
Bol. Soc. Paran. Mat. (3s.) v. 36 3 (2018): 53–74.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v36i3.31770

A Posteriori Error Estimation for Incompressible Viscous Fluid With a

New Boundary Condition

Abdeslam El Akkad, Ahmed Elkhalfi

abstract: This paper describes numerical solutions of incompressible Navier-
Stokes equations with a new boundary condition. To solve this problem, we use
the discretization by mixed finite element method. We use a vector extrapolation
method for computing numerical solutions of the steady-state Navier-Stokes equa-
tions. In addition, two types of a posteriori error indicator are introduced and are
shown to give global error estimates that are equivalent to the true error. A numer-
ical experiment on the driven cavity flow is given to demonstrate the effectiveness
of the vector extrapolation method. We compare the result with the solution from
commercial code like ADINA system as well as with values from other simulations.
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1. Introduction

The idea of mixed finite element is to approximate simultaneously the piezomet-
ric head and the velocity. This approximation gives velocity throughout the field
and the normal component of the velocity is continuous across the inter-element
boundaries. Moreover, with the mixed formulation, the velocity is defined with
the help of Raviart Thomas basis functions [1, 2, 3, 45] and, therefore, a sim-
ple integration over the element gives the corresponding streamlines. This method
was widely used for the prediction of the behavior of fluid in the hydrocarbons tank.
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In computational mechanics one usually faces the problem of increasing the
accuracy of a solution without adding unnecessary degrees of freedom. It is, there-
fore, necessary to update the mesh to ensure that it becomes fine enough in the
critical regions while remaining reasonably coarse in the rest of the domain. Local a
posteriopri error estimator is the adequate tool for identifying these critical regions
automatically, using an input information only the given data and the numerical
solution itself. A large amount of work has already been done in the construction of
error estimators for several problems of computational fluid dynamics. In the con-
forming case there are several ways to define error estimators by using the residual
equation. Ainsworth and Oden [5] and Verfurth [6] give a general overview. In the
specific case of the Stokes and Navier-Stokes equations governing the steady flow of
a viscous incompressible fluid, the work of Bank and Welfert [7], Verfurth [8] and
Oden and Ainsworth [9] laid the basic foundation for the mathematical analysis
of practical methods. Other works for the stationary Navier-Stokes problem have
been introduced in [10, 11, 12, 13, 14, 15, 16].

In this paper we explore the potential of vector extrapolation in the context of
computing steady state solutions of incompressible Navier-Stokes equations. Spa-
tial discretization using mixed approximation of the velocity and pressure variables
naturally lead us to consider high-dimensional nonlinear algebraic systems-so ef-
fective iteration methods are crucial for efficient computation. Existing vector
extrapolation methods can be broadly classified into two categories: polynomial
methods and ε-algorithms. The first family includes three approaches: minimal
polynomial extrapolation (MPE) of Cabay and Jackson [17]; reduced rank extrap-
olation (RRE) of Eddy [18] and Mesina [19], and the modified minimal polynomial
extrapolation (MMPE) derived in [20, 21, 22]. The second family includes the
topological ε-algorithm (TEA) and the scalar and vector ε-algorithms (SEA and
VEA).We will restrict our attention to the RRE methodology in this work.
Some different recursive algorithms for implementing these methods have been
presented in [23, 31, 33]. We note that, when applied to linearly generated vector
sequences, the MPE, the RRE and the TEA methods are related to Krylov sub-
space methods.
The plan of the paper is as follows. The model problem is described in section 2,
followed by the discretization by mixed finite element method in section 3. A vec-
tor extrapolation methods is described in section 4 . Section 5 shows the methods
of a posteriori error estimator of the computed solution and numerical experiment
is described in section 6.

2. Governing equations

We consider the steady-state Navier-Stokes equations for a positive constant
viscosity ν,





−ν∇2−→u +−→u .∇−→u +∇p =
−→
f in Ω

∇.−→u = 0 in Ω
α −→u + (ν∇−→u − pI)−→n = −→g in Γ =: ∂Ω and

∫
Ω p dx = 0,

(2.1)
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where −→u is the fluid velocity, p is the pressure field, ∇ is the gradient, ∇. is the
divergence operator, −→n denote the outward pointing normal to the boundary and
α is a nonzero bounded continuous function defined on ∂Ω.
This system is the basis for computational modeling of the flow of an incompressible
Newtonian fluid such as air or water. The presence of the nonlinear convection term
−→u .∇−→u means that boundary value problems associated with the Navier-Stokes
equations can have more than one solution.
We set

V = H1
0 (Ω)×H1

0 (Ω), (2.2)

and

W = {q ∈ L2(Ω) :

∫

Ω

q(x)dx = 0}. (2.3)

Let the bilinear forms a : V × V −→ R, b : V ×W −→ R, d : W ×W −→ R, and
the trilinear form c : V × V × V −→ R

a(−→u ,−→v ) = ν

∫

Ω

∇−→u .∇−→v dx+

∫

Γ

α −→u .−→v , (2.4)

b(−→v , q) = −
∫
Ω
(q∇.−→v )dx, d(p, q) =

∫
Ω
p q dx,

c(−→z ,−→u ,−→v ) =

∫

Ω

(−→z .∇−→u ).−→v . (2.5)

These inner products induce norms on V and W denoted by ‖.‖V and ‖.‖W respec-
tively.

‖−→v ‖V = a(−→u ,−→u )
1

2 ∀−→u ∈ V, (2.6)

‖q‖W = d(q, q)
1

2 ∀q ∈W. (2.7)

Given the continuous functional l : V −→ R

l(−→v ) =

∫

Ω

−→
f .−→v dx+

∫

∂Ω

−→g .−→v dx. (2.8)

Then the standard weak formulation of the Navier-Stokes flow problem (2.1) is the
following:
Find (−→u , p) ∈ V ×W such that

a(−→u ,−→v ) + b(−→v , p) + c(−→u ,−→u ,−→v ) = l(−→v ), (2.9)

b(−→u , q) = 0, (2.10)
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for all (−→v , q) ∈ V ×W .
Let the subspace of divergence-free velocities be given by

VE0
= {−→z ∈ V ;−→z .−→n = 0 and ∇.−→z = 0 in Ω}. (2.11)

We have c(−→z ;−→u ,−→v ) = −c(−→z ;−→v ,−→u ) in VE0
.

We obtain

c(−→z ;−→u ,−→u ) = 0 ∀−→z ∈ VE0
. (2.12)

For simplicity, we suppose that −→g =
−→
0 .

The problem (2.9)-(2.10) is known [35] to possess a unique solution whenever the
data is sufficiently small. In particular, if there exists a constant C such that

l(−→v ) ≤ ω
ν2

C
|−→v |H1(Ω) ∀−→v ∈ V, (2.13)

for some fixed ω ∈ [0, 1).
Then, there is a unique solution −→u ∈ V satisfying

|−→u |H1(Ω) ≤ ω
ν

C
. (2.14)

3. Mixed finite element discretization

Let P be a regular partitioning of the domain Ω into the union of N subdomains
K such that
•N <∝,
•Ω = ∪K∈PK,
• K ∩ J is empty whenever K 6= J ,
• each K is a convex Lipschitzian domain with piecewise smooth boundary ∂K.
The common boundary between subdomains K and J is denoted by: ΓKJ =
∂K ∩ ∂J .

The finite element subspaces Xh and Mh are constructed in the usual manner
so that the inclusion
Xh ×Mh ⊂ V ×W holds.
The finite element approximation to (2.9)-(2.10) is then
Find (−→u h, ph) ∈ Xh ×Mh such that

a(−→u h,
−→v h) + b(−→v h, ph) + c(−→u h,

−→u h,
−→v h)) = l(−→v h), (3.1)

b(−→u h, qh) = 0, (3.2)

for all (−→v h, qh) ∈ Xh ×Mh.
We define the appropriate bases for the finite element spaces, leading to a non
linear system of algebraic equations. Linearization of this system using Newton
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iteration gives the finite dimensional system:
Find δ−→u h ∈ Xh and δph ∈Mh such that

ν

∫

Ω

∇δ−→u h : ∇−→v h +

∫

∂Ω

α δ−→u h · −→v h + c(δ−→u h,
−→u h,

−→v h) (3.3)

+ c(−→u h, δ
−→u h,

−→v h) + b(−→v h, δph)

= Rk(
−→v h), (3.4)

b(δ−→u h, qh) = rk(qh), (3.5)

for all −→v h ∈ Xh and qh ∈Mh,
where Rk(

−→v h) and rk(qh) are the non linear residuals associated with the discrete
formulations (3.1)-(3.2) for the iterate (−→u k, pk) .

To define the corresponding linear algebra problem, we use a set of vector-valued
basis functions {−→ϕ j}, so that

−→u h =

nu∑

j=1

uj
−→ϕ j +

nu+n∂∑

j=nu+1

uj
−→ϕ j , δ

−→u h =

nu∑

j=1

∆uj
−→ϕ j , (3.6)

and we fix the coefficients uj : j = nu + 1, . . . , nu + n∂ , so that the second term
interpolates the boundary data on ∂ΩD.
We introduce a set of pressure basis functions {Ψk} and set

ph =

np∑

k=1

pkΨk, δph =

np∑

k=1

∆pkΨk, (3.7)

where nu and np are the numbers of velocity and pressure basis functions, respec-
tively.
We obtain a system of linear equations

(
A+N +W tB

B 0

)(
∆U
∆P

)
=

(
f
g

)
. (3.8)

This system is referred to as the discrete Newton problem.
The matrix A is the vector Laplacian matrix and B is the divergence matrix

A = [aij ], aij = ν

∫

Ω

∇−→ϕ i : ∇
−→ϕ j +

∫

∂Ω

α−→ϕ i.
−→ϕ j , (3.9)

B = [bkj ], bkj = −

∫

Ω

Ψk∇.
−→ϕ j , (3.10)
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for i and j = 1, . . . , nu and k = 1, . . . , np .
The vector-convection matrix N and the Newton derivative matrix W are given by

N = [nij ], nij =

∫

Ω

(−→u h.∇
−→ϕ j).

−→ϕ i, (3.11)

W = [Wij ], Wij =

∫

Ω

(−→ϕ j .∇
−→u h).

−→ϕ i, (3.12)

for i and j = 1, . . . , nu.
The Newton derivative matrix is symmetric.
The right-hand side vectors in (3.7) are the non linear residuals associated with
the discrete solution −→u h, ph and the function α ,

f = [fi], (3.13)

fi =

∫

Ω

−→
f .−→ϕ i −

∫

Ω

(−→u h.∇
−→u h).

−→ϕi − ν

∫

Ω

∇−→u h : ∇−→ϕ i −

∫

Γ

α −→u h.
−→ϕ i

+

∫

Ω

ph(∇.
−→ϕ i),

g = [gk], gk = −

∫

Ω

Ψk(∇.
−→u h), (3.14)

for i = 1, ..., nu and k = 1, . . . , np .
For Picard iteration, we give the discrete problem

(
A+N tB
B 0

)(
∆U
∆P

)
=

(
f
g

)
. (3.15)

The lowest order mixed approximations like Q1 − P0 and Q1 − Q1 are unstable.
We use a stabilized element pair Q1 − P0, this is the most famous example of an
unstable element pair, using bilinear approximation for velocity and a constant
approximation for the pressure.

4. Vector extrapolation methods

We use a vector extrapolation method for computing numerical solutions of the
steady-state Navier-Stokes equations. Extrapolation methods are of interest when-
ever an iteration process converges slowly. For a survey of these methods see for
example the papers [31, 32] and the book [33]. The most popular vector extrapo-
lation methods are the minimal polynomial extrapolation (MPE) [17], the reduced
rank extrapolation (RRE) [18, 19], and the modified minimal polynomial extrapo-
lation (MMPE) [20, 21, 22]. Convergence analysis of these methods can be found
in [23, 24]. In particular, A. Sidi [25] shows that the MPE and the RRE approaches
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are mathematically equivalent to Arnoldi’s method [26] and to the generalized min-
imal residual method (GMRES) [27], respectively. Vector extrapolation methods
are considered to be most effective when applied to nonlinear systems of equations
[28, 29, 30, 31]. We use the reduced rank extrapolation method [18, 19].

To define the RRE method, we will consider the solution of the linear or non-
linear system of equations:

G(x) = 0, G : RN → R
N . (4.1)

Let l be the solution of the system (4.1), l0 be a given initial approximation, and
generate the sequence of vectors l1, l2,. . ., according to the fixed-point iterative
method

ln+1 = H(ln), n = 0, 1, ... H : RN → R
N , (4.2)

where x−H(x) = 0 represents a preconditioned form of (4.1).
Let (ln) be a given sequence of N-dimensional column vectors formed by (4.2), and
limn→∞ ln = l , we set

vn = △ln = ln+1 − ln, n = 0, 1, ... (4.3)

wn = △2ln = △ln+1 −△ln, n = 0, 1, ... (4.4)

The RRE method, when applied to the sequence ln, can be shown to generate an
approximation ξRRE

n,k of the limit or the antilimit of (ln).
This approximation can be expressed in the form

ξRRE
n,k =

k∑

j=0

βk
j ln+j, (4.5)

where

k∑

j=0

β
(k)
j = 1 and

(k)∑

j=0

θijβ
(k)
j = 0, i = 0, ..., k − 1, (4.6)

and the scalars θij defined by the l2 inner product:

θij = (△2ln+i,△ln+j). (4.7)
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Using (4.5) and (4.6), ξRRE
n,k is given by the ratio of two determinants

ξRRE
n,k =

∣∣∣∣∣∣∣∣∣∣∣∣

ln ln+1 . . . ln+k

θ0,0 θ0,1 . . . θ0,k
. . . . . .
. . . . . .
. . . . . .

θk−1,0 θk−1,1 . . . θk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
θ0,0 θ0,1 . . . θ0,k
. . . . . .
. . . . . .
. . . . . .

θk−1,0 θk−1,1 . . . θk−1,k

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.8)

Let ∆iLn,k−1 (i = 1, 2) the matrices whose columns are ∆iln, ., ., .∆
iln+k−1.

Using Schur’s formula, we have

ξRRE
n,k = ln −△Ln,k−1 △2L+

n,k−1△ln , (4.9)

where △2L+
n,k−1 is defined by

△2L+
n,k−1 = (△2LT

n,k−1△
2Ln,k−1)

−1 △2LT
n,k−1. (4.10)

ξRRE
n,k exists and is unique if and only if det(△2LT

n,k−1 △2Ln,k−1) 6= 0. We uses
the algorithms proposed in [23].

5. A posteriori error Analysis

In this section, we propose two types of a posteriori error indicator : the local
Poisson problem estimator and the residual error estimator, which are shown to
give global error estimates.

Theorem 5.1. We have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥

1

2
(‖−→w ‖V + ‖s‖W ), (5.1)

for all (−→w , s) ∈ V ×W .

Proof . Let (−→w , q) ∈ V ×W , we have

sup
(−→v ,q)∈V×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥
a(−→w ,−→w ) + d(s, 0)

‖−→w‖V + ‖0‖W
= ‖−→w ‖V , (5.2)

and we have

sup
(−→v ,q)∈V ×W

a(−→w ,−→v ) + d(s, q)

‖−→v ‖V + ‖q‖W
≥
a(−→w ,

−→
0 ) + d(s, s)

‖
−→
0 ‖V + ‖s‖W

= ‖s‖W . (5.3)
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We gather (5.2) and (5.3) to get (5.1).

Let (−→e , E) ∈ V ×W be the error in the finite element approximation, −→e =
−→u −−→u h and E = p− ph and define (

−→
φ , ψ) ∈ V ×W to be the Ritz projection of

the modified residuals

a(
−→
φ ,−→v ) + d(ψ, q) = a(e,−→v ) + b(−→v , E) + b(−→e , q) +D(−→u ,−→u h,

−→v ), (5.4)

for all (−→v , q) ∈ V ×W , where D(−→u ,−→u h,
−→v ) = c(−→u ,−→u ,−→v )− c(−→u h,

−→u h,
−→v ).

Theorem 5.2. Let (2.14) hold. Then there exist positive constants K1 and K2

such that

K1(‖
−→
φ ‖2V + ‖ψ‖2W ) ≤ ‖−→u −−→u h‖

2
V + ‖p− ph‖

2
W ≤ K2(‖

−→
φ ‖2V + ‖ψ‖2W ). (5.5)

Proof. See T.J. Oden, W. Wu, and M. Ainsworth [5].�

The local velocity space on each subdomain K ∈ P is

VK = {−→v ∈ H1(K)×H1(K) : −→v =
−→
0 on ∂Ω ∩ ∂K}, (5.6)

and the pressure space is

WK = L2(K). (5.7)

Let the bilinear forms aK : VK × VK −→ R, bK : VK ×WK −→ R, dK : WK ×
WK −→ R, and the trilinear form cK : VK × VK × VK −→ R

aK(−→u ,−→v ) = ν

∫

K

∇−→u .∇−→v +

∫

Γ∩ K

α −→u .−→v , (5.8)

bK(−→v , q) = −
∫
K
q(∇.−→v ) dx, dK(p, q) =

∫
K
p q dx,

cK(−→z ;−→u ,−→v ) =

∫

K

(−→z .∇−→u ).−→v dx. (5.9)

Given the continuous functional lK : VK −→ R

lK(−→v ) =

∫

K

−→
f .−→v dx. (5.10)

Hence for −→v ,−→w ∈ V and q ∈ W we have

b(−→v , q) =
∑

K∈P

bK(−→v K , qK). (5.11)

a(−→v ,−→w ) =
∑

K∈P

aK(−→v K ,
−→wK). (5.12)
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c(−→z ;−→u ,−→v ) =
∑

K∈P

cK(−→z K ,
−→u K ,

−→v K). (5.13)

l(−→v ) =
∑

K∈P

lK(−→v K). (5.14)

The velocity space V(P) is defined by

V (P ) =
∏

K∈P

VK . (5.15)

and the broken pressure space W (P ) is defined by

W (P ) = {q ∈
∏

K∈P

WK :

∫

Ω

q(x)dx = 0}. (5.16)

Examining the previous notations reveals that

W (P ) =W. (5.17)

We consider the space of continuous linear functional τ on V (P ) × W (P ) that
vanish on the space V ×W .
Therefore, let H(div,Ω) denote the space

H(div,Ω) = {A ∈ L2(Ω)2×2 : div(A) ∈ L2(Ω)2}, (5.18)

equipped with norm

‖A‖H(div,Ω) = {‖A‖2L2(Ω) + ‖divA‖2L2(Ω)}
1

2 . (5.19)

Theorem 5.3. A continuous linear functional τ on the space V (P ))×W (P ) van-
ishes on the space V ×W if and only if there exists A ∈ H(div,Ω) such that

τ [(−→v , q)] =
∑

K∈P

∮

∂K

−→nK .A.
−→v Kds, (5.20)

where −→n K denotes the unit outward normal vector on the boundary of K.

Proof. See M. Ainsworth and J. Oden [4].�

It will be useful to introduce the stresslike tensor σ(−→v , q) formally defined to
be

σij(
−→v , q) = ν

∂vi
∂xj

− qδij , (5.21)

Where δij is the Kronecker symbol.
In order to define the value of the normal component of the stress on the interele-
ment boundaries it is convenient to introduce notations for the jump on ΓKJ :

[[−→v .σ(−→v h, qh)]] =
−→n K .σ(

−→v h,K , qh,K) +−→n J .σ(
−→v h,J , qh,J). (5.22)
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An averaged normal stress on ΓKJ is defined by

〈−→nK .σ(
−→v h, qh)〉 =

(
α
(1)
KJ 0

0 α
(2)
KJ

)
−→n K .σ(

−→v h,K , qh,K) +

(
α
(1)
JK 0

0 α(2)
JK

)
−→n K .σ(

−→v h,J , qh,J), (5.23)

where α
(i)
KJ : ΓKJ −→ R are smooth polynomial functions. Naturally, the stress

should be continuous then it is required that the averaged stress coincide with this
value. On ΓKJ , we have

(
α
(1)
KJ 0

0 α
(2)
KJ

)
+

(
α
(1)
JK 0

0 α(2)
JK

)
=

(
1 0
0 1

)
. (5.24)

The notation [[ . ]] is used to define jumps in the elements of V(P) between subdo-
mains. We define

[[−→v ]] =

{
VK − VJ , K > J ,
VJ − VK , K < J ,

(5.25)

and

[[−→n ]] =

{ −→nK −−→n J , K > J ,
−→n J −−→nK , K < J .

(5.26)

For −→v ∈ V (P ), we have

∑

K∈P

∮

∂K

−→n K .σ(
−→u h, ph).

−→v ds =
∑

ΓKJ

∫

ΓKJ

〈−→n K .σ(
−→u h, ph)〉.[[

−→v ]]ds. (5.27)

Lemma 5.1. There exists µ̂ ∈ H(div,Ω) such that

µ̂[(−→w , q)] =
∑

ΓKJ

∫

ΓKJ

〈−→n K .σ(
−→u h, qh)〉.[[

−→w ]]ds, (5.28)

for all (−→w , q) ∈ V (P )×W (P ).

Proof. The right-hand side of equation (5.28) vanishes en V ×W . Applying
theorem 5.3, we obtain (5.28).

We define the linear functional R : V (P )×W (P ) −→ R by

R[(−→w , q)] =
∑

K∈P

{lk(
−→w )− aK(−→u h,

−→w )− bK(−→w , ph)− bK(−→u h, q)

−cK(−→u h,
−→u h,

−→w )}

+

∮

∂K

−→nK .σ(
−→u h, ph).

−→wKds− µ̂[(−→w , q)], (5.29)
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for all (−→w , q) ∈ V (P )×W (P ).
For (−→w , q) ∈ V ×W , we obtain

R[(−→w , q)] = a(
−→
φ ,−→w ) + d(ψ, q). (5.30)

Let the lagrangian functional L : V (P )×W (P )×H(div,Ω) −→ R such that

L[(−→w , q), µ] =
1

2
{a(−→w ,−→w ) + d(q, q)} −R[(−→w , q)]− µ[(−→w , q)], (5.31)

So that

supµ∈H(div,Ω)L[(
−→w , q), q] =

{
1
2{a(

−→w ,−→w ) + d(q, q)} −R[(−→w , q)] if (−→w , q) ∈ V ×W,
= + ∝ otherwise,

(5.32)
and, for (−→w , q) ∈ V ×W ,

1

2
{a(−→w ,−→w ) + d(q, q)} −R[(−→w , q)] =

1

2
{a(−→w −

−→
φ ,−→w −

−→
φ ) + d(q − ψ, q − ψ)−

a(
−→
φ ,

−→
φ )− d(ψ, ψ)}

≥ −
1

2
{a(

−→
φ ,

−→
φ ) + d(ψ, ψ)}

= −
1

2
(‖
−→
φ ‖2V + ‖ψ‖2W ). (5.33)

Therefore,

−
1

2
(‖
−→
φ ‖2V + ‖ψ‖2W ) = inf(−→w,q)∈V (P )×W (P ) supµ∈H(div,Ω)L[(

−→w, q), µ]

= supµ∈H(div,Ω) inf(−→w,q)∈V (P )×W (P )L[(
−→w, q), µ]

≥ inf(−→w,q)∈V (P )×W (P )L[(
−→w , q), µ] (5.34)

=
∑

K∈P

inf−→wK∈VK
{
1

2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(−→u h,

−→wK)

+bK(−→wK , ph) + cK(−→u h,
−→u h,

−→wK)

−

∮

∂K

−→nK .σ(
−→u h, ph).

−→wKds

−
1

2
dK(∇.−→u h,∇.

−→u h)}.

Using (5.34), we obtain:

Theorem 5.4. Let JK : VK → R be a quadratic functional

JK(−→wK) =
1

2
a(−→wK ,

−→wK)− lk(
−→wK) + aK(−→u h,

−→wK) + bK(−→wK , ph)

+cK(−→u h,
−→u h,

−→wK)−

∮

∂K

−→nK .σ(
−→u h, ph).

−→wKds. (5.35)
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Then

‖
−→
φ ‖2V + ‖ψ‖2W ≤

∑

K∈P

{−2 inf−→wK∈VK
JK(−→wK) + dK(∇.−→u h,K ,∇.

−→u h,K)}. (5.36)

�

We have the problems on each subdomain

inf−→wK∈VK
JK(−→wK). (5.37)

Suppose that the minimum exists, then the minimising element is characterized by

finding
−→
φK ∈ VK such that

a(
−→
φ K ,

−→v ) = lK(−→v )− aK(−→u h,
−→v )− bK(−→u , ph)− cK(−→u h,

−→u h,
−→v )

+

∮

∂K

〈−→nK .σ(
−→u h, ph).

−→v 〉ds, (5.38)

for all −→v ∈ VK .
The necessary and sufficient conditions for the existence of a minimum are that
the data satisfy the following equilibration condition:

0 = lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph)− cK(−→u h,

−→u h,
−→
θ ) (5.39)

+

∮

∂K

〈−→nK .σ(
−→u h, ph)〉.

−→
θ ds,

(5.40)

for all
−→
θ ∈ Ker[a, VK ],

where

Ker[a, VK ] = {
−→
θ ∈ VK : aK(−→w ,

−→
θ ) = 0 for all −→w ∈ VK}. (5.41)

When the subdomain K lies on the boundary ∂Ω the local problem (5.38) will be
subject to a homogeneous Dirichlet condition on a portion of their boundaries and
thus will be automatically well posed. However, elements away from the boundary
are subject to pure Neumann conditions and the null space of the operator a ( . ,
. ) will contain the rigid motions

Ker[a, VK ] = Span{
−→
θ 1,

−→
θ 2}, (5.42)

where
−→
θ 1 =

(
1
0

)
,
−→
θ 2 =

(
0
1

)
. (5.43)
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We construct data which satisfy the condition (5.39). We define

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
=

(
λ
(1)
JK 0

0 λ
(2)
JK

)
−

1

2

(
1 0
0 1

)
. (5.44)

Using (5.21), we obtain

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
+

(
λ
(1)
JK 0

0 λ
(2)
JK

)
=

(
0 0
0 0

)
. (5.45)

The averaged interelement stress may be rewritten

〈−→n K .σ(
−→w h, qh)〉 = 〈−→nK .σ(

−→v h, qh)〉 1

2

+ [[−→n .σ(−→v h, qh)]]

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
, (5.46)

where 〈−→n K .σ(
−→v h, qh)〉 1

2

denotes the interelement averaged stress obtained using

the symmetrical weighting corresponding to α = 1
2 . Then

lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph)− cK(−→u h,

−→u h,
−→
θ ) +

∮

∂K

〈−→n K .σ(
−→u h, ph)〉.

−→
θ ds

= −
∑

J∈P

∫

ΓKJ

[[−→n .σ(−→v h, ph)]]

(
λ
(1)
KJ 0

0 λ
(2)
KJ

)
−→
θ .ds, (5.47)

for all
−→
θ ∈ Ker[a, VK ].

Let {XA} be chosen so that: Span {XA} × Span{XA} ⊂ X and

∑

A

XA(x) = 1. (5.48)

For example, one might choose the piecewise bilinear pyramid functions associated
with interior nodes in the partition. The relation (5.47) must hold at all points x
contained in elements which do not interest the boundary of the domain.

The functions λ
(k)
KJ : ΓKJ −→ R are chosen to be of the form

λ
(k)
KJ(s) =

∑

A

λ
(k)
KJ,AXA(s), (5.49)

where λkKJ,A are constants to be determined. Owing the constraint (5.44), it is
required that

λkKJ,A + λ
(k)
JK,A = 0, (5.50)

for each A.
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Lemma 5.2. Suppose that for each XA the constants {λ
(k)
KJ,A} satisfy

−
∑

J∈P

λ
(k)
KJ,Aρ

(k)
KJ,A = b

(k)
K,A, (5.51)

for k=1, 2, where

b
(k)
K,A = lK(XA

−→
θ k)− aK(−→u h, XA

−→
θ k)− bK(XA

−→
θ k, ph)− cK(−→u h,

−→u h, XA

−→
θ k)

+

∮

∂K

XA(s)〈
−→nK .σ(

−→u h, ph)〉.
−→
θ kds, (5.52)

and

ρ
(k)
KJ,A =

∫

ΓKJ

[[−→n .σ(−→u h, ph)]].
−→
θ kds. (5.53)

Then

0 = lK(
−→
θ )− aK(−→u h,

−→
θ )− bK(

−→
θ , ph)− cK(−→u h,

−→u h,
−→
θ )

+

∮

∂K

〈−→nK .σ(
−→u h, ph)〉.

−→
θ ds,

(5.54)

for all
−→
θ ∈ Ker[a, VK ].

Proof. The result follows immediately by using (5.50), (5.48) and 5.44).

Summarizing and incorporating the results of section 5 we have

Theorem 5.5. Suppose that (2.14) hold. Then there exists a constant C > 0 such
that

‖−→u −−→u h‖
2
V + ‖p− ph‖

2
W ≤ C

∑

K∈P

η2K , (5.55)

where

ηK = {aK(
−→
φK ,

−→
φK) + dK(∇.−→u h,∇.

−→u h)}
1

2 . (5.56)

�

We define the global error estimator η by

η = (
∑

K∈P

η2K)
1

2 . (5.57)

We define the stress jump across edge or face E adjoining elements T and K

[[ν∇−→u h − ph
−→
I ]] = ((ν∇−→u h − ph

−→
I )|T − (ν∇−→u h − ph

−→
I )|K)−→n E,K ,
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where −→n E,K is the outward pointing normal.
We define the equidistributed stress jump operator

−→
R∗

E =

{
1
2 [|ν∇~uh − phI|] if E ∈ εh,Ω,

−→g − [α−→u h + (ν∇−→u h − phI)
−→n ] if E ∈ εh,Γ,

(5.58)

and the interior residuals

−→
RK = {

−→
f + ν∇2−→u h − −→u h.∇

−→u h −∇ph}|K , (5.59)

and

RK = {∇.−→u h}|K . (5.60)

The element contribution ηr,K of the residual error estimator is given by

η2r,K = h2K‖
−→
RK‖20,K + ‖RK‖20,K +

∑

E∈∂K

hE‖
−→
R∗

E‖
2
0,E, (5.61)

and the global residual error estimator ηr is given by

ηr = (
∑

K∈P η2r,K)
1

2 .

Theorem 5.6. The estimator ηr,K is equivalent to the ηK estimator : there exist
positive constants c1 and C2 such that

c1 ηK ≤ ηr,K ≤ C2 ηK . (5.62)

Proof. Same steps of the prof of Theorem 3.9 in [44].

Theorem 5.7. There exist positive constant C′ such that

‖−→u −−→u h‖
2
V + ‖p− ph‖

2
W ≤ C′

∑

K∈P

η2r,K . (5.63)

6. Numerical examples

In this section some numerical results of calculations with finite element method
and ADINA system will be presented. Using our solver, we run the test problem
driven cavity flow [37, 38, 39, 40, 41, 42, 43, ].
This is a classic test problem used in fluid dynamics, known as driven-cavity flow.
It is a model of the flow in a square cavity with the lid moving from left to right.
Let the computational model:
{y = 1,−1 ≤ x ≤ 1/ux = 1} a leaky cavity.
The streamlines are computed from the velocity solution by solving the Poisson
equation numerically subject to a zero Dirichlet boundary condition.
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Figure 1: Uniform streamline plot with MFE (left), and uniform streamline plot
computed with ADINA system (right) using Q1 − P0 approximation, a 32 × 32
square grid and Reynolds number Re=100.

The solution shown in figure 1 corresponds to a Reynolds number of 100. The
particles in the body of the fluid move in a circular trajectory.

Figure 2: Uniform streamline plot with MFE (left), and uniform streamline plot
computed with ADINA system (right) using Q1 − P0 approximation, a 32 × 32
square grid and Reynolds number Re=2000.
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Figure 3: Velocity component u at vertical center line (left plot), and the velocity
component v at horizontal center line (right plot) with a 129×129 grid and Re=100.

Figure 4: Velocity component u at vertical center line (left plot), and the veloc-
ity component v at horizontal center line (right plot) with a 129 × 129 grid and
Re=1000.

Figure 5: Nonlinear convergence for Re = 600 with Q2 − P−1 (left), and and sta-
bilized Q1 − P0 (right).
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Figure 6: local Poisson problem error estimator ηp (left) and residual error estima-
tor ηr (right) for leaky driven cavity, with 32× 32 square grid and Re=600.

grid ‖−→u −−→u h‖V ηr η
8× 8 8.704739× 10−2 1.720480× 100 9.722432× 10−1

16× 16 3.115002× 10−2 1.084737× 100 5.052819× 10−1

32× 32 9.545524× 10−3 5.919904× 10−1 2.782035× 10−1

64× 64 2.676623× 10−3 3.160964× 10−1 1.220784× 10−1

Table 1. ηr is the residual error estimator and η is the local Poisson problem
error estimator for leaky driven cavity, with Reynolds number Re =600.

The solution shown in Figure 2 corresponds to a Reynolds number of 2000. The
particles in the body of the fluid move in a circular trajectory. Steady flow in a
two dimensional cavity is not stable for Reynolds number much greater than 104.
Indeed, we have made calculations for Reynolds number 104. In addition, our code
does not converge because the turbulence phenomena is not taken into account in
our model. At a critical Reynolds number (approximately 13,000) the flow pattern
develops into a time-periodic state with ”waves” running around the cavity walls.
The profiles of the u-velocity component along the vertical center line and the v-
velocity component along the horizontal center line are shown in Figures 3 and 4
for Re=100 and Re=1000, respectively.
In these figures, we have also included numerical predictions from [42] and ADINA
system. There is an excellent agreement between the computed results, those pub-
lished in [42] and the results computed with ADINA system.

Figure 5 show the evolution of the nonlinear residual norm, using a logarithmic
scale, for the simple Picard method, the Picard-Newton method and reduced rank
extrapolation method (RRE), for two types of finite element discretization: a high
order Q2 − P−1 solution and a low order Q1 − P0 solution. We observes that the
RRE method can be seen to accelerate the the fixed-point (Picard) iteration.
The computational results of Figure 6 and Table 1 suggest that all two estimators
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seem to be able to correctly indicate the structure of the error.

7. Conclusion

We were interested in this work in the numeric solution for two dimensional par-
tial differential equations modelling (or arising from) model steady incompressible
fluid flow with a new boundary condition. It includes algorithms for discretiza-
tion by finite element methods and a posteriori error estimation of the computed
solutions. We use a reduced rank extrapolation method for computing numerical
solutions of the steady-state Navier-Stokes equations. RRE is an effective tech-
niques that have been used in accelerating the convergence of vector sequences.

Two types of a posteriori error indicator are introduced and are shown to give
global error estimates that are equivalent to the true discretization error. The
computational results suggest that all two estimators seem to be able to correctly
indicate the structure of the error.
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