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EEG characteristics that correlate with the cognitive functions are important in detecting mild
cognitive impairment (MCI) in T2DM. To investigate the complexity between aMCI group and
age-matched non-aMCI control group in T2DM, six entropies combining empirical mode de-
composition (EMD), including Approximate entropy (ApEn), Sample entropy (SaEn), Fuzzy
entropy (FEn), Permutation entropy (PEn), Power spectrum entropy (PsEn) and Wavelet en-
tropy (WEn) were used in the study. A feature extraction technique based on maximization of
the area under the curve (AUC) and a support vector machine (SVM) were subsequently used to
for features selection and classi¯cation. Finally, Pearson's linear correlation was employed to
study associations between these entropies and cognitive functions. Compared to other entropies,
FEn had a higher classi¯cation accuracy, sensitivity and speci¯city of 68%, 67.1% and 71.9%,
respectively. Top 43 salient features achieved classi¯cation accuracy, sensitivity and speci¯city of
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73.8%, 72.3% and 77.9%, respectively. P4, T4 and C4 were the highest ranking salient electrodes.
Correlation analysis showed that FEn based on EMD was positively correlated to memory at
electrodes F7, F8 and P4, and PsEn based on EMD was positively correlated to Montreal
cognitive assessment (MoCA) and memory at electrode T4. In sum, FEn based on EMD in right-
temporal and occipital regions may be more suitable for early diagnosis of the MCI with T2DM.

Keywords: Entropy; empirical mode decomposition; amnestic mild cognitive impairment; type 2
diabetes mellitus.

1. Introduction

Diabetes mellitus (DM) has a negative impact on
the survival and quality of life in patients. It was
estimated that about 90% of DM patients su®ered
from type 2 diabetes mellitus (T2DM). T2DM has
become one of the most globally di®used pathologies
in the world.1 T2DM is associated with a variety of
adverse complications, such as cardiovascular dis-
eases, lung dysfunction and retinopathy, and has an
increased risk of cognitive impairment and
dementia.2–5

Mild cognitive impairment (MCI) has been de-
scribed as a transitional state between normal cog-
nition and Alzheimer's disease (AD) in clinical and
research ¯elds.2 Some studies have indicated that
DM was recognized as a risk factor for the develop-
ment of probable AD6 and the MCI, especially the
amnestic mild cognitive impairment (aMCI).7

Cukierman et al. indicated that people with DMhave
1.5 times greater risk of cognitive decline, and 1.6
times greater risk of future dementia compared to
people without DM.8 Many quantitative measures,
such as Fourier transform,9,10 synchronization like-
lihood,11 correlation dimension,12 entropy,13–17 co-
herence,18 multiway array decomposition (MAD)
analysis,19 wavelet power spectral analysis20 and
amplitude modulation analysis21 have been devel-
oped to quantify the changes of EEG inMCI andAD.

Due to the complex interconnections between
neurons, the EEG signals are complex, nonlinear
and nonstationary. The nonlinear EEG complexity
analysis, such as entropy, can determine the prob-
ability of ¯nding speci¯c patterns in a time series
and analyze the irregularity or predictability of
a time series. Some entropy methods have been
successfully applied to pathological develop-
ment.13–17,22,23 Ab�asolo et al. analyzed the regular-
ity of nonlinear EEG background activity from 19
recording electrodes, and found that Approximate
entropy (ApEn) and Sample entropy (SaEn) were

signi¯cantly lower in the AD patients compared
with healthy control subjects, which illustrated an
increase in EEG regularity in AD patients.17,24 Tsai
et al. applied SaEn to evaluate the irregularity of
the EEG signals of AD patients and demonstrated
that the irregularity of EEG signals is reduced in
demented patients.14

Although some research based on entropy have
been used to study the DM in recent years, such as
measurement of complexity of heart rate variability
in T2DM,25 assessment of atherosclerosis in the
aged and DM26 and assessment of muscle metabolic
pattern in T2DM,27 there are rarely any studies in
the cognitive function of DM using entropy. Hazari
et al. analyzed P300 amplitude in T2DM patients
and nondiabetic controls, and found that P300
ERPs revealed cognitive dysfunction which was not
detected by neuro-psychometric test (mini mental
state evaluation — MMSE). Patients with T2DM
have decreased cognitive function which is more
prominent when the disease duration exceeds ¯ve
years. Co-existence of hypertension with T2DM
further increases the risk of cognitive impairment.28

EEG on type 1 diabetes mellitus (T1DM) patients
in resting position demonstrated a decline in the
power of fast activity (alpha and beta band) in the
posterior temporal regions, and an increase in slow
spectral components in the frontal regions. T2DM
demonstrated similarly.29–31

In this study, we used six entropy analysis mea-
sures for aMCI detection in T2DM. Before calculat-
ing the entropy, the EMD method was used to
decompose EEG signals. EMD has become a useful
tool for the decomposition and time-frequency anal-
ysis of nonstationary signals in recent years. Con-
trary to almost all the previous decomposing
methods, EMD is empirical, intuitive, direct and
adaptive in nature. In particular, the intrinsic mode
functions (IMFs) produced by the EMD method
usually have physical meanings.32 The performance
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of the six entropies was evaluated by a Logistic map
simulation model. Then, the dynamic characteristics
in T2DMwere analyzed by a simple feature selection
algorithm based on the area under the curve (AUC)
maximization and the support vector machines
(SVM). We want to explore which entropies and
brain areas can assist in early clinical detection be-
tween aMCI and control groups in T2DM.

2. Materials and Methods

2.1. Subjects and criteria

We recruited 21 patients in T2DM (12 females, 9
males), whose diagnosis and classi¯cation criteria of
DM were recommended by the World Health Or-
ganization.33 The patients were from the Neurology
Department of Second Artillery General Hospital of
Beijing in China. Beijing Normal University ethics
committee approved the study. Each participant
provided voluntary informed consent before the
experiment.

The T2DM subjects comprised of two groups.
One group included 11 subjects (4 males, 7 females)
as the aMCI group. The other group included 10
non-aMCI subjects (5 males, 5 females) matching
with age and educational level as control group.
Inclusion criteria for aMCI group in T2DM were (1)
reporting of a decline in cognitive functioning rela-
tive to previous abilities during the past year by the
patient or their families; (2) cognitive disorders as
evidenced by clinical evaluation (with the hypom-
nesia of chief complaint, or in another cognitive
domain, which in this study was assessed by
neuropsychological test such as MMSE and Mon-
treal cognitive assessment (MoCA); (3) the activity
of daily living was una®ected as documented by
history. The evidence of independent living was
assessed by instrumental activity of daily living
(IADL) Scale test.34 To exclude other causes of re-
versible dementias or severe cognitive functions,
exclusion criteria for aMCI group were (1) MCI
group without objective memory de¯cits; (2) with
any psychiatric or other neurological disorders such
as AD, dementia, Parkinsonism, depression, extra-
pyramidal disease, brain trauma, brain tumor, epi-
lepsy, neuropathic recession, etc.; (3) severe
physical illness, such as the clinical macro-vascular
complications (angina, history of myocardial in-
farction, cerebral infarction with clinical symptoms
and peripheral vascular embolism, etc.); (4) other

psychiatric diseases, epilepsy, drug addiction, alco-
hol dependence, and use of psychoactive drugs or
other drugs enhancing brain cognitive functions.

Inclusion criteria of the control group in T2DM
were (1) no memory impairment chief complaint
and normal activities of daily living; (2) normal
cognitive functions as evidenced and assessed by
neuropsychological test such as MMSE and MoCA.
Exclusion criteria were chronic systemic illnesses,
and subjects with a history of present or previous
neurological or psychiatric disease.

All participants underwent general demographic
and neuropsychological assessments. They were
assessed by the MMSE and the MoCA, and some
tests were used to assess memory, language, activi-
ties of daily living, the executive function and at-
tention in each participant. Immediate and delayed
recall measure and the re-evoked measures of the
rey auditory verbal learning test (rAVLT)35 were
used to assess memory. Semantic Fluency Test of
the one minute verbal °uency for animals and
Boston Naming Test36 were used to assess the lan-
guage. The Digit Span Test37 and the Trail Making
Test parts A and B38 were used to assess executive
function and attention. IADL scale39 was used to
assess the activities of daily living.

Independent samples from the t-test analysis
were used to measure the di®erence between aMCI
group and control group by SPSS20.0 (IBM SPSS,
Inc., NY, Armonk, USA). Signi¯cant level was set
at p < 0:05. The results are shown in Table 1. In
demographic tests, there was no signi¯cant di®er-
ence between the two groups. In neuropsychological
tests, the MMSE score, Digit Span Test, IADL,
Semantic Fluency Test, Track Makings and Boston
naming test did not produce any signi¯cant di®er-
ence between the two groups. However, aMCI group
was signi¯cantly lower in MoCA score, the AVLT
immediate recall, delayed recall and delay re-evoke
compared with control group. That is to say, the
performance of control group was better than aMCI
group in the memory functions. There was no sig-
ni¯cant di®erence between the two groups in the
executive function and attention, the activity of
daily living and language.

2.2. EEG recording and preprocessing

EEG data were recorded in subjects in resting
position with closed eyes from 128 electrodes with
Cz as the reference electrode. Impedances were kept

Analysis of entropies based on EMD

1550010-3

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
5.

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

37
.1

08
.7

0.
14

 o
n 

01
/1

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



less than 50 k�. All data were recorded at 1000Hz
sample frequency with a range 0–200Hz bandpass
¯lter. The EEG epochs with ocular, muscular, and
other types of artifacts were preliminarily elimi-
nated visually by expert electroencephalographers.
Then, consecutive EEG data of 18 channels (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, T4, T5, C4, P3, Pz,
P4, T6, O1, O2) were divided into epochs of 5s for
the follow-up analysis.

2.3. Methods

2.3.1. Empirical mode decomposition

EMD is a signal processing method, and has been
more widely used in signal processing. EMD repre-
sents any temporal signal consisting of a ¯nite set of
amplitude and frequency modulated (AM-FM) os-
cillating components which are the basis of decom-
position. The EMD can extract a linear combination
of intrinsic oscillatory modes. The original signal
yðtÞ can be expressed as:

yðtÞ ¼
Xn
i¼1

Ci þ rn; ð1Þ

where Ci represents the IMFs, n is the number of
IMFs and rn is the ¯nal residue.

Each IMF exhibited by the EMD captures the
properties of the original signal at di®erent time
scales. Moreover, with a basis of decomposition
based on the signal, it does not require a prede¯ned
basis for the signal. The more complex the signal is,

the more random and uniform is the energy distri-
bution, the more abundant is the frequency com-
ponent, while the simpler the signal, the more
concentrated is the energy distribution in a few
energy modes. So the energy method is given by:

Ei ¼
1

N

XN
j¼1

jCiðjÞj2; i ¼ 1; 2; . . . ;n; ð2Þ

where Ei is the energy density of IMF Ci, and N is
the length of original signal.

Each of these IMFs is composed of useful infor-
mation or just composed of noise. High energy
density of the IMF contains more main information
of original signal and it accurately and e®ectively
re°ects signal characteristics, while low energy
density of the IMF contains some information
composed of noise. In this study, considering the
noises and artifacts in EEG, the IMFs containing
90% feature energy density were selected and sum-
med to reconstruct the signals, and entropy of the
reconstructed signals was then calculated. The de-
tailed EMD algorithm is described in Appendix A.

2.3.2. ApEn based on EMD

ApEn ¯rstly proposed by Pincus,40 has been widely
applied in many ¯elds, especially in complex and ir-
regular biomedical signals, such as the EEG back-
ground activity of AD,24 eplieptic activity41 and
heart rate signals.42 Compared with Shannon's en-
tropy, ApEn can express the randomness or

Table 1. Demographic and neuropsychological characteristics in the aMCI group and
control subjects. Signi¯cant level was set at *p < 0:05, **p < 0:01.

Factor aMCI (Mean � S.D.) Control (Mean � S.D.) p-value

Total number 11 10 —

Male/Female 4/7 5/5 —

Age 71.55 � 6.53 72.2 � 6.97 NS
Educational level 13.73 � 3.72 13.1 � 2.51 NS
MMSE 27.91 � 3.56 28.8 � 0.42 0.429
MoCA 22.55 � 1.21 27 � 1.33 <0.000**
AVLT immediate recall 5.52 � 0.89 8.09 � 1.7 0.001*
AVLT delayed recall 3.36 � 2.2 10 � 2.16 <0.000**
AVLT delay re-evoke 10.82 � 3.97 13.7 � 1.42 0.043*
Trail making A 69.6 � 20.6 61.2 � 17.3 0.336
Trail making B 131.25 � 64.89 108.1 � 39.18 0.362
Boston naming test 19.45 � 0.82 19.8 � 0.42 0.238
Semantic Fluency Test 16.82 � 3.16 18.36 � 4.2 0.384
Digit Span Test 10.24 � 2.41 14.8 � 2.3 0.150
IADL 2.64 � 4.32 0.5 � 1.58 0.150
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regularity of a time series in multiple dimensions. For
the dominant analyzed series xðiÞ ofN length, ApEn
is given by:

ApEnðm; r;NÞ ¼ �mðrÞ � �mþ1ðrÞ; ð3Þ
where

�mðrÞ ¼ ðN �mþ 1Þ�1
X
i

lnCm
i ðrÞ; ð4Þ

Cm
i ðrÞ ¼ ðN �mþ 1Þ�1Nm

i ðrÞ;
i ¼ 1; 2; . . . ;N �mþ 1; ð5Þ

where Cm
i ðrÞ is the probability of a vectorXðiÞ being

similar to XðjÞ within r, Nm
i ðrÞ is the number that

the distance of two vectors XðiÞ and XðjÞ is smaller
than the tolerancer; and a vector XðiÞð1 � i �
N �mþ 1Þ is reconstituted of this series, and is
expressed as XðiÞ¼fxðiÞ; xðiþ1Þ; . . . ; xðiþm�1Þg.

Low value of ApEn means more regular time
series, whereas high value of ApEn means more
complexity and irregularity of the signal. The se-
lection and the calculation of m and r are key pro-
blems. If the r values are smaller, one usually
achieves poor conditional probability estimates. If
the r values are large, much of the detailed infor-
mation of the system is lost. Some studies have
recommended to estimate ApEn with parameter
values of m ¼ 2–3, and r ¼ 0:1–0.25 of the standard
deviation of the signal.43,44 In this study, we set
m ¼ 2, r ¼ 0:2 of the standard deviation for the
processed signal. The detailed algorithm is de-
scribed in Appendix B.

2.3.3. SaEn based on EMD

SaEn is a modi¯cation of ApEn algorithm which
avoids the bias caused by self-matching, and the
improved performance of SaEn makes it useful for
physiological signals.45 It is largely independent of
record length and displays relative consistencies
under circumstances where ApEn does not. For the
dominant analyzed series xðiÞ of N length, SaEn
excludes self-matching when counting BmðrÞ and
AmðrÞ within a tolerance r. SaEn is given by the
formula:

SaEnðm; r;NÞ ¼ � ln½AmðrÞ=BmðrÞ�; ð6Þ
where

AmðrÞ ¼ ðN �mÞ�1
XN�m

i¼1

Cmþ1
i ðrÞ; ð7Þ

BmðrÞ ¼ ðN �mÞ�1
XN�m

i¼1

Cm
i ðrÞ; ð8Þ

Cm
i ðrÞ ¼ ðN �m� 1Þ�1Ci; i ¼ 1; 2; . . . ;N �m;

ð9Þ
where m is the embedding dimension, BmðrÞ is the
probability that XmðiÞ and XmðjÞ will match for m
points, AmðrÞ is the probability that XmðiÞ and
XmðjÞ will match for mþ 1 points, Cm

i ðrÞ is the
probability of a vector XmðiÞ being similar to XmðjÞ
within r, Ci is the number that the distance of two
vectors XðiÞ and XðjÞ is smaller than the tolerance
r; and a vector XmðiÞð1 � i � N �mþ 1Þ is
reconstituted of this series, and is expressed as
XmðiÞ ¼ fxðiÞ;xðiþ 1Þ; . . . ; xðiþm� 1Þg.

A lower value of SaEn also indicates more self-
similarity in the time series. A higher value of SaEn
also re°ects more complexity or a less prediction in
the time series. The same parameters with ApEn
were used for the processed signal. The detailed
algorithm is described in Appendix C.

2.3.4. Fuzzy entropy based on EMD

Fuzzy entropy (FEn) is based on fuzzy sets which
was introduced by Zadeh,46 and was employed to
evaluate the information of pattern distribution in
the pattern space. For the dominant analyzed series
xðiÞ of N length, FEn is given by:

FEnðm;n; r;NÞ ¼ ln½’mðn; rÞ � ’mþ1ðn; rÞ�; ð10Þ
where

’mðn; rÞ

¼ ðN �mÞ�1
XN�m

i¼1

ðN �m� 1Þ�1
XN�m

j¼1;j6¼i

Dm
ij

" #
;

ð11Þ

’mþ1ðn; rÞ

¼ ðN �mÞ�1
XN�m

i¼1

ðN �m� 1Þ�1
XN�m

j¼1;j6¼i

Dmþ1
ij

" #
;

ð12Þ
Dm

ij ðn; rÞ ¼ �ðdm
ij ;n; rÞ; ð13Þ

where Xm
i represents m consecutive x values,

commencing with the ith points and generalized by
removing a baseline: u0ðiÞ ¼ m�1

Pm�1
j¼0 uðiþ jÞ,

dm
ij is the maximum absolute di®erence of the
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corresponding scalar components of Xm
i and Xm

j ,
and Dm

ij is the similarity degree between Xm
i and its

neighboring vector Xm
j through a fuzzy function

�ðdm
ij ;n; rÞ.
Parameters must be selected and determined

before the calculation of FEn. A too large m value
is unfavorable due to the need of a very large
N (10m–30m), which is hard to meet generally and
will lead to losing the information. As to the fuzzy
similarity boundary determined by r and n, too
narrow values will result in salient in°uence from
noise, while too broad a boundary, as mentioned
above, is supposed to be avoided for fear of infor-
mation loss. In this study, m, r and n are ¯xed to 2,
0.2SD and 2, respectively. The detailed algorithm is
described in Appendix D.

2.3.5. Permutation entropy based on EMD

Bandt and Pompe proposed the Permutation en-
tropy (PEn) to measure the irregularity of nonsta-
tionary time series.47 This method can quantify the
complexity of a time-series comparing neighboring
values to investigate the intrinsic structures in EEG
data. The advantage of PEn has simplicity, ro-
bustness and easy computational complexity.48 For
the dominant analyzed series xðiÞ of N length, the
normalized PEn is de¯ned as

H ¼ �
Pn

i¼1 pi log pi
lnðnÞ ; ð14Þ

where n is possible order patterns, and pi is the
probability of the ith permutation occurring.

PEn gives a quantitative complexity measure for
a dynamical time series. The smaller the value of
PEn, the more regular the time series is. The cal-
culation depends on the selection ofm and L. Ifm is
too small, there are only very few distinct states. If
m is too large, it requires considerable long time
sequence in order to make sure that every permu-
tation patterns occurs. So it is necessary to inves-
tigate appropriate parameters for PEn calculation.
Olofsen et al. suggested to estimate PEn with the
embedding dimension values m ¼ 3, and the time
delay L ¼ 1–2.49 In this study, we calculated all
EEG data with m ¼ 3, L ¼ 1. The detailed algo-
rithm is described in Appendix E.

2.3.6. Power spectrum entropy based on EMD

Power spectrum entropy (PsEn) describes the ir-
regularity of the signal spectrum. It is obtained by

applying the Shannon entropy concept to the power
distribution of the Fourier-transformed signal. For
the dominant analyzed series xðiÞ of N length, the
PsEn is de¯ned as

PsEn ¼ �
XN
i¼1

pi log pi; ð15Þ

where pi is the frequency of spectral amplitudes in
bin i. The sum of all pi is equal to 1.50 The pi can be
obtained as the value of the power spectral density
at each frequency bin.51

PsEn is an e®ective way to describe the degree of
skewness in the frequency distribution. A high value
of PsEn means a °at, uniform spectrum with a
broad spectral content, whereas a low value of PsEn
means a spectrum with all the power condensed into
a single frequency bin.52 In this study, the total
spectral power was speci¯ed as the 0 to 80Hz fre-
quency band, and 2Hz ¼ 1 bin.

2.3.7. Wavelet entropy based on EMD

Wavelet entropy (WEn) can represent the degree of
order/disorder of a multi-frequency signal, and
provide useful information about the underlying
dynamical process associated with the signal. For
the dominant analyzed series xðiÞ of N length, the
WEn is de¯ned between scales as

WEn ¼ �
X
j

pj log pj; ð16Þ

where

pj ¼
E

Nj

j

Etot

¼
P

k jCjðkÞj2P
i

P
k jCjðkÞj2

; ð17Þ

where Nj is the window length within each level,
and CjðkÞ are the wavelet coe±cients of the local
residual errors between successive signal approx-
imations at scales j and jþ 1.

The WE is low when the signal represents an
ordered activity characterized by a narrow fre-
quency distribution, whereas the WE is high when
the signal contains a broad spectrum of frequency
distribution. The values of WEn are dependent on
the wavelet basis function, the number of decom-
posed layers n and the data length N. In this study,
the Daubechies6 (db6) wavelet was chosen as the
wavelet basis function, where the number of
decomposed layers was 6, the wavelet coe±cients of
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signals were in the range of 0–62.5Hz bands. The
detailed algorithm is described in Appendix F.

2.4. Simulation model: Logistic map

Logistic map is a well-known map arising in biology
mathematics, and can exhibit chaotic dynamics.
The logistic map is described by the following
nonlinear polynomial equation:

xnþ1 ¼ axnð1� xnÞ; 0 � xn � 1; ð18Þ
where xn is a time series between zero and one
which denotes the system state, and a is the system
parameter.

Logistic map shows the di®erent dynamics state
when the parameter a is di®erent, and a substantial
change will occur in the dynamic state when the
parameter a reaches a certain value. It presents a
bifurcation diagram to the complexity and unpre-
dictability of the chaotic process when the param-
eter a gradually increases from 3.5 to 4. In the
study, the initial value x0 was chosen to be 0.6, and
the parameter a was from 3.5 to 4.

The maximal Lyapunov exponent was applied to
analyze the dynamic predictability of logistic map
systems, and it was de¯ned as:

� ¼ 1

N

XN
n¼1

log2jað1� 2xnÞj; ð19Þ

where a is the system parameter of logistic map,
and N is the time series length in logistic map. The
maximal negative Lyapunov exponent indicates
stability, and maximal positive Lyapunov exponent
indicates chaos. The bifurcation diagram of the
logistic map and its maximal Lyapunov exponent
are shown in Fig. 1. We could see that a substan-
tial change had occurred in the dynamic state
when the parameter a was at a certain value, for
example, 3.832 was the negative maximum,
and the complexities of time series achieved a
minimum.

2.4.1. The in°uence of noise and EMD on

entropies algorithm

The performance of six entropies to track dynamics
state of logistic map and the in°uence of noise were
evaluated by correlation analysis between the
values of entropies and the largest positive Lyapu-
nov exponent.

The values of the six entropies changed with
system parameter a (from 3.5 to 4) with di®erent
signal-to-noise-ratio (SNR) (from 10 to 30 dB and
original time series without noise) are shown in
Fig. 2. The curves of six entropies based on EMD
was similar, thus it was omitted. The correlation
coe±cients r1 (between each entropy and the
maximal Lyapunov exponent) and r2 (between
each entropy based on EMD and the maximal
Lyapunov exponent) are shown in Table 2. The
time series length N was 1000.

For original time series, all entropies could all
track dynamics state of Logistic map well with
correlation coe±cients r1 up to 0.92, and they could
e®ectively re°ect the complexity and predictability
of the chaotic series, except that PEn had a lower
correlation coe±cient r1 of 0.7904. When white
noise was added to the system, the performance of
tracking dynamics state of Logistic map in the six
entropies all decreased, especially with small system
parameter a. The correlation coe±cients r1 of ApEn
and SaEn declined rapidly with SNR 30 dB, but
other entropies did not decline obviously. This
indicates that the anti-noise performance of ApEn
and SaEn was poorer than the others. The corre-
lation coe±cients r1 of FEn and PsEn were up to
0.92 with SNR 20 dB but not PEn and Wen which
indicates that FEn and PsEn had better anti-noise

Fig. 1. Bifurcation diagram of the logistic map and its maxi-
mal Lyapunov exponent.
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performance. With the increase of noise levels (SNR
10dB), the correlation coe±cient r1 of PsEn was
highest. So, PsEn had the best anti-noise perfor-
mance and PEn followed.

The correlation coe±cients r2 between each en-
tropy based on EMD and the maximal Lyapunov
exponent increased compared to r1, which indicated
that the entropies based on EMD had a better per-
formance to analyze series complexity. Thus, the
entropies based on EMD were used in the following
analysis.

2.4.2. The in°uence of series length on
entropies algorithm

The in°uence of the series length in the six algo-
rithms is shown in Fig. 3. The system parameter a
was 4, the time series length N varied from 100 to
2500 and its step size was 100.

In Fig. 3, the values of PsEn had a relatively
stable °uctuation when the series length was greater
than 500. The values of ApEn, SaEn and PEn had a
relatively stable °uctuation when the series length

Table 2. Correlation coe±cients between each entropy and the maximal Lyapunov exponent (p < 0:01).

Original signal SNR (30 dB) SNR (20 dB) SNR (10 dB) Original signal SNR (30 dB) SNR (20 dB) SNR (10 dB)

ApEn SaEn

r1 0.9884 0.4574 0.3494 0.3513 0.9715 0.5260 0.4207 0.2488
r2 0.9892 0.5346 0.4012 0.4025 0.9804 0.5691 0.5138 0.3311

FEn PEn

r1 0.9658 0.9646 0.9227 0.6666 0.7904 0.7917 0.6604 0.5299
r2 0.9661 0.9504 0.9248 0.6702 0.7976 0.7969 0.6880 0.5139

PsEn WEn

r1 0.9494 0.9491 0.9392 0.8028 0.9210 0.9174 0.8781 0.4382
r2 0.9536 0.9530 0.9407 0.8101 0.9239 0.9148 0.8471 0.4686

Note: All entropies were signi¯cantly positive correlated to the positive maximal Lyapunov exponent (p < 0:001). The coe±cient r1
indicates correlation between each entropy and the maximal Lyapunov exponent, and the coe±cient r2 indicates correlation
between each entropy based on EMD and the maximal Lyapunov exponent.

Fig. 2. The in°uence of noise levels (10, 20, 30 dB) on ApEn, SaEn, FEn, PEn, PsEn and WEn algorithms.
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was greater than 800, and the values of FEn and
WEn had a relatively stable °uctuation when the
series length was greater than 1500. So, PsEn has a
real value with short data length, but FEn and
WEn need more data.

2.5. Statistical analysis and correlation

analysis

One way analysis of variance (ANOVA) was per-
formed to test di®erences in six entropy measures
between the aMCI and control group. The LSD test
for post-hoc independent t-tests was used to compare
each group di®erence separately in each electrode.
Signi¯cant level was set at p < 0:05. Statistical
analysis was carried out using SPSS 20.0 software
(IBM SPSS Statistics Standard, Version 20.0).

Pearson's linear correlation was used to study the
associations between entropy values and cognitive
functions. Correlation coe±cients between entropy
values and neuropsychological tests were calculated
in all patients (aMCI and control groups) as a single
group. Signi¯cant level was set at p < 0:01.

2.6. Salient feature selection and

classi¯cation by SVMs

These features were grouped into six feature sets:
ApEn, SaEn, FEn, PEn, WEn and PsEn. Combined
feature sets were also investigated to overcome the
shortcomings of the extracted single feature. Hence,
we will refer to the \All" feature set that combines
all extracted features.

The most frequently used performance measure
extracted from the receiver operating characteristics

(ROC) curve is the value of the AUC, commonly
denoted as AUC. Here, AUC curve was used to
extract salient features from \All" feature set for
the classi¯cation of aMCI patients and control
group in T2DM. Once salient features were selected,
the SVM-based classi¯er was explored. SVM is now
well-founded and largely used in a number of
applications, for example machine, images and
diagnostics. Recent developments in de¯ning and
training statistical classi¯ers make it possible to
build reliable classi¯ers in very small sample size
problems. SVM has shown to work e®ectively in
combination with kernels that map the data to
other high-dimensional space by means of nonlinear
transformations, where the data can be separated in
a linear way, and establish the optimizing classi¯-
cation. In this paper, a polynomial kernel function
with the default parameter values: regularization
coe±cient C ¼ 1 and � ¼ 0:01 was used. 50% of the
data was randomly set aside for feature selection.
The remaining 50% was used for classi¯er training/
testing using a cross validation. Classi¯cation ac-
curacy, sensitivity and speci¯city were computed 50
times and given by their mean values.

3. Results

3.1. Statistical analysis of entropies
based on EMD between aMCI and

control group

Results of ANOVA are shown in Fig. 4. There were
signi¯cant e®ects of group for the ApEn based on
EMD (Fð1; 21Þ ¼ 3:324, p < 0:001), the SaEn based
on EMD (Fð1; 21Þ ¼ 3:662, p < 0:001), the FEn

Fig. 3. The in°uence of di®erent series length on ApEn, SaEn, FEn, PEn, PsEn and WEn algorithms.
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based on EMD (Fð1; 21Þ ¼ 4:366, p < 0:001) and
the PsEn based on EMD (Fð1; 21Þ ¼ 2:438,
p < 0:001), But the PEn based on EMD and the
WEn based on EMD group e®ects ((Fð1; 21Þ ¼
1:396, p > 0:05), Fð1; 21Þ ¼ 1:164, p > 0:05, re-
spectively) were not signi¯cant. Post-hoc compar-
isons between aMCI and control group revealed
that (1) aMCI group had lower ApEn based on
EMD values compared with control group, with
signi¯cant di®erences at electrodes F7, F3, F8, C3,
T4 and P4 (p < 0:036 to p < 0:005); (2) aMCI
group had lower SaEn based on EMD values com-
pared with control group, with signi¯cant di®er-
ences at electrodes Fp1, F7, F3, F8, C3, C4, T4, T5,
P3, P4, O1 and O2 (p < 0:044 to p < 0:004); (3)
aMCI group had lower FEn based on EMD values
compared with control group, with signi¯cant

di®erences at electrodes Fp1, F7, F3, F4, F8, T3,
C3, C4, T4, P3 and P4 (p < 0:005 to p < 0:003); (4)
aMCI group had lower PsEn based on EMD values
compared with control group, with signi¯cant dif-
ferences at electrodes T4 (p < 0:01); (5) aMCI
group had lower WEn based on EMD values at al-
most all electrodes except C4, T6, O1 and O2, but
the di®erences were not signi¯cant.

3.2. Salient features extraction and

classi¯cation of aMCI and
control group

Table 3 shows classi¯er accuracy, sensitivity and
speci¯city for all features sets between the aMCI
and control group. Accuracies of 65.7%, 65%, 68%
and 63.1% were obtained with ApEn, SaEn, FEn

Fig. 4. The ApEn, SaEn, FEn, PEn, PsEn and WEn based on EMD at all electrodes (mean� standard error) between aMCI group
(black) and control group (white). Results of ANOVA were the following: there was the signi¯cant group e®ect for the ApEn based
on EMD (Fð1; 21Þ ¼ 3:324, p < 0:001), the SaEn based on EMD (Fð1; 21Þ ¼ 3:662, p < 0:001), the FEn based on EMD
(Fð1; 21Þ ¼ 2:466, p < 0:001) and the PsEn based on EMD (Fð1; 21Þ ¼ 2:438, p < 0:001); the PEn and WEn based on EMD group
e®ects ((Fð1; 21Þ ¼ 1:396, p > 0:05), Fð1; 21Þ ¼ 1:164, p > 0:05, respectively) were not signi¯cant. Post-hoc comparisons between
aMCI and control group were illustrated on the top of the map: *p < 0:05, **p < 0:01.
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and \All" feature set, respectively, whereas accu-
racies of PEn, PsEn and WEn were relatively low.

Table 4 shows the top 43 salient features for the
aMCI and control group, which were shifted from

the \All" feature set. These features were repre-
sented by using an \electrode-feature" where
\electrode" indicates the electrode positions (i.e.,
Fp1), and \feature" indicates six entropy feature
sets (i.e., ApEn). In the table, SaEn, FEn and ApEn
features were the most salient. When combined,
they corresponded to 76.7% of the top 43 salient
features selected. PSEn and PEn correspond to
16.3% and 7% of the top 43 salient features selected,
respectively. However, WEn was seldom selected, so
it plays a small role in aMCI detection.

In terms of brain region and electrode, features
extracted from the right-temporal and occipital
regions were highest ranking features, and P4, T4
and C4 were salient in top 10 electrodes and were
shown in Fig. 5.

Table 3. Performance values of per feature set, Columns labeled \A, S and Sp" corresponding to
accuracy, sensitivity and speci¯city, respectively.

A S Sp A S Sp A S Sp A S Sp

ApEn SaEn FEn PEn

0.657 0.63 0.776 0.65 0.631 0.742 0.68 0.671 0.719 0.515 0.516 0.674

PsEn WEn All All-43a

0.56 0.543 0.601 0.524 0.259 0.348 0.631 0.61 0.734 0.738 0.723 0.779

Note: All-43 indicates the top 43 salient features of accuracy, sensitivity and speci¯city from the
\All" feature set.

Table 4. Top 43 salient features selected by an
AUC curve based feature selection algorithm.

Rank Feature Rank Feature

1 P4-FEn 23 F7-PsEn
2 P4-SaEn 24 F8-ApEn
3 T4-FEn 25 P3-ApEn
4 T4-PSEn 26 Fp1-FEn
5 P4-ApEn 27 P4-PEn
6 C4-FEn 28 F8-ApEn
7 F7-FEn 29 Fz-ApEn
8 F8-FEn 30 T5-FEn
9 C4-SaEn 31 C3-PsEn
10 Fz-FEn 32 F3-PsEn
11 P3-FEn 33 F8-SaEn
12 T4-SaEn 34 O1-SaEn
13 F3-FEn 35 O2-SaEn
14 T4-ApEn 36 C4-ApEn
15 C3-FEn 37 F4-FEn
16 P3-PsEn 38 Fp2-FEn
17 T5-SaEn 39 T3-FEn
18 T6-SaEn 40 T4-PEn
19 F3-ApEn 41 Fp1-PsEn
20 F7-ApEn 42 F3-SaEn
21 T5-ApEn 43 P3-SaEn
22 C4-PEn

Number of features per feature set
ApEn 9 PEn 3
SaEn 10 PSEn 7
FEn 14 WEn 0

Number of features per brain region
frontal 8
central 8
left-temporal 7
right-temporal 10
occipital 10

Fig. 5. Diagrammatic sketch of EEG zones. \1, 2, 3, 4 and 5"
correspond to frontal, left-temporal central, right-temporal and
occipital region, respectively. Gray scale indicated salient brain
regions.
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Table 5. Pearson's correlation analysis (r and p values) between each entropy and the scores of the
neuropsychological tests in all subjects as a whole group (p < 0:01).

FEn

p test FP1 FP2 F7 F3 T4 P4 T5 O1 O2

MoCA 0.675 0.585
0.0008 0.005

Semantic °uency 0.582 0.664 0.645
0.006 0.001 0.002

AVLT immediate recall 0.594 0.587 0.714 0.596 0.685 0.583
0.005 0.005 0.0002 0.004 0.0006 0.006

AVLT delay recall 0.660 0.596 0.726
0.001 0.004 0.0002

F8 P3 T6

AVLT immediate recall 0.702 0.594
0.0004 0.005

AVLT delay recall 0.635 0.555 0.561
0.002 0.009 0.008

PsEn

p test F7 T3 C3 T4 P3 Pz P4 O1 O2

MoCA 0.678
0.0007

Semantic °uency 0.616 0.548
0.003 0.005

AVLT immediate recall 0.582 0.571
0.0056 0.007

AVLT delay re-evoke 0.597 0.571 0.562 0.658 0.582 0.605 0.560
0.0043 0.007 0.008 0.001 0.006 0.004 0.008

WEn

p test F8

Trail making B �0.611
0.007

ApEn

p test T4 P4

MoCA 0.567
0.007

AVLT delay recall 0.568
0.007

SaEn

p test T4 P4 O2

MoCA 0.603 0.557
0.004 0.009

AVLT delay recall 0.580 0.554
0.006 0.009

D. Cui et al.
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3.3. Correlation analysis between
entropies and cognitive functions

In order to investigate the correlation between the
cognitive functions and entropy based on EMD, the
correlation coe±cients between neuropsychological
tests and each entropy at all electrodes were cal-
culated using Pearson's linear correlation analysis
between all patients as a whole group. The results
are presented in Table 5 with correlation values r
and p values (p < 0:01).

Then, Bonferroni method was used to correct the
correlation in each entropy feature set. The results
are shown in Fig. 6 (1) FEn based on EMD values
were signi¯cantly positively correlated to the AVLT
immediate recall at electrode F7 and F8 (r ¼ 0:714,
p ¼ 0:0003, and r ¼ 0:702, p ¼ 0:0004, respectively)
and delayed recall at electrode P4 (r ¼ 0:726,
p ¼ 0:0002); (2) PsEn based on EMD values were
signi¯cantly positively correlated to MoCA at
electrodes T4 (r ¼ 0:678, p ¼ 0:0007) and AVLT
delay re-evoke at electrode T4 (r ¼ 0:658,
p ¼ 0:001). Thus, entropy based on EMD was sig-
ni¯cantly positively correlated to MoCA and
memory.

4. Discussion

In this paper, six entropies based on EMD measures
were employed to investigate the di®erent dynamic
characteristics between amnesic MCI and normal
cognitive function subjects in T2DM. Compared to
other entropies, FEn based on EMD had a higher

classi¯cation accuracy. P4, T4 and C4 were highest
ranking salient electrodes in top 43 salient features.
FEn based on EMD was positively correlated to
memory at electrodes F7, F8 and P4. So, FEn based
on EMD in right-temporal and occipital regions
may display better EEG characteristics correlated
with cognitive functions and may be more suitable
for distinguishing aMCI in T2DM.

Recently, several studies based on entropy have
been successfully used to study the DM.25,26 Moli-
nari et al. showed that sample and bispectral en-
tropy analysis could compare the inner structure of
the near-infrared spectroscopy (NIRS) signals dur-
ing muscle contraction, particularly when dealing
with neuromuscular impairments.27 Tarvainen et al.
found that Diabetes duration was strongly associ-
ated with Renyi entropy which increased for posi-
tive orders and decreased for negative orders as a
function of disease duration. Shannon entropy,
SaEn and multiscale entropy (MSE) did not corre-
late with disease duration.25 What is noteworthy is
that each entropy method has its advantages. SaEn
is independent of record length to reduce biases of
ApEn, and has more accurate de¯nition in theory
compared with ApEn. Compared with ApEn and
SaEn, FEn can obtain more detailed character of
the time series and has more accurate de¯nition in
theory.51 PEn is less sensitive to the signal quality
and calculation length.52 PsEn has the particular
advantage that the contributions to entropy from
any particular frequency range are explicitly sepa-
rated.53 Compared with PsEn, the window function

Fig. 6. Correlation results between neuropsychological tests and each entropy based on EMD for each electrode in all patients as a
whole group (only signi¯cant correlations were displayed).
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of WEn is variable in both the time and frequency
domains. Which entropies are suitable for
researching cognitive function in T2DM? To our
knowledge, we ¯rstly applied entropies based on
EMD measures to analyze the dynamic character-
istics in amnestic MCI with T2DM.

In simulation analysis, all entropies could e®ec-
tively re°ect the complexity and predictability of the
chaotic series, except that PEn had a lower correla-
tion coe±cient of 0.7904. FEn had a good anti-noise
performance, but longer data were needed. In the
analysis of EEG data of patients in T2DM, results
showed that maximum accuracy, sensitivity and
speci¯city of 68%, 67.1% and 71.9% could be
obtained with FEn. FEnmay be the most suitable to
distinguish characteristics between aMCI and con-
trol group in the six entropies. None of features
extracted from the WEn feature set was selected, so
WEn plays a small role in aMCI detection. Accuracy,
sensitivity and speci¯city of 73.8%, 72.3% and 77.9%
could be obtained with the top 43 salient features
selected from \All" feature set, respectively, so the
top 43 salient features selected compares favorably
with single entropy and all entropy.

EMD is self-adaptive in nature and decomposes a
signal on the basis of its frequency content and
variation.54 In recent years, EMD algorithm has
become an established tool for the decomposition
and time-frequency analysis of nonstationary sig-
nals.55–57 It has been applied to various research
¯elds such as mechanical and vibration, °ow,
speech, EEG, radar, earthquake or ocean, for re-
vealing the underlying oscillatory modes of real-
world signals.58 The IMFs produced by the EMD
method usually have physical meanings. Each IMF
captures the properties of the original signal at
di®erent time scales and shifts them out in time
domain, whereas each IMF respectively contains
di®erent frequency components from high to low in
frequency domain. The IMFs extracted by the EMD
method are more concentrated on main character-
istics than original signal, so the use of EMD before
computing entropy provides greater insight than
simply applying the entropy measures to the whole
signal. Tsai et al. have used EMD-based detrended
SaEn to research the EEG in AD. Results showed
that the SaEn calculated from the detrended EEG
signals provides more sensitive results in early stage
AD patients and provides an objective, noninvasive
and nonexpensive tool for evaluating and following
AD patients.14

Moreover, features extracted from the right-
temporal and occipital regions were most salient at
about 46.5%, which were similar with previous
¯ndings in the occipital region of AD but not dia-
betes patients.17 We note that P4 was highly salient
in these entropies. This is consistent with the facts
that there was the decreased irregularity of the
EEG with MCI and AD patients but not diabetes
patients.16,17,24 We also found that ApEn, SaEn and
FEn entropy at electrodes F7, F3, F8, C3 and T4
had signi¯cantly decreased. It seems to be patho-
physiologically meaningful, in that they may be
related to cognitive impairment in T2DM.

Results of correlation analysis showed that the
values of MoCA were correlated with the entropy
based on EMD in right-temporal region but not
MMSE. A number of studies have compared the
sensitivity and speci¯city of two cognitive screening
tools, namely MMSE and MoCA. Results showed
that the MoCA score is more sensitive to detect the
MCI and AD in comparison with MMSE.59–61 In
addition, the MoCA has comprehensive coverage of
cognitive function, such as executive function at-
tention, attention and delayed recall, while the
MMSE lacks these abilities.62 Recently, Ala-
giakrishnan et al. have compared the usefulness of
MoCA with the Standardized MMSE in detecting
MCI with T2DM. Results showed that MoCA may
be more sensitive than the Standardized MMSE to
detecting MCI in DM subjects. MoCA appears to be
a better screening test than the Standardized
MMSE for detecting MCI in middle-aged and el-
derly patients with T2DM.63 In this study, we found
that some entropy measures had signi¯cant corre-
lation with MoCA, but were not signi¯cantly cor-
related with MMSE. The MoCA as a screening tool
may be useful for providing quick guidance and for
further investigation of MCI with T2DM. In addi-
tion, FEn based on EMD was signi¯cantly posi-
tively correlated with language and memory, PsEn
based on EMD was signi¯cantly positively corre-
lated with memory.

The mechanism for T2DM on the cognitive im-
pairment was not clear at all. Some studies suggested
that few factors may increase the risk of dementia
and cognitive decline in DM, such as hypoglycemia,
insulin therapy, duration of diabetes, angina pec-
toris, myocardial infarction, transient ischemic at-
tack, atrophy in the region of hippocampus and
amygdale.3,31 In addition, comorbidity conditions
associated with T2DM, including hyperinsulinemia
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and hypertension, may contribute to vascular dis-
ease and neurodegeneration.4 A recent report on
MRI abnormalities and cognitive changes found
substantial white matter lesions and subcortical
atrophies in T2DM patients.64 These results em-
phasized that abnormal EEG changes in persons
with T2DM were also associated with cognitive
impairment.

However, there are some limitations in the pres-
ent study. The reliability and persuasion of the
results were much a®ected because of lack of the
comparison of AD or normal control group and the
small quantity of the patients with T2DM. There-
fore, further work was required to acquire more data
not only in T2DM but also in normal control or AD
patients.

At present, we researched the EEG background
activity characteristics of T2DM on a single scale. It
cannot account for features related to structure and
organization on a single scale other than over mul-
tiple scales, so MSE method may be more e®ective
to analyze characteristics of T2DM. Some studies
analyzed the variation of EEG signal in AD patients
by using MSE, and the results demonstrated that
the AD patients had less complexity at smaller
scales when compared with healthy control sub-
jects.15,22,65 Park et al. evaluated the complexity of
the signal in MCI, AD and normal subjects. The
results demonstrated that EEG data from MCI
subjects showed nearly the same complexity and
EEG data from severe AD patients and showed a
loss of complexity in the multiple time scales when
compared to EEG data from normal subjects.66 Wu
et al. analyzed atherosclerosis in the aged and dia-
betic, and found that MSE analysis of pulse wave
velocity could better re°ect the impact of age and
blood sugar control.26 In future studies, we may
analyze MSE for distinguishing the aMCI diabetes
patients from normal diabetes patients.

5. Conclusion

In this paper, we explored six entropy analysis
measures to analyze characteristics of the EEG
signals between amnesic MCI and non-MCI
patients in T2DM. It was found that FEn had the
best classi¯cation performance than other entropies
with accuracy, sensitivity and speci¯city of 68%,
67.1% and 71.9%. In addition, FEn had more re-
markable features, and the right-temporal and oc-
cipital regions also were very signi¯cant in top 43

salient features extracted from the \All" feature set,
achieving accuracy, sensitivity and speci¯city of
73.8%, 72.3% and 77.9%. Cognitive functions and
entropy had some signi¯cant correlations. Results
showed that FEn based on EMD and memory at
electrodes F7, F8 and P4 were signi¯cantly strictly
correlated. PsEn based on EMD and MoCA at
electrodes T4 and memory at electrode T4 were
signi¯cantly strictly correlated.
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Appendix A. The EMD Algorithm

EMD can decompose the signal into di®erent IMFs.
Each IMF satis¯es two basic conditions: (1) the
number of extrema and the number of zero crossings
must be the same or di®er at most by one; (2) at any
point, the mean value of the envelope de¯ned by the
local maxima and the envelope de¯ned by the local
minima is zero. The detailed EMD algorithm for the
signal yðtÞ can be calculated as follows:

(1) The extrema of the signal are identi¯ed as y1.
Cubic spline interpolation between, respective-
ly, the local maxima em and the local minima el,
determines the upper and the lower envelopes.
The mean of the envelopes is subtracted from
the signal m1 ¼ ðem þ elÞ=2;

(2) If the remainder ful¯ls the conditions of IMF,
and di®ers from the previous one according to a
speci¯ed mean squared error stopping criterion,
it is retained. This IMF is then subtracted from
the signal c1 ¼ y1 �m1. The process is repeated
on the signal residue until only a trend remains
from which no more IMF can be derived;

(3) At the end of the decomposition the original
signal yðtÞ is represented as follows:

yðtÞ ¼
Xn
i¼1

Ci þ rn ðA:1Þ

where yðtÞ is the original signal, n is the number
of IMFs, rn is the ¯nal residue.
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Appendix B. The ApEn Algorithm

ApEn can be used to quantify the complexity or
irregularity of a signal and describes the rate of
producing new information. It is the negative av-
erage natural logarithm of the conditional proba-
bility that two vectors that are similar for m points
remain similar at the next point. For the dominant
analyzed series xðiÞ of N length, the ApEn can be
described as follows: this series is constructed N �
mþ 1 vectors Xð1Þ;Xð2Þ; . . . ;XðN �mþ 1Þ, and
expressed as

XðiÞ ¼ fxðiÞ;xðiþ 1Þ; . . . ; xðiþm� 1Þg;
1 � i � N �mþ 1; ðB:1Þ

where m is the embedding dimension.
Calculate the distance between XðiÞ and XðjÞ by

d½XðiÞ;XðjÞ�, as the maximum absolute di®erence
between their respective scalar components.

d½XðiÞ;XðjÞ�
¼ max

k¼1;2;...;m
ðjxðiþ k� 1Þ � xðjþ k� 1ÞjÞ ðB:2Þ

For a given XðiÞ, count the number of jðj ¼ 1 �
N �mþ 1; j 6¼ iÞ so that the distance of two vec-
tors XðiÞ and XðjÞ is smaller than r, denoted as Ni.
Then we de¯ne for each i,

Cm
i ðrÞ ¼ ðN �mþ 1Þ�1Ni;

i ¼ 1; 2; . . . ;N �mþ 1; ðB:3Þ
where Cm

i ðrÞ is the probability of a vector XðiÞ
being similar to a vectorXðjÞ within the tolerance r.
Next, calculate the natural logarithm of each Cm

i ðrÞ,
and average it over i:

�mðrÞ ¼ ðN �mþ 1Þ�1
X
i

lnCm
i ðrÞ ðB:4Þ

Similarly, when the embedding dimension in-
crease mþ 1, the above process is repeated:

�mþ1ðrÞ ¼ ðN �mÞ�1
XN�mþ1

i¼1

lnCm
i ðrÞ: ðB:5Þ

Finally, the patterns of lengthm and threshold r,
is de¯ned as:

ApEnðm; r;NÞ ¼ �mðrÞ � �mþ1ðrÞ: ðB:6Þ

Appendix C. The SaEn Algorithm

SaEn is a re¯nement of ApEn, and is the negative
logarithm of the conditional probability where two

sequences similar to m points remain similar at the
next point, where self-matching is not included in
calculating the probability. For the dominant ana-
lyzed series xðiÞ of N length, the SaEn is de¯ned by
following steps: this series are constructed N �m
vectors Xð1Þ;Xð2Þ; . . . ;XðN �mþ 1Þ and expres-
sed as

XðiÞ ¼ fxðiÞ;xðiþ 1Þ; . . . ; xðiþm� 1Þg;
1 � i � N �mþ 1; ðC:1Þ

where m is the embedding dimension.
Calculate the distance between XðiÞ and XðjÞ by

d½XðiÞ;XðjÞ�, as the maximum absolute di®erence
between their respective scalar components, de¯ned
as

d½XðiÞ;XðjÞ�
¼ max

k¼1;2;...;m
ðjxðiþ k� 1Þ � xðjþ k� 1ÞjÞ ðC:2Þ

For a given XðiÞ, count the number of jðj ¼ 1 �
N �m; j 6¼ iÞ so that the distance of two vectors
XðiÞ and XðjÞ is smaller than r, denoted as Ci.
Then we de¯ne for each i,

Cm
i ðrÞ ¼ ðN �mÞ�1Ci; i ¼ 1; 2; . . . ;N �m

ðC:3Þ
Next de¯ne BmðrÞ:

BmðrÞ ¼ ðN �mÞ�1
XN�m

i¼1

Cm
i ðrÞ ðC:4Þ

Similarly, when the embedding dimension in-
crease mþ 1, the above process is repeated:

AmðrÞ ¼ ðN �mÞ�1
XN�m

i¼1

Cmþ1
i ðrÞ ðC:5Þ

Finally, the SaEn is estimated by:

SaEnðm; r;NÞ ¼ � ln½AmðrÞ=BmðrÞ� ðC:6Þ

Appendix D. The FEn Algorithm

FEn is the negative natural logarithm of the con-
ditional probability that two vectors remain similar
for the next þ1 points. For the dominant analyzed
series xðiÞ of N length, vector sequences of m length
are constructed as follows:

fXm
i ¼ fxðiÞ; xðiþ 1Þ; . . . ;xðiþm� 1Þg � u0ðiÞ;

i ¼ 1; . . . ;N �mþ 1g; ðD:1Þ
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where Xm
i represents m consecutive x values,

commencing with the ith points and generalized by
removing a baseline: u0ðiÞ ¼ m�1

Pm�1
j¼0 xðiþ jÞ.

For given Xm
i , calculated the similarity degree

Dm
ij between Xm

i and its neighboring vector Xm
j

through a fuzzy function �ðdm
ij ;n; rÞ

Dm
ij ðn; rÞ ¼ �ðdm

ij ;n; rÞ ¼ expð�ðdm
ij Þn=rÞ; ðD:2Þ

where dm
ij is the maximum absolute di®erence of the

corresponding scalar components of Xm
i and Xm

j ,
and the fuzzy function �ðdm

ij ;n; rÞ is the exponential
function.

Then we de¯ne ’mðn; rÞ as:
’mðn; rÞ

¼ ðN �mÞ�1
XN�m

i¼1

ðN �m� 1Þ�1
XN�m

j¼1;j 6¼i

Dm
ij

" #
:

ðD:3Þ
Similarly, when m increases to mþ 1, the above

process is repeated:

’mþ1ðn; rÞ

¼ ðN �mÞ�1
XN�m

i¼1

ðN �m� 1Þ�1
XN�m

j¼1;j 6¼i

Dmþ1
ij

" #
:

ðD:4Þ
Finally, when the length of data sets N is ¯nite,

the FEn is estimated by:

FEnðm;n; r;NÞ ¼ ln½’mðn; rÞ � ’mþ1ðn; rÞ�:
ðD:5Þ

Appendix E. The PEn Algorithm

PEn is an e®ective complexity measure for time
series which is based upon the comparison of the
ordinal sequence of neighboring values. For the
dominant analyzed series xðiÞ of N length, this se-
ries is constructed:

Xi ¼ ½xðiÞ;xðiþ LÞ; . . . ; xðiþ ðm� 1ÞLÞ�;
i ¼ 1; 2; . . . ;N � ðm� 1ÞL; ðE:1Þ

where m and L are embedding dimension and time
delay, respectively. Then x is arranged in an in-
creasing order:

½xðiþ ðj1 � 1ÞLÞ � xðiþ ðj2 � 1ÞLÞ
� � � � � xðiþ ðjm � 1ÞLÞ�: ðE:2Þ

There will be m! possible patterns �. The same
pattern is sorted a group, and the probability of the
ith permutation occurring is calculated as
pi; i ¼ 1; 2; . . . ;m!. The PEn is de¯ned as

H ¼ �
Xm!

i¼1

pi log pi: ðE:3Þ

Finally, the normalized entropy can be de¯ned
as:

PEn ¼ H= lnðm!Þ: ðE:4Þ

Appendix F. The WEn Algorithm

The wavelet is a smooth and quickly vanishing os-
cillating function with good localization in both
frequency and time. WEn has physiological mean-
ing, and can well measure the disorder level in the
signal. For the dominant analyzed series xðiÞ of N
length, the wavelet energy E

ðNjÞ
j at each scale j is

de¯ned as:

E
Nj

j ¼
X
k

jCjðkÞj2; ðF:1Þ

whereNj is the window length within each level, the
wavelet coe±cients CjðkÞ can be interpreted as the
local residual errors between successive signal
approximations at scales j and jþ 1. In conse-
quence, the total energy can be obtained by

Etot ¼ jjT jj2 ¼
X
i

X
k

jCjðkÞj2 ¼
X
i

Ej ðF:2Þ

Then the normalized values which represent the
relative wavelet energy at each scale j and window
length Nj:

pj ¼
E

Nj

j

Etot

¼
P

k jCjðkÞj2P
i

P
k jCjðkÞj2

: ðF:3Þ

According to the Shannon entropy, the WEn is
de¯ned between scales as follows:

WEn ¼ �
X
j

pj log pj: ðF:4Þ

References

1. E. Ginter, V. Simko, \Type 2 diabetes mellitus,
pandemic in 21st century," Adv. Exp. Med. Biol.
771, 42–50 (2012).

2. J. A. Luchsinger, C. Reitz, B. Patel, M. X. Tang, J.
J. Manly, R. Mayeux, \Relation of diabetes to mild

Analysis of entropies based on EMD

1550010-17

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
5.

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

37
.1

08
.7

0.
14

 o
n 

01
/1

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



cognitive impairment," Archiv. Neurol. 64(4), 570–
575 (2007).

3. D. G. Bruce, W. A. Davis, G. P. Casey, S. E.
Starkstein, R. M. Clarnette, O. P. Almeida, T. M. E.
Davis, \Predictors of cognitive decline in older
individuals with diabetes," Diabetes Care 31(11),
2103–2107 (2008).

4. J. S. Saczynski, M. K. Jonsdottir, M. E. Garcia,
P. V. Jonsson, R. Peila, G. Eiriksdottir, E. Olafs-
dottir, T. B. Harris, V. Gudnason, L. J. Launer,
\Cognitive impairment: An increasingly important
complication of type 2 diabetes," Am. J. Epidemiol.
168(10), 1132–1139 (2008).

5. Y. W. Zhang, X. Zhang, J. Q. Zhang, C. Liu, Q. Y.
Yuan, X. T. Yin, L. Q. Wei, J. G. Cui, R. Tao, P.
Wei, J. Wang, \Gray matter volume abnormalities
in type 2 diabetes mellitus with and without mild
cognitive impairment," Neurosci. Lett. 562, 1–6
(2014).

6. E. M. C. Schrijvers, J. C. M. Witteman, E. J. G.
Sijbrands, A. Hofman, P. J. Koudstaal, M. M. B.
Breteler, \Insulin metabolism and the risk of Alz-
heimer disease The Rotterdam study," Neurology
75(22) 1982–1987 (2010).

7. R. O. Roberts, D. S. Knopman, Y. E. Geda, R. H.
Cha, V. S. Pankratz, L. Baertlein, B. F. Boeve, E. G.
Tangalos, R. J. Ivnik, M. M. Mielke, R. C. Petersen,
\Association of diabetes with amnestic and non-
amnestic mild cognitive impairment," Alzheimers
Dement. 10(1), 18–26 (2014).

8. T. Cukierman, H. C. Gerstein, J. D. Williamson,
\Cognitive decline and dementia in diabetes-sys-
tematic overview of prospective observational
studies," Diabetologia 48(12), 2460–2469 (2005).

9. M. Elgendi, F. Vialatte, A. Cichocki, C. Latch-
oumane, J. Jeong, J. Dauwels, \Optimization of
EEG frequency bands for improved diagnosis of
Alzheimer disease," 2011 Annual Int. Conf. IEEE
Engineering in Medicine and Biology Society, pp.
6087–6091 (2011).

10. T. Gili, M. Cercignani, L. Serra, R. Perri, F. Giove,
B. Maraviglia, C. Caltagirone, M. Bozzali,
\Regional brain atrophy and functional disconnec-
tion across Alzheimer's disease evolution," J. Neu-
rol. Neurosurg. Ps 82(1), 58–66 (2011).

11. C. Babiloni, R. Ferri, G. Binetti, A. Cassarino,
G. Dal Forno, M. Ercolani, F. Ferreri, G. B. Frisoni,
B. Lanuzza, C. Miniussi, F. Nobili, G. Rodriguez,
F. Rundo, C. J. Stam, T. Musha, F. Vecchio, P. M.
Rossini, \Fronto-parietal coupling of brain rhythms
in mild cognitive impairment: A multicentric EEG
study," Brain Res. Bull. 69(1), 63–73 (2006).

12. J. E. Skinner, D. N. Weiss, J. M. Anchin, Z. Tur-
ianikova, I. Tonhajzerova, J. Javorkova, K.
Javorka, M. Baumert, M. Javorka, \Nonlinear PD2i

heart rate complexity algorithm detects autonomic
neuropathy in patients with type 1 diabetes
mellitus," Clin. Neurophysiol. 122(7), 1457–1462
(2011).

13. Y. Chen, T. D. Pham, \Sample entropy and regu-
larity dimension in complexity analysis of cortical
surface structure in early Alzheimer's disease and
aging," J. Neurosci. Methods 215(2), 210–217
(2013).

14. P. H. Tsai, C. Lin, J. Tsao, P. F. Lin, P. C. Wang,
N. E. Huang, M. T. Lo, \Empirical mode decom-
position based detrended sample entropy in elec-
troencephalography for Alzheimer's disease," J.
Neurosci. Methods 210(2), 230–237 (2012).

15. T. Mizuno, T. Takahashi, R. Y. Cho, M. Kikuchi, T.
Murata, K. Takahashi, Y. Wada, \Assessment of
EEG dynamical complexity in Alzheimer's disease
using multiscale entropy," Clin. Neurophysiol.
121(9), 1438–1446 (2010).

16. D. Abasolo, J. Escudero, R. Hornero, C. Gomez,
P. Espino, \Approximate entropy and auto mutual
information analysis of the electroencephalogram in
Alzheimer's disease patients," Med. Biol. Eng.
Comput. 46(10), 1019–1028 (2008).

17. D. Ab�asolo, R. Hornero, P. Espino, D. Alvarez,
J. Poza, \Entropy analysis of the EEG background
activity in Alzheimer's disease patients," Physiol.
Meas. 27(3), 241–253 (2006).

18. F. J. Hsiao, W. T. Chen, Y. J. Wang, S. H. Yan,
Y. Y. Lin, \Altered source-based EEG coherence of
resting-state sensorimotor network in early-stage
Alzheimer's disease compared to mild cognitive
impairment," Neurosci. Lett. 558, 47–52 (2014).

19. D. Abasolo, R. Hornero, P. Espino, D. Alvarez,
J. Poza, \Multiway array decomposition analysis of
EEGs in Alzheimer's disease," J. Neurosci. Methods
207(1), 41–50 (2012).

20. P. Ghorbanian, D. M. Devilbiss, A. J. Simon,
A. Bernstein, T. Hess, H. Ashra¯uon, Discrete
wavelet transform EEG features of Alzheimer's
disease in activated states, 2012 Annual Int. Conf.
IEEE Engineering in Medicine and Biology Society,
pp. 2937–2940 (2012).

21. F. J. Fraga, T. H. Falk, L. R. Trambaiolli, E. F.
Oliveira, W. H. L. Pinaya, P. A. M. Kanda,
R. Anghinah, \Towards an EEG-based biomarker
for Alzheimer's disease: Improving amplitude mod-
ulation analysis features," Int. Conf. Acoust.
Speech, pp. 1207–1211 (2013).

22. J. Escudero, D. Abasolo, R. Hornero, P. Espino,
M. Lopez, \Analysis of electroencephalograms in
Alzheimer's disease patients with multiscale
entropy," Physiol. Meas. 27(11), 1091–1106 (2006).

23. G. Emmanuelle, H. H. Anne, M. Guillaume,
C. Mathieu, L. Georges, \Complexity quanti¯cation

D. Cui et al.

1550010-18

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
5.

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

37
.1

08
.7

0.
14

 o
n 

01
/1

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



of signals from the heart, the macrocirculation and
the microcirculation through a multiscale entropy
analysis," Biomed. Signal Process. 8(4), 341–345
(2013).

24. D. Abasolo, R. Hornero, P. Espino, J. Poza, C. I.
Sanchez, R. de la Rosa, \Analysis of regularity in
the EEG background activity of Alzheimer's disease
patients with approximate entropy," Clin. Neuro-
physiol. 116(8), 1826–1834 (2005).

25. M. P. Tarvainen, D. J. Cornforth, P. Kuoppa, J. A.
Lipponen, H. F. Jelinek, Complexity of heart rate
variability in type 2 diabetes — e®ect of hypergly-
cemia, 2013 Annual Int. Conf. IEEE Engineering in
Medicine and Biology Society, pp. 5558–5561
(2013).

26. H. T. Wu, P. C. Hsu, C. F. Lin, H. J. Wang, C. K.
Sun, A. B. Liu, M. T. Lo, C. J. Tang, \Multiscale
entropy analysis of pulse wave velocity for assessing
atherosclerosis in the aged and diabetic," IEEE
Trans. Biomed. Eng. 58(10), 2978–2981 (2011).

27. F. Molinari, U. R. Acharya, R. J. Martis, R. De
Luca, G. Petraroli, W. Liboni, \Entropy analysis of
muscular near-infrared spectroscopy (NIRS) signals
during exercise programme of type 2 diabetic
patients: Quantitative assessment of muscle meta-
bolic pattern," Comput. Methods Prog. Biol. 112(3),
518–528 (2013).

28. M. A. H. Hazari, B. Ram Reddy, N. Uzma, B. S.
Kumar, \Cognitive impairment in type 2 diabetes
mellitus," Int. J. Diabetes Mellitus 01, 1–6 (2011).

29. T. Brismar, \The human EEG-physiological and
clinical studies," Physiol. Behav. 92(1–2), 141–147
(2007).

30. G. K. Cooray, L. Maurex, T. Brismar, \Cognitive
impairment correlates to low auditory event-related
potential amplitudes in type 1 diabetes," Psycho-
neuroendocrinology 33(7), 942–950 (2008).

31. G. K. Cooray, L. Hyllienmark, T. Brismar,
\Decreased cortical connectivity and information
°ow in type 1 diabetes,"Clin. Neurophysiol. 122(10),
1943–1950 (2011).

32. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H.
Shih, Q. Zheng, N. C. Yen, C. C. Tung, H. Liu, \The
empirical mode decomposition and the Hilbert
spectrum for nonlinear and non-stationary time se-
ries analysis," Phys. Eng. Sci. 454(1971), 903–995
(1998).

33. G. Puavilai, S. Chanprasertyotin, A. Sri-
phrapradaeng, \Diagnostic criteria for diabetes
mellitus and other categories of glucose intolerance:
1997 criteria by the Expert Committee on the Di-
agnosis and Classi¯cation of Diabetes Mellitus
(ADA), 1998 WHO consultation criteria, and 1985
WHO criteria. World Health Organization," Dia-
betes Res. Clin. Pract. 44(1), 21–26 (1999).

34. F. Portet, P. J. Ousset, P. J. Visser, G. B. Frisoni, F.
Nobili, P. Scheltens, B. Vellas, J. Touchon. \Mild
cognitive impairment (MCI) in medical practice: A
critical review of the concept and new diagnostic
procedure. Report of the MCI Working Group of the
European Consortium on Alzheimer's Disease," J.
Neurol. Neurosurg. Psychiatry 77(6), 714–718
(2006).

35. G. A. Carlesimo, C. Caltagirone, G. Gainotti, \The
mental deterioration battery: Normative data, di-
agnostic reliability and qualitative analyses of cog-
nitive impairment. The Group for the
Standardization of the Mental Deterioration
Battery," Eur. Neurol. 36(6), 378–384 (1996).

36. G. Novelli, Three clinical tests for the assessment of
lexical retrieval and production. Norms from 320
normal subjects, Archivio di psicologia, Neurologia
E Psichiatria 47, 477–506 (1986).

37. A. Orsini, D. Grossi, E. Capitani, M. Laiacona, C.
Papagno, G. Vallar, \Verbal and spatial immediate
memory span: Normative data from 1355 adults and
1112 children," Ital. J. Neurol. Sci. 8(6) 539–548
(1987).

38. Reitan, \Validity of the trail making test as an in-
dication of organic brain damage," Percept. Mot.
Skills 958, 271–276 (1958).

39. M. P. Lawton, E. M. Brody, \Assessment of older
people: Self-maintaining and instrumental activities
of daily living," Gerontologist 9(3), 179–186 (1969).

40. S. M. Pincus, \Approximate entropy as a measure of
system complexity," Proc. Natl. Acad. Sci. USA 88,
2297–2301 (1991).

41. L. Guo, D. Rivero, A. Pazos, \Epileptic seizure de-
tection using multiwavelet transform based ap-
proximate entropy and arti¯cial neural networks,"
J. Neurosci. Methods 193(1), 156–163 (2010).

42. M. G. Signorini, G. Magenes, S. Cerutti, D. Arduini,
\Linear and nonlinear parameters for the analysis of
fetal heart rate signal from cardiotocographic
recordings," IEEE Trans. Biomed. Eng. 50(3), 365–
374 (2003).

43. S. M. Pincus, \Assessing serial irregularity and its
implications for health," Popul. Health Aging 954,
245–267 (2001).

44. J. Bruhn, H. Ropcke, A. Hoeft, \Approximate en-
tropy as an electroencephalographic measure of an-
esthetic drug e®ect during des°urane anesthesia,"
Anesthesiology 92(3), 715–726 (2000).

45. C. E. Elger, G. Widman, R. Andrzejak, M. Dum-
pelmann, J. Arnhold, P. Grassberger, K. Lehnertz,
\Value of nonlinear time series analysis of the EEG
in neocortical epilepsies," Adv. Neurol. 84, 317–330
(2000).

46. L. Zadeh, Fuzzy sets, Inform. Control 8(3), 338–353
(1965).

Analysis of entropies based on EMD

1550010-19

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
5.

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

37
.1

08
.7

0.
14

 o
n 

01
/1

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



47. C. Bandt, B. Pompe, \Permutation entropy: A
natural complexity measure for time series," Phys.
Rev. Lett. 88(17), 174102 (2002).

48. X. Li, G. Ouyang, D. A. Richards, \Predictability
analysis of absence seizures with permutation
entropy," Epilepsy Res. 77(1), 70–74 (2007).

49. E. Olofsen, J. W. Sleigh, A. Dahan, \Permutation
entropy of the electroencephalogram: A measure of
anaesthetic drug e®ect," Br. J. Anaesthesiol 101(6),
810–821 (2008).

50. J. W. Sleigh, D. A. Steyn-Ross, M. L. Steyn-Ross,
C. Grant, G. Ludbrook, \Cortical entropy changes
with general anaesthesia: Theory and experiment,"
Physiol. Meas. 25(4), 921–934 (2004).

51. W. T. Chen, J. Zhuang, W. X. Yu, Z. Z. Wang,
\Measuring complexity using FuzzyEn, ApEn, and
SampEn," Med. Eng. Phys. 31(1), 61–68 (2009).

52. X. L. Li, S. Y. Cui, L. J. Voss, \Using permutation
entropy to measure the electroencephalographic
e®ects of sevo°urane," Anesthesiology 109(3), 448–
456 (2008).

53. H. Vierti€o-Oja, V. Maja, M. Särkelä, P. Talja,
N. Tenkanen, H. Tolvanen-Laakso, M. Paloheimo,
A. Vakkuri, A. Yli-Hankala, P. Meriläinen,
\Description of the EntropyTM algorithm as applied
in the Datex-Ohmeda S/5TM entropy module," Acta
Anaesthesiol. Scand. 48(2), 154–161 (2004).

54. Z. K. Peng, P. W. Tse, F. L. Chu, \A comparison
study of improved Hilbert–Huang transform and
wavelet transform: Application to fault diagnosis for
rolling bearing," Mech. Syst. Signal Process. 19(5),
974–988 (2005).

55. X. Y. Zhang, J. Z. Zhou, \Multi-fault diagnosis for
rolling element bearings based on ensemble empiri-
cal mode decomposition and optimized support
vector machines,"Mech. Syst. Signal Process. 41(1–
2), 127–140 (2013).

56. J. R. Huang, S. Z. Fan, M. F. Abbod, K. K. Jen,
J. F. Wu, J. S. Shieh, \Application of multivariate
empirical mode decomposition and sample entropy
in EEG signals via arti¯cial neural networks for
interpreting depth of anesthesia," Entropy 15(9),
3325–3339 (2013).

57. X. Li, D. Li, Z. Liang, L. J. Voss, J. W. Sleigh,
\Analysis of depth of anesthesia with Hilbert–
Huang spectral entropy," Clin. Neurophysiol. 119
(11), 2465–2475 (2008).

58. A. Gallix, J. M. Gorriz, J. Ramirez, I. A. Illan, E. W.
Lang, \On the empirical mode decomposition ap-
plied to the analysis of brain SPECT images," Ex-
pert Syst. Appl. 39(18), 13451–13461 (2012).

59. C. Zadiko®, S. H. Fox, D. F. Tang-Wai, T. Thom-
sen, R. M. A. de Bie, P. Wadia, J. Miyasaki, S. Du®-
Canning, A. E. Lang, C. Marras, \A comparison of
the mini mental state exam to the Montreal cogni-
tive assessment in identifying cognitive de¯cits in
Parkinson's disease," Mov. Disord. 23(2), 297–299
(2008).

60. D. R. Roalf, P. J. Moberg, S. X. Xie, D. A. Wolk,
S. T. Moelter, S. E. Arnold, \Comparative accura-
cies of two common screening instruments for clas-
si¯cation of Alzheimer's disease, mild cognitive
impairment, and healthy aging," Alzheimers
Dement. 9(5), 529–537 (2013).

61. P. Athilingam, K. B. King, S. W. Burgin, M. Ack-
erman, L. A. Cushman, L. Chen, \Montreal cogni-
tive assessment and mini-mental status examination
compared as cognitive screening tools in heart fail-
ure," Heart Lung 40(6), 521–529 (2011).

62. S. Nazem, A. D. Siderowf, J. E. Duda, T. T. Have,
A. Colcher, S. S. Horn, P. J. Moberg, J. R. Wilk-
inson, H. I. Hurtig, M. B. Stern, D. Weintraub,
\Montreal cognitive assessment performance in
patients with Parkinson's disease with `normal'
global cognition according to mini-mental state ex-
amination score," J. Am. Geriatr. Soc. 57(2), 304–
308 (2009).

63. K. Alagiakrishnan, N. Zhao, L. Mereu, P. Senior,
A. Senthilselvan, Montreal cognitive assessment is
superior to standardized mini-mental status exam in
detecting mild cognitive impairment in the middle-
aged and elderly patients with type 2 diabetes mel-
litus, Biomed. Res. Int. 5 (2013), doi: 10.1155/2013/
186106.

64. S. M. Manschot, A. M. A. Brands, J. van der Grond,
R. P. C. Kessels, A. Algra, L. J. Kappelle, G. J.
Biessels, U. D. E. St, \Brain magnetic resonance
imaging correlates of impaired cognition in patients
with type 2 diabetes," Diabetes 55(4), 1106–1113
(2006).

65. A. C. Yang, S. J. Wang, K. L. Lai, C. F. Tsai, C. H.
Yang, J. P. Hwang, M. T. Lo, N. E. Huang, C. K.
Peng, J. L. Fuh, \Cognitive and neuropsychiatric
correlates of EEG dynamic complexity in patients
with Alzheimer's disease," Prog. Neuropsycho-
pharmacol Biol Psychiatry 47, 52–61 (2013).

66. J. H. Park, S. Kim, C. H. Kim, A. Cichocki, K. Kim,
\Multiscale entropy analysis of EEG from patients
under di®erent pathological conditions," Fractals
15(4), 399–404 (2007).

D. Cui et al.

1550010-20

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
5.

08
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

37
.1

08
.7

0.
14

 o
n 

01
/1

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Analysis of entropies based on empirical mode decomposition in amnesic mild cognitive impairment of diabetes mellitus
	1. Introduction
	2. Materials and Methods
	2.1. Subjects and criteria
	2.2. EEG recording and preprocessing
	2.3. Methods
	2.3.1. Empirical mode decomposition
	2.3.2. ApEn based on EMD
	2.3.3. SaEn based on EMD
	2.3.4. Fuzzy entropy based on EMD
	2.3.5. Permutation entropy based on EMD
	2.3.6. Power spectrum entropy based on EMD
	2.3.7. Wavelet entropy based on EMD

	2.4. Simulation model: Logistic map
	2.4.1. The influence of noise and EMD on entropies algorithm
	2.4.2. The influence of series length on entropies algorithm

	2.5. Statistical analysis and correlation analysis
	2.6. Salient feature selection and classification by SVMs

	3. Results
	3.1. Statistical analysis of entropies based on EMD between aMCI and control group
	3.2. Salient features extraction and classification of aMCI and control group
	3.3. Correlation analysis between entropies and cognitive functions

	4. Discussion
	5. Conclusion
	Acknowledgments
	Appendix A. The EMD Algorithm
	Appendix B. The ApEn Algorithm
	Appendix C. The SaEn Algorithm
	Appendix D. The FEn Algorithm
	Appendix E. The PEn Algorithm
	Appendix F. The WEn Algorithm
	References


