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A New Approximation Method to Solve Boundary Value Problems by

Using Functional Perturbation Concepts

Somayeh Pourghanbar and Mojtaba Ranjbar

abstract: Functional perturbation method (FPM) is presented for the solution
of differential equations with boundary conditions. Some properties of FPM are
utilized to reduce the differential equation with variable coefficients to the equations
with constant coefficients. The FPM can be applied directly for many types of
differential equations. The exact solution is obtained by only the first term of the
Frechet series for polynomial cases. Four examples are included to demonstrate the
method.
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1. Introduction

Many real-world phenomena can be formalized in terms of differential equa-
tions. This equations should be supplied with boundary conditions to ensure that
there is a unique solution. Thus boundary value problems have played a main
role in the development of engineering and mathematics. They have many appli-
cations in fields such as mechanics [3], optimal control [21], geometric optics [16],
oceanography [13], finance mathematics [5] etc. There are mainly three types of
approaches for solving differential equations. One approach is solving equations
by analytical techniques. The other approach is designing numerical algorithms
to solve equations. For example step difference schemes [20], collocation method
[22,10,12] and tau method [17] are of this types. The third class of methods is
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based on semi analytical approaches like Adomian decomposition method [8], vari-
ational iteration method [7], homotopy perturbation method [15], etc. But this
paper proposes the functional perturbation method (FPM) which the main idea
behind that is to use Frechet series. This idea is successfully and effectively applied
in some papers. In 2003, the buckling load in equation is treated as a functional of
the bending modulus field by Altus and et al. [4]. They have applied a functional
perturbation to equation, therefore the buckling load was found analytically to any
desired degree of accuracy. In the same year the FPM has been used for calculating
the average deflections and reaction forces of stochastically heterogeneous beams
in [1]. In 2006, a one dimensional stochastically heterogeneous rod embedded in a
uniform shear resistant elastic medium is solved in [3]. The solution of natural fre-
quencies and mode shapes of non-homogeneous rods and beams was studied based
on the FPM in 2007 [14]. Also in the same year the buckling load of heterogeneous
columns has been found by applying the FPM directly to the buckling differential
equation in [18]. The FPM is generalized in [19] for solving eigenvalue functional
differential equations in 2008. In the current study, we use the FPM to approxi-
mate the solution of linear and nonlinear ordinary differential equations. Despite
some methods like Galerkin and Rayleigh-Ritz, the accuracy of the FPM dose not
depend on the arbitrarily chosen shape functions. The solution for each problem is
founded by only convoluting its functional derivatives. We expand the equations
functionally, yielding some ordinary differential equations which have constant co-
efficients.
In a concise manner, our first aim is to find an approximate solution of the equation
by considering E0 = 〈E〉 as an average of function E. It is worth pointing out that
finding the best choice of E0 is an important subject of optimization which is under
investigation. Our second aim is to improve the approximate solution obtained in
the previous step by using properties of Dirac function and functional derivative
rules.
Four examples are given to show the efficiency of the method. To the best of our
knowledge this is the first time that the FPM is proposed to solve a nonlinear
differential equation.
The remaining of this paper is organized as follows. Section 2 is outlined some
necessary preliminaries. The FPM and theoretical aspects of the method are elab-
orated in Section 3. In Section 4, we employ FPM for four examples. Finally,
major conclusions are drown in Section 5.

2. Preliminaries

First we introduce some mathematical definitions that will be used in the sequel.
Derivatives of a function u(x) ≡ u will be written as:

du

dx
≡ u,x,

d2u

dx2
≡ u,xx.

Let E is a scalar function of x and u[E] is a functional of E, i.e., a mapping from
a normed linear space of functions (a Banach space) M = {E|E : R → R} to the
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field of real or complex numbers, u : M → R or C. The δu[E(x)]
δE(x1)

tells how the value

of the functional changes if the function E(x) is changed at the point x1. Thus the
functional derivative (Frechet derivative) itself is an ordinary function depending
on x1. First order and higher orders Frechet derivatives of the functional will be
written as:

δu

δE(x1)
≡ u,E1

,
δ2u

δE(x1)δE(x2)
≡ u,E1E2

.

We consider a measure space (Rd,Ω, ν), where ν is a Borel measure, d is a positive
integer. Also u : Lp(ν) → R be a real functional over the normed space Lp(ν) such
that u maps functions that are Lp integrable with respect to ν to the real line. The
bounded linear functional u,E1

is the Frechet derivative of u at 〈E〉 ∈ Lp(ν) if

u[〈E〉+ E′]− u[〈E〉] = u,E1
+ ǫ[〈E〉, E′]‖E′‖Lp(ν),

for all E′ ∈ Lp(ν), with ǫ[〈E〉, E′] → 0 as ‖E′‖Lp(ν) → 0. Intuitively, what we are
doing is perturbing the input function 〈E〉 by another function E′, then shrinking
the perturbing function E′ to zero in terms or its Lp norm, and considering the
difference u[〈E〉 + E′] − u[〈E〉] in this limit. For the second variation u,E1E2

, we
have

u[〈E〉+ E′]− u[〈E〉] = u,E1
+

1

2
u,E1E2

+ ǫ[〈E〉, E′]‖E′‖Lp(ν),

where ǫ[〈E〉, E′] → 0 as ‖E′‖Lp(ν) → 0 (see [9]). According to [6], the functional
derivative is represented as the limit of divided differences:

u,E1
= lim

ǫ→0

u[E(x) + ǫδ(x − x1)]− u[E(x)]

ǫ
. (2.1)

The x dependence on the right hand side of (2.1) is only a formal one. It can be
written ǫ(· − x1) with the notation E(·) instead of E(x). The Dirac function δ in
(2.1) is (see [6]):

δ(x− x1) ≡ δxx1
=

{

1 if x = x1,

0 if x 6= x1.
(2.2)

As a matter of fact, by considering u[E] = E(x), we have:

u,E1
=

δu[E]

δE(x1)
= lim

ǫ→0

1

ǫ

(

E(x) + ǫδ(x− x1)− E(x)
)

= δ(x− x1) = δxx1
= E,E1

.

Therefore we can denote the derivative of Dirac function as:

( δE(x)

δE(x1)

)

,x
= δxx1,x.

The average 〈E〉 and the deviation function E′(x) of function E are defined as (see
[2]):

〈E〉 =

∫ 1

0

E(x)dx = E ∗ 1, (2.3)
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E′(x) = E(x)− 〈E〉. (2.4)

In (2.3), sign (∗) is convolution and 1 is a unit function. The property of the Dirac
function which we need them in FPM frequently is (see [11]):

δ ∗ E = E, (2.5)

because:

δ ∗ E =

∫

δ(x1 − x2)E(x2)dx2 = E(x1). (2.6)

It is worthwhile to know where E(x2) is a sufficiently smooth function, (2.6) is
called the sifting property or reproducing property of the Dirac function [11].
For multiple convolutions we have:

u,E1E2
∗ ∗E1E2 =

∫ ∫

δ

δE(x2)
(

δu

δE(x1)
)E(x1)E(x2)dx1dx2,

and since u,E1E2
is symmetric, we can write also (see [4]):

u,E1E2
∗ ∗E1E2 = E1 ∗ u,E1E2

∗ E2 = E1 ∗
δ2u

δE(x1)δE(x2)
∗ E2.

Besides, the indispensable relation between the derivative of Dirac function δ and
convolution is:

∂δ

∂xi

∗ E = δ ∗
∂E

∂xi

=
∂E

∂xi

. (2.7)

(2.7) can be extended to the differential operator L of each order:

(Lδ) ∗ E = δ ∗ L(E) = L(E). (2.8)

We refer the interested reader to [6,11] for more discussion. The Frechet expansion
(see [4,14,18,19]) of a function f around 〈E〉 is as:

f = f(〈E〉) + f,E1

∣

∣

E=〈E〉
∗ E′

1 +
1

2!
f,E1E2

∣

∣

E=〈E〉
∗ ∗E′

1E
′
2 + · · ·

= f (0) + f (1) +
1

2!
f (2) + · · · . (2.9)

Expansion (2.9) is exact for a polynomial P (x) = anx
n+an−1x

n−1+ · · ·+a1x+a0.
As a matter of fact, by considering E(x) = xn, (2.3) and (2.4) we have:

〈E〉 =
1

n+ 1
, E′ = xn −

1

n+ 1
.

We rewrite P (x) as:

P (x) = anE +
an−1

n
E,x +

an−2

n(n− 1)
E,xx + · · ·+

a1

n(n− 1) · · · × 2
E,xn−1 +

a0

n!
E,xn .
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Now, for the first term of the Frechet expansion of P , we have:

P (0) ≡ P
∣

∣

E=〈E〉
= an〈E〉 =

an

n+ 1
. (2.10)

Also for the second term of the expansion of P :

P (1) ≡ P,E1

∣

∣

E=〈E〉
∗ E′

1 = (anE,E1
+

an−1

n
E,xE1

+ · · ·+
a0

n!
E,xnE1

)
∣

∣

E=〈E〉
∗ E′

1

= (anδ +
an−1

n
δ,x + · · ·+

a0

n!
δ,xn) ∗ E′

1

= anE
′
1 +

an−1

n
(E′

1),x +
an−2

n(n− 1)
(E′

1),xx + · · ·+
a0

n!
(E′

1),xn

= an(x
n −

1

n+ 1
) +

an−1

n
(nxn−1)

+
an−2

n(n− 1)
(n(n− 1)xn−2) + · · ·+

a0

n!
(n!)

= anx
n −

an

n+ 1
+ an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0, (2.11)

and because of E,E1E2
= 0, E,E1E2E3

= 0, · · · , etc:

P (2) ≡ P,E1E2

∣

∣

E=〈E〉
∗ ∗E′

1E
′
2 = 0, P (3) = 0, · · · , etc.

Therefore

P = P (0) + P (1) +
1

2!
P (2) + · · · = anx

n + an−1x
n−1 + · · ·+ a1x+ a0.

This shows that the Frechet expansion is exact for polynomials.

3. Functional Perturbation Method

In this section, we demonstrate the theoretical aspects of the FPM. For this
purpose let us consider the differential equation:

Lu(x) = f(x), x ∈ [0, 1], (3.1)

L is a general linear differential operator with boundary operator:

Bu(xi) = ui. (3.2)

The Frechet expansion of the unknown function u(x) is:

u(E(x)) = u
∣

∣

E=〈E〉
+ u,E1

∣

∣

E=〈E〉
∗ E′

1 +
1

2!
u,E1E2

∣

∣

E=〈E〉
∗ ∗E′

1E
′
2 + · · · . (3.3)

We denote:

u(〈E〉) ≡ u(0), u,E1

∣

∣

E=〈E〉
∗ E′

1 ≡ u(1), u,E1E2

∣

∣

E=〈E〉
∗ ∗E′

1E
′
2 ≡ u(2), · · · .
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Therefore (3.3) can be written as u = u(0)+u(1)+ 1
2!u

(2)+ · · · . Let us assume that
Eq. (3.1) can be expressed as:

Lu = φ(0)(E)u+ φ(1)(E)u,x + φ(2)(E)u,xx + · · · = f(x). (3.4)

For functions φ(i), i = 0, 1, · · · , the Frechet expansion around 〈E〉 is:

φ(i) = φ(i)(〈E〉) + φ(i),E1
∗ E′

1 +
1

2!
φ(i),E1E2

∗ ∗E′
1E

′
2 + · · · , (3.5)

by considering

φ(i)(〈E〉) ≡ φ
(0)
(i) , φ(i),E1

∗E′
1 ≡ φ

(1)
(i) , φ(i),E1E2

∗ ∗E′
1E

′
2 ≡ φ

(2)
(i) , etc. (3.6)

(3.5) will be written as φ(i) = φ
(0)
(i) +φ

(1)
(i) +

1
2!φ

(2)
(i) + · · · . Now, by using the Frechet

expansion for the differential operator L, we will have:

Lu = Lu(〈E〉)+L(u),E1

∣

∣

E=〈E〉
∗E′

1+
1

2
L(u),E1E2

∣

∣

E=〈E〉
∗∗E′

1E
′
2+· · · = f(x). (3.7)

As the first step, by the special case E = 〈E〉, we suppose:

Lu(〈E〉) = f(x).

Therefore we should have:

L(u),E1

∣

∣

E=〈E〉
∗ E′

1 = 0, L(u),E1E2

∣

∣

E=〈E〉
∗ ∗E′

1E
′
2 = 0, etc. (3.8)

For the product of two functionals, the ordinary product rule applies:

Lu,E1
= φ(0),E1

u+φ(0)u,E1
+φ(1),E1

u,x+φ(1)u,xE1
+φ(2),E1

u,xx+φ(2)u,xxE1
+ · · · .
(3.9)

For brevity, we denote (3.9) as:

Lu,E1
= φ(i),E1

.u,xi + φ(i).u,xiE1
, i = 0, 1, · · · , (3.10)

which (·) is inner product. Now when we use E = 〈E〉, Eq. (3.4) can be shown as:

φ
(0)
(0)u

(0) + φ
(0)
(1)u

(0)
,x + φ

(0)
(2)u

(0)
,xx + · · · = f(x), (3.11)

u(0) will be known from solving Eq. (3.11) subject to (3.2). By using (3.10) for 〈E〉
and inner integral product (convolution) E′

1 and then considering the first equality
in (3.8) we have:

Lu,E1
|〈E〉 ∗ E

′
1 = φ(i),E1

.u,xi

∣

∣

E=〈E〉
∗ E′

1 + φ(i).u,xiE1

∣

∣

E=〈E〉
∗ E′

1

= φ
(1)
(i) .u

(0)
,xi + φ

(0)
(i) .u

(1)
,xi = 0. (3.12)
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Inasmuch as u(0) is known from the solving of Eq. (3.11), we obtain u(1) by solving
(3.12) subject to homogeneous boundary conditions. Also from (3.10) and the
product rule for functionals, we will have:

Lu,E1E2
= φ(i),E1E2

.u,xi + φ(i),E1
.u,xiE2

+ φ(i),E2
.u,xiE1

+ φ(i).u,xiE1E2
. (3.13)

Applying multiple convolution on (3.13):

Lu,E1E2
∗ ∗E′

1E
′
2 = φ(i),E1E2

.u,xi ∗ ∗E′
1E

′
2 + φ(i),E1

.u,xiE2
∗ ∗E′

1E
′
2

+ φ(i),E2
.u,xiE1

∗ ∗E′
1E

′
2 + φ(i).u,xiE1E2

∗ ∗E′
1E

′
2

= φ(i),E1E2
.u,xi ∗ ∗E′

1E
′
2 + φ(i),E1

∗ E′
1.u,xiE2

∗ E′
2

+ φ(i),E2
∗ E′

2.u,xiE1
∗ E′

1 + φ(i).u,xiE1E2
∗ ∗E′

1E
′
2

= 0. (3.14)

Also

φ
(2)
(i) ≡ φ(i),E1E2

∗ ∗E′
1E

′
2, u

(2)
,xi ≡ u,xiE1E2

∗ ∗E′
1E

′
2. (3.15)

By using (3.15), we can rewrite Eq. (3.14) as:

φ
(2)
(i) .u

(0)
,xi + 2φ

(1)
(i) .u

(1)
,xi + φ

(0)
(i) .u

(2)
,xi = 0. (3.16)

We ponder homogeneous boundary conditions for obtaining u(2) by solving Eq.
(3.16). The solution of the Eq. (3.1) is:

u = u(0) + u(1) +
1

2
u(2) + · · · ,

which u(i), i = 0, 1, 2, · · · are obtained from solving respectively (3.11), (3.12),
(3.16), etc.

4. Examples

In this section, we apply the above method for some examples. The first one has
a polynomial solution and the FPM is exact for it by only one term of the expansion.
Two other examples are linear ODEs and the last one is a nonlinear case which
FPM solutions are compared with the exact solutions of them. We measure the
accuracy by considering the root mean square error (RMSE) as follow:

RMSE =
1

n

√

√

√

√

n
∑

i=1

e2i ,

where n is the number of interior nodes and ei is the error. If uexact(xi) = 0;
we use absolute error ei = uexact(xi) − uFPM (xi), otherwise we use relative error

ei =
uexact(xi)−uFPM (xi)

uexact(xi)
.
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4.1. Example 1

As the first example, we consider

u+ (x− 1)u,x −
3

2
x2u,xx = −1, (4.1)

with u(0) = 0 and u,x(0) = 1. The exact solution of this problem is u(x) = x2 + x.
By E(x) = x2 and considering Eq. (4.1) as Eq. (3.4), we have:

φ(0)(E) = 1 =
1

2
E,xx φ(1)(E) = x−1 =

1

2
E,x−

1

2
E,xx, φ(2)(E) = −

3

2
x2 = −

3

2
E.

(4.2)
Also

〈E〉 =

∫ 1

0

x2dx =
1

3
, E′ = E − 〈E〉 = x2 −

1

3
. (4.3)

As the first step, by (4.2) and (4.3) we have:

φ
(0)
(0) = φ(0)

∣

∣

E=〈E〉
=

1

2
(〈E〉),xx = 0, φ

(0)
(1) =

1

2
(〈E〉),x −

1

2
(〈E〉),xx = 0,

φ
(0)
(2) = −

3

2
〈E〉 = −

1

2
. (4.4)

In this step, the equation φ(0)u+ φ(1)u,x + φ(2)u,xx = −1, is as:

φ
(0)
(0)u

(0) + φ
(0)
(1)u

(0)
,x + φ

(0)
(2)u

(0)
,xx = −1.

Therefore by (4.1) we have:

−
1

2
u(0)
,xx = −1.

(4.5)

Solving Eq. (4.1) with conditions u(0)(0) = 0 and u
(0)
,x (0) = 1, we have

u(0) = x2 + x.

For the next step:

φ
(1)
(0) = φ(0),E1

∗ E′
1 =

1

2
E,xxE1

∗ E′
1 =

1

2
δ,xx ∗E′

1 =
1

2
(E′

1),xx =
1

2
(x2 −

1

3
),xx = 1,

and

φ
(1)
(1) = φ(1),E1

∗ E′
1 = (

1

2
E,xE1

−
1

2
E,xxE1

) ∗ E′
1 =

1

2
δ,x ∗ E′

1 −
1

2
δ,xx ∗ E′

1 =

=
1

2
(E′

1),x −
1

2
(E′

1),xx = x− 1,
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and

φ
(1)
(2) = φ(2),E1

∗E′
1 = (−

3

2
E),E1

∗E′
1 = −

3

2
δ∗E′

1 = −
3

2
E′

1 = −
3

2
(x2−

1

3
) = −

3

2
x2+

1

2
.

So by the last equality of Eq. (3.12) we have:

u(0) + (x− 1)u(0)
,x + (−

3

2
x2 +

1

2
)u(0)

,xx −
1

2
u(1)
,xx = 0.

Therefore

−
1

2
u(1)
,xx = 0.

(4.6)

Eq. (4.1) differs from Eq. (4.1) of step.1 by the right hand side part only. We solve

Eq. (4.1) by homogeneous conditions u(1)(0) = 0 and u
(1)
,x (0) = 0, then

u(1) = 0.

For the next steps u(j) = 0, j = 2, 3, · · · . Therefore the FPM solution is

uFPM = u(0) + u(1) +
1

2!
u(2) = x2 + x.

It is observed that the FPM gives the exact solution only by the first term of
Frechet series.

4.2. Example 2

Consider
− xu,x + (1− x2)u,xx = 0,

(4.7)

with u(0) = 0 and u,x(0) = 1. Considering (4.2) as φ(1)u,x + φ(2)u,xx = 0 and

E(x) = 1− x2, we have

φ(1) = −x =
1

2
E,x, φ(2) = 1− x2 = E,

Also

〈E〉 =

∫ 1

0

(1− x2)dx =
2

3
, E′ = E − 〈E〉 =

1

3
− x2,

and

φ
(0)
(1) = φ(1)

∣

∣

E=〈E〉
=

1

2
(〈E〉),x = 0, φ

(0)
(2) = φ(2)

∣

∣

E=〈E〉
= 〈E〉 =

2

3
. (4.8)
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In the first step which we use E = 〈E〉, Eq. (4.2) is

φ
(0)
(1)u

(0)
,x + φ

(0)
(2)u

(0)
,xx = 0,

therefore by (4.8) we have:
2

3
u(0)
,xx = 0. (4.9)

Applying conditions u(0)(0) = 0 and u
(0)
,x (0) = 1, yields:

u(0) = x. (4.10)

For the next step:

φ
(1)
(1) = φ(1),E1

∗ E′
1 =

1

2
E,xE1

∗ E′
1 =

1

2
δ,x ∗ E′

1 =
1

2
(E′

1),x =
1

2
(
1

3
− x2),x = −x,

and

φ
(1)
(2) = φ(2),E1

∗E′
1 = E,E1

∗ E′
1 = δ ∗ E′

1 = E′
1 =

1

3
− x2,

so by the last equality of (3.12) we have:

2

3
u(1)
,xx − xu(0)

,x + (
1

3
− x2)u(0)

,xx = 0, (4.11)

therefore by substituting (4.8) and derivatives of (4.10) in the (4.11):

2

3
u(1)
,xx = x. (4.12)

We solve Eq. (4.12) subject to homogeneous conditions u(1)(0) = 0 and u
(1)
,x (0) = 0:

u(1) =
1

4
x3.

Inasmuch as φ
(2)
(1) = φ(1),E1E2

∗∗E′
1E

′
2 = 1

2E,xE1E2
∗∗E′

1E
′
2 = 0 and φ

(2)
(2) = φ(2),E1E2

∗

∗E′
1E

′
2 = EE1E2

∗ ∗E′
1E

′
2 = 0, and according to (3.16):

2

3
u(2)
,xx =

9

2
x3 − x. (4.13)

As we see, Eq. (4.13) differs from Eq. (4.9) and Eq. (4.12) by the right hand side

only. Solving Eq. (4.13) with u(2)(0) = 0 and u
(2)
,x (0) = 0, leads to:

u(2) =
27

80
x5 −

1

4
x3.

Therefore the FPM solution is

uFPM = u(0) + u(1) +
1

2!
u(2) = x+

1

4
x3 +

1

2!
(
27

80
x5 −

1

4
x3) = x+

1

8
x3 +

27

160
x5.

We have showed FPM solution, exact solution (u(x) = arcsinx) and absolute error
in Table 1. The graph of exact and FPM solution is depicted in Fig. 1.
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Figure 1: Exact and FPM solutions (Example 2).

Table 1: Absolute error of Example 2
xi FPM Exact Absolute error

0 0 0 0

0.1 0.1001 0.1002 1.0E − 04

0.2 0.2011 0.2014 3.0E − 04

0.3 0.3038 0.3047 9.0E − 04

0.4 0.4097 0.4115 1.8E − 03

0.5 0.5209 0.5236 2.7E − 03

0.6 0.6401 0.6435 3.4E − 03

0.7 0.7712 0.7754 4.2E − 03

0.8 0.9193 0.9273 8.0E − 03

0.9 1.0908 1.1198 2.9E − 02

RMSE = 3.1E − 03

4.3. Example 3

As the third example, consider

u,x + (1 + x)u,xx = 0, (4.14)

with u(0) = 0 and u,x(1) =
1
6 . By considering E(x) = 1 + x, we will have:

〈E〉 =

∫ 1

0

(1 + x)dx =
3

2
, E′(x) = E(x)− 〈E〉 = x−

1

2
.

Comparing (4.14) with φ(1)u,x + φ(2)u,xx = 0 yields φ(1) = 1 = E,x and φ(2) =

1 + x = E. We obtain φ
(0)
(i) , i = 1, 2 for E = 〈E〉, as follow

φ
(0)
(1) = (〈E〉),x = 0, φ

(0)
(2) = 〈E〉 =

3

2
. (4.15)
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For the first step, (4.14) is:

φ
(0)
(1)u

(0)
,x + φ

(0)
(2)u

(0)
,xx = 0,

by (4.15), we have:
3

2
u(0)
,xx = 0. (4.16)

Applying conditions u(0) = 0 and u,x(1) =
1
6 , yields

u(0) =
1

6
x.

As the second step, we obtain φ
(1)
(i) , i = 1, 2 as follow

φ
(1)
(1) = φ(1),E1

∗ E′
1 = E,xE1

∗ E′
1 = δ,x ∗ E′

1 = (E′
1),x = (x−

1

2
),x = 1,

φ
(1)
(2) = φ(2),E1

∗ E′
1 = E,E1

∗ E′
1 = δ ∗ E′

1 = E′
1 = x−

1

2
.

According to the last equality of Eq. (3.12) we have

3

2
u(1)
,xx + u(0)

,x + (x−
1

2
)u(0)

,xx = 0,

then
3

2
u(1)
,xx = −

1

6
. (4.17)

Now, we consider homogeneous conditions u(0) = 0 and u,x(1) = 0. Therefore

u(1) = −
1

18
x2 +

1

9
x.

To obtain u(2), from Eq. (3.16) we have

φ
(2)
(1)u

(0)
,x + φ

(2)
(2)u

(0)
,xx + 2φ

(1)
(1)u

(1)
,x + 2φ

(1)
(2)u

(1)
,xx + φ

(0)
(1)u

(2)
,x + φ

(0)
(2)u

(2)
,xx = 0. (4.18)

Apparently when φ(i) = E,xi , then φ(i),E1E2...
= 0. So

φ
(2)
(i) = φ(i),E1E2

∗ ∗E′
1E

′
2 = 0.

Therefore, from Eq. (4.18) we have

3

2
u(2)
,xx =

4

9
x−

1

3
,

with homogeneous conditions u(2)(0) = 0 and u
(2)
,x (1) = 0, u(2) can be obtained

u(2) =
4

81
x3 −

1

9
x2 +

2

27
x.
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Figure 2: Exact and FPM solutions (Example 3).

The solution of Eq. (4.14) is

uFPM =u(0) + u(1) +
1

2!
u(2)

=
1

6
x−

1

18
x2 +

1

9
x+

1

2!
(
4

81
x3 −

1

9
x2 +

2

27
x)

=
17

54
x−

1

9
x2 +

2

81
x3.

The exact solution (u(x) = 1
3 ln(1 + x)) and the FPM solution are shown in Fig.

2. The accuracy of the solution is clearly seen by RMSE = 6.9957E − 04 with xi

from Table.2.

Table 2: Absolute error of Example 3
xi FPM Exact Absolute error

0 0 0 0

0.1 0.0304 0.0318 1.4E − 03

0.2 0.0587 0.0608 2.1E − 03

0.3 0.0851 0.0875 2.3E − 03

0.4 0.1097 0.1122 2.4E − 03

0.5 0.1327 0.1352 2.4E − 03

0.6 0.1542 0.1567 2.4E − 03

0.7 0.1744 0.1769 2.5E − 03

0.8 0.1934 0.1959 2.5E − 03

0.9 0.2113 0.2140 2.6E − 03

RMSE = 6.9957E − 04
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4.4. Example 4

As the last example, we consider a nonlinear differential equation

uu,xx − u2
,x = −2, (4.19)

with u(0) = 1 and u,x(0) = 1. By rewriting Eq. (4.19) as

ũu,xx − ũ,xu,x = −2.

We can consider φ(0) = 0, φ(1) = −ũ,x and φ(2) = ũ. First of all, we use two terms
of Taylor expansion for u(x)

u(x) ≃ ũ(x) = u(0) + xu,x(0) = 1 + x.

If we consider E(x) = ũ = 1 + x, then:

φ(1) = −E,x, φ(2) = E.

Also

〈E〉 =

∫ 1

0

(1 + x)dx =
3

2
,

and

E′(x) = E(x) − 〈E〉 = x−
1

2
.

Now, we obtain φ
(0)
(i) , i = 1, 2 for E = 〈E〉 as follow

φ
(0)
(1) = −E,x

∣

∣

E=〈E〉
= 0, φ

(0)
(2) = E

∣

∣

E=〈E〉
=

3

2
.

In first step we have

φ
(0)
(1)u

(0)
,x + φ

(0)
(2)u

(0)
,xx = −2,

so
3

2
u(0)
,xx = −2.

By using u(0)(0) = 1 and u
(0)
,x (0) = 1 we have

u(0) = −
2

3
x2 + x+ 1.

Also φ
(1)
(i) , i = 1, 2 are obtained as

φ
(1)
(1) = −E′

,x = −1, φ
(1)
(2) = E′ = x−

1

2
.

So by Eq. (3.12) we have
3

2
u(1)
,xx =

1

3
,
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with homogeneous conditions u(1)(0) = 0 and u
(1)
,x (0) = 0, u(1) is obtained

u(1) =
1

9
x2.

Inasmuch as φ
(2)
(1) = φ(1),E1E2

∗ ∗E′
1E

′
2 = −E,xE1E2

∗ ∗E′
1E

′
2 = 0 and φ

(2)
(2) =

φ(2),E1E2
∗ ∗E′

1E
′
2 = EE1E2

∗ ∗E′
1E

′
2 = 0, Eq. (3.16) is reduced to

3

2
u(2)
,xx =

2

9
.

In this step we use homogeneous conditions too, so

u(2) =
2

27
x2.

Therefore uFPM is obtained

uFPM = u(0) + u(1) +
1

2!
u(2) = −

2

3
x2 + x+ 1 +

1

9
x2 +

1

2!
(
2

27
x2) = 1 + x−

14

27
x2.

The exact solution (u(x) = sinx + cosx) and the FPM solutions are depicted in

Table 3: Absolute error of Example 4
xi FPM Exact relative error

0 1.0000 1.0000 0

0.1 1.0948 1.0948 0

0.2 1.1793 1.1787 4.0E − 04

0.3 1.2533 1.2509 2.0E − 03

0.4 1.3170 1.3105 5.0E − 03

0.5 1.3704 1.3570 9.8E − 03

0.6 1.4133 1.3900 1.68E − 02

0.7 1.4459 1.4091 2.62E − 02

0.8 1.4681 1.4141 3.82E − 02

0.9 1.4800 1.4049 5.34E − 02

RMSE = 7.4E − 03

Fig. 3. The relative errors of them are shown in Table. 3.

Remark 4.1. We have verified all the examples with the aid of MATLAB R2013a.

5. Conclusion

In this article we have studied the functional perturbation method (FPM) which
is an effective tool for analytical solution of linear problems and can be used for
some nonlinear problems too. We expand differential equations functionally, yield-
ing some ODEs which have constant coefficients and differ only in their right hand
side. The right hand side functions that exist in each step, correct the incon-
sistencies of all previous approximations. The initial condition is fulfilled by the
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Figure 3: Exact solution and FPM (Example 4).

zero-order approximation only. Higher-order approximations are considered with
homogeneous conditions. We have successfully applied the proposed approach to
solve four equations. First, the idea of FPM is applied for linear equations, then
we generate the idea to a nonlinear differential equation. In the nonlinear case, the
unknown u is replaced by two terms of Taylor expansion ũ. For polynomial case,
the exact solution is obtained by only the first term of expansion. The results have
shown that the new described idea produces acceptable results.
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