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abstract: In this paper, by employing Ricceri variational principle, we prove the
existence of infinitely many weak solutions for fourth-order problems depending on
two real parameters. We also provide some particular cases and a concrete example
in order to illustrate the main abstract results of this paper.
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1. Introduction

In this paper, we consider the following fourth-order boundary value problem
with two control parameters







u′′′′h(x, u′)− u′′ + uh(x, u′)
= [λf(x, u) + µg(x, u) + p(u)]h(x, u′) in (0, 1),

u(0) = u(1) = 0 = u′′(0) = u′′(1),
(1.1)

where λ is a positive parameter, µ is a non-negative parameter, f, g : [0, 1]×R → R

are L1-Carathéodory functions, p : R → R is a Lipschitz continuous function with
the Lipschitz constant L > 0, i.e.,

|p(t1)− p(t2)| ≤ L|t1 − t2|

for every t1, t2 ∈ R, with p(0) = 0, and h : [0, 1]× R → [0,+∞) is a bounded and
continuous function with m := inf(x,t)∈[0,1]×R h(x, t) > 0.

There is an increasing interest in studying fourth-order boundary value prob-
lems, because the static form change of a beam can be described by a fourth-order
equation, and also a model to study traveling waves in suspension bridges can be
described by nonlinear fourth-order equations (for instance, see [13]). More general
nonlinear fourth-order elliptic boundary value problems have been studied in recent
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years. Several results are known concerning the existence of multiple solutions for
fourth-order boundary value problems, and we refer the reader to [4,5,8,14,18] and
the references cited therein.

In particular, authors in [5] proved the existence of at least three weak solutions
for following problem:

{

u′′′′h(x, u′)− u′′ = [λf(x, u) + g(u)]h(x, u′), in (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1),

where λ is a positive parameter, f : [0, 1]×R → R is an L1-Carathéodory function,
g : R → R is a Lipschitz continuous function with the Lipschitz constant L > 0,
with g(0) = 0, and h : [0, 1]× R → [0,+∞) is a bounded and continuous function
with inf(x,t)∈[0,1]×R h(x, t) > 0.

The main features of this paper are the following:
(I) the presence of a differential operator and the treatment in a suitable Sobolev
function space;
(II) the use of the Ricceri variational principle, which is a powerful analytic tool
for multiplicity results in nonlinear problems with a variational structure.

Recently in [6], presenting a version of the infinitely many critical points theo-
rem of Ricceri (see [17, Theorem 2.5]), the existence of an unbounded sequence of
weak solutions for a Strum-Liouville problem, having discontinuous nonlinearities,
has been established. In a such approach, an appropriate oscillating behavior of
the nonlinear term either at infinity or at zero is required. This type of methodol-
ogy has been used in several works in order to obtain existence results for different
kinds of problems (see, for instance, [1,2,3,4,7,8,9,10,11,16] and references therein).
We refer to [12] for several applications of the Ricceri variational principles.
In [1], the existence of infinitely many classical solutions for the following Dirichlet
quasilinear system has been obtained

{

−(pi − 1)|u′
i(x)|

pi−2u′′
i (x) = λFui

(x, u1, . . . , un)hi(x, u
′
i), x ∈ (a, b),

ui(0) = ui(1) = 0 for 1 ≤ i ≤ n,

where pi > 1 for 1 ≤ i ≤ n, λ is a positive parameter, a, b ∈ R with a < b,
hi : [a, b] × R → [0,+∞) is a bounded and continuous function with mi :=
inf(x,t)∈[a,b]×R hi(x, t) > 0 for 1 ≤ i ≤ n, F : [a, b]×R

n → R is a function such that
the mapping (t1, t2, . . . , tn) → F (x, t1, . . . , tn) is in C1 in R

n for all x ∈ [a, b], Fui

is continuous in [a, b]× R
n for 1 ≤ i ≤ n, where Fui

denotes the partial derivative
of F with respect to ui, and

sup
|(t1,...,tn)|≤M

|Fui
(x, t1, . . . , tn)| ∈ L1([a, b])

for all M > 0 and all 1 ≤ i ≤ n.
Now, starting from the results obtained in [1] and with the same method, we
are interested in looking for a class of perturbations, namely µg + p, for which
(1.1) still preserves multiple solutions. In particular, our goal in this paper is to
obtain some sufficient conditions to guarantee that problem (1.1) has infinitely
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many weak solutions. To this end, we require that the primitive F of f satisfies a
suitable oscillatory behavior either at infinity (for obtaining unbounded solutions)
or at zero (for finding arbitrarily small solutions), while G, the primitive of g,
has an appropriate growth (see Theorems 3.1 and 3.7). Our approach is fully
variational and the main tool is a general critical point theorem (see Lemma 2.1
below) contained in [6]; see also [17].

Here, as an example, we state a special case of our results.

Theorem 1.1. Let f : R → R be a non-negative continuous function and p : R → R

a Lipschitz continuous function with the Lipschitz constant 1 ≤ L ≤ π4 + 1 and

p(0) = 0. Put F (ξ) :=
∫ ξ

0 f(t)dt for all ξ ∈ R and assume

lim inf
ξ→+∞

F (ξ)

ξ2
= 0, lim sup

ξ→+∞

F (ξ)

ξ2
= +∞.

Then, the problem
{

u′′′′ − u′′ + u = f(u) + p(u) in (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1)

has a sequence of pairwise distinct weak solutions.

2. Preliminaries

The goal of this work is to establish some new criteria for problem (1.1) to have
infinitely many weak solutions in X . Our analysis is mainly based on a recent
critical point theorem of Bonanno and Molica Bisci [6] (see Lemma (2.1) below)
which is a more precise version of Ricceri’s variational principle [17, Theorem 2.5].

Lemma 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semi-
continuous, strongly continuous and coercive, and Ψ is sequentially weakly upper
semicontinuous. For every r > infX Φ, let

ϕ(r) := inf
u∈Φ−1(−∞,r)

(

supv∈Φ−1(−∞,r)Ψ(v)
)

−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then the following properties hold:

(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the func-
tional

Iλ := Φ− λΨ

to Φ−1(−∞, r) admits a global minimum, which is a critical point (local min-
imum) of Iλ in X.

(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either
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(b1) Iλ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either

(c1) there is a global minimum of Φ which is a local minimum of Iλ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local min-
ima) of Iλ that converges weakly to a global minimum of Φ.

Let us introduce some notation which will be used later. Define

H1
0 ([0, 1]) :=

{

u ∈ L2([0, 1]) : u′ ∈ L2([0, 1]), u(0) = u(1) = 0

}

,

H2([0, 1]) :=

{

u ∈ L2([0, 1]) : u′, u′′ ∈ L2([0, 1])

}

.

Let X := H2([0, 1])∩H1
0 ([0, 1]) be the Sobolev space endowed with the usual norm

defined as follows:

‖u‖ :=

(
∫ 1

0

|u′′(x)|2 dx

)1/2

.

We recall the following Poincaré type inequalities (see, for instance, [15, Lemma
2.3]):

‖u′‖2L2([0,1]) ≤
1

π2
‖u‖2, (2.1)

‖u‖2L2([0,1]) ≤
1

π4
‖u‖2 (2.2)

for all u ∈ X . For the norm in C1([0, 1]),

‖u‖∞ := max
{

max
t∈[0,1]

|u(t)|, max
t∈[0,1]

|u′(t)|
}

,

we have the following relation.

Proposition 2.1. Let u ∈ X . Then

‖u‖∞ ≤
1

2π
‖u‖. (2.3)

Proof: Taking (2.1) into account, the conclusion follows from the well-known in-
equality ‖u‖∞ ≤ 1

2‖u
′‖L2([0,1]). ✷

Let f, g : [0, 1] × R → R be two L1-Carathéodory functions. We recall that
f : [0, 1]× R → R is an L1-Carathéodory function if
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(a) the mapping x 7−→ f(x, ξ) is measurable for every ξ ∈ R;

(b) the mapping ξ 7−→ f(x, ξ) is continuous for almost every x ∈ [0, 1];

(c) for every ρ > 0 there exists a function lρ ∈ L1([0, 1]) such that

sup
|ξ|≤ρ

|f(x, ξ)| ≤ lρ(x)

for almost every x ∈ [0, 1].

Corresponding to f, g and p we introduce the functions F,G : [0, 1] × R → R,
P : R → R and H : [0, 1]× R → [0,+∞), respectively, as follows

F (x, t) :=

∫ t

0

f(x, ξ) dξ, G(x, t) :=

∫ t

0

g(x, ξ) dξ,

P (t) := −

∫ t

0

p(ξ)dξ,

H(x, t) :=

∫ t

0

(
∫ τ

0

1

h(x, δ)
dδ

)

dτ

for all x ∈ [0, 1] and t ∈ R.
We say that a function u ∈ X is a weak solution of problem (1.1) if

∫ 1

0

u′′(x)v′′(x) dx +

∫ 1

0

(

∫ u′(x)

0

1

h(x, τ )
dτ

)

v′(x) dx +

∫ 1

0

u(x)v(x) dx

−λ

∫ 1

0

f(x, u(x))v(x) dx − µ

∫ 1

0

g(x, u(x))v(x) dx −

∫ 1

0

p(u(x))v(x) dx = 0

holds for all v ∈ X .
In the following, let M := sup(x,t)∈[0,1]×R h(x, t) and suppose that the Lipschitz

constant L > 0 of the function p satisfies the following condition:

(A0) 1 ≤ L ≤ π4 + 1.

Now, put

k1 :=
π2 +m(π4 + L+ 1)

2mπ4
,

k2 :=
π4 − L+ 1

π4
,

A := lim inf
ξ→+∞

∫ 1

0

sup
|t|≤ξ

F (x, t) dx

ξ2

and

B := lim sup
ξ→+∞

∫ 5/8

3/8

F (x, ξ) dx

ξ2
.
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3. Main results

In this section we establish the main abstract result of this paper.

Theorem 3.1. Let f : [0, 1] × R → R be an L1-Carathéodory function. Assume
that (A0) holds and moreover

(A1) F (x, t) ≥ 0 for all (x, t) ∈ ([0, 3
8 ] ∪ [ 58 , 1])× R;

(A2) A < 27k2π
2

2048k1
B.

Then, setting

λ1 :=
4096k1
27B

, λ2 :=
2k2π

2

A
,

for each λ ∈ (λ1, λ2) and for every arbitrary L1-Carathéodory function g : [0, 1]×

R → R, whose potential G(x, t) :=
∫ t

0 g(x, ξ) dξ for all (x, t) ∈ [0, 1] × R, is a
non-negative function satisfying the condition

g∞ := lim
ξ→+∞

∫ 1

0

sup
|t|≤ξ

G(x, t) dx

ξ2
< +∞, (3.1)

if we put

µg,λ :=
2k2π

2

g∞

(

1− λ
A

2k2π2

)

,

where µg,λ = +∞ when g∞ = 0, problem (1.1) has an unbounded sequence of weak
solutions for every µ ∈ [0, µg,λ) in X.

Proof: Our aim is to apply Lemma 2.1(b) to problem (1.1). To this end, fix
λ ∈ (λ1, λ2) and g satisfying our assumptions. Since λ < λ2, we have

µg,λ :=
2k2π

2

g∞

(

1− λ
A

2k2π2

)

> 0.

Now fix µ ∈ (0, µg,λ) and set

J(x, ξ) := F (x, ξ) +
µ

λ
G(x, ξ)

for all (x, ξ) ∈ [0, 1] × R. For each u ∈ X , let the functionals Φ,Ψ : X → R be
defined by

Φ(u) :=
1

2
‖u‖2 +

∫ 1

0

H(x, u′(x)) dx +
1

2

∫ 1

0

|u(x)|2dx+

∫ 1

0

P (u(x)) dx,

Ψ(u) :=

∫ 1

0

J(x, u(x)) dx,
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and put

Iλ(u) := Φ(u)− λΨ(u), u ∈ X.

Note that the weak solutions of (1.1) are exactly the critical points of Iλ. The func-
tionals Φ,Ψ satisfy the regularity assumptions of Lemma 2.1. Indeed, by standard
arguments, we have that Φ is Gâteaux differentiable and sequentially weakly lower
semicontinuous and its Gâteaux derivative is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =

∫ 1

0

u′′(x)v′′(x) dx +

∫ 1

0

(

∫ u′(x)

0

1

h(x, τ )
dτ

)

v′(x) dx

+

∫ 1

0

u(x)v(x) dx −

∫ 1

0

p(u(x))v(x) dx

for any v ∈ X . Furthermore, the differential Φ′ : X → X∗ is a Lipschitzian
operator. Indeed, taking (2.1) and (2.2) into account, for any u, v ∈ X, there holds

‖Φ′(u)− Φ′(v)‖X∗ = sup
‖w‖≤1

|(Φ′(u)− Φ′(v), w)|

≤ sup
‖w‖≤1

∫ 1

0

|u′′(x) − v′′(x)||w′′(x)| dx

+ sup
‖w‖≤1

∫ 1

0

∣

∣

∣

∣

∣

∫ v′(x)

u′(x)

1

h(x, τ )
dτ

∣

∣

∣

∣

∣

|w′(x)| dx

+ sup
‖w‖≤1

∫ 1

0

|u(x)− v(x)||w(x)| dx

+ sup
‖w‖≤1

∫ 1

0

|p(u(x)) − p(v(x))||w(x)| dx

≤ ‖u− v‖ +
1

m
sup

‖w‖≤1

‖u′ − v′‖L2(0,1)‖w
′‖L2(0,1)

+(1 + L) sup
‖w‖≤1

‖u− v‖L2(0,1)‖w‖L2(0,1) ≤

(

1 + L+
1

mπ2
+

1

π4

)

‖u− v‖.

Recalling that p is Lipschitz continuous and h is bounded away from zero, the claim
is true. In particular, we derive that Φ is continuously differentiable. Also, for any
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u, v ∈ X , we have

(Φ′(u)− Φ′(v), u − v) =

‖u− v‖2 +

∫ 1

0

(

∫ v′(x)

u′(x)

1

h(x, τ )
dτ

)

(u′(x)− v′(x)) dx

+

∫ 1

0

|u(x)− v(x)|2 dx−

∫ 1

0

(p(u(x)) − p(v(x)))(u(x) − v(x)) dx

≥ ‖u− v‖2 +
1

M
‖u′ − v′‖2L2(0,1) + (1− L)‖u− v‖2L2(0,1)

≥ ‖u− v‖2 + (1− L)
1

π4
‖u− v‖2 = k2‖u− v‖2.

By the assumption (A0), it turns out that Φ
′ is a strongly monotone operator. So,

by applying Minty-Browder theorem (Theorem 26.A of [19]), Φ′ : X → X∗ admits
a Lipschitz continuous inverse. On the other hand, the fact that X is compactly
embedded into C0([0, 1]) implies that the functional Ψ is well defined, continuously
Gâteaux differentiable and with compact derivative, whose Gâteaux derivative is
given by

Ψ′(u)(v) =

∫ 1

0

f(x, u(x))v(x) dx +
µ

λ

∫ 1

0

g(x, u(x))v(x) dx

for any v ∈ X . Hence Ψ is sequentially weakly (upper) continuous (see [19, Corol-
lary 41.9]). Since p is Lipschitz continuous and satisfies p(0) = 0, while h is bounded
away from zero, we have from (2.2) that

Φ(u) ≥
k2
2
‖u‖2 (3.2)

for all u ∈ X, and so Φ is coercive. First of all, we will show that λ < 1/γ. Hence,
let {ξn} be a sequence of positive numbers such that limn→+∞ ξn = +∞ and

lim
n→+∞

∫ 1

0

sup
|t|≤ξ

n

F (x, t) dx

ξ2n
= A.

Put

rn := 2k2π
2ξ2n

for all n ∈ N. Then, for all v ∈ X with Φ(v) < rn, taking (2.3) into account, one
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has ‖v‖∞ < ξn. Note that Φ(0) = Ψ(0) = 0. Then, for all n ∈ N,

ϕ(rn) = inf
u∈Φ−1(−∞,rn)

(

supv∈Φ−1(−∞,rn) Ψ(v)
)

−Ψ(u)

rn − Φ(u)

≤
supv∈Φ−1(−∞,rn)Ψ(v)

rn

≤
1

2k2π2

∫ 1

0

sup
|t|≤ξ

n

J(x, t) dx

ξ2n

≤
1

2k2π2











∫ 1

0

sup
|t|≤ξ

n

F (x, t) dx

ξ2n
+

µ

λ

∫ 1

0

sup
|t|≤ξ

n

G(x, t) dx

ξ2n











.

Moreover, from the assumption (A2) and the condition (3.1), we have A < +∞
and

lim
n→+∞

∫ 1

0

sup
|t|≤ξ

n

G(x, t) dx

ξ2n
= g∞.

Therefore,

γ ≤ lim inf
n→+∞

ϕ(rn) ≤
1

2k2π2

(

A+
µ

λ
g∞

)

< +∞. (3.3)

The assumption µ ∈ (0, µG,λ) immediately yields

γ ≤
1

2k2π2

(

A+
µ

λ
g∞

)

<
1

2k2π2
A+

1− 1
2k2π2λA

λ
.

Hence,

λ =
1

1
2k2π2A+ (1− 1

2k2π2λA)/λ
<

1

γ
.

Let λ be fixed. We claim that the functional Iλ is unbounded from below. Since

1

λ
<

27

4096k1
B,

there exist a sequence {ηn} of positive numbers and τ > 0 such that limn→+∞ ηn =
+∞ and

1

λ
< τ <

27

4096k1

∫ 5/8

3/8

F (x, ηn) dx

η2n
(3.4)
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for each n ∈ N large enough. For all n ∈ N define

wn(x) =











− 64
9 ηn(x

2 − 3
4x), x ∈ [0, 3

8 [,

ηn, x ∈ [ 38 ,
5
8 ],

− 64
9 ηn(x

2 − 5
4x+ 1

4 ), x ∈] 58 , 1].

(3.5)

For any fixed n ∈ N, it is easy to see that wn ∈ X and, in particular, one has

‖wn‖
2 =

4096

27
η2n. (3.6)

Taking (2.1), (2.2) and (3.6) into account, we have

Φ(wn) ≤ k1‖wn‖
2 =

4096k1
27

η2n. (3.7)

On the other hand, bearing (A1) in mind and since G is non-negative, from the
definition of Ψ, we infer

Ψ(wn) =

∫ 1

0

[

F (x,wn(x)) +
µ

λ
G(x,wn(x))

]

dx ≥

∫ 5/8

3/8

F (x, ηn) dx. (3.8)

By (3.4), (3.7) and (3.8), we observe that

Iλ(wn) ≤
4096k1
27

η2n − λ

∫ 5/8

3/8

F (x, ηn) dx <
4096k1
27

η2n(1− λτ) (3.9)

for every n ∈ N large enough. Since λτ > 1 and limn→+∞ ηn = +∞, we have

lim
n→+∞

Iλ(wn) = −∞.

Then, the functional Iλ is unbounded from below, and it follows that Iλ has no
global minimum. Therefore, by Lemma 2.1(b), there exists a sequence {un} of
critical points of Iλ such that

lim
n→+∞

‖un‖ = +∞,

and the conclusion is achieved. ✷

Remark 3.2. Under the conditions A = 0 and B = +∞, from Theorem 3.1 we see

that for every λ > 0 and for each µ ∈
[

0, 2k2π
2

g∞

)

, problem (1.1) admits a sequence
of weak solutions which is unbounded in X . Moreover, if g∞ = 0, the result holds
for every λ > 0 and µ ≥ 0.

The following result is a special case of Theorem 3.1 with µ = 0.
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Theorem 3.3. Assume that all the assumptions in the Theorem 3.1 hold. Then,
for each

λ ∈

(

4096k1
27B

,
2k2π

2

A

)

,

the problem

{

u′′′′h(x, u′)− u′′ + uh(x, u′) = [λf(x, u) + p(u)]h(x, u′), in (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1)

has an unbounded sequence of weak solutions in X.

Remark 3.4. Theorem 1.1 in the Introduction immediately follows from Theorem
3.3, setting h(x, t) ≡ 1 for all (x, t) ∈ [0, 1]× R.

Here, we point out the following consequence of Theorem 3.3.

Corollary 3.5. Assume that the assumption (A1) in the Theorem 3.1 holds. Sup-
pose that

A < 2k2π
2, B >

4096k1
27

.

Then, the problem

{

u′′′′h(x, u′)− u′′ + uh(x, u′) = [f(x, u) + p(u)]h(x, u′) in (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1)

has an unbounded sequence of weak solutions in X.

Corollary 3.6. Let g1 : [0, 1] → R be a non-negative continuous function. Put

G1(ξ) :=

∫ ξ

0

g1(t) dt for all ξ ∈ R and assume that

(A3) lim inf
ξ→+∞

G1(ξ)
ξ2

< +∞;

(A4) lim sup
ξ→+∞

G1(ξ)
ξ2

= +∞.

Then, for every αi ∈ L1([0, 1]) for 1 ≤ i ≤ n, with minx∈[0,1]{αi(x) : 1 ≤ i ≤ n} ≥ 0
and with α1 6= 0, and for every non-negative continuous gi : R → R for 2 ≤ i ≤ n,
satisfying

max

{

sup
ξ∈R

Gi(ξ) : 2 ≤ i ≤ n

}

≤ 0

and

min

{

lim inf
ξ→+∞

Gi(ξ)

ξ2
: 2 ≤ i ≤ n

}

> −∞,
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where Gi(ξ) :=

∫ ξ

0

gi(t) dt for all ξ ∈ R for 2 ≤ i ≤ n, for each

λ ∈









0,
2k2π

2

lim infξ→+∞
G1(ξ)
ξ2

∫ 1

0

α1(x) dx









,

the problem
{

u′′′′h(x, u′)− u′′ + uh(x, u′) = [λ
∑n

i=1 αi(x)gi(u) + p(u)]h(x, u′) in (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1)

has an unbounded sequence of weak solutions in X.

Proof: Set f(x, t) =
∑n

i=1 αi(x)gi(t) for all (x, t) ∈ [0, 1]×R. From the assumption
(A4) and the condition

min

{

lim inf
ξ→+∞

Gi(ξ)

ξ2
: 2 ≤ i ≤ n

}

> −∞

we have

lim sup
ξ→+∞

∫ 5/8

3/8

F (x, ξ) dx

ξ2
= lim sup

ξ→+∞

n
∑

i=1

(

Gi(ξ)

∫ 5/8

3/8

αi(x) dx

)

ξ2
= +∞.

Moreover, from the assumption (A3) and the condition

max

{

sup
ξ∈R

Gi(ξ) : 2 ≤ i ≤ n

}

≤ 0

we have

lim inf
ξ→+∞

∫ 1

0

sup
|t|≤ξ

F (x, t) dx

ξ2
≤

(
∫ 1

0

α1(x) dx

)

lim inf
ξ→+∞

G1(ξ)

ξ2
< +∞.

Hence, applying Theorem 3.3 the desired conclusion follows. ✷

Now, put

A′ := lim inf
ξ→0+

∫ 1

0

sup
|t|≤ξ

F (x, t) dx

ξ2
,

B′ := lim sup
ξ→0+

∫ 5/8

3/8

F (x, ξ) dx

ξ2
.
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Using Lemma 2.1(c) and arguing as in the proof of Theorem 3.1, we can obtain the
following result.

Theorem 3.7. Assume that the assumption (A1) in the Theorem 3.1 holds and

(A5) A′ < 27k2π
2

2048k1
B′.

Then, setting

λ3 :=
4096k1
27B′

, λ4 :=
2k2π

2

A′
,

for every λ ∈ (λ3, λ4) and for every arbitrary L1-Carathéodory function g : [0, 1]×

R → R, whose potential G(x, t) :=

∫ t

0

g(x, ξ) dξ for all (x, t) ∈ [0, 1] × R, is a

non-negative function satisfying the condition

g0 := lim sup
ξ→0+

∫ 1

0

sup
|t|≤ξ

G(x, t) dx

ξ2
< +∞, (3.10)

if we put

µ′
g,λ :=

2k2π
2

g0

(

1− λ
A′

2k2π2

)

,

where µ′
g,λ = +∞ when g0 = 0, for every µ ∈ [0, µ′

g,λ) problem (1.1) has a sequence
of weak solutions, which strongly converges to zero in X.

Proof: Fix λ ∈ (λ3, λ4) and let g be a function that satisfies the condition (3.10).
Since λ < λ4, we obtain

µ′
g,λ

:=
2k2π

2

g0

(

1− λ
A′

2k2π2

)

> 0.

Now fix µ ∈ (0, µ′
g,λ

) and set

J(x, t) := F (x, ξ) +
µ

λ
G(x.ξ)

for all (x, t) ∈ [0, 1]×R. We take Φ,Ψ and Iλ as in the proof of Theorem 3.1. Now,
as it has been pointed out before, the functionals Φ and Ψ satisfy the regularity
assumptions required in Lemma 2.1. As first step, we will prove that λ < 1/δ.
Then, let {ξn} be a sequence of positive numbers such that limn→+∞ ξn = 0 and

lim
n→+∞

∫ 1

0

sup
|t|≤ξ

n

F (x, t) dx

ξ2n
= A′.
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By the fact that infX Φ = 0 and the definition of δ, we have δ = lim infr→0+ ϕ(r).
Then, as in showing (3.3) in the proof of Theorem 3.1, we can prove that δ < +∞.
From µ ∈ (0, µ′

g,λ
), the following inequalities hold

δ ≤
1

2k2π2

(

A′ +
µ

λ
g0

)

<
1

2k2π2
A′ +

1− 1
2k2π2λA

′

λ
.

Therefore

λ =
1

1
2k2π2A′ +

(

1− 1
2k2π2λA′

)

/λ
<

1

δ
.

Let λ be fixed. We claim that the functional Iλ has not a local minimum at zero.
Since

1

λ
<

27

4096k1
B′,

there exist a sequence {ηn} of positive numbers and τ > 0 such that limn→+∞ ηn =
0+ and

1

λ
< τ <

27

4096k1

∫ 5/8

3/8

F (x, ηn) dx

η2n

for each n ∈ N large enough. For all n ∈ N, let wn(x) defined by (3.5) with the
above ηn. Note that λτ > 1. Then, as in showing (3.9), we can obtain that

Iλ(wn) = Φ(wn)− λΨ(wn)

≤
4096k1
27

η2n − λ

∫ 5/8

3/8

F (x, ηn) dx

<
4096k1
27

η2n(1− λτ ) < 0

for every n ∈ N large enough. Then, since

lim
n→+∞

Iλ(wn) = Iλ(0) = 0,

we see that zero is not a local minimum of Iλ. This, together with the fact that
zero is the only global minimum of Φ, we deduce that the energy functional Iλ has
not a local minimum at the unique global minimum of Φ. Therefore, by Lemma
2.1(c), there exists a sequence {un} of critical points of Iλ which converges weakly
to zero. In view of the fact that the embedding X →֒ C0([0, 1]) is compact, we
know that the critical points converge strongly to zero, and the proof is complete.

✷

Remark 3.8. Under the conditions A′ = 0 and B′ = +∞, Theorem 3.7 ensures

that for every λ > 0 and for each µ ∈
[

0, 2k2π
2

g0

)

, problem (1.1) admits a sequence
of weak solutions which strongly converges to 0 in X . Moreover, if g0 = 0, the
result holds for every λ > 0 and µ ≥ 0.
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Remark 3.9. Applying Theorem 3.7, results similar to Theorems 1.1 and 3.3
Corollaries 3.5 and 3.6 can be obtained. We omit the discussions here.

We conclude this paper with the following example to illustrate our results.

Example 3.10. Put

an :=
2n!(n+ 2)!− 1

4(n+ 1)!
, bn :=

2n!(n+ 2)! + 1

4(n+ 1)!

for every n ∈ N, and define the non-negative continuous function f : R → R by

f(ξ) =

{

32(n+1)!2[(n+1)!2−n!2]
π

√

1
16(n+1)!2 −

(

ξ − n!(n+2)
2

)2
if ξ ∈

⋃

n∈N
[an, bn],

0, otherwise.

One has

∫ (n+1)!

n!

f(t)dt =

∫ bn

an

f(t)dt = (n+ 1)!2 − n!2

for every n ∈ N. Then, one has

lim
n→+∞

F (an)

a2n
= 0 and lim

n→+∞

F (bn)

b2n
= 4.

Note that there is no sequence {cn} such that limn→+∞ F (cn)/c
2
n > 4. Therefore,

lim
ξ→+∞

F (ξ)

ξ2
= 0 and lim

ξ→+∞

F (ξ)

ξ2
= 4.

Hence, by choosing p(t) = −t for all t ∈ R and h(x, t) ≡ 1 for all (x, t) ∈ [0, 1]×R,
we have

0 = lim inf
ξ→+∞

F (ξ)

ξ2
<

27π6

4096(π4 + π2 + 2)
lim sup
ξ→+∞

F (ξ)

ξ2
=

27π6

1024(π4 + π2 + 2)
.

So, using Theorem 3.1, problem

{

u′′′′ − u′′ + 2u = λf(u) in (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1)

has a sequence of weak solutions which is unbounded in X.
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