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Properties of the First Eigenvalue with Sign-changing Weight of the

Discrete p-Laplacian and Applications.
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abstract: By establishing some results around the first eigenvalue λ1(m) for the
following problem:

−∆(ϕ
p
(∆u(k − 1))) = λm(k)ϕ

p
(u(k)), k ∈ [1, n],

u(0) = 0 = u(n+ 1),

where m ∈ M([1, n]) = {m : [1, n] −→ R / ∃k0 ∈ [1, n], m(k0) > 0} , as the con-
stant sign of the first eigenfunction with λ1(m), the simplicity of λ1(m), the strict
monotonicity property with respect the weight and sign change of any eigenfunction
with λ ( λ > λ1(m)), we prove the existence and non-existence of solutions of the
problem (1.1).
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1. Introduction

In recent years, equations involving the discrete p-Laplacian operator, subject
to different boundary conditions, have been widely studied by many authors and
several approaches. We recall here the works of Agarwal, Perera and O’Regan [1],
D. Jiang, J. Chu, D. O’Regan, and R. P. Agarwal [2], J. Chu, D. Jiang [3], Jong-Ho
Kim, Jea-Hyun Park and June-Yub Lee [6]; the variational approach represents an
important advance as it allows to prove multiplicity results as well.

Motivations for this interest arose in by different fields of research, such as
computer science, mechanical engineering, control systems, artificial or biological
neural networks, economics and others.

Consider the boundary value problem:

−∆(ϕp(∆u(k − 1))) = f(k, u(k)), k ∈ [1, n],

u(0) = 0 = u(n+ 1), (1.1)
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where n is an integer greater than or equal to 1, [1, n] is the discrete interval
{1, ..., n}, ∆u(k) = u(k+ 1)− u(k) is the forward difference operator, and we only
assume that f ∈ C([1, n]× R).

Define

F (k, t) =

∫ t

0

f(k, s)ds, k ∈ [1, n], t ∈ R.

Let λ1(m) be the first eigenvalue of

−∆(ϕp(∆u(k − 1))) = λm(k)ϕp(u(k)), k ∈ [1, n], (1.2)

u(0) = 0 = u(n+ 1),

where m ∈ M([1, n]) = {m : [1, n] −→ R / ∃k0 ∈ [1, n], m(k0) > 0}, ϕp(s) =

|s|
p−2

s and 1 < p <∞.

The class W of functions u : [0, n+ 1] −→ R such that u(0) = 0 = u(n+ 1) is
an n-dimensional Banach space under the norm

‖u‖ =

(

n+1
∑

k=1

|∆u(k − 1)|
p

)

1
p

.

We donote by λ1 and φ1 the first eigenvalue and the positive eigenfunction of
(1.2) for m = 1 such that ‖φ1‖ = 1, and S = {u ∈W , ‖u‖ = 1}} .

Define

Φf (u) =

n+1
∑

k=1

[

1

p
|∆u(k − 1)|

p
− F (k, u(k))

]

, u ∈W,

Then the functional Φf is C1 with

(Φ′
f (u), v) =

n+1
∑

k=1

[

ϕp(∆u(k − 1))∆v(k − 1)− f(k, u(k))v(k)
]

= −
n
∑

k=1

[

∆ϕp(∆u(k − 1))
]

v(k)−
n+1
∑

k=1

f(k, u(k))v(k),

v ∈W, so solutions of (1.1) are precisely the critical points of Φf .

Theorem 1.1. If

lim
|t|−→+∞

sup
pF (k, t)

|t|
p ≤ λ1, k ∈ [1, n],

and lim
|t|−→+∞

sup
pF (k, t)

|t|
p 6= λ1 for some k ∈ [1, n], (1.3)

then (1.1) has a solution. More precisely, this solution is a global minimizer of Φf .
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Remark 1.2. If

lim
|t|−→+∞

sup
pF (k, t)

|t|p
= λ1, k ∈ [1, n],

then (1.1) does not always have a solution, as is shown in the following propo-
sition ( Proposition 1.3 ).

Proposition 1.3. If

f(k, t) = λ1(m).m(k) |t|
p−2

t+ h(k), k ∈ [1, n], t ∈ R,

where h(k) ≥ 0, k ∈ [1, n], and h(k) 6= 0 for some k ∈ [1, n], then (1.1) does
not have a solution. One can take as particular case m = 1.

Theorem 1.4. Suppose that

f(k, t) ≥ a0(k), (k, t) ∈ [1, n]× [0, α(k)], (1.4)

for some nontrivial function a0 ≥ 0 and a function α such that α(k) > 0,
k ∈ [1, n]. If

λ1 ≤ lim
t−→+∞

inf
pF (k, t)

tp
, k ∈ [1, n] , λ1 6= lim

t−→+∞
inf

pF (k, t)

tp
for some k ∈ [1, n],

and λ1 ≤ lim
t−→+∞

inf
f(k, t)

tp−1
, k ∈ [1, n], (1.5)

then (1.1) has a solution u > 0.

Theorem 1.5. If (1.4) holds and (1.1) has a supersolution w where w(k) > α(k),
k ∈ [1, n], then (1.1) has a solution u1 < w. If, in addition, (1.5) holds, then there
is a second solution u2 > u1.

To prove these theorems we need the following results:

Lemma 1.6. ( see [2] ) If

−∆(ϕp(∆u(k − 1))) ≥ −∆(ϕp(∆v(k − 1))), k ∈ [1, n],

u(0) ≥ v(0), u(n+ 1) ≥ v(n+ 1),

then either u > v in [1, n] or u ≡ v. In particular, if

−∆(ϕp(∆u(k − 1))) ≥ 0, k ∈ [1, n],

u(0) ≥ 0, u(n+ 1) ≥ 0,

then either u > 0 in [1, n] or u ≡ 0.
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Lemma 1.7. If u is a subsolution of (1.1) and u is a solution of the modified
problem:

−∆(ϕp(∆u(k − 1))) = fu(k, u(k)), k ∈ [1, n],

u(0) = 0 = u(n+ 1),

where

fu(k, t) =

{

f(k, t), t ≥ u(k),
f(k, u(k)), t < u(k),

then u ≥ u.

Recall that λ1(m) is characterized by

λ1(m) = inf

{

n+1
∑

k=1

|∆u(k − 1)|
p
, u ∈W and

n
∑

k=1

m(k) |u(k)|
p
= 1

}

, (1.6)

which is also expressed in the form

1

λ1(m)
= sup

u∈W\{0}















n
∑

k=1

m(k) |u(k)|
p

n+1
∑

k=1

|∆u(k − 1)|
p















,

is the first eigenvalue of (1.2) in the sense that λ1(m) ≤ λ for any other positive
eigenvalue λ of (1.2).

Proposition 1.8. Let u1 be an eigenfunction with eigenvalue λ1(m), then u1 does
not change sign in [1, n]. Moreover u1 does not vanish in [1, n].

Proposition 1.9. Let u be an eigenfunction with eigenvalue λ such that λ1(m) <
λ, then u changes sign in [1, n].

Proposition 1.10. The first eigenvalue λ1(m) is simple: let u and v be two eigen-
functions associated with λ1(m), then there exists c ∈ R such that u = cv.

Proposition 1.11. λ1(m) verifies the strict monotonicity property with respect to
the weight m: If m1,m2 ∈ M([1, n]), such that m1 ≤ m2 and m1(k) 6= m2(k) for
some k ∈ [1, n], then λ1(m2) < λ1(m1).
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Remarks 1.12. 1- If lim
t−→+∞

sup
f(k, t)

tp−1
< λ1, k ∈ [1, n], then lim

t−→+∞
sup

pF (k, t)

tp
< λ1, k ∈ [1, n]. The converse is false.

If λ1 < lim
t−→+∞

inf
f(k, t)

tp−1
, k ∈ [1, n], then λ1 < lim

t−→+∞
inf

pF (k, t)

tp
, k ∈ [1, n].

The converse is false.
2- In the Theorem 1.5, one can consider w(k) = t1, where t1 > α(k), and

f(k, t1) ≤ 0, k ∈ [1, n].

In the present paper, we study the problem (1.1) following a variational ap-
proach, based on the properties of the first eigenvalue λ1(m). The paper is orga-
nized as follows: in Section 2, we prove the Lemma 1.7 and the propositions 1.3,
1.8 1.9, 1.10 and 1.11, in Section 3, we prove the theorems 1.1, 1.4 and 1.5.

2. Proofs of Propositions and Lemma

Proof of Lemma 1.7

By absurd, assume that there exists h ∈ [1, n] such that u(h) < u(h).
Let k1 = max {k ∈ [0, n+ 1], u(k) < u(k)} and k0 = max {k ∈ [0, k1], u(k) ≥ u(k)} .
We get k1 6= n+1, u(k0) ≥ u(k0), u(k1) < u(k1), u(k1 +1) ≥ u(k1 +1) and for
k ∈ [k0 + 1, k1], u(k) < u(k). Then for every k ∈ [k0 + 1, k1],

−∆(ϕp(∆u(k − 1))) = fu(k, u(k)) = f(k, u(k)) ≥ −∆(ϕp(∆u(k − 1))).

Let for every k ∈ [0, k1 − k0 + 1], v(k) = u(k + k0) and v(k) = u(k + k0),
then

−∆(ϕp(∆v(k − 1))) ≥ −∆(ϕp(∆v(k − 1))), ∀k ∈ [1, k1 − k0],

v(0) = u(k0) ≥ v(0) = u(k0),

v(k1 − k0 + 1) = u(k1 + 1) ≥ v(k1 − k0 + 1) = u(k1 + 1).

By Lemma 1.6, for every k ∈ [1, k1 − k0], v(k) ≥ v(k).
In particular v(k1 − k0) = u(k1) ≥ v(k1 − k0) = u(k1), which is a contradiction.
Thus u ≥ u.

Proof of Proposition 1.3

Suppose that

f(k, t) = λ1(m).m(k) |t|
p−2

t+ h(k), k ∈ [1, n], t ∈ R,

where h(k) ≥ 0, k ∈ [1, n], and h(k) 6= 0 for some k ∈ [1, n], and (1.1) has a
solution u, then

{

−∆(ϕp(∆u(k − 1))) = λ1(m).m(k) |u(k)|p−2 u(k) + h(k), k ∈ [1, n],
u(0) = 0 = u(n+ 1).

(2.1)
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We prove that u ≥ 0.
By absurd, suppose that u− 6= 0, where u− = max{−u, 0} and multiply (2.1)

by −u−, we obtain

−

n+1
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1) = λ1(m)

n
∑

k=1

m(k)
∣

∣u−(k)
∣

∣

p
−

n
∑

k=1

h(k).u−(k).

Distinguish the cases of signs of u(k − 1) and u(k), we prove that

n+1
∑

k=1

∣

∣∆u−(k − 1)
∣

∣

p
≤ −

n+1
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1),

then

0 <

n+1
∑

k=1

∣

∣∆u−(k − 1)
∣

∣

p

≤ λ1(m)

n
∑

k=1

m(k)
∣

∣u−(k)
∣

∣

p
−

n
∑

k=1

h(k).u−(k)

≤ λ1(m)

n
∑

k=1

m(k)
∣

∣u−(k)
∣

∣

p
,

so
u−

(

n
∑

k=1

m(k) (u−(k))p
)

1
p

is also a minimizer of λ1(m) and u− is an eigenfunc-

tion with eigenvalue λ1(m), then u− > 0 (Proposition (1.8) ), and hense

n
∑

k=1

h(k).u−(k) = 0,

and h = 0, which is a contradiction.

Let ψ a positive eigenfunction with eigenvalue λ1(m) and c = min
k∈[1,n]

u(k)

ψ(k)
, there

exists k1 ∈ [1, n], such that c =
u(k1)

ψ(k1)
, then v ≤ u and v(k1) = u(k1), where v = cψ.

We get

−∆(ϕp(∆v(k1 − 1))) + λ1(m).m−(k1) (v(k1))
p−1

= λ1(m).m+(k1) (v(k1))
p−1

,

where m+ = max{m, 0} and m− = max{−m, 0} so that m = m+ −m−, thus

−∆(ϕp(∆u(k1 − 1))) + λ1(m).m−(k1) (u(k1))
p−1

= λ1(m).m+(k1) (u(k1))
p−1

+h(k1)

≥ λ1(m).m+(k1) (v(k1))
p−1

= −(∆ϕp(∆v(k1 − 1)))

+λ1(m).m−(k1) (v(k1))
p−1

,
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then
−∆(ϕp(∆u(k1 − 1))) ≥ −∆(ϕp(∆v(k1 − 1))),

and

−ϕp(∆u(k1)) + ϕp(∆u(k1 − 1)) ≥ −ϕp(∆v(k1)) + ϕp(∆v(k1 − 1)).

We have

∆u(k1) = u(k1 + 1)− u(k1) ≥ v(k1 + 1)− v(k1) = ∆v(k1)

and
∆u(k1 − 1) ≤ ∆v(k1 − 1),

therefore

0 ≤ ϕp(∆u(k1))− ϕp(∆v(k1)) ≤ ϕp(∆u(k1 − 1))− ϕp(∆v(k1 − 1)) ≤ 0,

and
u(k1 − 1) = v(k1 − 1) and u(k1 + 1) = v(k1 + 1).

Step by step we prove that u = v , then h = 0, which is a contradiction.

Proof of Proposition 1.8

Let u be an eigenfunction with the first eigenvalue λ1(m) of the problem (1.2),
then

{

−(∆ϕp(∆u(k − 1))) = λ1(m).m(k) |u(k)|
p−2

u(k), k ∈ [1, n],
u(0) = 0 = u(n+ 1).

(2.2)

If u− 6= 0, multiply (2.2) by −u−, we obtain

−

n+1
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1) = λ1(m)

n
∑

k=1

m(k)
(

u−(k)
)p
.

As
n+1
∑

k=1

∣

∣∆u−(k − 1)
∣

∣

p
≤ −

n+1
∑

k=1

ϕp(∆u(k − 1))∆u−(k − 1),

we get

0 <

n+1
∑

k=1

∣

∣∆u−(k − 1)
∣

∣

p
≤ λ1(m)

n
∑

k=1

m(k)
(

u−(k)
)p
,

and u− is an eigenfunction with eigenvalue λ1(m).
Let us prove that u− > 0. By absurd, suppose that there exists k0 ∈ [1, n] such

that u−(k0) = 0, then
−∆(ϕp(∆u

−(k0 − 1))) = 0,
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and
ϕp(∆u

−(k0)) = ϕp(∆u
−(k0 − 1)),

so u−(k0 + 1) + u−(k0 − 1) = 0 and u−(k0 + 1) = u−(k0 − 1) = 0.
Step by step we prove that u− = 0, which is a contradiction.
Thus u− > 0 and u = −u− < 0.
If u− = 0, then u ≥ 0 and u > 0 ( by the same techniques as the above ).

Proof of Proposition 1.9

Let (u, λ) a solution of (1.2) with λ > λ1(m). Suppose that u keeps a constant
sign, we can suppose that u > 0, we have

−∆(ϕp(∆u(k − 1))) + λ.m−(k) (u(k))
p−1

= λ.m+(k) (u(k))
p−1

.

Claim

λ = inf

{

n+1
∑

k=1

|∆v(k − 1)|p + λ.
n
∑

k=1

m−(k) |v(k)|p , v ∈W and
n
∑

k=1

m+(k) |v(k)|p = 1

}

Proof of Claim

Let

µ = inf

{

n+1
∑

k=1

|∆v(k − 1)|
p
+ λ.

n
∑

k=1

m−(k) |v(k)|
p
, v ∈ W and

n
∑

k=1

m+(k) |v(k)|
p
= 1

}

,

and prove that µ = λ.

It’s clear that u0 =
u

(

n
∑

k=1

m+(k) |u(k)|
p

)
1
p

∈W and
n
∑

k=1

m+(k) |u0(k)|
p
= 1, so

µ ≤

n+1
∑

k=1

|∆u0(k − 1)|
p
+ λ.

n
∑

k=1

m−(k) |u0(k)|
p
= λ.

There exists w ∈W such that
n
∑

k=1

m+(k) |w(k)|
p
= 1 and

µ =

n+1
∑

k=1

|∆w(k − 1)|
p
+ λ.

n
∑

k=1

m−(k) |w(k)|
p
.

As
n+1
∑

k=1

|∆ |w| (k − 1)|
p
≤

n+1
∑

k=1

|∆w(k − 1)|
p
,

then, |w| minimizes also µ, so we can suppose that w ≥ 0 and w 6= 0.
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We have

− (∆ϕp(∆w(k − 1))) + λ.m−(k) (w(k))
p−1

= µ.m+(k) (w(k))
p−1

. (2.3)

Let c = max
k∈[1,n]

w(k)

u(k)
, there exists k0 ∈ [1, n], such that c =

w(k0)

u(k0)
.

We have w ≤ v and w(k0) = v(k0), where v = cu.
We get

−∆(ϕp(∆w(k − 1))) + λ.m−(k) (w(k))p−1 = µ.m+(k) (w(k))p−1

≤ λ.m+(k) (v(k))p−1

= −∆(ϕp(∆v(k − 1)))

+λ.m−(k) (v(k))
p−1

,

in particular for k = k0, we obtain

−∆(ϕp(∆w(k0 − 1))) ≤ −∆(ϕp(∆v(k0 − 1))),

and

0 ≤ ϕp(∆w(k0 − 1))− ϕp(∆v(k0 − 1)) ≤ ϕp(∆w(k0))− ϕp(∆v(k0)) ≤ 0,

so
w(k0 + 1) = v(k0 + 1) and w(k0 − 1) = v(k0 − 1).

Step by step we prove that w = v.
Replacing w by v in (2.3),

µ.m+(k) (v(k))
p−1

= −(∆ϕp(∆v(k − 1))) + λ.m−(k) (v(k))
p−1

= λ.m+(k) (v(k))
p−1

, k ∈ [1, n],

then µ = λ.

Returning to the proof of Proposition 1.9

Let ψ a positive eigenfunction with eigenvalue λ1(m) such that
n
∑

k=1

m+(k) (ψ(k))p = 1. We have

n+1
∑

k=1

|∆ψ(k − 1)|
p
+ λ1(m).

n
∑

k=1

m−(k) (ψ(k))
p

= λ1(m).

n
∑

k=1

m+(k) (ψ(k))
p

= λ1(m),

so

0 <
n+1
∑

k=1

|∆ψ(k − 1)|p = λ1(m)

(

1−
n
∑

k=1

m−(k) (ψ(k))p
)

. (2.4)
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By the Claim

λ ≤

n+1
∑

k=1

|∆ψ(k − 1)|
p
+ λ.

n
∑

k=1

m−(k) (ψ(k))
p
,

then

λ ≤ λ1(m)

(

1−

n
∑

k=1

m−(k) (ψ(k))
p

)

+ λ.

n
∑

k=1

m−(k) (ψ(k))
p
,

and

λ

(

1−

n
∑

k=1

m−(k) (ψ(k))
p

)

≤ λ1(m)

(

1−

n
∑

k=1

m−(k) (ψ(k))
p

)

,

by (2.4), we get

λ ≤ λ1(m).

Which is a contadiction.

Proof of Proposition 1.10

Let u and v be two eigenfunctions associated with λ1(m) of the problem (1.2),
then u and v does not change sign in [1, n]. We can suppose that u > 0 and v > 0.

Let c = min
k∈[1,n]

v(k)

u(k)
, there exists k0 ∈ [1, n], such that c =

v(k0)

u(k0)
. Then

ϕp(∆v(k0 − 1))− ϕp(∆v(k0)) = λ1(m)m(k0)ϕp(v(k0))

= λ1(m)m(k0)ϕp(cu(k0))

= ϕp(∆(cu)(k0 − 1))− ϕp(∆(cu)(k0)),

and

0 ≤ ϕp(∆v(k0))− ϕp(∆(cu)(k0)) = ϕp(∆v(k0 − 1))− ϕp(∆(cu)(k0 − 1)) ≤ 0,

so

v(k0 + 1) = (cu)(k0 + 1) and v(k0 − 1) = (cu)(k0 − 1),

Step by step we prove that v = cu.

Proof of Proposition 1.11

Let m1,m2 ∈M([1, n]) such that m1 ≤ m2, m1(k) 6= m2(k) for some k ∈ [1, n]
and u1 the positive eigenfunction with λ1(m1) such that ‖u1‖ = 1. We get
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1

λ1(m1)
= sup

u∈S

{

n
∑

k=1

m1(k) |u(k)|
p

}

=

n
∑

k=1

m1(k) |u1(k)|
p

<
n
∑

k=1

m2(k) |u1(k)|
p

≤ sup
u∈S

{

n
∑

k=1

m2(k) |u(k)|
p

}

=
1

λ1(m2)
,

thus λ1(m2) < λ1(m1).

3. Proofs of Theorems

Proof of Theorem 1.1. By (1.3), for ε > 0 there exists Cε > 0 such that

F (k, t) ≤ (δ(k) + ε)
|t|p

p
+ Cε,

where δ(k) = lim
|t|−→∞

sup
pF (k, t)

|t|
p . For u ∈ W,

Φf (u) =

n+1
∑

k=1

[

1

p
|∆u(k − 1)|

p
− F (k, u(k))

]

≥

n+1
∑

k=1

[

1

p
|∆u(k − 1)|

p
−

(

(δ(k) + ε)
|u(k)|

p

p
+ Cε

)]

≥
1

p

[

‖u‖
p
−

n+1
∑

k=1

δ(k) |u(k)|
p
− ε

n+1
∑

k=1

|u(k)|
p

]

+ (n+ 1)Cε,

then, by (1.6)

Φf (u) ≥
1

p

[

1−
1

λ1(δ)
−

ε

λ1

]

‖u‖
p
+ (n+ 1)Cε.

On the other hand, δ(k) ≤ λ1, k ∈ [1, n], and δ(k) 6= λ1 for some k ∈ [1, n], by
the strict monotonicity property with respect to the weight (Proposition 1.11) and

(1.6), we get λ1(λ1) < λ1(δ) and λ1(λ1) = 1, then 1−
1

λ1(δ)
> 0. We choose ε > 0

such that 1 −
1

λ1(δ)
−

ε

λ1
> 0, thus Φf is bounded from below and coercive, then

the problem (1.1) has a solution.
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Lemma 3.1. If

λ1 ≤ lim
t−→+∞

inf
pF (k, t)

tp
k ∈ [1, n], λ1 6= lim

t−→+∞
inf

pF (k, t)

tp
for some k ∈ [1, n],

λ1 ≤ lim
t−→+∞

inf
f(k, t)

tp−1
and lim

t−→−∞

f(k, t)

|t|
p−1 = 0, k ∈ [1, n], (3.1)

then Φf satisfies the Palais-Smale compactness condition (PS): every sequence
(uj) in W such that Φf (uj) is bounded and Φ′

f (uj) −→ 0 has a convergent subse-
quence.

Proof of lemma 3.1

It suffices to show that (uj) is bounded since W is finite dimentional , so
suppose that ρj := ‖uj‖ −→ ∞ for some subsequence. We have

o(1)
∥

∥u−j
∥

∥ = (Φ′
g(uj), u

−
j ),

where u−j = max{−uj, 0} is the negative part of uj .

(Φ′
g(uj), u

−
j ) =

n+1
∑

k=1

[

ϕp(∆uj(k − 1))∆u−j (k − 1)
]

−

n+1
∑

k=1

f(k, uj(k))u
−
j (k)

=

n+1
∑

k=1

[

ϕp(∆uj(k − 1))∆u−j (k − 1)
]

−

n+1
∑

k=1

f(k,−u−j (k))u
−
j (k).

Distinguishing the case of signs of uj(k − 1) and uj(k), we prove that

n+1
∑

k=1

[

ϕp(∆uj(k − 1))∆u−j (k − 1)
]

≤ −
∥

∥u−j
∥

∥

p
,

so

(Φ′
g(uj), u

−
j ) ≤ −

∥

∥u−j
∥

∥

p
−

n+1
∑

k=1

f(k,−u−j (k))u
−
j (k),

it follows from (3.1) that (u−j )j is bounded. So for a further subsequence,
∼
uj :=

uj
ρj

converges to some
∼
u ≥ 0 in W with

∥

∥

∥

∼
u
∥

∥

∥
= 1. We may assume that for

each k, either (uj(k))j is bounded or uj(k) → +∞.

If (uj(k))j is bounded, then
∼
uj(k) −→ 0,

∼
u(k) = 0 and

f(k, uj(k))

ρp−1
j

−→ 0.

If uj(k) → +∞, since lim
t−→+∞

inf
f(k, t)

tp−1
≥ λ1, we get f(k, uj(k)) ≥ 0 for large

j, by (3.1). Since
n+1
∑

k=1

f(k, uj(k))

ρp−1
j

v(k) −→ 0, it follows from
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o(1) =
(Φ′

g(uj), v)

ρp−1
j

=

n+1
∑

k=1

[

ϕp(∆
∼
uj(k − 1))∆v(k − 1)−

f(k, uj(k))

ρp−1
j

v(k)

]

, (3.2)

that
n+1
∑

k=1

ϕp(∆
∼
u(k − 1))∆v(k − 1) ≥ 0, ∀v ≥ 0, (3.3)

and hense,
∼
u > 0 in [1, n] by Lemma 1.6. Then uj(k) → ∞ for each k, and

hence, (3.2) can be written as

n+1
∑

k=1

[

ϕp(∆
∼
uj(k − 1))∆v(k − 1)− αj(k)

∼
uj(k)

p−1v(k)
]

= o(1), (3.4)

where αj(k) =
f(k, uj(k))

uj(k)p−1
.

Now choosing v appropriately and passing to the limit, we get αj(k) converges
to some α(k) ≥ λ1 and

−∆(ϕp(∆
∼
u(k − 1))) = α(k)

(

∼
u(k)

)p−1

, k ∈ [1, n], (3.5)

∼
u(0) = 0 =

∼
u(n+ 1).

Suppose that for each k ∈ [1, n], α(k) = λ1. Since λ1 ≤ lim
t−→+∞

inf
pF (k, t)

|t|
p ,

k ∈ [1, n], and lim
t−→+∞

inf
pF (k, t)

|t|
p 6= λ1 for some k ∈ [1, n], for ε > 0 there exists

Cε > 0 such that

F (k, t) ≥ (β(k)− ε)
|t|p

p
+ Cε,

where β(k) = lim
t−→+∞

inf
pF (k, t)

|t|
p . As

Φf (uj) =
1

p
‖uj‖

p
−

n+1
∑

k=1

F (k, uj(k)),

then

Φf (uj) ≤
1

p
‖uj‖

p
−

n+1
∑

k=1

(

(β(k)− ε)
|uj(k)|

p

p
+ Cε

)

,

and

Φf (uj)

‖uj‖
p ≤

1

p

(

1−
n+1
∑

k=1

(

(β(k)− ε)
|uj(k)|

p

‖uj‖
p

)

)

− (n+ 1)
Cε

‖uj‖
p .



164 M. Chehabi, O. Chakrone

Since (Φf (uj))j is bounded and ‖uj‖ −→ +∞, we get

0 ≤
1

p

(

1−

n+1
∑

k=1

(

(β(k)− ε)
∣

∣

∣

∼
u(k)

∣

∣

∣

p)
)

,

we tends ε −→ 0,

0 ≤
1

p

(

1−

n+1
∑

k=1

β(k)
∣

∣

∣

∼
u(k)

∣

∣

∣

p

)

.

Since 1 =
∥

∥

∥

∼
u
∥

∥

∥

p

=
n+1
∑

k=1

α(k)
∣

∣

∣

∼
u(k)

∣

∣

∣

p

= λ1
n+1
∑

k=1

∣

∣

∣

∼
u(k)

∣

∣

∣

p

, we get

0 ≤
1

p

(

n+1
∑

k=1

(λ1 − β(k))
∣

∣

∣

∼
u(k)

∣

∣

∣

p

)

,

as λ1 ≤ β(k), k ∈ [1, n], and λ1 6= β(k) for some k ∈ [1, n], we get

1

p

(

n+1
∑

k=1

(λ1 − β(k))
∣

∣

∣

∼
u(k)

∣

∣

∣

p

)

< 0,

hence the contradiction. So α(k) ≥ λ1, k ∈ [1, n], and λ1 6= α(k) for some k ∈ [1, n],
and from the strict monotonicity property with respect to the weight (Proposition
1.11),we get 1 = λ1(λ1) > λ1(α).

Since ( 3.5 ) and
∼
u > 0, then by Proposition 1.8 and Proposition 1.9,

∼
u is the

first eigenfunction and λ1(α) = 1. Hence the contradiction.

Proof of Theorem 1.4

The problem

−∆(ϕp(∆u(k − 1))) = a0(k), k ∈ [1, n],

u(0) = 0 = u(n+ 1),

has a unique solution u0 > 0 by Lemma 1.6. Let ε ∈]0, 1[ such that u := εu0 <
α(k), k ∈ [1, n]. Then by (1.4)

−∆(ϕp(∆u(k − 1)))− f(k, u(k)) ≤ −(1− εp−1)a0(k) ≤ 0, k ∈ [1, n],

and u is a subsolution of (1.1). Let

fu(k, t) =

{

f(k, t), t ≥ u(k),
f(k, u(k)), t < u(k).

Consider Fu(k, t) =
∫ t

0
fu(k, s)ds, k ∈ [1, n], t ∈ R.
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It’s clear that, lim
t→−∞

sup
pFu(k, t)

|t|
p < λ1 and lim

t→+∞
sup

pFu(k, t)

tp
=

= lim
t→+∞

sup
pF (k, t)

tp
≤ λ1, k ∈ [1, n] and lim

t→+∞
sup

pFu(k, t)

tp
6= λ1 for some

k ∈ [1, n].

Thus lim
|t|→∞

sup
pFu(k, t)

|t|
p ≤ λ1, k ∈ [1, n] and lim

|t|→∞
sup

pFu(k, t)

|t|
p 6= λ1 for

some k ∈ [1, n] , so the modified problem

−∆(ϕp(∆u(k − 1))) = fu(k, u(k)), k ∈ [1, n], (3.6)

u(0) = 0 = u(n+ 1),

has a solution u which is a global minimizer of Φfu by Theorem 1.1. By lemma
1.7, u ≥ u, and hence, also a solution of (1.1).

Proof of Theorem 1.5

As in the proof of theorem 1.4, u is a subsolution of (1.1).
We have w is a supersolution of (3.6), let

f+
u (k, t) =

{

fu(k, w(k)), t > w(k),
fu(k, t), t ≤ w(k).

Consider F+
u (k, t) =

∫ t

0 f
+
u (k, s)ds, k ∈ [1, n], t ∈ R.

It’s clear that lim
|t|−→∞

sup
pF+

u (k, t)

|tp|
≤ λ1, k ∈ [1, n] and lim

|t|−→∞
sup

pF+
u (k, t)

|tp|
6=

λ1 for some k ∈ [1, n], so, the modified problem

−∆(ϕp(∆u(k − 1))) = f+
u (k, u(k)), k ∈ [1, n], (3.7)

u(0) = 0 = u(n+ 1),

has a solution u1 which is a local minimizer of Φfu . Indeed, u1 is a global
minimizer of Φf

+
u

by Theorem 1.1. By Lemma 1.7 and Lemma 1.6, u ≤ u1 ≤ w

and u1 < w, so f+
u (k, u1(k)) = f(k, u1(k)) and u1 is a solution of (1.1). Thus

Φf
+
u

= Φfu near u1. Let

fu1
(k, t) =

{

f(k, t), t ≥ u1(k),
f(k, u1(k)), t < u1(k).

As u1 is a subsolution of (1.1), by the same argument with u1 in place of u, we
see that Φfu1

has a local minimizer strict u∗1 also noted by u1.
For t > T = max

1≤k≤n
(u1(k)), we get fu1

(k, t) = f(k, t) and

Fu1
(k, t) =

∫ t

0

fu1
(k, s)ds

=

∫ T

0

(fu1
(k, s)− f(k, s))ds+ F (k, t),
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so lim
t−→+∞

inf
pFu1

(k, t)

tp
= lim

t−→+∞
inf

pF (k, t)

tp
. For ε > 0, there exists Cε > 0

such that

Fu1
(k, t) ≥ (β(k)− ε)

|t|p

p
+ Cε,

where β(k) = lim
t−→+∞

inf
pF (k, t)

|t|p
. As

Φfu1
(u) =

n+1
∑

k=1

[

1

p
|∆u(k − 1)|

p
− Fu1

(k, u(k))

]

,

we get

Φfu1
(tφ1) =

n+1
∑

k=1

[

1

p
|∆(tφ1) (k − 1)|

p
− Fu1

(k, tφ1(k))

]

≤
1

p
‖tφ1‖

p −
n+1
∑

k=1

β(k)
|tφ1(k)|

p

p
+ ε

n+1
∑

k=1

|tφ1(k)|
p

p
− (n+ 1)Cε,

so,

Φfu1
(tφ1) ≤

1

p
‖tφ1‖

p −
n+1
∑

k=1

β(k)
|tφ1(k)|

p

p
+ ε

n+1
∑

k=1

|tφ1(k)|
p

p
− (n+ 1)Cε

≤ −
tp

p

(

−1 +
1

λ1(β)
+

ε

λ1

)

− (n+ 1)Cε.

We have β(k) ≥ λ1, k ∈ [1, n] and β(k) 6= λ1 for some k ∈ [1, n], so, from the
strict monotonicity property with respect to the weight (Proposition 1.11), we get

λ1(β) < λ1 (λ1) = 1 and − 1 +
1

λ1(β)
> 0.

We choose ε > 0, such that −1 +
1

λ1(β)
+

ε

λ1
> 0, thus

lim
t−→∞

−
tp

p

(

−1 +
1

λ1(β)
+

ε

λ1

)

− (n+ 1)Cε = −∞.

So, for t large, we get

Φfu1
(tφ1) ≤ −

tp

p

(

−1 +
1

λ1(β)
+

ε

λ1

)

− (n+ 1)Cε < Φfu1
(u1).

Since Φfu1
satisfies (PS) by Lemma 3.1, the mountain- pass lemma [7] now

gives a second critical point u2, which is greater than u1 by Lemma 1.6.
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