INDONESIAN JOURNAL
OF COMBINATORICS

On the Ramsey number of 4-cycle versus wheel

Enik Noviani, Edy Tri Baskoro
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung
Bandung, Indonesia
eniknoviani@students.itb.ac.id, ebaskoro@math.itb.ac.id

Abstract

For any fixed graphs G and H, the Ramsey number $R(G, H)$ is the smallest positive integer n such that for every graph F on n vertices must contain G or the complement of F contains H. The girth of graph G is a length of the shortest cycle. A k-regular graph with the girth g is called a (k, g)-graph. If the number of vertices in (k, g)-graph is minimized then we call this graph a (k, g)-cage. In this paper, we derive the bounds of Ramsey number $R\left(C_{4}, W_{n}\right)$ for some values of n. By modifying ($k, 5$)-graphs, for $k=7$ or 9 , we construct these corresponding $\left(C_{4}, W_{n}\right)$-good graphs.

Keywords: Ramsey number, good graph, order, cycle, wheel, girth
Mathematics Subject Classification: 05C55

1. Introduction

In this paper, we consider a finite undirected graphs without loops or multiple edges. Let G be graphs. The sets of vertices and edges of graph G are denoted by $V(G)$ and $E(G)$, respectively. The symbols $\delta(G)$ and $\triangle(G)$ represents the smallest and the greatest degree of vertices in G, respectively. Let C_{n} be a cycle with n vertices and W_{n} be a wheel on n vertices obtained from a C_{n-1} by adding one vertex x and making x adjacent to all vertices of the C_{n-1}. The girth of a graph G is the length of its shortest cycle in G. A k-regular graph with girth g is called a (k, g)-graph. A (k, g)-graph with minimum number of vertices is called a (k, g)-cage. For fixed graphs G and H, a graph F is called a (G, H)-good graph if F contains no G and F complement contains no

Received: 9 July 2015, Revised: 26 August 2016, Accepted: 14 September 2016.
H. Any (G, H)-good graph with n vertices will be called a (G, H, n)-good graph. The Ramsey number $R(G, H)$ is the smallest positive integer n such that for every graph F of order n contains G or the complement of F contain H. So, the Ramsey number $R(G, H)$ is the smallest positive integer n such that there exists no (G, H, n)-good graph.

It is known that $R\left(C_{4}, W_{4}\right)=10, R\left(C_{4}, W_{5}\right)=9$ and $R\left(C_{4}, W_{6}\right)=10$ (cf.[2]). Tse [2] determined the value of $R\left(C_{4}, W_{m}\right)$ for $7 \leq m \leq 13$. Dybizbański dan Dzido [2] determined that $R\left(C_{4}, W_{m}\right)=m+4$ for $14 \leq m \leq 16$ and $R\left(C_{4}, W_{q^{2}+1}\right)=q^{2}+q+1$ for prime power $q \geq 4$. Recently, Zhang, Broersma and Chen [2] show that $R\left(C_{4}, W_{n}\right)=R\left(C_{4}, S_{n}\right)$ for $n \geq 7$. Based on this result and Parsons' results on $R\left(C_{4}, S_{n}\right)$, they derived the best possible general upper bound for $R\left(C_{4}, W_{n}\right)$ and determined some exact values of them. In general, the exact value of the Ramsey number $R\left(C_{4}, W_{n}\right)$ is still open for $n \geq 17$ with the exception for several values of n. In this paper, we derive the bounds of Ramsey number $R\left(C_{4}, W_{n}\right)$ for some values of n. By modifying ($k, 5$)-graphs, for $k=7$ or 9 , we construct these corresponding $\left(C_{4}, W_{n}\right)$-good graphs.

Theorem 1.1. Each of the following statements must hold.
(i) For any $m \geq 18$ there exists a graph G of order m with $\delta(G)=4$ and $G \nsupseteq C_{4}$.
(ii) For any even $m \geq 50$ there exists a graph G of order m with $\delta(G)=5$ and $G \nsupseteq C_{4}$.
(iii) $R\left(C_{4}, W_{2 k+1}\right) \geq R\left(C_{4}, W_{2 k}\right)$ for any $k \geq 25$.
(iv) $R\left(C_{4}, W_{m+n}\right) \geq \max \left\{R\left(C_{4}, W_{m}\right), R\left(C_{4}, W_{n}\right)\right\}$ with $\min \{m, n\} \geq 7$ and $\max \{m, n\} \geq$ 50.

Theorem 1.2. The upper and lower bounds of the Ramsey number $R\left(C_{4}, W_{m}\right)$ for any $m \in[46,93]$ are as follows.
(i) $m+6 \leq R\left(C_{4}, W_{m}\right) \leq m+7$, for $46 \leq m \leq 51$.
(ii) $m+8 \leq R\left(C_{4}, W_{m}\right) \leq m+9$, for $79 \leq m \leq 82$,
(iii) $m+8 \leq R\left(C_{4}, W_{m}\right) \leq m+10$, for $83 \leq m \leq 87$.
(iv) $97 \leq R\left(C_{4}, W_{88}\right) \leq 98$ and $m+8 \leq R\left(C_{4}, W_{m}\right) \leq m+10$, for $89 \leq m \leq 93$.

2. Proofs of the main results

To prove Theorems 1.1 and 1.2, we need the following two lemmas and one theorem.
Lemma 2.1. [2] If G is $a\left(C_{4}, W_{m}, n\right)$-good graph for $7 \leq m \leq n-4$ then $\delta(G) \geq n-m+1$.
Lemma 2.2. [2] If G contains no C_{4} with n vertices and $\delta(G)=d$ then $d^{2}-d+1 \leq n$.
Theorem 2.1. [2] For all integers $m \geq 11, R\left(C_{4}, W_{m}\right) \leq m+\lfloor\sqrt{m-2}\rfloor+1$.

Proof Theorem 1.1.

(i) For any integer $m \geq 18$, construct a graph G on m vertices with $\delta(G)=4$ and $G \nsupseteq C_{4}$ by considering the following two cases.
(a) Case $1 m=2 k, k \geq 9$.

First, if $k \neq 12$ define the vertex-set and edge-set of G as follows.

- $V(G)=\left\{a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}\right\}$, and
- $E(G)=\left\{a_{i} b_{i}, b_{i} a_{i+1}, a_{i} a_{i+1}, b_{i} b_{i+3}: 1 \leq i \leq k\right.$ and all indices are in $\left.\bmod k\right\}$.

Note that all indices are calculated in $\bmod k$. It is clear that vertex a_{i} is adjacent to each of $\left\{b_{i}, b_{i-1}, a_{i+1}, a_{i-1}\right\}$ and b_{i} is adjacent to each of $\left\{a_{i}, a_{i+1}, b_{i+3}, b_{i-3}\right\}$ for all $i=1,2, \cdots, k$. Thus, $\delta(G)=4$. Now, we will show that $G \nsupseteq C_{4}$. For a contradiction, suppose G contains a C_{4}. Since $k \neq 12$, the four vertices of C_{4} cannot be all b_{i}. Therefore, this C_{4} must contain at least one vertex a_{i}. Now, consider the following 3 subcases.

- Subcase 1. $a_{i} b_{i} \in C_{4}$ for some i. If a_{i} and b_{i} are the first and second vertices of this C_{4} then the possible third and fourth vertices are listed in Table 1. However, we have that no vertex 4 is adjacent to vertex 1 . Therefore, there is no such C_{4} occur. Thus, $a_{i} b_{i}$ is not an edge in C_{4}.

vertex 1	vertex 2	vertex 3	vertex 4
a_{i}	b_{i}	a_{i+1}	b_{i+1}
			a_{i}
			a_{i+2}
		b_{i+3}	a_{i+3}
			a_{i+4}
			b_{i+6}
		b_{i-3}	a_{i-3}
			a_{i-2}
			a_{i-6}

Table 1. List of possible vertices of a C_{4} in Subcase 1.

- Subcase 2. $b_{i} a_{i+1} \in C_{4}$ for some i. If b_{i} and a_{i+1} are the first and second vertices in this C_{4}, and no edge $a_{i} b_{i} \in C_{4}$, for each i, then the possible third and fourth vertices are presented in Table 2. Clearly, each of the possible fourth vertices is not adjacent to vertex 1. Therefore, no C_{4} is formed in this case.

vertex 1	vertex 2	vertex 3	vertex 4
b_{i}	a_{i+1}	a_{i+2}	b_{i+1}
			a_{i+3}
		a_{i}	b_{i-1}
			a_{i-1}

Table 2. List of possible vertices of a C_{4} in Subcase 2.

- Subcase 3. $a_{i} a_{i+1}$ or $b_{i} b_{i+3} \in C_{4}$ for some i. From the previous subcases, we know that the edges $a_{i} b_{i}$ or $b_{i} a_{i+1}$ cannot be in this C_{4}. So, this C_{4} only consist of edges $a_{i} a_{i+1}$ and/or $b_{i} b_{i+3}$ for some i. Since $k \neq 12$ then no C_{4} occurs in this case.

Therefore, if $m=2 k, k \geq 9$ and $k \neq 12$ then the above graph G has m vertices with $\delta(G)=4$ and $G \nsupseteq C_{4}$.

Second, for $k=12$, consider graph G of order 24 in Figure 1. It can be verified that G containing no C_{4} and $\delta(G)=4$.

Figure 1. A graph G of order 24 containing no C_{4} with $\delta(G)=4$.
(b) Case $2 m=2 k+1, k \geq 9, k \neq 11$.

In this case, if $k \neq 11$ define the vertex-set and edge-set of G as follows.
$V(G)=\left\{c, a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{k}\right\}$, and
$E(G)=\left\{a_{i} b_{i} \mid i \in[1, k]\right\} \cup\left\{b_{i} a_{i+1}, a_{i} a_{i+1} \mid i \in[1, k-1]\right\} \cup\left\{b_{i} b_{i+3} \mid i \in\right.$ $[1, k-3]\} \cup\left\{b_{1} b_{k-1}, b_{2} b_{k}, a_{1} b_{k-2}, c a_{1}, c a_{k}, c b_{3}, c b_{k}\right\}$

Note that all indices are calculated in $\bmod k$. It is easy to see that each vertex is adjacent to at least four vertices, so $\delta(G)=4$. Now, we will show that $G \nsupseteq C_{4}$. For a contradiction, suppose G contains a C_{4}. Since $k \neq 11$, this C_{4} cannot consist of vertices b_{i} only. Therefore, this C_{4} must contain at least one vertex a_{i}. Now, consider the following 4 subcases.

- Subcase 1. $a_{i} b_{i} \in C_{4}$ for some i. If a_{i}, b_{i} are the first and second vertices in C_{4} then the possible third and fourth vertices are listed in Table 3. However, there is no vertex 4 is connected to vertex 1 . Therefore, this C_{4} cannot contain an edge $a_{i} b_{i}$, for some i.
- Subcase 2. $b_{i} a_{i+1} \in C_{4}$ for some i or $c b_{k} \in C_{4}$. From the above subcase, this C_{4} cannot contain an edge $a_{i} b_{i}$, for some i. If b_{i} and a_{i+1}, c are the first and second vertices in C_{4} then the possible third and fourth vertices are presented in Table 4. Again, however, no vertex 4 is connected to vertex 1. Therefore, $b_{i} a_{i+1}$ or $c b_{k}$ cannot be in C_{4}, for some i.
- Subcase 3. $a_{i} a_{i+1}, c a_{k}$, or $c a_{1} \in C_{4}$, for some i. In this case, the possible vertices of this C_{4} can be seen in Table 5. But, no vertex 4 is adjacent to vertex 1. Therefore, there is no such C_{4} formed in this case.
- Subcase 4. $b_{1} b_{k-1}, b_{2} b_{k}, a_{1} b_{k-2}, c b_{3}$ or $b_{i} b_{i+3} \in C_{4}$ for some i. We can assume that b_{i} is the first vertex of a C_{4}. Then, the possible vertex of the C_{4} are presented in Table 6. In this case, it is clear that no C_{4} can be formed. Thus, $C_{4} \nsubseteq G$.

vertex 1	vertex 2	vertex 3	vertex 4
a_{i}	b_{i}	a_{i+1}	b_{i+1}
			$a_{i}(i \leq k-1)$
			$c(i+1=k)$
			$a_{i+2}(i+1 \leq k-1)$
		$c(i=k)$	b_{3}
			a_{k}
			a_{1}
			b_{k}
		$b_{i+3}(1 \leq i \leq k-3)$	$b_{1}(i=k-4)$
			a_{i+3}
			$a_{i+4}(i+3 \leq k-1)$
			$c(i+3=k)$
			$b_{i+6}(i+3 \leq k-6)$
			$a_{1}(i+2=k-2)$
			$b_{2}(i+3=k)$
		$b_{k-1}(i=1)$	a_{k-1}
			a_{k}
			b_{k-4}
		$b_{k}(i=2)$	c
			a_{k}
			b_{k-3}
		$c(i=3)$	a_{1}
			b_{k}
			a_{k}
			b_{k}
		$a_{1}(i=k-2)$	b_{1}
			a_{2}
			c
			b_{k-2}

Table 3. List of possible vertices of a C_{4} in Subcase 1.

vertex 1	vertex 2	vertex 3	vertex 4
b_{i}	$a_{i+1}(i \leq k-1)$	$a_{i+2}(i+1 \leq k-1)$	$b_{i+1}(i+1 \leq k-1)$
			$a_{i+3}(i+2 \leq k-1)$
			$c(i+2=k)$
			$c(i=k-1)$
		$c(i+1=k)$	$b_{k-2}(i=k-1)$
			b_{k}
		a_{i}	a_{1}
			b_{3}
			a_{k}
		a_{k}	$c(i=1)$
			$b_{k-2}(i=1)$
			a_{1}
			b_{i-2}
		b_{3}	a_{k-2}
			b_{k-1}
			a_{2}
			b_{k-2}
			b_{6}

Table 4. List of possible vertices of a C_{4} for Subcase 2.

vertex 1	vertex 2	vertex 3	vertex 4
a_{i}	$a_{i+1}(i \leq k-1)$	$a_{i+2}(i+1 \leq k-1)$	$a_{i+3}(i+1 \leq k-1)(i+2 \leq k-1)$
			$c(i+2=k)$
		$c(i+1=k)$	a_{1}
			a_{k}
			b_{3}
	$c(i=1)$	a_{k}	a_{k-1}
		b_{3}	b_{6}
	$c(i=k)$	a_{1}	a_{2}
			b_{k-2}
		b_{3}	b_{6}

Table 5. List of possible vertices of a C_{4} in Subcase 3.

vertex 1	vertex 2	vertex 3	vertex 4
b_{i}	b_{i+3}	b_{i+6}	b_{i+9}
			$b_{1}(i+6=k-1)$
			$b_{1}(i+6=k-1)$
		$b_{1}(i+3=k-1)$	$b_{4}(i+6=k)$
		$a_{1}(i+3=k-2)$	
		$b_{2}(i+3=k)$	b_{5}
		$b_{k-1}(i=1)$	b_{k-4}
	$a_{1}(i=k-2)$		b_{k-7}
	$c(i=3)$	b_{3}	
	$b_{k}(i=2)$	b_{k-3}	b_{6}

Table 6. List of possible vertices of a C_{4} in Subcase 4.

For $k=11$, we construct a graph G containing no C_{4} on 23 vertices with $\delta(G)=4$ as depicted in Figure 2.

Figure 2. A graph G containing no C_{4} on 23 vertices with $\delta(G)=4$.
(ii) For any even $m \geq 50$, we shall construct a graph G on m vertices with $\delta(G)=5$ and $G \nsupseteq C_{4}$. Let us define the vertex-set and edge-set of G :
$V(G)=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and
$E(G)=\left\{a_{i} a_{i+1} \mid i \in[1, m]\right\} \cup\left\{a_{i} a_{i+4} \mid i\right.$ odd $\} \cup\left\{a_{i} a_{i+12} \mid i\right.$ even $\}$
$\cup\left\{a_{i} a_{i+8} \mid i=2,4,6,8\right.$, and $i=16 k$, for $\left.k \in[1,\lfloor m / 16\rfloor]\right\}$
$\cup\left\{a_{i} a_{i+16} \mid i=1,3,5, \cdots, 15\right.$, and $i=16 k$, for $\left.k \in[1,\lfloor m / 34\rfloor]\right\}$.
It can be verified easily that $\delta(G)=5$. Now, suppose that $C_{4} \subseteq G$. Let C_{4} be ($a_{i_{1}}, a_{i_{2}}, a_{i_{3}}, a_{i_{4}}$) with $i_{2}=i_{1}+x_{1}, i_{3}=i_{2}+x_{2}, i_{4}=i_{3}+x_{3}, i_{1}=i_{4}+x_{4} \bmod m$. Clearly, $G \supseteq C_{4}$ if and only if m divides $x_{1}+x_{2}+x_{3}+x_{4}$. So, $x_{1}+x_{2}+x_{3}+x_{4}=0$ or $x_{1}+x_{2}+x_{3}+x_{4}$ is a multiple of 4 . Observe that the maximum value of $x_{1}+x_{2}+x_{3}+x_{4}=48$ which is achieved when i is even. It is easy to see that $x_{1}+x_{2}+x_{3}+x_{4} \neq 0$. Therefore, m never divides $\left(x_{1}+x_{2}+x_{3}+x_{4}\right)$. Thus, $G \nsupseteq C_{4}$.
(iii) We will show that $R\left(C_{4}, W_{2 k+1}\right) \leq R\left(C_{4}, W_{2 k}\right)$ for any $k \geq 25$. By Theorem $1.1(i i)$, we have a graph G on $m=2 k+4 \geq 50$ vertices with $\delta(G) \leq 5$ and $G \nsubseteq C_{4}$. Then, $\triangle(\bar{G}) \leq 2 k-2$. Thus, $\bar{G} \nsupseteq W_{2 k}$. Therefore, we obtain that G is a $\left(C_{4}, W_{2 k}, 2 k+4\right)$-good graph. As a consequence, $R\left(C_{4}, W_{2 k}\right) \leq 2 k+5$. Now, let $R\left(C_{4}, W_{2 k}\right)=m$. By Lemma 2.1, there exists a $C_{4}, W_{2 k}, m-1$-good graph G with $\delta(G) \geq m-1-2 k+1=m-2 k$. Thus, $\triangle(\bar{G}) \leq(m-1)-(m-2 k)=2 k-1$. This means that G is also a $\left(C_{4}, W_{2 k+1}, m+1\right)$-good graph. Therefore $R\left(C_{4}, W_{2 k+1}\right) \leq R\left(C_{4}, W_{2 k}\right)$.
(iv) We will show that $R\left(C_{4}, W_{m+n}\right) \geq \max \left\{R\left(C_{4}, W_{m}\right), R\left(C_{4}, W_{n}\right)\right\}$ with $\min \{m, n\} \geq 7$ and $\max \{m, n\} \geq 50$. Without lost of generality, let $R\left(C_{4}, W_{m}\right)=\max \left\{R\left(C_{4}, W_{m}\right), R\left(C_{4}, W_{n}\right)\right\}$. If m is even, by Theorem $1.1(i i)$ there exists graph G on $m+4$ with $\delta(G)=5$ and $C_{4} \nsubseteq G$. Then, $\triangle(\bar{G}) \leq m-2$. Then, $W_{m} \nsubseteq \bar{G}$. Therefore, we obtain that G is a $\left(C_{4}, W_{m}, m+4\right)$ good graph. As a consequence, $R\left(C_{4}, W_{m}\right) \geq m+5$ and by Theorem 1.1(3), we have $R\left(C_{4}, W_{m}\right) \geq m+5$ for all $m \geq 50$. Now, let $R\left(C_{4}, W_{m}\right)=p$. By Lemma 2.1, there exists a $\left(C_{4}, W_{m}, p-1\right)$-good graph G with $\delta(G) \geq p-1-m+1=p-m$. Thus, $\triangle(\bar{G}) \leq(p-1)-(p-m)=m-1 \leq m+n-1$. This means that G is also a $R\left(C_{4}, W_{m+n}, p-1\right)$-good graph. Therefore, $R\left(C_{4}, W_{m+n}\right) \geq \max \left\{R\left(C_{4}, W_{m}\right)\right.$.

Proof Theorem 1.2.

(i) We will show that $m+6 \leq R\left(C_{4}, W_{m}\right) \leq m+7$, for $46 \leq m \leq 51$. Hoffman and Singleton [??] have constructed a (7,5)-cage $H S_{50}$ as follow. Let $V\left(H S_{50}\right)=\left\{a_{1}, a_{2}, \cdots, a_{50}\right\}$. All edges of $H S_{50}$ are presented in Table 7.

We construct a new graph G_{i} on i vertices, for each $i \in[51,56]$ as follows.

$$
\begin{aligned}
V\left(G_{51}\right)= & V\left(H S_{50}\right) \cup\{51\} \\
E\left(G_{51}\right)= & E\left(H S_{50}\right) \backslash\{(1,2),(2,34),(20,21),(21,22),(19,41),(34,41)\} \\
& \cup\{(51, i) \mid i \in\{1,2,19,21,34,41\}\} \\
V\left(G_{52}\right)= & V\left(G_{51}\right) \cup\{52\} \\
E\left(G_{52}\right)= & E\left(G_{51}\right) \backslash\{(10,11),(11,12),(3,4),(3,16),(5,20)\} \\
& \cup\{(52, i) \mid i \in\{2,3,11,12,16,20\}\}
\end{aligned}
$$

1	2	19	29	32	44	47	50								
2	1	3	6	10	21	24	34	26	10	13	22	25	27	33	50
3	2	4	8	16	27	37	46	3	19	26	28	31	39	43	
4	3	5	11	18	22	32	48		29	1	14	23	27	29	34
47	25	28	30	37											
5	4	6	9	20	28	38	50		30	6	15	22	29	35	46
6	2	5	7	13	30	40	43		31	9	12	24	27	30	32
49															
7	6	8	116	19	23	33	49		32	1	4	14	31	33	36
8	40														
8	3	7	9	14	25	35	44		33	7	17	26	32	34	38
9	5	8	10	17	31	41	47	34	2	12	28	33	35	41	48
10	2	9	11	15	26	36	45	35	8	18	30	34	36	39	50
11	4	7	10	12	29	39	42		36	10	20	23	35	32	37
12	11	13	16	20	31	34	44	37	3	13	29	36	38	41	49
13	6	12	14	18	26	37	47		38	5	15	24	33	37	39
14	8	13	15	21	28	32	42		39	11	21	27	35	38	40
15	10	14	16	19	30	38	48	40	6	16	25	32	39	41	45
16	3	12	15	17	23	40	50	41	9	19	22	34	37	40	42
17	9	16	18	21	29	33	43	42	11	14	24	41	43	46	50
18	4	13	17	19	24	35	45	43	6	17	27	36	42	44	48
19	1	7	15	18	20	27	41	44	1	8	12	22	38	43	45
20	5	12	15	21	25	36	46	45	10	18	28	40	44	46	49
21	2	14	17	20	22	39	49	46	3	20	30	33	42	45	47
22	4	21	23	26	30	41	44	47	1	9	13	23	39	46	48
23	7	16	22	24	28	36	47	48	4	15	25	34	43	47	49
24	2	18	23	25	31	38	42	49	7	21	31	37	45	48	50
25	8	20	24	26	29	40	48	50	1	5	16	26	35	42	49

Table 7. The Hoffman and Singleton graph $H S_{50}$.

$$
\begin{aligned}
V\left(G_{53}\right)= & V\left(G_{52}\right) \cup\{53\} \\
E\left(G_{53}\right)= & E\left(G_{52}\right) \backslash\{(5,9),(4,11),(31,32)\} \\
& \cup\{(53, i) \mid i \in\{4,5,9,10,11,, 31\}\} \\
V\left(G_{54}\right)= & V\left(G_{53}\right) \cup\{54\} \\
E\left(G_{54}\right)= & E\left(G_{53}\right) \backslash\{(22,30),(18,35),(30,35),(21,39)\} \\
& \cup\{(54, i) \mid i \in\{4,21,27,30,35,39\}\} \\
V\left(G_{55}\right)= & V\left(G_{54}\right) \cup\{55\} \\
E\left(G_{55}\right)= & E\left(G_{54}\right) \backslash\{(1,50),(5,50),(32,36),(35,36)\} \\
& \cup\{(55, i) \mid i \in\{1,5,19,35,36,50\}\} \\
V\left(G_{56}\right)= & V\left(G_{55}\right) \cup\{56\} \\
E\left(G_{56}\right)= & E\left(G_{55}\right) \backslash\{(7,23),(17,33),(16,23),(26,33)\} \\
& \cup\{(56, i) \mid i \in\{7,16,17,22,23,33\}\}
\end{aligned}
$$

Consider graph G_{51}. Clearly, $\delta\left(G_{51}\right)=6$. Now, we will show that $C_{4} \nsubseteq G_{51}$. For a contradiction, suppose $C_{4} \subseteq G_{51}$. If $C_{4} \subseteq G_{51}$ then this C_{4} must consists of vertex 51, two vertices adjacent to 51 , say x and y, and one other vertex adjacent to x and y. If vertex 51 is the first vertex of this C_{4} then $\{x, y\} \subset\left\{a_{1}, a_{2}, a_{19}, a_{21}, a_{34}, a_{41}\right\}$. However, there is no other vertex adjacent to both x and y, see Figure 3. Therefore, there is no C_{4} in G_{51}. Similarly, we have show that $\delta\left(G_{i}\right)=6$ and $C_{4} \nsubseteq G_{i}$ for all $i \in\{52, \cdots, 56\}$.

Figure 3. Possible C_{4} in G_{51}.
Now, we have $\Delta\left(\bar{G}_{i}\right) \leq i-7$. Thus, $W_{i-5} \nsubseteq \bar{G}_{i}$. As a consequence, $R\left(C_{4}, W_{i-5}\right) \geq i$ for all $i \in\{51, \ldots, 56\}$. By Theorem 2.1, $R\left(C_{4}, W_{m}\right) \leq m+7$, for $46 \leq m \leq 51$. Thus, $m+6 \leq R\left(C_{4}, W_{m}\right) \leq m+7$ for $46 \leq m \leq 51$.
(ii) We will show that $m+8 \leq R\left(C_{4}, W_{m}\right) \leq m+9$ for $79 \leq m \leq 82$. From [2], there exists a $(9,5)$-graph on 96 vertices, call it G_{96}. Let $V\left(G_{96}\right)=\{0,1,2, \cdots, 95\}$ and all edges of graph G_{96} are presented in Table 8. We construct a graph G_{i} on i vertices for $86 \leq i \leq 95$, $\delta\left(G_{i}\right)=8$ and $C_{4} \nsubseteq G_{i}$. Graph G_{i} is obtained by removing a single vertex of G_{i+1} as follows:

$$
V\left(G_{i}\right)=V\left(G_{i+1}\right) \backslash\{a\}
$$

with a respectively $95,79,1,13,18,36,40,46,47,63$. Now, we have $\Delta\left(\bar{G}_{i}\right) \leq i-9$. Thus, $W_{i-7} \nsubseteq \bar{G}_{i}$. Therefore, we obtain that G_{i} is $\left(C_{4}, W_{i-7}, i\right)$-good graph. As a consequence $R\left(C_{4}, W_{i-7}\right) \geq i+1$ for $79 \leq m \leq 87$ with $m=i-7$. By Theorem 2.1, $R\left(C_{4}, W_{m}\right) \leq$ $m+9$, for $79 \leq m \leq 82$.
(iii) By Theorem 2.1, $R\left(C_{4}, W_{m}\right) \leq m+10$, for $83 \leq m \leq 87$ and by the constructions in Theorem 1.2 (ii), we have $R\left(C_{4}, W_{m}\right) \geq m+8$, for $83 \leq m \leq 87$.
(iv) We will show that $97 \leq R\left(C_{4}, W_{88}\right) \leq 98$ and $m+8 \leq R\left(C_{4}, W_{m}\right) \leq m+10$ for $89 \leq m \leq 93$. Graph G_{96} is $(9,5)$-graph. Thus, $\Delta\left(\bar{G}_{96}\right)=96-1-9=86$. Therefore, we obtain that G_{96} is a $\left(C_{4}, G_{88}, 96\right)$-good graph and G_{96} is a $\left(C_{4}, G_{89}, 96\right)$-good graph. As a consequence $R\left(C_{4}, G_{88}\right) \geq 97$ and $R\left(C_{4}, G_{89}\right) \geq 97$. For $90 \leq m \leq 93$, we construct graph G_{i} on i vertices, with $97 \leq i \leq 100$ as follows.

$$
\begin{aligned}
V\left(G_{97}\right)= & V\left(G_{96}\right) \cup\{96\} \\
E\left(G_{97}\right)= & E\left(G_{96}\right) \backslash\{(8,16),(53,77),(16,93),(0,8),(0,77),(34,82),(5,53),(24,58)\} \\
& \cup\{(96, i) \mid i \in\{0,8,16,24,53,77,93,82\}\} \\
V\left(G_{98}\right)= & V\left(G_{97}\right) \cup\{97\} \\
E\left(G_{98}\right)= & E\left(G_{97}\right) \cup\{(97, i) \mid i \in\{34,26,18,10,58,5,87,64\}\} \\
& \backslash\{(18,26),(10,18),(60,26),(5,64),(10,87),(58,82),(63,87),(9,64),(34,80)\} \\
V\left(G_{99}\right)= & V\left(G_{98}\right) \cup\{98\} \\
E\left(G_{99}\right)= & E\left(G_{98}\right) \cup\{(98, i) \mid i \in\{3,6,11,19,48,65,80,88\}\} \\
& \backslash\{(3,11),(31,65),(11,19),(6,46),(3,52),(6,88),(19,65),(56,80),(72,88), \\
& (14,48)\} \\
V\left(G_{100}\right)= & V\left(G_{99}\right) \cup\{99\} \\
E\left(G_{100}\right)= & E\left(G_{99}\right) \cup\{(99, i) \mid i \in\{1,7,25,33,41,43,52,81\}\} \\
& \backslash\{(33,41),(1,41),(1,50),(43,89),(33,92),(25,54),(7,89),(7,62),(25,84), \\
& (4,52),(35,81)\}
\end{aligned}
$$

From the construction, we have $\Delta\left(\bar{G}_{i}\right)=i-9$ for $97 \leq i \leq 100$. Thus, $W_{i-7} \nsubseteq \bar{G}_{i}$. Therefore, we obtain that G_{i} is $\left(C_{4}, W_{i-7}, i\right)$-good graph. As consequence $R\left(C_{4}, W_{m}\right) \geq$ $m+8$ for $90 \leq m \leq 93$ with $m=i-7$. By Theorem 2.1, $R\left(C_{4}, W_{m}\right) \leq m+10$ for $88 \leq m \leq 93$.

Acknowledgment

This research was supported by Research Grant "Program Riset Unggulan ITB-DIKTI", Ministry of Research, Technology and Higher Education, Indonesia.

0	8	40	48	49	55	59	77	82	94		48	0	2	14	19	37	41	47	64	72
1	9	41	49	50	56	60	78	83	95		49	0	1	3	15	20	38	42	65	73
2	10	42	48	50	51	57	61	79	84		50		2	4	16	21	39	43	66	74
3	11	43	49	51	52	58	62	80	85		51	2	3	5	17	22	40	44	67	75
4	12	44	50	52	53	59	63	81	86		52	3	4	6	18	23	41	45	68	76
5	13	45	51	53	54	60	64	82	87		53	4	5	7	19	24	42	46	69	77
6	14	46	52	54	55	61	65	83	88		54	5	6	8	20	25	43	47	70	78
7	15	47	53	55	56	62	66	84	89		55	0	6	7	9	21	26	44	71	79
8	0	16	54	56	57	63	67	85	90		56		7	8	10	22	27	45	80	88
9	1	17	55	57	58	64	68	86	91		57	2	8	9	11	23	28	46	81	89
10	2	18	56	58	59	65	69	87	92		58	3	9	10	12	24	29	47	82	90
11	3	19	57	59	60	66	70	88	93		59	0	4	10	11	13	25	30	83	91
12	4	20	58	60	61	67	71	89	94		60	1	5	11	12	14	26	31	84	92
13	5	21	59	61	62	68	72	90	95		61	2	6	12	13	15	27	32	85	93
14	6	22	48	60	62	63	69	73	91		62	3	7	13	14	16	28	33	86	94
15	7	23	49	61	63	64	70	74	92		63	4	8	14	15	17	29	34	87	95
16	8	24	50	62	64	65	71	75	93		64	5	9	15	16	18	30	35	48	80
17	9	25	51	63	65	66	72	76	94		65	6	10	16	17	19	31	36	49	81
18	10	26	52	64	66	67	73	77	95		66	7	11	17	18	20	32	37	50	82
19	11	27	48	53	65	67	68	74	78		67	8	12	18	19	21	33	38	51	83
20	12	28	49	54	66	68	69	75	79		68	9	13	19	20	22	34	39	52	84
21	13	29	50	55	67	69	70	76	80		69	10	14	20	21	23	35	40	53	85
22	14	30	51	56	68	70	71	77	81		70	11	15	21	22	24	36	41	54	86
23	15	31	52	57	69	71	72	78	82		71	12	16	22	23	25	37	42	55	87
24	16	32	53	58	70	72	73	79	83		72	13	17	23	24	26	38	43	48	88
25	17	33	54	59	71	73	74	80	84		73	14	18	24	25	27	39	44	49	89
26	18	34	55	60	72	74	75	81	85		74	15	19	25	26	28	40	45	50	90
27	19	35	56	61	73	75	76	82	86		75	16	20	26	27	29	41	46	51	91
28	20	36	57	62	74	76	77	83	87		76	17	21	27	28	30	42	47	52	92
29	21	37	58	63	75	77	78	84	88		77	0	18	22	28	29	31	43	53	93
30	22	38	59	64	76	78	79	85	89		78	1	19	23	29	30	32	4	54	94
31	23	39	60	65	77	79	80	86	90		79	2	20	24	30	31	33	45	55	95
32	24	40	61	66	78	80	81	87	91		80	3	21	25	31	32	34	46	56	64
33	25	41	62	67	79	81	82	88	92		81	4	22	26	32	33	35	47	57	65
34	26	42	63	68	80	82	83	89	93		82	0	5	23	27	33	34	36	58	66
35	27	43	64	69	81	83	84	90	94		83		6	24	28	34	35	37	59	67
36	28	44	65	70	82	84	85	91	95		84	2	7	25	29	35	36	38	60	68
37	29	45	48	66	71	83	85	86	92		85	3	8	26	30	36	37	39	61	69
38	30	46	49	67	72	84	86	87	93		86	4	9	27	31	37	38	40	62	70
39	31	47	50	68	73	85	87	88	94		87	5	10	28	32	38	39	41	63	71
40	0	32	51	69	74	86	88	89	95		88	6	11	29	33	39	40	42	56	72
41	1	33	48	52	70	75	87	89	90		89	7	12	30	34	40	41	43	57	73
42	2	34	49	53	71	76	88	90	91		90	8	13	31	35	41	42	44	58	74
43	3	35	50	54	72	77	89	91	92		91	9	14	32	36	42	43	45	59	75
44	4	36	51	55	73	78	90	92	93		92	10	15	33	37	43	44	46	60	76
45	5	37	52	56	74	79	91	93	94		93	11	16	34	38	44	45	47	61	77
46	6	38	53	57	75	80	92	94	95		94	0	12	17	35	39	45	46	62	78
47	7	39	48	54	58	76	81	93	95	20	95	1	13	18	36	40	46		63	

Table 8. The graph G_{96}.

References

[1] J. Dybizbański, T. Dzido, On Some Ramsey Numbers for Quadrilaterals versus Wheels, Graphs and Combinatorics 30 (2014), 573-579.
[2] K.K. Tse, On the Ramsey Turán Number for Quadrilateral, Utilitas Mathematica 79 (2003), 51-58.
[3] L.K.Jørgensen, Girth 5 Graphs from Relative Difference Sets, Discreate Mathematics 293 (2005), 177-184.
[4] S.P Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics (2014), DS1.14.
[5] S.P Radziszowski, K.K.Tse, A computational approach for the Ramsey numbers $R\left(C_{4}, K_{n}\right)$, Journal of Combinatorial Mathematics and Combinatorial Computing 42 (2002), 195-207.
[6] W. Yali, S. Yongqi, S.P Radziszowski, Wheel and Star-critical Ramsey Numbers for Quadrilateral, Discrete Applied Mathematics 186 (2015), 260-271.
[7] Y. Zhang, H. Broersma, Y. Chen, A Remark on Star- C_{4} and Wheel- C_{4} Ramsey Numbers, Electronic Journal of Graph Theory and Applications 2(2) (2014), 110-114.

