extension au
typage polymorphe et a la déduction modulo théorie de 'outil de déduction automatique basé sur la méth-
ode des Tableaux Zenon. De plus, Zenon Modulo génére des certificats de preuve qui peuvent étre vérifiés
par le vérificateur de preuve Dedukti, augmentant ainsi la confiance dans la correction des résultats obtenus.

Mots clés :

M¢éthode B, Théorie des ensembles, Zenon Modulo, Déduction automatique, Déduction modulo théorie,
Méthode des tableaux, Calcul des séquents, Polymorphisme, Dedukti, All-calculus modulo théorie,
Certification de preuve.
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