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In optical techniques, noise signal is a classical problem in medical image processing. Recently,
there has been considerable interest in using the wavelet transform with Bayesian estimation as a
powerful tool for recovering image from noisy data. In wavelet domain, if Bayesian estimator is
used for denoising problem, the solution requires a prior knowledge about the distribution of
wavelet coefficients. Indeed, wavelet coeflicients might be better modeled by super Gaussian
density. The super Gaussian density can be generated by Gaussian scale mixture (GSM). So, we
present new minimum mean square error (MMSE) estimator for spherically-contoured GSM with
Maxwell distribution in additive white Gaussian noise (AWGN). We compare our proposed
method to current state-of-the-art method applied on standard test image and we quantify
achieved performance improvement.

Keywords: Gaussian scale mixture; minimum mean square error estimation; image denoising;
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1. Introduction

Image processing is the most popular technique
used by doctors for the purpose diagnosis. In fact,
noise signal reduction step is an essential part of
many medical image processing applications, i.e.,
classification recognition and other application
tasks.!™ Wavelet transform with Bayesian estima-
tor has been proposed as a powerful tool for image
denoising.” In fact, Bayesian methods require a

prior distribution of wavelet coefficients and use
minimum mean square error (MMSE) or maximum
a posteriori (MAP) estimations to derive the map-
ping function (also known as shrinkage function)
from noisy data to estimated data.” There are two
major properties for wavelet coefficients®?: (1)
wavelet coefficients of noise-free data usually pro-
cess peaked, zero-mean distributions, with heavier
than Gaussian tails (also known as super Gaussian

This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative
Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly

cited.

1650021-1


http://dx.doi.org/10.1142/S1793545816500218

J. Innov. Opt. Health Sci. 2016.09. Downloaded from www.worldscientific.com
by 137.108.70.14 on 01/10/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

P. Kittisuwan

density); (2) multivariate models (random vectors)
offers advantages over univariate model, because
dependencies between coeflicients can be captured
(also known as parent—child property). In fact, the
super Gaussian random vectors can be generated by
Gaussian scale mixture (GSM).%!%"12  Various
authors have proposed various GSM to approxi-
mate the distribution of wavelet coefficients. For
example in Refs. 13 and 14, GSM with exponential
density (also known as Laplace random vectors)
and GSM with gamma density (also known as radial
exponential or quasi-Laplace random vectors) are
proposed to model the distribution of wavelet
coefficients, respectively. However, no one uses
GSM with Maxwell density for distribution of
wavelet coefficients. In fact, Maxwell density is
important one-side distribution in signal proces-
sing.'?!% So, we derive new MMSE estimator for
spherically-contoured GSM with Maxwell distribu-
tion in additive white Gaussian noise (AWGN).
The proposed MMSE estimator is expressed in an-
alytical form wusing the generalized incomplete
gamma function. The description of this function
can be found in Appendix A.

The remainder of this paper is organized as fol-
lows. Section 2, we present new MMSE estimation
of GSM with Maxwell density in AWGN. Section 3,
denoising results are compared with existing tech-
nique in both PSNR and visual qualities. The ex-
perimental results show that the proposed method
yields good denoising results. Finally, the conclusion
and discussion are given in Section 4.

2. MMSE of GSM with Maxwell
Density in AWGN

In this section, we are interested in the problem of

estimating d-component random vectors of noise-
free wavelet coefficients, X, in AWGN, N,

Y =X +N,

where Y, X,N € R? The estimation of X is based
on observed random vectors Y. In this work, ran-
dom vectors X can be represented as spherically-
contoured GSM

X = AS,
where S is d-dimensional zero-mean Gaussian random

. . — 2
vectors with variance o2, fg(s) = W exp ( 2”;! ),

and A is Maxwell (scalar) random variable with

parameters K, Ky > 0,

fala) = Kya?exp(~Ka®), a>0. (1)

Using Jacobian transformation, the distribution of
X is

= [ @ @)

In the characteristic of noise, N is zero-mean
Gaussian random vectors with noise variance o2,

1 %Mj
n) = ex .
In(n) (2me2) 42 P < 202
The MMSE estimator of z; given Y is given by*

$. = fRd z; fx (x) fn(y — x)dx 3)
e ) fn(y — x)dx

So, to develop (3) for MMSE estimator, it is often
necessary to know the value of [p,z; fx(x)fn(y —

x)dx and [, fx () frs(y — %)dx.

Using (2), the value of [, fx(x)fn(y —x)dx
becomes

/ Fx(3) fraly — x)dx
Rd

_ /R d [ /0 m%fm)fs(x/a)da} fely — x)dx

)| [ Bt/ )ty = x| da
@

In Gaussian integration, the description can be
found in Appendix B, using (1) and (B.1) in (4) gives

/ fx(3) fraly — x)dx
Rd

. K1 /OO a
_(27T)d/2 0 (a202+a%)%

yll>
——————|ada.
2(a202 + 02)
Changing the variable of integration, using t =
K, <a2 + Z—z), gives

X exp (—K2a2 —

/ Fx () fa(y — X)dx
Rd

K K92 K,o?
- 2(2ma2) 42 exp( o2 )
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00 Koo2\ ! /2 Table 1. Average PSNR values of denoising images over
X / <t _ 2 ") £—4/2 ten runs for Barbara, Moon and Texture.
K, 02n/<72 02
|y Standard deviation noise (o,,) 10 15 20
2
X —t ————=—|dt.
exp ( t 202t )dt (5) Barbara
_ MLAP-MMSE"® 31.92 2961  28.00
Using (2), the value of [, z; fx () fx(y — x)dx BayeShrink?’ 3220 29.89  28.10
becomes Proposed method 32.34 30.00 28.47
Moon
z; fx (%) fu(y — x)dx MLAP-MMSE" 3111 2091 19.19
Rd , BayeShrink”’ 3147  30.13  29.11
1 Proposed method 31.95 30.38 29.22
= / z; [/ EfA(a)fs(x/a)da} Iy — x)dx
Rjo 0 Cells
x; MLAP-MMSE" 3091  28.69 27.24
=/, fa(a) [ /R ) Ef s(x/a)fn(y — X)dx} da. BayeShrink?’ 30.95 28.67 27.24
Proposed method 31.00 28.93 27.59

() (d)

Fig. 1. Comparison of denoising results of Barbara image with o, = 10: (a) Noise-free. (b) Noisy image. (¢) MLAP-MMSE
(PSNR = 31.92). (d) Proposed method (PSNR = 32.34).
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(PSNR = 29.91). (d) Proposed method (PSNR = 30.38).

In Gaussian integration, using (1) and (B.2) in (6)

gives

/ T, fx (%) fn(y — x)dx
Rd

o Kio0%y;

o
- (2m)92 /o (a202 + o2)3!

X exp (—K2a2 —

Changingzthe variable of integration, using t =

Ky(a? +Z3), gives

/Rd z; fx (%) fn(y — x)dx

d—3)/2
_KlK(z d

))ada. (7)

2(a202 + 02

2(2mo2) /2 o

(d)
Fig. 2. Comparison of denoising results of Moon image with o, = 15: (a) Noise-free. (b) Noisy image. (c) MLAP-MMSE

o )
K202n/02 o’

_ K. 2

202t

. K1K§d_3)/2 KQU%
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e
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Kyo2\ _ K. 2
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[e%e] K 2 1/2
« / (t— QZn)
K2<72n/02 g
—d K2||Y||2 K2U$z
t2 —t————|dt - | ——
. 2exp( 202t o?

1/2

o Kyo? .

x/ (t— 20") 31
Kyo%/o? o?

K llvl2
X exp (—t - %) dt] . (8)

Using (5) and (8) in (3) gives

Kzai
;i =Y; 1- 0_2

K, o2 1/2 —d_ K. 2
S or (1=2282) "7 Texp (—t — S ar
X .

1/2
Kyo? = K. 2
o (1= 588) o (S

The approximation of square root function'” is

b b2
va2+b:a+%—@+---. (10)

So,

—d 1 Kob Kly|?) _ Ko}
F(Tﬁﬁ»%’% — S T\T -

—=d K2‘7%z K ly|?
2
—d | 3 Kol Klly|? Kol +(—d
F(T“LE» k) - S (F+

) o2 0 952

Kyof K2HYHZ)
) g2 1 952

1
2
1
2

(12)

Here, the proposed method is based on generalized
incomplete gamma function.

Fig. 3.
(PSNR = 27.24) and (d) Proposed method (PSNR = 27.59).

Comparison of denoising results of Cells image with o, =20: (a) Noise-free, (b) Noisy image, (c) BayeShrink
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Moreover, in order for the processor in the pro-
posed method (12) to be of any practical use, one
should be able to estimate the noise-free variance o>
and noise variance o2 from the observed data. As
proposed in Ref. 17, a robust estimate of the noise
variance is obtained using the median absolute de-
viation of coefficients at the first level of an wavelet
decomposition. For o2 estimation from noisy data
have been previously proposed in Ref. 18.

3. Experimental Results

Here, experiments are carried out using three stan-
dard gray-scale images, namely, Barbara (512 x 512
pixels), Moon (256 x 256 pixels), and Cells
(128 x 128 pixels). We use generalized incomplete
gamma function for our proposed method. In fact,
the first shrinkage function based on generalized
incomplete gamma function is MLAP-MMSE."* So,
we compared the proposed algorithm, bivariate case
(d=2,]lyll = Vy? + v3), using orthogonal discrete
wavelet transform (DW'T) to other effective systems
in the literature, namely MLAP-MMSE and
BayeShrink.?’ A six-level wavelet decomposition is
carried out using Daubechies length-16 filter. In
constant parameter K,, 0.8 < K, < 1.3 can also be
a good choice. However, the experiments reveal that
a Ky = 1 provides the highest PSNR values in most
cases. S0, we report the results provided by our
proposed denoising method using K5 = 1. These
algorithms are evaluated with different noise level
o, = 10,15, and 20. In local variance estimation of
02, 7 x 7 window size are used. In fact, we have not
considered different windows size. The PSNR values
are listed in Table 1. Each PSNR values in this table
is averaged over 10 runs. In Table 1, the highest
PSNR value is highlighted in bold letters. As we can
seen from Table 1, the PSNR of our proposed
method is better than conventional scheme. We com-
pare the visual qualities of different denoising results,
MLAP-MMSE and proposed method, of Barbara
image, 0,, = 10, in Fig. 1. Figure 2 shows results from
several denoising algorithms on Moon image with
0, = 15, original image, noisy image, denoising image
obtained from MLAP-MMSE, and our proposed
method. Finally, we compare the visual qualities of
different denoising results, BayeShrink and proposed
method, of Cells image, o,, = 20, in Fig. 3.

In fact, generalized incomplete gamma function
is numerical function. So, some pixel of denoised

image is not accurate. Here, we proposed average
filter for this problem. MATLAB code of average
filter can be found in Appendix C.

4. Conclusion and Discussion

In this paper, we present new MMSE estimator for
GSM with Maxwell density in AWGN. In Bayesian
techniques, instead of using MMSE estimator we
can use the MAP estimator to obtain the denoising
shrinkage function. Moreover, the results may be
improved using more complex prior models e.g.
mixture models. So, these assumptions are inter-
esting questions.
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Appendix A. Generalized Incomplete
Gamma Function

In Refs. 21 and 22, the generalized incomplete
gamma function is defined as

F(a,x;b):/:otalexp< t—é>dt (A1)

For o = £1/2, the fundamental solutions are de-
fined as!3:21:22

F(%,m;b)

(0.5y/Texp(—z)

[exp(z — 2vb)erfe(ya — /b/x)
+exp(—b/z)erfex(v/Z + m)} Cz<2vb
0.5/Texp(—z)

[exp(—b/x)erfcx(f_ NOD)
+exp(—b/z)erfex(1/z + m)} 2> 2Vb,

1 1 1
(=2, a:b) =—T(=, 2
(e
Whereerfcx( ) :==exp(z )erfc( ), erfe(z):=1—erf(x),
and erf(z) := f . —t2)dt. The recurrence
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relation of generalized incomplete gamma function
igl3,21,22

INa—1,z;b)

b

o)
—z%exp | —x —— ||,
T

where o« = —0.5, —1.5, —2.5, . ... This solution is useful
for computing its values for other orders .

1
=— [F(a +1,z;b) — al' (o, x; b)

Appendix B. Gaussian Integration

In Ref. 23, if the random vectors S and N are zero-
mean Gaussian with variance o2 and o2, respectively,

1 —|Is)l®
fs(s) = Zro?) exp< 502 >a

_ 1 —|m|?
fN(n) - (271_0_%)(1/2 €xp < 20_721 )
and a > 0, then,

/Rd %fs (g) Iy —x)dx

e ()
(27(a20? + 02)) 4> 2(a%202 +02))’

(B.1)

/Rd %fs <§>fN(y —x)dx

yia’o? —lyll?

= 20 Pazo? 1+ o2)F O <2<a202 + az>>'

(B.2)

Appendix C. The MATLAB Code of
Average Filter

After inverse wavelet transform, in case we have
‘nan’ (not a number) or ‘overflow’ in denoised image
‘z’. It is possible because the proposed algorithm is
based on generalized incomplete gamma function,
numerical function. We can use average filter algo-
rithm. The MATLAB code of average filter is:

(1) function z = average_pixel(z);
(2) average_value = medfilt2(z, [17 17]);

) Lower_bound = z < —20;

) Upper_bound = z > 275;

) NaN_value = isnan(z);

) Inf Value = isinf(z);

) z = Lower_bound.*average_value...

)+ Upper_bound.*average_value...

) + NaN_value.*average_value...

0) + Inf_Value.*average_value...

1) +(1 — (Lower_bound + Upper_bound +
NaN_value + Inf_Value)).*z;
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