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abstract: We prove in this paper the existence of solutions of strongly nonlin-
ear parabolic problems in Musielak-Orlicz-Sobolev spaces. An approximation and
a compactness results in inhomogeneous Musielak-Orlicz-Sobolev spaces have also
been provided.
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1. Introduction

Let Ω a bounded open subset of Rn and let Q be the cylinder Ω × (0, T ) with
some given T > 0.
We consider the strongly nonlinear parabolic problem







∂u
∂t +A(u) + g(x, t, u,∇u) = f in Q
u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω

(1)

where A = − div (a(x, t, u,∇u)) is an operator of Leray-Lions type, g is a nonlin-
earity with the sign condition but any restriction on its growth.

This result generalizes analogous ones of Lions [21], Landes [18] when g ≡ 0 and
of Brezis-Browder [9], Landes.Mustonen [19] for g ≡ g(x, t, u). See also [7,8] for
related topics. In these results, the function a is supposed to satisfy a polynomial
growth condition with respect to u and ∇u.

In the case where a satisfies a more general growth condition with respect to u
and ∇u, it is shown in [12] that the adequate space in which (1) can be studied is
the inhomogeneous Orlicz-Sobolev space W 1,xLM (Q) where the N-function M is
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related to the actual growth of a . The solvability of (1) in this setting is proved
by Donaldson [12] for g ≡ 0 and by Robert [23] for g ≡ g(x, t, u) when A is
monotone, t2 ≪ M(t) and M satisfies a ∆2 condition and also by Elmahi [14]
for g = g(x, t, u,∇u) when M satisfies a ∆′ condition and M(t) ≪ tN/(N−1) as
application of some LM compactness results in W 1,xLM (Q), see [13].

The solvability of (1) in this setting is proved by Elmahi-Meskine [16] for g ≡ 0
and for g ≡ g(x, t, u,∇u) in [15], without assuming any restriction on the N-
function M .

In a recent work, the authors [2] have established an existence result for prob-
lems of the form (1), when g ≡ 0, without assuming any restriction on the Musielak
function ϕ.

It is our purpose in this paper to prove the existence of solutions for problem
(1) in the setting of Musielak-Orlicz spaces for general Musielak function ϕ with
a nonlinearity g(x, t, u,∇u) having natural growth with respect to the gradient.
In section 3 some new approximation result in inhomogeneous Musielak-Orlicz-
Sobolev spaces (see Theorem 3.2), and, on the other hand, to prove a trace result
(see Lemma 4.2). In Section 4, we establish L1-compactness results in the inhomo-
geneous Musielak-Orlicz-Sobolev spaces W 1,xLϕ(Q). Section 5 contains the main
result of this paper.

Our result generalizes that of the Elmahi-Meskine in [15] to the case of inho-
mogeneous Musielak- Orlicz-Sobolev spaces.

Let us point out that our result can be applied in the particular case when
ϕ(x, t) = tp(x), in this case we use the notations Lp(x)(Ω) = Lϕ(Ω), andWm,p(x)(Ω)
= WmLϕ(Ω). These spaces are called Variable exponent Lebesgue and Sobolev
spaces.

For some classical and recent results on elliptic and parabolic problems in Orlicz-
sobolev spaces and a Musielak-Orlicz-Sobolev spaces, we refer to [1,2,3,6,12,14,15,
16,24].

2. Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-
Sobolev spaces. Standard reference is [22]. We also include the definition of inho-
mogeneous Musielak-Orlicz-Sobolev spaces and some preliminaries Lemmas to be
used later.

Musielak-Orlicz-Sobolev spaces : Let Ω be an open subset of Rn.
A Musielak-Orlicz function ϕ is a real-valued function defined in Ω×R+ such that
:

a) ϕ(x, t) is an N-function i.e. convex, nondecreasing, continuous, ϕ(x, 0) =
0, ϕ(x, t) > 0 for all t > 0 and

lim
t−→0

sup
x∈Ω

ϕ(x, t)

t
= 0

lim
t−→∞

inf
x∈Ω

ϕ(x, t)

t
= 0.
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b) ϕ(., t) is a Lebesgue measurable function

Now, let ϕx(t) = ϕ(x, t) and let ϕ−1
x be the non-negative reciprocal function with

respect to t, i.e the function that satisfies

ϕ−1
x (ϕ(x, t)) = ϕ(x, φ−1

x ) = t.

For any two Musielak-Orlicz functions ϕ and γ we introduce the following or-
dering :

c) if there exists two positives constants c and T such that for almost everywhere
x ∈ Ω :

ϕ(x, t) ≤ γ(x, ct) for t ≥ T

we write ϕ ≺ γ and we say that γ dominates ϕ globally if T = 0 and near
infinity if T > 0.

d) if for every positive constant c and almost everywhere x ∈ Ω we have

lim
t→0

(sup
x∈Ω

ϕ(x, ct)

γ(x, t)
) = 0 or lim

t→∞
(sup
x∈ϕ

ϕ(x, ct)

γ(x, t)
) = 0

we write ϕ ≺≺ γ at 0 or near ∞ respectively, and we say that ϕ increases
essentially more slowly than γ at 0 or near infinity respectively.

In the sequel the measurability of a function u : Ω 7→ R means the Lebesgue mea-
surability.

We define the functional

̺ϕ,Ω(u) =

∫

Ω

ϕ(x, |u(x)|)dx

where u : Ω 7→ R is a measurable function.
The set

Kϕ(Ω) =
{

u : Ω → R mesurable /̺ϕ,Ω(u) < +∞
}

.

is called the Musielak-Orlicz class (the generalized Orlicz class).
The Musielak-Orlicz space (the generalized Orlicz spaces) Lϕ(Ω) is the vector

space generated by Kϕ(Ω), that is, Lϕ(Ω) is the smallest linear space containing
the set Kϕ(Ω).
Equivelently:

Lϕ(Ω) =

{

u : Ω → R mesurable /̺ϕ,Ω(
|u(x)|

λ
) < +∞, for some λ > 0

}

Let
ψ(x, s) = sup

t≥0
{st− ϕ(x, t)},
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ψ is the Musielak-Orlicz function complementary to ( or conjugate of ) ϕ(x, t) in
the sense of Young with respect to the variable s.

On the space Lϕ(Ω) we define the Luxemburg norm:

||u||ϕ,Ω = inf{λ > 0/

∫

Ω

ϕ(x,
|u(x)|

λ
)dx,≤ 1}.

and the so-called Orlicz norm :

|||u|||ϕ,Ω = sup
||v||ψ≤1

∫

Ω

|u(x)v(x)|dx.

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [22].

The closure in Lϕ(Ω) of the set of bounded measurable functions with compact
support in Ω is denoted by Eϕ(Ω). It is a separable space and Eψ(Ω)

∗ = Lϕ(Ω)
[22].

The following conditions are equivalent:

e) Eϕ(Ω) = Kϕ(Ω)

f) Kϕ(Ω) = Lϕ(Ω)

g) ϕ has the ∆2 property.

We recall that ϕ has the ∆2 property if there exists k > 0 independent of x ∈ Ω
and a nonnegative function h , integrable in Ω such that ϕ(x, 2t) ≤ kϕ(x, t) + h(x)
for large values of t, or for all values of t, according to whether Ω has finite measure
or not.

Let us define the modular convergence: we say that a sequence of functions
un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω) if there exists a constant k > 0
such that

lim
n→∞

̺ϕ,Ω(
un − u

k
) = 0.

For any fixed nonnegative integer m we define

WmLϕ(Ω) = {u ∈ Lϕ(Ω) : ∀|α| ≤ m Dαu ∈ Lϕ(Ω)}

where α = (α1, α2, ..., αn) with nonnegative integers αi; |α| = |α1|+ |α2|+ ...+ |αn|
and Dαu denote the distributional derivatives.
The space WmLϕ(Ω) is called the Musielak-Orlicz-Sobolev space.

Now, the functional

̺ϕ,Ω(u) =
∑

|α|≤m

̺ϕ,Ω(D
αu),
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for u ∈WmLϕ(Ω) is a convex modular. and

||u||mϕ,Ω = inf{λ > 0 : ̺ϕ,Ω(
u

λ
) ≤ 1}

is a norm on WmLϕ(Ω).
The pair 〈WmLϕ(Ω), ||u||

m
ϕ,Ω〉 is a Banach space if ϕ satisfies the following condition

:

there exist a constant c > 0 such that inf
x∈Ω

ϕ(x, 1) ≥ c,

as in [22].

The space WmLϕ(Ω) will always be identified to a σ(ΠLϕ,ΠEψ) closed sub-
space of the product

∏

|α|≤m Lϕ(Ω) =
∏

Lϕ.
Let Wm

0 Lϕ(Ω) be the σ(ΠLϕ,ΠEψ) closure of D(Ω) in WmLϕ(Ω).

Let WmEϕ(Ω) be the space of functions u such that u and its distribution
derivatives up to order m lie in Eϕ(Ω), and let Wm

0 Eϕ(Ω) be the (norm) closure
of D(Ω) in WmLϕ(Ω).

The following spaces of distributions will also be used:

W−mLψ(Ω) = {f ∈ D′(Ω); f =
∑

|α|≤m

(−1)|α|Dαfα with fα ∈ Lψ(Ω)}

W−mEψ(Ω) = {f ∈ D′(Ω); f =
∑

|α|≤m

(−1)|α|Dαfα with fα ∈ Eψ(Ω)}

As we did for Lϕ(Ω), we say that a sequence of functions un ∈ WmLϕ(Ω) is
modular convergent to u ∈ WmLϕ(Ω) if there exists a constant k > 0 such that

lim
n→∞

̺ϕ,Ω(
un − u

k
) = 0.

From [22], for two complementary Musielak-Orlicz functions ϕ and ψ the fol-
lowing inequalities hold:

h) the young inequality :

t.s ≤ ϕ(x, t) + ψ(x, s) for t, s ≥ 0, x ∈ Ω

i) the Hölder inequality :
∣

∣

∣

∣

∫

Ω

u(x)v(x) dx

∣

∣

∣

∣

≤ ||u||ϕ,Ω|||v|||ψ,Ω.

for all u ∈ Lϕ(Ω) and v ∈ Lψ(Ω).
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Inhomogeneous Musielak-Orlicz-Sobolev spaces :
Let Ω an bounded open subset of Rn and let Q = Ω×]0, T [ with some given T >

0. Let ϕ be a Musielak function. For each α ∈ N
n, denote by Dα

x the distributional
derivative on Q of order α with respect to the variable x ∈ R

n. The inhomogeneous
Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows.

W 1,xLϕ(Q) = {u ∈ Lϕ(Q) : ∀|α| ≤ 1 Dα
xu ∈ Lϕ(Q)}

and

W 1,xEϕ(Q) = {u ∈ Eϕ(Q) : ∀|α| ≤ 1 Dα
xu ∈ Eϕ(Q)}

The last space is a subspace of the first one, and both are Banach spaces under the
norm

‖u‖ =
∑

|α|≤m

‖Dα
xu‖ϕ,Q.

We can easily show that they form a complementary system when Ω is a Lipschitz
domain [5]. These spaces are considered as subspaces of the product space ΠLϕ(Q)
which has (N+1) copies. We shall also consider the weak topologies σ(ΠLϕ,ΠEψ)
and σ(ΠLϕ,ΠLψ). If u ∈ W 1,xLϕ(Q) then the function : t 7−→ u(t) = u(t, .) is
defined on (0, T ) with values in W 1Lϕ(Ω). If, further, u ∈ W 1,xEϕ(Q) then this
function is a W 1Eϕ(Ω)-valued and is strongly measurable. Furthermore the follow-
ing imbedding holds: W 1,xEϕ(Q) ⊂ L1(0, T ;W 1Eϕ(Ω)). The space W 1,xLϕ(Q) is
not in general separable, if u ∈W 1,xLϕ(Q), we can not conclude that the function
u(t) is measurable on (0, T ). However, the scalar function t 7→ ‖u(t)‖ϕ,Ω is in
L1(0, T ). The space W 1,x

0 Eϕ(Q) is defined as the (norm) closure in W 1,xEϕ(Q)
of D(Q). We can easily show as in [5] that when Ω a Lipschitz domain then each
element u of the closure of D(Q) with respect of the weak * topology σ(ΠLϕ,ΠEψ)
is limit, in W 1,xLϕ(Q), of some subsequence (ui) ⊂ D(Q) for the modular conver-
gence; i.e., there exists λ > 0 such that for all |α| ≤ 1,

∫

Q

ϕ(x, (
Dα
xui −Dα

xu

λ
)) dx dt → 0 as i→ ∞,

this implies that (ui) converges to u in W 1,xLϕ(Q) for the weak topology
σ(ΠLM ,ΠLψ). Consequently

D(Q)
σ(ΠLϕ,ΠEψ)

= D(Q)
σ(ΠLϕ,ΠLψ)

,

this space will be denoted by W 1,x
0 Lψ(Q). Furthermore, W 1,x

0 Eϕ(Q) =

W 1,x
0 Lϕ(Q) ∩ΠEϕ.
We have the following complementary system

(

W 1,x
0 Lϕ(Q) F

W 1,x
0 Eϕ(Q) F0

)

,
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F being the dual space of W 1,x
0 Eϕ(Q). It is also, except for an isomorphism,

the quotient of ΠLψ by the polar set W 1,x
0 Eϕ(Q)⊥, and will be denoted by F =

W−1,xLψ(Q) and it is shown that

W−1,xLψ(Q) =
{

f =
∑

|α|≤1

Dα
xfα : fα ∈ Lψ(Q)

}

.

This space will be equipped with the usual quotient norm

‖f‖ = inf
∑

|α|≤1

‖fα‖ψ,Q

where the inf is taken on all possible decompositions

f =
∑

|α|≤1

Dα
x fα, fα ∈ Lψ(Q).

The space F0 is then given by

F0 =
{

f =
∑

|α|≤1

Dα
x fα : fα ∈ Eψ(Q)

}

and is denoted by F0 =W−1,xEψ(Q).

3. Approximation Theorem and Trace Result

In this section, Ω be a bounded Lipschitz domain in R
N with the segment

property and
I is a subinterval of R (both possibly unbounded) and Q = Ω× I. It is easy to see
that Q also satisfies Lipschitz domain.

Definition 3.1. We say that un → u in W−1,xLψ(Q) + L2(Q) for the modular
convergence if we can write

un =
∑

|α|≤1

Dα
xu

α
n + u0n and u =

∑

|α|≤1

Dα
xu

α + u0

with uαn → uα in Lψ(Q) for modular convergence for all |α| ≤ 1
and uαn → uα strongly in L2(Q).

We shall prove the following approximation theorem, which plays a fundamen-
tal role
when the existence of solutions for parabolic problems is proved.

Theorem 3.2. Let ϕ be an Musielak-Orlicz function satisfying the condition (1.7)
of [5]. If u ∈W 1,xLϕ(Q) ∩ L2(Q) (respectively W 1,x

0 Lϕ(Q) ∩ L2(Q))
and ∂u

∂t ∈ W−1,xLψ(Q)+L2(Q), then there exists a sequence (vj) in D(Q) (respec-

tively D((I),D(Ω)) ) such that vj → u in W 1,xLϕ(Q) ∩ L2(Q) and
∂vj
∂t → ∂u

∂t in W−1,xLψ(Q) + L2(Q) for the modular convergence.
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Proof: Let u ∈ W 1,xLϕ(Q) ∩ L2(Q) such that ∂u
∂t ∈W−1,xLψ(Q) + L2(Q)

and let ε > 0 be given. Writing ∂u
∂t =

∑

|α|≤1D
α
xu

α + u0, where uα ∈ Lψ(Q)

for all |α| ≤ 1 and u0 ∈ L2(Q), we will show that there exists λ > 0(depending
only on u and N)
and there exists v ∈ D(Q) for which we can write ∂v

∂t =
∑

|α|≤1D
α
xv

α + v0 with

vα, v0 ∈ D(Q) such that
∫

Q

ϕ(x,
Dα
xv −Dα

xu

λ
)dxdt ≤ ε, ∀|α| ≤ 1, (2)

||v − u||L2(Q) ≤ ε, (3)

||v0 − u0||L2(Q) ≤ ε, (4)

∫

Q

ψ(x,
vα − uα

λ
)dxdt ≤ ε, ∀|α| ≤ 1, (5)

The equation (3) flows from a slight adaptation of the arguments of [5],
(4) and (5) flow also from classical approximation results.
Regrading the equation (6) it is enough to prove that D(Q) is dense in Lψ(Q) for
this end.
We use the fact that the log-HÖlder continuity(commutes with the complemen-
tarity) i.e : if ϕ is log-HÖlder the its complementary ψ also it is, and proceed as
in [5] (with ϕ and ψ interchanged ) and using of course R

N+1 instead of RN and
Q = Ω× (0, T ) instead of Ω.
These facts lead us to prove that

||Kεf ||ψ,Q ≤ C||f ||ψ,Q, ∀f ∈ Lψ(Q)

(with Kεf(x, t) = k−1
ε

∫

Q
Kε(x − y)f(kεy, t)dy ,Kε(x) = 1

εNK(xε ) and K(x) is a
measurable function with support in the ball BR = B(0, R) see [5]).
And then we deduce that D(Q) is dense in Lψ(Q) for the modular convergence
which gives the desired conclusion. ✷

The case of W 1,x
0 Lϕ(Q) ∩ L2(Q) is similar to the above arguments as in [5].

Remark 3.3. If, in the statement of Theorem 3.2, one consider Ω× R instead of
Q,
we have D(Ω×R) is dense in u ∈W 1,x

0 Lϕ(Ω×R)∩L2(Ω×R) : ∂u∂t ∈W 1,x
0 Lψ(Ω×

R) + L2(Ω × R) for the modular convergence. This follows trivially from the fact
that D(R,D(Ω)) ≡ D(Ω× R).
A first application of Theorem 3.2 is the following trace result generalizing a clas-
sical result which states that if u belong to L2(a, b;H1

0 (Ω)) and ∂u
∂t belongs to

L2(a, b;H−1(Ω)), then u is in C([a, b], L2(Ω)).
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Lemma 3.4. . Let a < b ∈ R and let Ω be a bounded Lipschitz domain in R
N .

Then {u ∈ W 1,x
0 Lϕ(Ω×(a, b))∩L2(Ω×(a, b)) : ∂u∂t ∈W−1,xLψ(Ω×(a, b))+L2(Ω×

(a, b))} is a subset of C([a, b], L2(Ω)).

Proof: Let u ∈W 1,x
0 Lϕ(Ω×(a, b))∩L2(Ω×(a, b)) such that W−1,xLψ(Ω×(a, b))+

L2(Ω× (a, b)). After two consecutive reflection first with respect to t = b and then
with respect to t = b,
û(x, t) = u(x, t)χ(a,b) + u(x, 2b− t)χ(b,2b−a) on Ω× (a, 2b− a)
ũ(x, t) = û(x, t)χ(a,2b−a) + û(x, 2a− t)χ(3a−2b,a) on Ω× (3a− 2b, 2b− a),

we get a function ũ ∈ W 1,x
0 Lϕ(Ω× (3a− 2b, 2b− a)) ∩ L2(Ω× (3a− 2b, 2b− a))

such that ∂ũ
∂t ∈ W−1,xLψ(Ω× (3a− 2b, 2b− a)) + L2(Ω× (3a− 2b, 2b− a)). Now,

by letting a function
η ∈ D(R) with η = 1 on [a, b] and suppη ⊂ (3a− 2b, 2b− a), setting u = ηũ,
and using standard arguments (see [ [9], Lemme IV, Remarque 10, p. 158]), we
have u = u on Ω× (a, b) ũ ∈ W 1,x

0 Lϕ(Ω×R)∩L2(Ω×R) ∂ũ
∂t ∈ W−1,xLψ(Ω×R)+

L2(Ω× R).
Now let vj ∈ D(Ω×R) be the sequence given by Theorem 3.2 corresponding to u,
that is,

vj → u ∈W 1,x
0 Lϕ(Ω×R)∩L2(Ω×R) and

∂vj
∂t

→
∂u

∂t
∈W−1,xLψ(Ω×R)+L2(Ω×R)

for the modular convergence.
We have
∫

Ω

(vi(τ )− vj(τ ))
2dx = 2

∫

Ω

∫ τ

−∞

(vi − vj)(
∂vi
∂t

−
∂vj
∂t

)dxdt → 0, as i, j → ∞

from which one deduces that vj is a Cauchy sequence in C(R, L2(Ω)), and since
the limit of vj in L2(Ω × R) is u, we have vj → u inC(R, L2(Ω)). Consequently,
u ∈ C([a, b], L2(Ω)).
In order to deal with the time derivative, we introduce a time mollification of a
function u ∈ Lϕ(Q).
Thus we define, for all µ > 0 and all (x, t) ∈ Q

uµ(x, t) = µ

∫ t

−∞

ũ(x, s) exp(µ(s− t))ds, (6)

where ũ(x, s) = u(x, s)χ(0,T )(s) is the zero extension of u. ✷

Throughout the paper the index µ always indicates this mollification.

Proposition 3.5. If u ∈ Lϕ(Q) then uµ is measurable in Q and
∂uµ
∂t = µ(u− uµ)

and if u ∈ Lϕ(Q) then
∫

Q

ϕ(x, uµ)dxdt ≤

∫

Q

ϕ(x, u)dxdt.
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Proof: Since (x, t, s) 7→ u(x, s)exp(µ(s− t)) is measurable in Ω× [0, T ]× [0, T ], we
deduce that uµ is measurable by Fubini’s theorem. By Jensen’s integral inequality
[see [4]] we have, since

∫ 0

−∞
µexp(µs)ds = 1,

ϕ(x,

∫ t

−∞

µũ(x, s)exp(µ(s− t))ds) = ϕ(x,

∫ 0

−∞

µexp(µs)ũ(x, s+ t)ds)

≤

∫ 0

−∞

µexp(µs)ϕ(x, ũ(x, s+ t))ds

which implies

∫

Q

ϕ(x, uµ(x, t))dxdt ≤

∫

Ω×R

(

∫ 0

−∞

µexp(µs)ϕ(x, ũ(x, s+ t)ds))dxdt

≤

∫ 0

−∞

µexp(µs)(

∫

Ω×R

ϕ(x, ũ(x, s+ t))dxdt)ds

≤

∫ 0

−∞

µexp(µs)(

∫

Q

ϕ(x, u(x, t))dxdt)ds

=

∫

Q

ϕ(x, u)dxdt.

Furthermore
∂uµ
∂t = limδ→0

1
δ (exp(−µδ)−1)uµ(x, t)+limδ→0

1
δ

∫ t+δ

t
u(x, s)exp(µ(s−(t+δ))ds =

−µuµ + µu. ✷

Proposition 3.6. (1) If u ∈ Lϕ(Q) then uµ → u as µ → ∞ in Lϕ(Q) for the
modular convergence.
(2) If u ∈ W 1,xLϕ(Q) then uµ → u as µ → ∞ in W 1,xLϕ(Q) for the modular
convergence.

Proof: (1) Let (φk) ⊂ D(Q) such that φk → u in Lϕ(Q) for the modular conver-
gence.
Let λ > 0 large enough such that

u

λ
∈ Lϕ(Q) and

∫

Q

ϕ(x,
φk − u

λ
)dxdt → 0 as k → ∞.

For a.e. (x, t) ∈ Q we have

|(φk)µ(x, t)− (φk)(x, t)| =
1

µ
|
∂φk
∂t

(x, t)| ≤
1

µ
||
∂φk
∂t

||∞.
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On the other hand
∫

Q

ϕ(x,
uµ − u

3λ
)dxdt ≤

1

3

∫

Q

ϕ(x,
uµ − (φk)µ

λ
)dxdt

+
1

3

∫

Q

ϕ(x,
(φk)µ − φk

λ
)dxdt

+
1

3

∫

Q

ϕ(x,
φk − u

λ
)dxdt

≤
1

3

∫

Q

ϕ(x,
(φk − u)µ

λ
)dxdt

+
1

3

∫

Q

ϕ(x,
(φk)µ − φk

λ
)dxdt

+
1

3

∫

Q

ϕ(x,
φk − u

λ
)dxdt.

This implies that
∫

Q

ϕ(x,
uµ − u

3λ
)dxdt ≤

2

3

∫

Q

ϕ(x,
φk − u

λ
)dxdt +

1

3
ϕ(x,

1

µλ
||
∂φk
∂t

||∞)meas(Q).

Let ε > 0. There exists k such that
∫

Q

ϕ(x,
φk − u

λ
)dxdt ≤ ε,

and there exists µ0 such that

ϕ(x,
1

µλ
||
∂φk
∂t

||∞)meas(Q) ≤ ε for all µ ≥ µ0.

Hence
∫

Q

ϕ(x,
uµ − u

3λ
)dxdt ≤ ε for all µ ≥ µ0.

(2) Since ∀α, |α| ≤ 1, we have Dα
x (uµ) = (Dα

xu)µ, consequently, the first part above
applied on each Dα

xu, gives the result. ✷

Remark 3.7. If u ∈ Eϕ(Q), we can choose λ arbitrary small since D(Q) is (norm)
dense in Eϕ(Q).
Thus, for all λ > 0

∫

Q

ϕ(x,
uµ − u

λ
)dxdt → 0 as µ→ ∞

and uµ → u strongly in Eϕ(Q).Idem for W 1,xEϕ(Q).
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Proposition 3.8. If un → u in W 1,xLϕ(Q) strongly (resp., for the modular con-
vergence)
then (un)µ → uµ in W 1,xLϕ(Q) strongly (resp., for the modular convergence).

Proof: . For all λ > 0 (resp., for some λ > 0),

∫

Q

ϕ(x,
Dα
x ((un)µ)−Dα

x (u)µ
λ

)dxdt≤

∫

Q

ϕ(x,
Dα
x (un)−Dα

xu

λ
)dxdt → 0 as n→ ∞,

then (un)µ → uµ in W 1,xLϕ(Q) strongly (resp., for the modular convergence). ✷

4. Compactness Results

In this section, we shall prove some compactness theorems in inhomogeneous
Musielak-Orlicz- Sobolev spaces which will be applied to get existence theorem for
parabolic problems.

For each h > 0, define the usual translated τhf of the function f byτhf(t) =
f(t+ h).
If f is defined on [0, T ] then τhf is defined on [−h, T − h].
First of all, recall the following compactness result proved by Simon [25].

Lemma 4.1. Let ϕ be a Musielak function. Let Y be a Banach space such that
the following continuous imbedding holds L1(Ω) ⊂ Y . Then for all ε > 0 and all

λ > 0, there is Cε > 0 such that for all u ∈W 1,x
0 Lϕ(Q), with |∇u|

λ ∈ Lϕ(Q),

||u||L1(Q) ≤ ελ(

∫

Q

ϕ(x,
|∇u|

λ
)dxdt + T ) + Cε||u||L1(0,T ;Y ).

Proof: . Since W 1
0Lϕ(Ω) ⊂ L1(Ω) with compact imbedding, then for all ε > 0,

there is Cε > 0 such that for all v ∈ W 1
0Lϕ(Ω):

||v||L1(Ω) ≤ ε||∇v||Lϕ(Ω) + Cε||v||Y . (7)

Indeed, if the above assertion holds false, there is ε0 > 0 and vn ∈ W 1
0Lϕ(Ω) such

that

||vn||L1(Ω) ≥ ε0||∇vn||Lϕ(Ω) + n||vn||Y .

This gives, by setting wn = vn
||∇vn||Lϕ(Ω)

:

||wn||L1(Ω) ≥ ε0 + n||wn||Y , ||∇wn||Lϕ(Ω) = 1.

Since (wn) is bounded in W 1
0Lϕ(Ω) then for a subsequence

wn ⇀ w in W 1
0Lϕ(Ω) for σ(ΠLϕ,ΠEψ) and strongly in L1(Ω).
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Thus ||wn||L1(Ω) is bounded and ||wn||Y → 0 as n → ∞.We deduce wn → 0 in Y
and that w = 0 implying that ε0 ≤ ||wn||L1(Ω) → 0, a contradiction.

Using v = u(t) in (7) for all u ∈ W 1,x
0 Lϕ(Q) with |∇u|

λ ∈ Lϕ(Q) and a.e. t in (0, T ),
we have

||u(t)||L1(Ω) ≤ ε||∇u(t)||Lϕ(Ω) + Cε||u(t)||Y .

Since
∫

Q ϕ(x,
|∇u(x,t)|

λ )dxdt <∞ we have thanks to Fubini’s theorem
∫

Ω
ϕ(x, |∇u(x,t)|λ )dx <∞ for a.e t in (0, T ), and then

||∇u(t)||Lϕ(Ω) ≤ λ(

∫

Ω

ϕ(x,
|∇u(x, t)|

λ
)dx+ 1),

which implies that

||u(t)||L1(Ω) ≤ ελ(

∫

Ω

ϕ(x,
|∇u(x, t)|

λ
)dx+ 1) + Cε||u(t)||Y ).

Integrating this over (0, T ) yields

||u||L1(Q) ≤ ελ(

∫

Q

ϕ(x,
|∇u(x, t)|

λ
)dxdt+ T ) + Cε

∫ T

0

||u(t)||Y )dt

and finally

||u||L1(Q) ≤ ελ(

∫

Q

ϕ(x,
|∇u|

λ
)dxdt + T ) + Cε||u||L1(,0,T ;Y ).

✷

We also prove the following lemma which allows us to enlarge the space Y
whenever necessary.

Lemma 4.2. If F is bounded in W 1,x
0 Lϕ(Q) and is relatively compact in L1(0, T ;Y )

then F is relatively compact in L1(Q) (and also in Eγ(Q) for all Musielak function
γ ≪ ϕ).

Proof: Let ε > 0 be given. Let C > 0 be such that
∫

Q ϕ(x,
|∇f |
C )dxdt ≤ 1 for all

f ∈ F .
By the previous lemma, there exists Cε > 0 such that for all u ∈W 1,x

0 Lϕ(Q) with
|∇u|
C ∈ Lϕ(Q),

||u(t)||L1(Q) ≤
2εC

4C(1+T ) (
∫

Q ϕ(x,
|∇u|
2C )dxdt + T ) + Cε||u||L1(0,T ;Y ).

Moreover, there exists a finite sequence (fi) in F satisfying

∀f ∈ F, ∃fi such that ||f − fi||L1(0,T ;Y ) ≤
ε

2Cε



206 M. L. Ahmed Oubeid, A. Benkirane, and M. Sidi El Vally

so that

||f − fi||L1(Q)≤
ε

2(1 + T )
(

∫

Q

ϕ(x,
|∇f −∇fi|

2C
)dxdt+ T )+Cε||f−fi||L1(0,T ;Y ) ≤ ε

and hence F is relatively compact in L1(Q).
Since γ ≪ ϕ then by using Vitali’s theorem, it is easy to see that F is relatively
compact in Eγ(Q). ✷

Remark 4.3. (see [14]). If F ⊂ L1(0, T ;B) is such that {∂f∂t : f ∈ F} is bounded
in F ⊂ L1(0, T ;B) then
||τhf − f ||L1(0,T ;B) → 0 as h→ 0 uniformly with respect to f ∈ F .

Theorem 4.4. Let ϕ be a Musielak function. If F is bounded in W 1,xLϕ(Q) and

{∂f∂t : f ∈ F} is bounded in W−1,xLψ(Q), then F is relatively compact in L1(Q).

Proof: Let γ and θ be Musielak functions such that γ ≪ ϕ and θ ≪ ψ near
infinity.
For all 0 < t1 < t2 < T and all f ∈ F , we have

||

∫ t2

t1

f(t)dt||W 1
0Eγ(Ω) ≤

∫ T

0

||f(t)||W 1
0 Eγ(Ω)dt

≤ C1||f ||W 1,x
0 Eγ(Q) ≤ C2||f ||W 1,x

0 Eϕ(Q) ≤ C,

where we have used the following continuous imbedding:

W 1,x
0 Lϕ(Q) ⊂W 1,x

0 Eγ(Q) ⊂ L1(0, T ;W 1
0Eγ(Ω)).

Since the imbedding W 1
0Lγ(Ω) ⊂ L1(Ω) is compact we deduce that (

∫ t2
t1
f(t)dt)f∈F

is relatively compact in L1(Ω) and in W−1,1(Ω) as well.
On the other hand {∂f∂t : f ∈ F} is bounded in W−1,xLψ(Q) and L1(0, T ;W−1,1(Ω)
as well, since

W−1,xLψ(Q) ⊂W−1,xEθ(Q) ⊂ L1(0, T ;W−1Eθ(Ω)) ⊂ L1(0, T ;W−1,1(Ω))

with continuous imbedding.
By Remark 3 of [14], we deduce that ||τhf − f ||L1(0,T ;W−1,1(Ω)) → 0 uniformly in
f ∈ F when h → 0 and by using Theorem 2 of [14],F is relatively compact in
L1(0, T ;W−1,1(Ω)).
Since L1(Ω) ⊂W−1,1(Ω)) with continuous imbedding we can apply Lemma 4.2 to
conclude that F is relatively compact in L1(Q). ✷

Corollary 4.5. Let ϕ be a Musielak function.
Let (un) be a sequence of W 1,xLϕ(Q) such that

un ⇀ u weakly in W 1,xLϕ(Q) for σ(ΠLϕ,ΠLψ)
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and
∂un
∂t

= hn + kn in D
′(Q)

with hn bounded in W−1,xLψ(Q) and (kn) bounded in the space M(Q) of measures
on Q.
then un → u strongly in L1

loc(Q).

If further un ∈W 1,x
0 Lϕ(Q) then un → u strongly in L1(Q).

Proof: . It is easily adapted from that given in [8] by using Theorem 4.4 and
Remark 4.3 instead of Lemma 8 of [25]. ✷

5. Existence Result

Let Ω be a bounded Lipschitz domain in R
N (N ≥ 2) , T > 0 and set Q =

Ω× (0, T ).
Throughout this section, we denote Qτ = Ω× (0, τ ) for every τ ∈ [0, T ].
Let ϕ and γ two Musielak-Orlicz functions such that γ ≪ ϕ.
Consider a second-order operator A : D(A) ⊂ W 1,xLϕ(Q) → W−1,xLψ(Q) of the
form

A(u) = −diva(x, t, u,∇u),

where a : Ω × [0, T ] × R × R
N → R

N is a Carathéodory function, for almost
every(x, t) ∈ Ω× [0, T ] and all s ∈ R, ξ 6= ξ∗ ∈ R

N ,

|a(x, t, s, ξ)| ≤ β(c1(x, t) + ψ−1
x γ(x, ϑ|s|) + ψ−1

x ϕ(x, ϑ|ξ|)) (8)

(a(x, t, s, ξ)− a(x, t, s, ξ∗))(ξ − ξ∗) > 0 (9)

a(x, t, s, ξ)ξ ≥ αϕ(x,
|ξ|

λ
)− d(x, t) (10)

with c1(x, t) ∈ Eψ(Q), c1 ≥ 0, d(x, t) ∈ L1(Q), α, β, ϑ > 0.
Assume that g : Ω × [0, T ]× R × R

N → R is a Carathéodory function, for almost
every(x, t) ∈ Ω× [0, T ] and for all s ∈ R, ξ ∈ R

N :

|g(x, t, s, ξ)| ≤ b(|s|)(c2(x, t) + ϕ(x, |ξ|)) (11)

g(x, t, s, ξ)s ≥ 0 (12)

with c2(x, t) ∈ L1(Q) and b : R+ → R
+ is a continuous and nondecreasing function.

Furtheremore let

f ∈ W−1,xEψ(Q) (13)

Consider then the following parabolic initial-boundary value problem.






∂u
∂t +A(u) + g(x, t, u,∇u) = f in Q
u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω

(14)
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where u0 is a given function in L2(Ω).
We shall prove the following existence theorem.

Theorem 5.1. Assume that (8)-(13) hold true. Then the problem (14) admits
at least one weak solution u ∈ D(A) ∩ W 1,x

0 Lϕ(Q) ∩ C(([0, T ], L2(Ω)) such that
g(x, t, u,∇u) ∈ L1(Q), g(x, t, u,∇u)u ∈ L1(Q). Furthermore u(x, 0) = u0(x) for
almost every x ∈ Ω, and for all v ∈W 1,x

0 Lϕ(Q)∩L∞(Q) with ∂v
∂t ∈W−1,xLψ(Q)+

L2(Q) and for all τ ∈ [0, T ], we have

〈
∂v

∂t
, u〉Qτ + [

∫

Ω

u(t)v(t)dx]τ0 +

∫

Qτ

a(x, t, u,∇u)∇vdxdt

+

∫

Qτ

g(x, t, u,∇u)vdxdt = 〈f, v〉Qτ (15)

and for v = u, which gives the energy equality

1

2

∫

Ω

u2(τ )dx−
1

2

∫

Ω

u20dx +

∫

Qτ

a(x, t, u,∇u)∇udxdt

+

∫

Qτ

g(x, t, u,∇u)vdxdt = 〈f, u〉Qτ

Remark 5.2. As in the elliptic case (see, [6]), γ is introduced instead of ϕ in
(8) is done only to guarantee the boundedness in Lψ(Q) of ψ−1

x γ(x, ϑ|un|) and
ψ−1
x γ(x, ϑ|∇un|) whenever un is bounded in W 1,xLϕ(Q).

In the elliptic case,one usually takes γ = ϕ in the term ψ−1
x γ(x, ϑ|un|) since un is

bounded in a smaller space Lθ(Ω) with ϕ≪ θ; see [6].
However, in the parabolic case, we cannot conclude that there is the boundedness.
Nevertheless,we can take γ = ϕ if one of the following assertions holds true.
(1) ϕ satisfies a △2 condition near infinity.
(2) A is monotone, that is 〈A(u)−A(v), u−v〉 ≥ 0 for all u, v ∈ D(A)∩W 1,x

0 Lϕ(Q).
Indeed, suppose first that ϕ satisfies a △2 condition. Therefore (8) with now γ = ϕ,
imply that, for all ε > 0,

|a(x, t, s, ξ)| ≤ βε(cε(x, t) + ψ−1
x ϕ(x, ε|s|) + ψ−1

x ϕ(x, ε|ξ|)),

which allows us to deduce the boundedness in Lψ(Q) of a(x, t, un,∇un) and a(x, t,
un,∇un).
Assume now that A is monotone. We have, for all φ ∈ W 1,x

0 Eϕ(Q), 〈A(un) −
A(φ), un − φ〉 ≥ 0. This gives 〈A(un), φ〉 ≤ 〈A(un), un〉 − 〈A(φ), un − φ〉, which
implies that, since un is bounded in W 1,x

0 Lϕ(Q) and 〈A(un), un〉 is bounded from
above, thanks to the a priori estimates,

〈A(un), φ〉 ≤ Cφ for all φ ∈W 1,x
0 Eϕ(Q),

where Cφ is a constant depending on φ but not n. Therefore, the Banach-Steinhauss
theorem applies so that we can obtain the boundedness of A(un) in W−1,xLψ(Q).
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Proof of Theorem 5.1. We divide the proof in four steps.
Step 1. A priori estimates.
Consider the sequence of approximate problems:







un ∈ D(A) ∩W 1,x
0 Lϕ(Q) ∩ C(([0, T ], L2(Ω)), un(x, 0) = u0(x)a.e. ∈ Ω,

〈∂un∂t , v〉+ 〈A(un), v〉+
∫

Q
gn(x, t, un,∇un)vdxdt = 〈f, v〉

for all v ∈ W 1,x
0 Lϕ(Q)

(16)

where
gn(x, t, s, ξ) = Tn(g(x, t, s, ξ))

and where for k > 0, Tk means for the usual truncation operator at k defined on
R by

Tk(s) = max (−k, min (k, s))

Note that gn(x, t, s, ξ)s ≥ 0, |gn(x, t, s, ξ)| ≤ |g(x, t, s, ξ)| and |gn(x, t, s, ξ)| ≤ n.
Since gn is bounded for any fixed n > 0, there exists at last one solution un
of(16),(the existence of un can be obtained from Galerkin solutions corresponding
to the Equation (16) as in [19], see Theorem 1 of [2] for more details).
Note also that 〈u

′

n, v〉 is defined in the sense of distributions(where u
′

n = ∂un
∂t means

for the time derivative of un). Since u
′

n = f − A(un) − gn is in W−1,xLψ(Q) we
can extend 〈u

′

n, v〉 to all v ∈W 1,x
0 Lϕ(Q).

Using in (16) the test function un, we get

1

2

∫

Ω

u2n(T )dx−
1

2

∫

Ω

u20(x)dx +

∫

Q

a(x, t, un,∇un)∇undxdt

+

∫

Q

gn(x, t, un,∇un)undxdt = 〈f, un〉

which implies that
∫

Q

a(x, t, un,∇un)∇undxdt ≤ 〈f, un〉+ C

Where here and below C is a positive constant not depending on n.
By theorem 1 and theorem 5 of [3] we can say that:

{

(un) is bounded in W 1,x
0 Lϕ(Q),

∫

Q a(x, t, un,∇un)∇undxdt ≤ C

and
∫

Q gn(x, t, un,∇un)undxdt ≤ C
(17)

To prove that a(x, t, un,∇un) is a bounded sequence in (Lψ(Q))N . Let φ ∈
(Eϕ(Q))N with ||φ||ϕ,Q = 1.
In view of (9), we have

∫

Q

[a(x, t, un,∇un)− a(x, t, un, φ)][∇un − φ]dxdt ≥ 0,
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which gives
∫

Q

a(x, t, un,∇un)φdxdt ≤

∫

Q

a(x, t, un,∇un)∇undxdt

+

∫

Q

a(x, t, un, φ)[∇un − φ]dxdt.

Using (8) and (17), we easily see that
∫

Q

a(x, t, un,∇un)φdxdt ≤ C

And so a(x, t, un,∇un) is a bounded sequence in (Lψ(Q))N . Splitting Q into
|un| ≤ 1 and |un| > 1 and using (11), we can write

∫

Q

|gn(x, t, un,∇un)|dxdt ≤ b(1)

∫

{|un|≤1}

(c2(x, t) + ϕ(|∇T1(un)|))dxdt

+

∫

{|un|>1}

gn(x, t, un,∇un)undxdt ≤ C.

And then gn(x, t, un,∇un) is a bounded sequence in L1(Q) implying that ∂un
∂t is

a bounded sequence in W−1,xLψ(Q) + L1(Q), therefore Corollary 4.5 allows us to
deduce that un → u strongly in L1(Q). Thus, for some subsequence still denoted
by un and for some h ∈ (Lψ(Q))N :
{

un ⇀ u weakly in W 1,x
0 Lϕ(Q) for σ(ΠLϕ,ΠEψ), strongly in L1(Q)

and a.e. in Q and a(x, t, un,∇un)⇀ h in (Lψ(Q))N for σ(ΠLψ,ΠEϕ).
(18)

Step 2. Almost everywhere convergence of gradients.
Fix k > 0 and let φ(s) = s exp(δs2), δ > 0.It is well known that when δ ≥ ( b(k)2α )2

one has

φ′(s)−
b(k)

α
|φ(s)| ≥

1

2
for all s ∈ R (19)

Let vj ∈ D(Q) be a sequence such that

vj → u in W 1,x
0 Lϕ(Q) for the modular convergence (20)

and let wi ∈ D(Ω) be a sequence which converges strongly to u0 in L2(Ω).
Set ωiµ,j = Tk(vj)µ+exp(−µt)Tk(wi) where Tk(vj)µ is the mollification with respect
to time of Tk(vj),
see (6).
Note that ωiµ,j is a smooth function having the following properties:























∂
∂t (ω

i
µ,j) = µ(Tk(vj)− ωiµ,j), ω

i
µ,j(0) = Tk(vj), |ω

i
µ,j| ≤ k,

ωiµ,j → Tk(u)µ + exp(−µt)Tk(wi) in W 1,x
0 Lϕ(Q)

for the modular convergence as j → ∞,

Tk(u)µ + exp(−µt)Tk(wi) → Tk(u) in W 1,x
0 Lϕ(Q)

for the modular convergence as µ → ∞.
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Using in (16) the test function Zµ,in,j = φ(Tk(un)−ω
i
µ,j) which belongs toW 1,x

0 Lϕ(Q),
we get

〈u′n, Z
µ,i
n,j〉+

∫

Q

a(x, t, un,∇un)[∇Tk(un)−∇ωiµ,j ]φ
′(Tk(un)− ωiµ,j)dxdt

+

∫

Q

gn(x, t, un,∇un)φ(Tk(un)− ωiµ,j)dxdt = 〈f, φ(Tk(un)− ωiµ,j)〉,

which implies since gn(x, t, un,∇un)φ(Tk(un)− ωiµ,j) ≥ 0 on |un| > k :

〈u′n, Z
µ,i
n,j〉+

∫

Q

a(x, t, un,∇un)[∇Tk(un)−∇ωiµ,j ]φ
′(Tk(un)− ωiµ,j)dxdt

+

∫

Q

gn(x, t, un,∇un)φ(Tk(un)− ωiµ,j)dxdt ≤ 〈f, φ(Tk(un)− ωiµ,j)〉. (21)

In the sequel and throughout the paper, we will omit for simplicity the depen-
dence on x and t in the function a(x, t, s, ξ) and denote ε(n, j, µ, i, s) all quantities
(possibly different) such that

lim
s→∞

lim
i→∞

lim
µ→∞

lim
j→∞

lim
n→∞

ε(n, j, µ, i, s) = 0

and this will be the order in which the parameters we use will tend to infinity, that
is, first n, then j, µ, i and finally s. Similarly,we will write only ε(n), or ε(n, j),...
to mean that the limits are made only on the specified parameters.
We will deal with each term of (21). First of all, observe that

〈f, φ(Tk(un)− ωiµ,j)〉 = ε(n, j, µ) (22)

since Tk(un)− ωiµ,j ⇀ Tk(u)− ωiµ,j weakly in W 1,x
0 Lϕ(Q) as n→ ∞,

and Tk(u)−ωiµ,j → Tk(u)−Tk(u)µ+exp(−µt)Tk(wi) inW 1,x
0 Lϕ(Q) for the modular

convergence
and so for the topology σ(ΠLϕ,ΠLψ) as j → ∞,
and finally Tk(u)− Tk(u)µ + exp(−µt)Tk(wi) → 0 in W 1,x

0 Lϕ(Q) for the modular
convergence as µ→ ∞.
From (16) one deduces that un ∈W 1,x

0 Lϕ(Q) ∩ L2(Q) and ∂un
∂t ∈ W−1,xLψ(Q)

and then, by Theorem 3.2, there exists a smooth function unσ such that,
as σ → ∞,unσ → un in W 1,x

0 Lϕ(Q) ∩ L2(Q) and ∂unσ
∂t → ∂un

∂t in W−1,xLψ(Q) +
L2(Q) for modular convergence. Consequently

〈u′n, Z
µ,i
n,j〉 = lim

σ→∞

∫

Q

u′nσφ(Tk(unσ)− ωiµ,j)dxdt

= lim
σ→∞

∫

Q

[(Tk(unσ))
′ + (Gk(unσ))

′]φ(Tk(unσ)− ωiµ,j)dxdt,
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where Gk(s) = s− Tk(s). Hence

〈u′n, Z
µ,i
n,j〉 = lim

σ→∞

∫

Q

(Tk(unσ)− ωiµ,j)
′φ(Tk(unσ)− ωiµ,j)dxdt

+

∫

Q

(ωiµ,j)
′φ(Tk(unσ)− ωiµ,j)dxdt

+

∫

Q

(Gk(unσ))φ(Tk(unσ)− ωiµ,j)dxdt

= lim
σ→∞

(I1(σ) + I2(σ) + I3(σ)).

Setting Φ(s) =
∫ s

0
φ(r)dr, it is easy to see that Φ(s) ≥ 0,

I1(σ) = [

∫

Ω

Φ(Tk(unσ)(t) − ωiµ,j(t))dx]
T
0

≥ −

∫

Ω

Φ(Tk(unσ)(0)− Tk(wi))dx.

Since, as σ → ∞, the last side goes to −
∫

Ω
Φ(Tk(u0) − Tk(wi))dx which is of the

form ε(i), we get

lim sup
σ→∞

I1(σ) ≥ ε(i).

About I2(σ), we have, since (ωiµ,j)
′ = µ(Tk(vj)− ωiµ,j) and φ(s)s ≥ 0,

I2(σ) = µ

∫

Q

(Tk(vj)− ωiµ,j)φ((Tk(unσ)− ωiµ,j))dxdt

≥ µ

∫

Q

(Tk(vj)− Tk(unσ))φ((Tk(unσ)− ωiµ,j))dxdt.

Since, as σ → ∞, the last side goes to

µ

∫

Q

(Tk(vj)− Tk(un))φ((Tk(un)− ωiµ,j))dxdt,

which is of form ε(n, j), we obtain

lim sup
σ→∞

I2(σ) ≥ ε(n, j).

For what concerns I3(σ), one has by integrating by parts

I3(σ) = −

∫

Q

Gk(unσ)φ
′(Tk(unσ)− ωiµ,j)(Tk(unσ)− ωiµ,j)

′dxdt

+[

∫

Ω

Gk(unσ)(t)φ(Tk(unσ)− ωiµ,j)(t)dx]
T
0 .
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Since (Tk(unσ))
′ = 0 on {|unσ| > k} and

[

∫

Ω

Gk(unσ)(t)φ(Tk(unσ)− ωiµ,j)(t)dx]
T
0 ≥ −

∫

Ω

Gk(unσ)(0)φ(Tk(unσ)(0)

−Tk(wi)dx,

we have

I3(σ) ≥

∫

Q

Gk(unσ)φ
′(Tk(unσ)− ωiµ,j)(ω

i
µ,j)

′dxdt

−

∫

Ω

Gk(unσ)(0)φ(Tk(unσ)(0)− Tk(wi))dx

= µ

∫

Q

Gk(unσ)φ
′(Tk(unσ)− ωiµ,j)(Tk(vj)− ωiµ,j)dxdt

−

∫

Ω

Gk(unσ)(0)φ(Tk(unσ)(0)− Tk(wi))dx,

which implies that

lim sup
σ→∞

I3(σ) ≥ µ

∫

Q

Gk(un)φ
′(Tk(un)− ωiµ,j)(Tk(vj)− ωiµ,j)dxdt

−

∫

Ω

Gk(u0)φ(Tk(u0)− Tk(wi))dx,

and hence, by letting n→ ∞ in the first integral of last side,

lim sup
σ→∞

I3(σ) ≥ µ

∫

Q

Gk(u)φ
′(Tk(u)− ωiµ,j)(Tk(vj)− ωiµ,j)dxdt

−

∫

Ω

Gk(u0)φ(Tk(u0)− Tk(wi))dx + ε(n)

≥ µ

∫

Q

Gk(u)φ
′(Tk(u)− ωiµ,j)(Tk(vj)− Tk(u))dxdt

−

∫

Ω

Gk(u0)φ(Tk(u0)− Tk(wi))dx + ε(n), (23)

where we have used the fact that (recall that |ωiµ,j | ≤ k)
∫

Q

Gk(u)φ
′(Tk(u)− ωiµ,j)(Tk(u)− ωiµ,j)dxdt

=

∫

{u>k}

(u− k)φ′(k − ωiµ,j)(k − ωiµ,j)dxdt

+

∫

{u<−k}

(u+ k)φ′(−k − ωiµ,j)(−k − ωiµ,j)dxdt ≥ 0.

Since the first integral of last side of (23) is of the form ε(j) while the second one
is of the form ε(i), we deduce that

lim sup
σ→∞

I3(σ) ≥ ε(n, j, i).
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Combining the estimates on each Ii, we get

〈u′n, φ(Tk(un)− ωiµ,j)〉 ≥ ε(n, j, i). (24)

For s > 0, set Qs = {(x, t) ∈ Q : |∇Tk(u)| ≤ s} and Qsj = {(x, t) ∈ Q : |∇Tk(vj)| ≤
s} and denote by χs and χsj the characteristic functions of Qs and Qsj , respectively.
On the other hand, the second term of the left-hand side of (21) reads as

∫

Q

a(un,∇un)[∇Tk(un)−∇ωiµ,j]φ
′(Tk(un)− ωiµ,j)dxdt

=

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)]

[∇Tk(un)−∇Tk(vj)χ
s
j ]× φ′(Tk(un)− ωiµ,j)dxdt

+

∫

Q

a(Tk(un),∇Tk(vj)χ
s
j)[∇Tk(un)−∇Tk(vj)χ

s
j ]φ

′(Tk(un)− ωiµ,j)dxdt

+

∫

Q

a(Tk(un),∇Tk(un))∇Tk(vj)χ
s
jφ

′(Tk(un)− ωiµ,j)dxdt

−

∫

Q

a(un,∇un)∇ω
i
µ,jφ

′(Tk(un)− ωiµ,j)dxdt

:= J1 + J2 + J3 + J4.

We shall go to the limit as n, j, µ and s→ ∞ in the last three integrals of the last
side.
Starting with J2, we have by letting n→ ∞

J2 =

∫

Q

a(Tk(u),∇Tk(vj)χ
s
j)[∇Tk(u)−∇Tk(vj)χ

s
j ]φ

′(Tk(u)− ωiµ,j)dxdt+ ε(n),

since a(Tk(un),∇Tk(vj)χsj) → a(Tk(u),∇Tk(vj)χ
s
j) strongly in (Eψ(Q))N by using

(8) and Lebesgue theorem while ∇Tk(un)⇀ ∇Tk(u) weakly in (Lϕ(Q))N by (18).
Letting j → ∞ in the first term of last side of of the above equality, one has, since
a(Tk(u),∇Tk(vj)χ

s
j) → a(Tk(u),∇Tk(u)χ

s) strongly in (Eψ(Q))N by using (8),
(20) and Lebesgue theorem while ∇Tk(vj)χ

s
j → ∇Tk(u)χ

s strongly in (Lϕ(Q))N ,

J2 =

∫

Q\Qs
a(Tk(u), 0)∇Tk(u)φ

′(Tk(u)− Tk(u)µ − exp(−µt)Tk(wi))dxdt + ε(n, j)

since φ′(Tk(u)−Tk(u)µ− exp(−µt)Tk(wi)) → 1 a.e in Q and is uniformly bounded
by φ′(2k) we can let µ→ ∞ in the first term of the last side to get

J2 =

∫

Q\Qs
a(Tk(u), 0)∇Tk(u)dxdt+ ε(n, j, µ)

and thus, by letting s→ ∞, we conclude that J2 = ε(n, j, µ, s).
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About J3, we can write

J3 =

∫

{|un|≤k}

a(un,∇un)∇Tk(vj)χ
s
jφ

′(Tk(un)− ωiµ,j)dxdt

+

∫

{|un|>k}

a(Tk(un), 0)∇Tk(vj)χ
s
jφ

′(Tk(un)− ωiµ,j)dxdt,

which gives by letting n→ ∞, thanks to (18),

J3 =

∫

{|u|≤k}

h∇Tk(vj)χ
s
jφ

′(Tk(u)− ωiµ,j)dxdt

+

∫

{|u|>k}

a(Tk(u), 0)∇Tk(vj)χ
s
jφ

′(Tk(u)− ωiµ,j)dxdt + ε(n),

so that, by letting j → ∞ in two first integrals last of the last side and using (20),

J3 =

∫

{|u|≤k}

h∇Tk(u)χ
sφ′(Tk(u)− Tk(u)µ − exp(−µt)Tk(wi)dxdt + ε(n, j),

in which we can let µ→ ∞ to obtain

J3 =

∫

Q

h∇Tk(u)χ
sdxdt+ ε(n, j, µ).

Consequently, by letting s→ ∞,

J3 =

∫

Q

h∇Tk(u)dxdt+ ε(n, j, µ, s).

For what concerns J4 we have, as above, by letting first n then j and finally µ go
to infinity :

J4 =

∫

Q

h∇ωiµ,jφ
′(Tk(u)− ωiµ,j)dxdt+ ε(n)

=

∫

Q

h[∇Tk(u)µ − exp(−µt)Tk(wi)]

φ′(Tk(u)− Tk(u)µ − exp(−µt)Tk(wi))dxdt + ε(n, j)

= −

∫

Q

h∇Tk(u)dxdt+ ε(n, j, µ).

We conclude then that
∫

Q

a(un,∇un)[∇Tk(un)−∇ωiµ,j ]φ
′(Tk(un)− ωiµ,j)dxdt

=

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)][∇Tk(un)−∇Tk(vj)χ

s
j ]

×φ′(Tk(un)− ωiµ,j)dxdt + ε(n, j, µ, s). (25)
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The third term of the left-hand side of(21) can be estimated as

|

∫

{|un|≤k}

gn(x, t, un,∇un)φ(Tk(un)− ωiµ,j)dxdt |

≤ b(k)

∫

Q

(c2(x, t) +
1

α
d(x, t))|φ(Tk(un)− ωiµ,j)|dxdt

+
b(k)

α

∫

Q

a(Tk(un),∇Tk(un))∇Tk(un)|φ(Tk(un)− ωiµ,j)|dxdt. (26)

Since c2(x, t) and d(x, t) belong to L1(Q) it is easy to see that

b(k)

∫

Q

(c2(x, t) +
1

α
d(x, t))|φ(Tk(un)− ωiµ,j)|dxdt = ε(n, j, µ).

On the other hand, the second term of the right-hand side of (26) reads as

b(k)

α

∫

Q

a(Tk(un),∇Tk(un))∇Tk(un)|φ(Tk(un)− ωiµ,j)|dxdt

=
b(k)

α

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)]

×[∇Tk(un)−∇Tk(vj)χ
s
j ]|φ(Tk(un)− ωiµ,j)|dxdt

+
b(k)

α

∫

Q

a(Tk(un),∇Tk(vj)χ
s
j)[∇Tk(un)−∇Tk(vj)χ

s
j ]|φ(Tk(un)− ωiµ,j)|dxdt

b(k)

α

∫

Q

a(Tk(un),∇Tk(un)∇Tk(vj)χ
s
j ]|φ(Tk(un)− ωiµ,j)|dxdt.

As above, by letting successively first n, then j, µ and finally s go to infinity, we
can easily see that each one of last two integrals of the right-hand side of the last
equality is of the form ε(n, j, µ) and then

|

∫

{|un|≤k}

gn(x, t, un,∇un)φ(Tk(un)− ωiµ,j)dxdt |

≤
b(k)

α

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)]

×[∇Tk(un)−∇Tk(vj)χ
s
j ]|φ(Tk(un)− ωiµ,j)|dxdt + ε(n, j, µ). (27)

Combining (21),(22),(24),(25) and (27), we get
∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)][∇Tk(un)−∇Tk(vj)χ

s
j ]

×[φ′(Tk(un)− ωiµ,j)−
b(k)

α
|φ(Tk(un)− ωiµ,j)|]dxdt ≤ ε(n, j, µ, i, s).

and so,thanks to (19),
∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)]

×[∇Tk(un)−∇Tk(vj)χ
s
j ]dxdt ≤ 2ε(n, j, µ, i, s). (28)
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On the other hand, we have

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s)][∇Tk(un)−∇Tk(u)χ

s]dxdt

−

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)][∇Tk(un)−∇Tk(vj)χ

s
j ]dxdt

=

∫

Q

a(Tk(un),∇Tk(un))[∇Tk(vj)χ
s
j −∇Tk(u)χ

s]dxdt

−

∫

Q

a(Tk(un),∇Tk(u)χ
s)[∇Tk(un)−∇Tk(u)χ

s]dxdt

+

∫

Q

a(Tk(un),∇Tk(vj)χ
s
j)[∇Tk(un)−∇Tk(vj)χ

s
j ]dxdt

and,as it can be easily seen, each integral of the right-hand side is of the form
ε(n, j, s), implying that

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s)][∇Tk(un)−∇Tk(u)χ

s]dxdt

=

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)]

×[∇Tk(un)−∇Tk(vj)χ
s
j ]dxdt+ ε(n, j, s). (29)

For r ≤ s, we have

0 ≤

∫

Qr
[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))]

[∇Tk(un)−∇Tk(u)]dxdt

≤

∫

Qs
[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))]

[∇Tk(un)−∇Tk(u)]dxdt

=

∫

Qs
[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ

s)]

[∇Tk(un)−∇Tk(u)χ
s]dxdt

≤

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u)χ
s)]

[∇Tk(un)−∇Tk(u)χ
s]dxdt

=

∫

Q

[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(vj)χ
s
j)]

[∇Tk(un)−∇Tk(u)χ
s
j ]dxdt+ ε(n, j, s)

≤ ε(n, j, µ, i, s),
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hence, by passing to the limit sup over n, get

0 ≤ lim sup
n→∞

∫

Qr
[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))]

[∇Tk(un)−∇Tk(u)]dxdt

≤ lim sup
n→∞

ε(n, j, µ, i, s),

in which we let successively j → ∞, µ→, i→ ∞ and s→ ∞ to obtain
∫

Qr
[a(Tk(un),∇Tk(un))− a(Tk(un),∇Tk(u))]

[∇Tk(un)−∇Tk(u)]dxdt → 0 asn→ ∞

and thus,as in the elliptic case(see [1]), there exists a subsequence also denote by
un such that

∇un → ∇u a.e. inQ. (30)

We deduce then that,for all k > 0
a(x, t, Tk(un),∇Tk(un))⇀ a(x, t, Tk(u),∇Tk(u))
and a(x, t, un,∇un)⇀ a(x, t, u,∇u) weakly in (Lψ(Q))N for σ(ΠLψ,ΠEϕ)
Step 3. Modular convergence of the truncations and equi-integrability of the
nonlinearities.
Thanks to (28) and (29), we can write

∫

Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt

≤

∫

Q

a(Tk(un),∇Tk(un))∇Tk(u)χ
sdxdt

+

∫

Q

a(Tk(un),∇Tk(u)χ
s)[∇Tk(un)−∇Tk(u)χ

s]dxdt

+ε(n, j, µ, i, s),

and then

lim sup
n→∞

∫

Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt

≤

∫

Q

a(Tk(u),∇Tk(u))∇Tk(u)χ
sdxdt

+

∫

Q

a(Tk(un),∇Tk(u)χ
s)[1 − χs]dxdt

+ lim
n→∞

ε(n, j, µ, i, s),

in which we can pass to the limit as j, µ, i, s→ ∞ to obtain

lim sup
n→∞

∫

Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt ≤

∫

Q

a(Tk(u),∇Tk(u))∇Tk(u)dxdt.
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On the other hand, Fatou’s lemma implies
∫

Q

a(Tk(u),∇Tk(u))∇Tk(u)dxdt ≤ lim inf
n→∞

∫

Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt,

and thus, as n→ ∞,
∫

Q

a(Tk(un),∇Tk(un))∇Tk(un)dxdt →

∫

Q

a(Tk(u),∇Tk(u))∇Tk(u)dxdt.

Since a(Tk(un),∇Tk(un))∇Tk(un) ≥ d(x, t) ∈ L1(Q) we deduce that

a(Tk(un),∇Tk(un))∇Tk(un)dxdt → a(Tk(u),∇Tk(u))∇Tk(u)dxdt in L1(Q), (31)

as n→ ∞; implying by using (10) and Vitali’s theorem that

∇Tk(un)) → ∇Tk(u) in (Lϕ(Q))N for the modular convergence .

We shall now prove that gn(x, t, un,∇un) → g(x, t, un,∇un) strongly in L1(Q) by
using Vitli’s theorem. Since gn(x, un,∇un) → g(x, un,∇un) a.e. in Q,thanks to
(17)and (29), it suffices to prove that gn(x, t, un,∇un) are uniformly equi-integrable
in Q.
Let E ⊂ Q be a measurable subset of Q. We have for any m > 0

∫

E

|gn(x, t, un,∇un)|dxdt =

∫

E∩{|un|≤m}

|gn(x, t, un,∇un)|dxdt

+

∫

E∩{|un|>m}

|gn(x, t, un,∇un)|dxdt.

On the one hand
∫

E∩{|un|>m}

|gn(x, t, un,∇un)|dxdt ≤
1

m

∫

Q

gn(x, t, un,∇un)undxdt ≤
C

m
,

where C is the constant in (17). Therefore, there exists m = m(ε) large enough
such that

∫

E∩{|un|>m}

|gn(x, t, un,∇un)|dxdt ≤
ε

2
∀n.

On the other hand
∫

E∩{|un|≤m}

|gn(x, t, un,∇un)|dxdt

≤

∫

E

|gn(x, t, Tm(un),∇Tm(un))|dxdt

≤ b(m)

∫

E

[c2(x, t) + ϕ(x, |∇Tm(un)|)]dxdt

≤ b(m)

∫

E

[c2(x, t) +
1

α
d(x, t)]dxdt

+
b(m)

α

∫

E

a(Tm(un),∇Tm(un))∇Tm(un)dxdt.
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By virtue of strong convergence (31) and the fact that c2(x, t), d(x, t) ∈ L1(Q),
there exists ν such that

|E| < ν ⇒

∫

E∩{|un|≤m}

|gn(x, t, un,∇un)|dxdt ≤
ε

2
∀n.

Consequently,

|E| < ν ⇒

∫

E

|gn(x, t, un,∇un)|dxdt ≤ ε∀n,

which shows that gn(x, t, un,∇un) are uniformly equi-integrable in Q as required.
Step 4. Passage to the limit and regularity of the solution.
Let v ∈ W 1,x

0 Lϕ(Q) ∩ L∞(Q) such that ∂v
∂t ∈ W−1,xLψ(Q) + L2(Q). There exists

a prolongation v̄ of v such that (see proof of Lemma1)

v̄ = v on Q, v̄ ∈W 1,x
0 Lϕ(Ω× R) ∩ L2(Ω× R) ∩ L∞(Ω× R),

and

∂v̄

∂t
= v ∈W−1,xLψ(Ω× R) + L2(Ω× R). (32)

By Theorem1(see also Remark1), there exists a sequence (wj ⊂ D(Ω × R)) such
that

wj → v̄ in W 1,x
0 Lϕ(Ω× R) ∩ L2(Ω× R),

and

∂wj
∂t

→
∂v̄

∂t
in W−1,xLψ(Ω× R) + L2(Ω× R), (33)

for the modular convergence and ||wj ||∞,Ω×R ≤ (N + 2)||v̄||∞,Ω×R.
Go back to approximate equations (16) and use wjχ(0,τ), for every τ ∈ [0, T ](which

belongs to W 1,x
0 Lϕ(Q)) as a test function one has

〈
∂un
∂t

, wj〉Qτ +

∫

Qτ

a(x, t, un,∇un)∇wjdxdt

+

∫

Qτ

gn(x, t, un,∇un)wjdxdt = 〈f, wj〉Qτ ,

which implies that

[

∫

Ω

un(t)wj(t)dx]
τ
0 −

∫

Qτ

un
∂wj
∂t

dxdt+

∫

Qτ

a(x, t, un,∇un)∇wjdxdt

+

∫

Qτ

gn(x, t, un,∇un)wjdxdt = 〈f, wj〉Qτ . (34)
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We shall go to the limit as n → ∞ in all terms of (34). Since for all j, wjχ(0,τ) ∈

D(Q̄τ ) we have

−

∫

Qτ

un
∂wj
∂t

dxdt → −

∫

Qτ

u
∂wj
∂t

dxdt,

∫

Qτ

a(x, t, un,∇un)∇wjdxdt →

∫

Qτ

a(x, t, u,∇u)∇wjdxdt

and
∫

Qτ

gn(x, t, un,∇un)wjdxdt →

∫

Qτ

g(x, t, u,∇u)wjdxdt.

To go to the limit as n → ∞ in the first term of (34), we will first prove that
un → u in C([0, T ], L2(Ω)) (implying, in particular, that u ∈ C([0, T ], L2(Ω))).
To do that,let now ωi,lj,µ = Tl(vj)µ + exp(−µt)Tl(wi) and
ωi,lµ = Tl(u)µ + exp(−µt)Tl(wi), for every l > 0.
On one hand, we have for every τ ∈ (0, T ]

〈(ωi,lj,µ)
′, un − ωi,lj,µ〉Qτ = µ

∫

Qτ

(Tl(vj)− ωi,lj,µ)(un − ωi,lj,µ)dxdt

→ µ

∫

Qτ

(Tl(vj)− ωi,lj,µ)(u − ωi,lj,µ)dxdt

→ µ

∫

Qτ

(Tl(u)− ωi,lj,µ)(u− ωi,lj,µ)dxdt ≥ 0, (35)

as first n → ∞ and then j → ∞ and where we have used the fact that ωi,lµ ≤ l to
get the positiveness of last integral.
On the other hand, by using (16)

〈u′n, un − ωi,lj,µ〉Qτ = 〈f, un − ωi,lj,µ〉Qτ +

∫

Qτ

a(un,∇un)[∇ω
i,l
j,µ −∇un]dxdt

+

∫

Qτ

gn(x, t, un,∇un)(ω
i,l
j,µ − un)dxdt,

in which we can use Fatou’s lemma and Lebesgue theorem to pass to the limit sup
first over n and then over j, µ, l, to get

〈u′n, un − ωi,lj,µ〉Qτ ≤ ε(n, j, µ, l) not depending on τ . (36)

Therefore, by writing

1

2
||un(τ )− ωi,lj,µ(τ )||

2
L2(Ω) = 〈u′n − (ωi,lj,µ)

′, un − ωi,lj,µ〉Qτ

+
1

2

∫

Ω

(u0 − Tl(wi))
2dxdt

= 〈u′n − (ωi,lj,µ)
′, un − ωi,lj,µ〉Qτ

+
1

2
||u0, un − Tl(wi)||

2
L2(Ω),
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and using (35) and (37), we deduce that ||un(τ )−ω
i,l
j,µ(τ )||L2(Ω) ≤ ε(n, j, µ, l, i) not

depending on τ ∈ (0, T ]. This implies that

||un(τ )− um(τ )||L2(Ω) ≤ ε(n,m) not depending on τ ∈ [0, T ],

and thus,un is a Cauchy sequence in C([0, T ], L2(Ω)).
Since the limit of un in L1(Q) is u we deduce that

un → u in C([0, T ],Ω),

therefore, by letting n→ ∞ in the first term of (34), we have

[

∫

Ω

un(t)wj(t)dx]
τ
0 → [

∫

Ω

u(t)wj(t)dx]
τ
0 .

Consequently, by letting n→ ∞ in (34), we get

[

∫

Ω

u(t)wj(t)dx]
τ
0 −

∫

Qτ

u
∂wj
∂t

dxdt+

∫

Qτ

a(x, t, u,∇u)∇wjdxdt

+

∫

Qτ

g(x, t, u,∇u)wjdxdt = 〈f, wj〉Qτ . (37)

We shall now go to the limit as j → ∞ in all terms of (37). In view of (33) and the
fact that wj are uniformly bounded, there is problem to pass to the limit in last
four terms of (37). For what concerns the first one,observe that,as in the proof of
Lemma 3.4, we have wj → v in C([0, T ], L2(Ω)). Therefore, we can let j → ∞ in
all terms of (37) to get

[

∫

Ω

u(t)v(t)dx]τ0 − 〈
∂v

∂t
, u〉Qτ +

∫

Qτ

a(x, t, u,∇u)∇vdxdt

+

∫

Qτ

g(x, t, u,∇u)vdxdt = 〈f, v〉Qτ ,

which shows that u satisfies all properties of Theorem 5.1.
It only remains to prove the energy equality. For that, we use, for a given k >
0, Tk(un) as a test function in (16), to get

〈u′n, Tk(un)〉Qτ = −

∫

Qτ

a(x, t, un,∇un)∇Tk(un)dxdt

−

∫

Qτ

gn(x, t, un,∇un)Tk(un)dxdt+ 〈f, Tk(un)〉Qτ ,

which gives by setting Sk(s) =
∫ s

0
Tk(z)dz,

∫

Ω

Sk(un(τ ))dx−

∫

Ω

Sk(u0)dx = −

∫

Qτ

a(x, t, un,∇un)∇Tk(un)dxdt

−

∫

Qτ

gn(x, t, un,∇un)Tk(un)dxdt+ 〈f, Tk(un)〉Qτ . (38)
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Recall that |Sk(un(τ ))| ≤ k|un(τ )| → k|u(τ )| in L2(Ω) as n → ∞, then, by using
Lesbegue theorem and (31), we can pass to the limit as n → ∞ each term of (38)
to obtain

∫

Ω

Sk(u(τ ))dx−

∫

Ω

Sk(u0)dx = −

∫

Qτ

a(x, t, u,∇u)∇Tk(u)dxdt

−

∫

Qτ

g(x, t, u,∇u)Tk(u)dxdt+ 〈f, Tk(u)〉Qτ . (39)

Observe that for every s ∈ R,

|Sk(s)| ≤
s2

2
and Sk(s) →

s2

2
as k → ∞,

so that, by using Lebesgue theorem and the fact that u(τ ) ∈ L2(Ω), we have, as
k → ∞

∫

Ω

Sk(u(τ ))dx→
1

2

∫

Ω

u2(τ) and
∫

Ω

Sk(u0)dx→
1

2

∫

Ω

Sk(u0)
2dx.

Remark also that

|a(x, t, Tk(u),∇Tk(u))∇Tk(u)| ≤ a(x, t, u,∇u)∇u ∈ L1(Q)

and

|g(x, t, Tk(u),∇Tk(u))∇Tk(u)| ≤ g(x, t, u,∇u)∇u ∈ L1(Q),

therefore, it is easy to pass the limit as k → ∞ in (39) to get the energy equality

[
1

2

∫

Ω

u(t)2dx]τ0 +

∫

Qτ

a(x, t, u,∇u)∇udxdt

+

∫

Qτ

g(x, t, u,∇u)udxdt = 〈f, u〉Qτ .

This completes the proof of Theorem 5.1.
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