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A leukocyte recognition method for human peripheral blood smear based on island-clustering
texture (ICT) is proposed. By analyzing the features of the ¯ve typical classes of leukocyte
images, a new ICT model is established. Firstly, some feature points are extracted in a gray
leukocyte image by mean-shift clustering to be the centers of islands. Secondly, the growing
region is employed to create regions of the islands in which the seeds are just these feature points.
These islands distribution can describe a new texture. Finally, a distinguished parameter vector
of these islands is created as the ICT features by combining the ICT features with the geometric
features of the leukocyte. Then the ¯ve typical classes of leukocytes can be recognized successfully
at the correct recognition rate of more than 92.3% with a total sample of 1310 leukocytes.
Experimental results show the feasibility of the proposed method. Further analysis reveals that
the method is robust and results can provide important information for disease diagnosis.

Keywords: Image processing; leukocyte recognition; texture analysis; island-clustering texture.

1. Introduction

Recognition and counting of human peripheral
blood leukocyte (white blood cell, WBC) image
play an important role in diseases diagnosis, but
the manual process is time consuming and prone
to error. For a trained medical technician, it
may take more than 15 min to evaluate and count
100 WBCs for each blood smear.1 Therefore, an

automatic leukocyte image recognition method is
needed. At present, most automatic leukocyte
counting methods are based on laser-light scatter-
ing,2,3 and °ow-cytochemical principles which can
only classify leukocytes from di®erent sizes, but
cannot recognize the ¯ve types of WBC for more
detailed information.However,microscopic imaging-
based automatic leukocyte recognition and counting
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methods can classify the ¯ve types of WBC and also
give doctors more visual information of color, tex-
ture, shape, size, etc.

WBC image processing covers segmentation,
features extraction and classi¯cation.4 For segmen-
tation, methods such as HSV segmentation,5,6

image enhancement segmentation,7 gradient vector
°ow snake segmentation8 and supported vector
machine (SVM) segmentation9 are standard in lit-
erature. In general, well extracted features can
compensate the e®ectiveness of segmentation for
better recognition rate. Commonly used features of
WBC include geometric features,10–12 histogram-
based features6,13,14 and texture features.1,11,15 The
geometric features are e®ective in normal condi-
tions, but may fail in the case of some distorted cells
and hard to be di®erentiated WBCs such as baso-
phil and lymphocyte. In this case, texture features
could be more useful. However, general texture
processing methods, like gray level co-occurrence
matrix (GLCM)1,16 and local binary pattern
(LBP)17 may not be intuitive. It may be hard to
decide predetermined parameters used in these
methods. Therefore, developing a more visual and
robust texture is necessary for our applications. On
classi¯cation, SVM,6,12,18,19 arti¯cial neural net-
work (ANN)12,15,19 and decision tree are popular. In
this work, HSI segmentation is ¯rstly applied, and
geometric features are extracted, and then a new
texture named island-clustering texture (ICT) is
proposed to extract texture features of WBC, and
¯nally ANN is used as classi¯er.

2. Related Works

At present, GLCM and LBP are the most fre-
quently used texture analysis tools, so they are
evaluated in this work.

2.1. Texture analysis based on GLCM

Textural features can be statistically evaluated by
using GLCM. For an analyzed image Ic as shown in
Fig. 1(a), its gray processing is dependent of the
gray level (g). Figure 1(b) is the gray image of Ic at
g ¼ 256, Fig. 1(c) is the gray image of Ic at g ¼ 8. In
GLCM, for a given g, p� is the joint probability
distribution of two pixels away from a given dis-
tance (d) along a direction (�). Assume that GLCM
is an isotropic matrix, i.e., GLCM is insensitive to

180� rotation and invariant under di®erent � values:
0�, 45�, 90� and 135�. So the normalization of
GLCM P is described by averaging p� for the above
angles with its transposed matrix pT

� as Eq. (1):

P ¼
X

�¼0;45;90;135

ðp� þ pT
� Þ

8
: ð1Þ

It should be noted that g may a®ect the dimen-
sions seriously. The relationship of g and the size
(S) of GLCM is shown in Eq. (2):

S ¼ g2: ð2Þ
Gray level of g ¼ 256 will make S ¼ 65; 536.

Decreasing g to 8 will drop S to 64 for more prac-
tical but with accompanying cell detail information
lost as shown in Fig. 1. The clear texture of cyto-
plasm in Fig. 1(b) disappeared in Fig. 1(c).

GLCM is just a matrix, and it needs 22 second-
order statistics of GLCM for describing a texture,
and the frequently used parameters are listed in
Eqs. (3)–(5), where pi;j is the joint-probability dis-
tribution function, i and j keep track of cells by
their horizontal and vertical coordinates. Angular
second moment (ASM) described in Eq. (3) re°ects
the image gray distribution uniformity, ASM uses
each pi;j as a weighting, and high values of it occur
when the window is very orderly. Equation (4) can
describe the Contrast of an image, but it may be
in°uenced by noises. The Homogeneity in Eq. (5)
represents the local changes of texture, and the

(a) Analyzed image I c (b) Gray image at g ¼ 256

(c) Gray image at g ¼ 8

Fig. 1. Gray processing at di®erent gray levels of a leukocyte
image.
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more orderly the texture is, the higher value it will
possess.

ASM ¼
Xn�1

i;j¼0

ðpi;jÞ2; ð3Þ

Contrast ¼
Xn�1

i;j¼0

pi; jði� jÞ2; ð4Þ

Homogeneity ¼
Xn�1

i;j¼0

pi; j

1þ ði� jÞ2 : ð5Þ

Although GLCM could extract some texture fea-
tures of WBC, the gray levels, the angle and the
distance a®ect the dimension of GLCM seriously,
and another 22 second-order statistics of GLCM
would be varied with the above three parameters.
Obviously, changing any of them will produce more
data to deteriorate the processing speed. In addi-
tion, choosing a set of proper parameter is not easy.
On the other hand, deducing gray level may lose
useful information. Furthermore, it will not be ro-
bust enough when processing WBC texture.

2.2. Texture analysis based on LBP

LBP proposed by Ojala,17 is another useful texture
tool that analyzes texture in di®erent radii. It has
multi-resolution [see Fig. 2] and has been used in
leukocyte recognition.19 LBP has only two necessary
parameters,whichmakes it less complex thanGLCM.
One represents the size of texture structure, and
the second one quanti¯es its intensity variance. As
seen in Fig. 2, there are three sample circles with radii
R andC points on the periphery. If the gray of central
pixel is gx and each peripheral pixel gi, i 2 ½0;C � 1�,
then a vector T is obtained as follows:

T ¼ tðgx; g0 � gx; g1 � gx; . . . ; gC�1 � gxÞ: ð6Þ

Choose a proper binary function BðxÞ, then get
the binary vector T1:

T1 ¼ tðgx;Bðg0 � gxÞ;Bðg1 � gxÞ; . . . ;BðgC�1

� gxÞÞ: ð7Þ
LBP texture features can be expressed as

LBPC;R:

LBPC;R ¼
XC�1

c¼0

Bðgc � gxÞ � 2C : ð8Þ

LBP has too many patterns and is not rotation in-
variant. To solve this problem, T1 is circularly
shifted with its decimal values, and the smallest one
is chosen as the present pattern. Ojala found that
most LBP patterns just have less than two times 0-1
or 1-0 °uctuations, so all the patterns can be di-
vided into so-called \Uniform Pattern" and \Mix
Pattern". Thus, the modes are decreased im-
mensely. The rotation invariant LBP is de¯ned as
LBP riu2

C;R in Eq. (9), where the function U is
employed to count the number of °uctuations be-
tween 0 and 1, and UðLBPC;RÞ <¼ 2 represents
\Uniform Pattern".

LBP riu2
C;R ¼

XC�1

c¼0

Bðgc � gxÞ; UðLBPC;RÞ <¼ 2

cþ 1; otherwise

8><
>:

ð9Þ
LBP riu2

C;R can only get the structure of texture, so
feature VARC;R quanti¯es the variation intensities
of those circular pixels as:

VARC;R ¼
XC�1

c¼0

ðgc � gÞ2; g ¼
XC�1

c¼0

gc: ð10Þ

Now LBP could work well to deal with most
textures, but may not ¯t it to some natural ones.

(a) (b)

(c)

Fig. 2. Di®erent radii of LBP.
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Because a WBC may have many sizes of LBP, but
only a few of them are e®ective, so it is necessary to
choose multi-sizes of LBP. On the other hand, LBP
is a set of binary values which is not ¯t for our
vision, so it cannot bring bene¯t to medical experts.

3. The ICT Model

One may not de¯nitely say what the texture is, but
some words like rough and smooth, uniform and
nonuniform, can describe it to some degree. The
question arises: how to calculate the degree of rough or
uniform texture? GLCM and LBP are useful tools to
extract features of the texture, but GLCM has so
many parameters is that it hard to choose the best
ones, and LBP also has to predetermine radius, and
both of them should handle large data as shown in
Sec. 2, so some degree of simplifying and approxi-
matingmust be done to lower the data dimensionwith
less information lost as far as possible. Furthermore, it
is important to establish amore visualmode of texture
which can simulate and bene¯t from human eyes.

3.1. Island centers auto-extraction
based on mean-shift clustering

Mean-shift20 is a nonparametric algorithm which
can locate the maxima of a density function that
may express some modes or features generally.

Given n data points xi, i ¼ 1; . . . ;n, on a d di-
mensional space Rd, and the basic mean-shift vector
is de¯ned as:

MhðxÞ ¼
1

kn

X
xi2Sh

ðxi � xÞ; ð11Þ

where Sh is a higher dimensional ball area whose
radius is h, and y is a set of points which satisfy the
following relations:

ShðxÞ ¼ fy : ðy� xÞT ðy� xÞ � h2g: ð12Þ
There are kn sample points in Sh area, and MhðxÞ
always points toward the probability density gra-
dient. Regardless of whether they are far or near,
these points are contributed to MhðxÞ equally. In
order to get various weights of sample points, kernel
function KðxÞ is added, and a probability density
function fðxÞ can be described as:

fðxÞ ¼ 1

nhd

Xn
i¼1

K
x� xi

h

� �
: ð13Þ

If using radially symmetric kernels, a pro¯le of the
kernel kðxÞ is de¯ned to satisfy:

KðxÞ ¼ ck;dkðjjxjj2Þ; ð14Þ
where ck;d is a normalization constant which assuresR
kðxÞdx ¼ 1. The modes of the density function f

ðxÞ can be located at the zeros of the gradient
function rfðxÞ ¼ 0. The gradient of the density
estimator is shown in Eq. (15).

rfðxÞ ¼ 2ck;d
nhdþ2

Xn
i¼1

g
x� xi

h

��� ���2� �" #

�
Pn

i¼1 xig
x�xi
h

�� ��2� �
Pn

i¼1 g
x�xi
h

�� ��2
� � � x

" #
; ð15Þ

where gðxÞ ¼ �k 0ðxÞ, the ¯rst term is proportional
to the density estimate at x computed with kernel
GðxÞ ¼ cg;dgðjjxjj2Þ, and the second term [see
Eq. (16)] is just the mean-shift vector which points
to the direction of maximum increasing probability
density gradient.

mhðxÞ ¼
Pn

i¼1 xig
x�xi
h

�� ��2� �
Pn

i¼1 g
x�xi
h

�� ��2� � � x: ð16Þ

Given the iteration times t, the mean-shift modes
¯nding procedure is shown as:

(1) compute mhðxtÞ.
(2) shift the window xtþ1 ¼ xt þmhðxtÞ.
(3) repeat 1 and 2 to locate the stationary points of

the density function.
(4) remove these points and record them as one

type of mode.
(5) repeat 1 to 4 until all modes are founded.

As shown in Fig. 3, the island centers of a leu-
kocyte image is auto-extracted successfully by
mean-shift modes ¯nding procedure, especially the
cytoplasm texture of the lymphocyte which dis-
appeared in Fig. 1(c), and now is clearly labeled in
Fig. 3(b).

3.2. De¯nition of ICT

The ICT is a type of texture model which regards
a texture as a collection of islands, each of them has
its ownproperties, and the texture is expressed by the
spatial relation of these islands and statistical data
of their properties. The ICT can be used in extract-
ing texture feature, identifying or creating texture.

X. Li & Y. Cao
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In order to give the ICT more visual attributes, a
texture unit which simulates a real island is de¯ned
as a property vector I:

I ¼ tðhmax;h; s; v; l; lbp; . . .Þ; ð17Þ
where hmax is max height of an island, h is its av-
erage height, s is area, v is volume, l is length-width
ratio of its top view, lbp is the LBP value of its
clustering center point. Other custom features or
parameters such as center of gravity, torque, etc,
can be added, not all of them are listed. Once most
key islands have been detected, pure statistic
methods or classic texture methods come in handy.
s and v can describe the rough degree, hmax and h
express the contrast. However, l and lbp or all kinds
of invariant moments could reveal the details or
micro shape of a texture, etc. Obviously, if all of
them are chosen, it would get more e®ective, but it
would consume more processing time. In short, this
vector contains many features, most of them are
visual, thus it is easier to choose the feature para-
meters than other methods.

3.3. The procedure of ICT extraction

There are ¯ve steps in ICT extraction:

Step 1. Main parameter choosing: There are many
parameters which can be chosen for creating

islands, such as gray level, G channel of RGB color
space, or S of HSV color space, etc. In leukocytes
recognition, the gray level is the best one as the
main parameter, because it is less likely a®ected by
lighting and dyeing conditions than colors.
Step 2. Island centers auto-extraction by the mean-
shift as described in Sec. 3.1.
Step 3. Islands creation: In Step 2, a series of island
centers is acquired. But the regions of the islands are
hard to compute precisely, because some islands are
overlapped partly. A simpli¯ed method is suggested
to solve this puzzle. The growing region is applied to
create the region of an island, whose seed point is just
its center, and the threshold is lower at three gray
level of the center. Although this method is some-
what not precise, it is fairly e®ective enough to sat-
isfy the later recognition. The ICT procedure for ¯ve
typical classes of leukocytes are shown as Figs. 4–8.

As shown in Fig. 4(a), one of the main visual
features of a neutrophil is that it has light cyto-
plasm with many small and uniform granules, each
of them is lifted as a peak after clustering. Let each
peak be the center of an island, then the size and the
distance of these granules can be measured as
features.

As shown in Fig. 5(c), after clustering, the uni-
form and rough texture features of a eosinophil are
protruded, and the height of these granules is taller
than that of the neutrophil's, therefore the eosino-
phil can be identi¯ed by the height and the area of
the islands.

As shown in Fig. 6(a), a basophil has nonuniform
and density texture features, which are more visible
when shown in Fig. 6(c). Obviously, the average
height of the granules is bigger than the neutrophil,
and the variance of height must be the biggest than
other leukocytes for its nonuniform texture, thus
the basophil can be recognized.

As shown in Fig. 7(a), the lymphocyte has high
density texture like the basophil, but has less islands

(a) Neutrophil (b) Mesh of gray image of (a) (c) ICT of (b)

Fig. 4. Clustering of neutrophil.

(a) Lymphocyte (b) Island center

Fig. 3. Lymphocyte image processed by mean-shift modes
¯nding procedure.

A robust automatic leukocyte recognition
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[see Fig. 7(c)] than other leukocytes, so it can also
be distinguished by the count of islands.

As shown in Fig. 8(a), the monocyte has light
cytoplasm, low density texture, which is shown
more clearly after clustering [see Fig. 8(c)]. There-
fore, the height and counts of the islands are still
e®ective to mark it.

In short, after clustering, all granules or pro-
truding blocks of the leukocytes are lifted and

shrunk to corresponding center points, which pos-
sess various gray level info and spatial structures of
the textures at the same time. Therefore, by
choosing proper ICT feature parameters, it is pos-
sible to distinguish the ¯ve types of leukocytes and
to recognize them.

Step 4. Choose favorite properties and establish a
property vector: measure or calculate every prop-
erty of each island, optionally add any statistic

(a) Eosinophil (b) Mesh of gray image of (a) (c) ICT of (b)

Fig. 5. Clustering of eosinophil.

(a) Basophil (b) Mesh of gray image of (a) (c) ICT of (b)

Fig. 6. Clustering of basophile.

(a) Lymphocyte (b) Mesh of gray image of (a) (c) ICT of (b)

Fig. 7. Clustering of lymphocyte.

(a) Monocyte (b) Mesh of gray image of (a) (c) ICT of (b)

Fig. 8. Clustering of monocyte.

X. Li & Y. Cao
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parameters. As seen in Figs. 4–8, neutrophil, eo-
sinophil and basophil belong to granulocytes for
their cytoplasms have many granules, instead,
lymphocyte and monocyte have fewer granules, and
the texture of these granules are di®erent for their
average height (hmax), average area (s), and vari-
ance of distance (v1), variance of hmaxðv2Þ, and the
count of islands (n), therefore, the feature vector of
ICT can be constructed of the three properties, as
shown in Eqs. (18)–(20):

I ¼ tðhmax; s; v1; v2;nÞ; ð18Þ

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn�2

i¼0

ðdi � diþ1Þ2
vuut ; ð19Þ

v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn�1

i¼0

ðhmax i � hmaxÞ2
vuut : ð20Þ

In Eq. (19), di is the distance of two adjacent peaks.
Step 5. Analysis ICT vector values.
Statistic data of Figs. 4–8 computed from

Eqs. (18)–(20) are listed in Table 1.
As seen in Table 1, the texture of WBC can be

clearly described by the feature of ICT, and values of
these properties are ¯t for observation by human
eyes. The lymphocyte and the basophil have more
dark paint and contrast than others for their average
of hmax > 140, but hmax of the monocyte is low at
69.61, and the rest of WBCs have middle values of
about 100. The average ofS re°ects the texture block
size and roughness, and the small value expresses a
uniform and tiny texture, such as eosinophil. As a
contrast, monocytes have the biggest value for they
have rough blocks. The v1 describes the uniformity of
position, and it can be used to identify lymphocyte.
The v2 is used to distinguish lymphocyte and
monocyte. At last, n is easier to identify lymphocyte
for it has lowest count of granules.

In the general condition, ICT may be e®ective in
extracting the texture features of leukocytes, and it

will be evaluated in special conditions to test its
robustness.

3.4. Robustness testing of ICT

A lot of leukocytes images have been analyzed
using ICT. Figure 9 shows a typical case when
handling weak repeatability of a texture [see Fig. 9
(a)]. It is hard to classify Fig. 9(a) and Fig. 9(c) as
the same type of leukocyte, and Fig. 9(a) is more
likely classi¯ed as lymphocyte by general texture
tools for its texture is more smooth like lympho-
cyte, but their ICT features listed in Table 2 show
they belong to basophil. Although the average of
hmax of basophil and lymphocyte are very similar,
the count of granules of lymphocyte is much
smaller than basophil, at the same time, the av-
erage of S of lymphocyte is higher than basophil.
So some basophils with weak repeatability texture
can be distinguished from lymphocyte e®ectively
by ICT.

Table 1. ICT features of ¯ve types of WBC.

Properties/types Neutrophil Eosinophil Basophil Lymphocyte Monocyte

hmax 101.15 110.47 152.15 142.57 69.61

s 7.71 3.21 5.37 7.09 12.41
v1 25.12 22.39 19.39 14.95 35.94
v2 65.32 45.16 70.55 51.93 33.21
n 153 182 126 70 208

(a) Weak texture (b) ICT of (a)

(c) Standard texture (d) ICT of (c)

Fig. 9. Di®erent repeatability in the same type of basophil.

A robust automatic leukocyte recognition
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Note in Table 2: image1 is Fig. 9(a), image2 is
Fig. 9(c), image3 is Fig. 6(a), all are images of ba-
sophil, but image4 is lymphocyte in Fig. 7(a).

The other typical condition is that a few special
lymphocytes have so little cytoplasm [see Fig. 10,
the bottom one] that they will be identi¯ed as
basophils, because the area of cytoplasm is a key
geometric feature to identify WBC for most of
basophils have little cytoplasm and most of lym-
phocytes have notable ones. Fortunately now
though the other ICT features of them are very
similar, the n value of the top one is 87, and the
bottom one is 57, while the basophil is more than
120. Therefore, lymphocytes can be rightly recog-
nized even if they have little cytoplasm and look
much like basophils by ICT.

Another case is the sample blood is not too fresh
to make some lymphocyte distorted as Fig. 11. In
general condition, the circularity of lymphocyte is

about 1, and can be used as an important geometric
feature to discriminate lymphocyte, but it will fail in
this case. However, the n value of ICT in Fig. 11 is
low at 32, so it is easy to be classi¯ed as lymphocyte
by n.

4. Experimental Methods

There are ¯ve steps to do experiment. Firstly, a
group of micrograph of human peripheral blood cells
is captured and every WBC is located. Then a WBC
is segmented by HSI color system and shape ¯lter.
Next, the geometric and ICT features of the WBC
are extracted. Finally, all the features are °ushed
into ANN classi¯er and the recognition result is
¯gured out.

In order to evaluate the proposed method deeply
as far as possible, ¯rst a less number of 150 sample
images and a bigger number of 1310 sample images
with 11 nonWBC images in it were collected and
classi¯ed manually.

4.1. WBC segmentation

A typical ROI usually includes a big WBC and
parts of red blood cell (RBC) or other small cells
[see Fig. 12(a)]. Obviously, there are two features to
distinguish them: hue channel of hue-saturation-
intensity (HSI) and shape. First, we extract hue
channel and paint its histogram, and then use auto-
thresholdmethod21 to cut background [seeFig. 12(b)].
Second, although morphology algorithms can be
used to get their shape, for reason of savings in time,
the shape ¯lter is used instead. Then the small
blocks or particles or noises are wiped out, and only
a WBC or some big blocks of dyestu® are left. Fi-
nally, some WBCs may have hole, where the ¯lling
operation should do for features extraction [see
Fig. 12(c)] later. As seen in Fig. 13, some leukocytes
are segmented not very precisely [see Fig. 13(d) and

Table 2. ICT features of basophil vs lymphocyte.

Properties/types Image1 Image2 Image3 Image4

hmax 131.30 145.93 152.15 142.57

s 4.32 3.56 5.37 7.09
v1 20.34 23.38 19.39 14.95
v2 59.98 46.37 70.55 51.93
n 124 134 126 70

Fig. 10. Special lymphocyte without cytoplasm (the bottom
one).

Fig. 11. Distorted lymphocyte.
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13(e)], even so, the result can be used in the suc-
ceeding procedures. Furthermore, dividing a WBC
region into nucleus and cytoplasm just needs satu-
ration threshold for the nucleus of WBCs always

has high saturation above 0.45. Now, a single and
complete mask image of WBC is obtained, and then
a segmented WBC can be obtained by logic \and"
operation.

Geometric features are frequently used in the
leukocytes recognition,4 such as number of seg-
mented nucleus (NSN), area, perimeter, circularity,
ratio of areas of nucleus and cytoplasm (RNC), etc.
[see Table 3]. However not all of these are listed in
Table 3, because texture features is our aim.

c ¼ 4�S

L2
; ð21Þ

where c, S and L are circularity, area and perimeter
of an individual leukocyte.

These geometric features are useful for classifying
WBC, but some cells still cannot be identi¯ed
precisely because some of the features overlap with
each other, for example, basophil and lymphocyte
only have one NSN and overlapped circularity,
monocyte and eosinophil have overlapped RNC and
area [see Table 3], etc. Sometimes, they have very
similar geometric values. Therefore, texture features
are employed in the next step.

(a) (b)

(c)

Fig. 12. (a) Located ROI, (b) segmented image by auto-
threshold of Hue and saturation of HSI and (c) ¯nal result of
shape ¯lter and ¯lled mask.

(a) (b) (c) (d) (e)

Fig. 13. Five types of leukocyte are segmented by HSI color system and shape ¯lter. (a) Neutrophil, (b) eosinophil, (c) basophil,
(d) lymphocyte and (e) Monocyte.
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4.2. Extraction for texture features
of WBC by ICT

As stated above, geometric features are not e®ective
enough to identify WBCs precisely, so texture fea-
tures are necessary to be added to increase the
correct recognition rate and the robustness of ma-
chine. 1310 sample images of WBCs have been used
to extract texture features by ICT, and the result is
shown in Table 4. Although some parameter values
partially overlap, others are e®ective to distinguish
the WBCs.

4.3. Leukocytes recognition

This is the last step of leukocytes recognition. SVM
and ANN are frequently used as classi¯er in the
recognition of WBC, however, ANN is less complex
than SVM, and it works in a manner that can be
trained to recognize something like human brain, so
ANN is applied.

5. Result and Analysis

5.1. Hard-ware and computer platform

The digital images of blood smears are captured by
using a microscope imaging system at 100�mag-
ni¯cation and a USB CMOS camera with 1024�
768 pixels. In term to ensure that less time wasted in
user interface and more time was spent in optimiz-
ing codes, our program code was written by
BCB Cþþ, avoiding popular but slow Java or C#

language with gigantic runtime packages. All the
programs were run in a computer typed Lenovo T61
equipped with Intel Core 2.4G CPU and 2G RAM.

5.2. Software °ow chart

and architecture

The soft-ware °ow chart and architecture is shown
in Fig. 14, from WBC location and segmentation to
features extraction, and recognition.

5.3. Recognition rate

As shown in Fig. 15, the features (properties) are
listed in top right, and the details of procedure in
bottom right, and the segmented parts of a WBC
are shown in the middle.

The experiment results without using ICT and
just with geometric and color features are shown in
Table 5. The correct recognition rate of the neu-
trophil is fairly high above 94.6%, while the lym-
phocyte and the basophil are under 83%. Because
the neutrophils have remarkable geometric features,
low RNC and high NSN [see Table 3], it is not very
hard to identify them, but the geometric features
and color features of lymphocytes and basophils are
similar, thus some lymphocytes with fewer cyto-
plasms were recognized as basophils and some big
lymphocytes were identi¯ed as monocytes. At the
same time, some small monocytes were also regar-
ded as lymphocytes for the same reason. The
monocyte is a special type of WBC for its geometric

Table 3. Common geometric features of WBC.

Types Neutrophil Eosinophil Basophil Lymphocyte Monocyte

NSN 2–5 2–3 1 1 1–2
Area (pixels) 8503–11856 7725–12622 7636–10789 4055–7768 7439–15170
Circularity 0.25–0.52 0.28–0.55 0.30–0.50 0.30–0.72 0.31–0.52
RNC 0.2–0.5 0.3–2.0 2.0–8.6 0.5–6.0 1.0–4.0

Table 4. Texture features of WBC extracted by ICT.

Properties/types Neutrophil Eosinophil Basophil Lymphocyte Monocyte

hmax 92.30–110.12 98.74–115.33 131.52–162.15 135.14–165.25 68.20–112.91

s 6.82–8.01 2.01–0.4.21 3.32–0.6.55 6.89–13.84 7.03–16.77
v1 23.23–30.43 21.45–24.19 19.12–23.81 9.2–15.46 22.56–37.94
v2 56.01–73.90 30.21–47.27 45.00–73.45 32.34–66.73 28.40–36.38
n 125–163 154–187 126–132 14–87 126–215
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features [see Table 3] overlapping with other four
types of WBC, and would be wrongly recognized as
any WBC.

As seen in Table 6, the correct recognition rate is
improved markedly when ICT features are added,
especially basophil. Fifteen samples were completely

recognized, because basophil always has some deep
color granules which can be clustered as high islands
with small area by ICT. The correct recognition
rate of lymphocyte is lifted from 83.0% to 93.1%,
because the count of islands of lymphocyte can help
to identify them. The increasing correct recognition

Capture Image

HSI segment by histogram threshold

Classification by ANN, output

Stepwise merge and kill noises by shape filter

Nuclei detection Cytoplasm detection

Features extraction: ICT features and geometric features

Locate ROI

Boundary detection and filling holes

Fig. 14. Software °ow chart and architecture.

Fig. 15. Software interface: leukocyte classi¯er.
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rate of monocyte is not more than lymphocyte,
because the texture of monocyte is very like lym-
phocyte and confuses us in some cases and needs to
be identi¯ed by specialists. Sometimes, monocytes
have some little granules like neutrophils and thus
are prone to error. At last, the nonWBC images [see
Fig. 16] which are very susceptible to error now can
be recognized rightly, only one nonWBC is recog-
nized as basophil for their textures are similar [see
Fig. 16(a)].

Table 7 shows the comparison results of di®erent
methods, where the results of former three methods
are just originally cited in corresponding litera-
tures,1,11 and,19 the parameters of ICT are shown in
Table 4. As seen in Table 7, the accuracy rate of
basophil is similar to GLCM, LBP and ICT, but the
ICT is the best one in other four types of WBC
recognition. When the sample count is enlarged to
1310, the accuracy rates of ICT reduce slightly,
because in large random samples, there are some

fuzzy images which are very hard to be recognized
indeed and do not appear in small samples gener-
ally. Nevertheless, it shows that the ICT is robust
enough. Indeed, due to the rareness of basophil, the
result of basophils may not well re°ect the ground
truth. We have been collecting more basophil sam-
ples to do further testing.

In short, ICT is not a powerful tool which can
solve all the puzzles because there always are some
cases where the texture features of lymphocyte,
basophil and monocyte are very similar. However, it
is true that ICT can solve some cases which are
di±cult with general methods, and ICT can increase
the robustness of system and the correct recognition
rate of WBC.

6. Conclusion

This paper presents an image processing system
based on texture analysis which can recognize ¯ve
types of leukocytes in human peripheral blood au-
tomatically. Compared with previous works, HSI

Table 5. Recognition rate with geometric and color features.

Types Neutrophil Eosinophil Basophil Lymphocyte Monocyte Others

Total mount 452 128 15 335 380 11
Right 428 117 12 278 345 6
Wrong 24 11 3 57 35 5
Correct recognition rate 94.6% 91.4% 80.0% 83.0% 90.8% 54.5%

Table 6. Recognition rate with ICT.

Types Neutrophil Eosinophil Basophil Lymphocyte Monocyte others

Total mount 452 128 15 335 380 11
Right 431 120 15 312 351 10
Wrong 21 8 0 22 29 1
Correct recognition rate 95.4% 93.8% 100.0% 93.1% 92.3% 91.0%

(a) (b)

Fig. 16. NonWBC images (a) recognized as basophil and
(b) recognized rightly.

Table 7. The counts of sample images and accuracy rate
comparison.

Methods GLCM1 GLCM11 LBP19 ICT

Samples 54 140 150 150 1310
Neutrophil 82.5% 81.3% 96.43% 96.6% 95.4%
Eosinophil 76.79% 98% 100.00% 100.0% 93.8%
Basophil 97.73% 98% 98.64% 100.0% 100%
Lymphocyte 83.06% 84.3% 93.10% 95.0% 93.1%
Monocyte 76.79% 93.3% 95.83 97.7% 92.3%
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color system-based segmentation and geometric
features of leukocyte extracting are the same, while
the texture features of WBC are extracted not by
commonly used GLCM or LBP, but by a new tex-
ture model ICT which is tested and proved to be
more simple, e®ective and robust.

Finally, a complete software frame and hardware
con¯guration has been realized and presented. A
total of 1310 sample images including some fuzzy
ones which can only be identi¯ed by specialists were
used to evaluate this proposed method. Relatively
high correct recognition rate above 92.3% has been
achieved.
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