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Abstract. In the current study, we investigate efficient capital accumulation in a 
stochastic neoclassical aggregate growth model. The underlying uncertainty is 
driven by Brownian-motion shocks and the major results do not rely on the 
specification of production functions. The stochastic balanced path of the capital-
labor ratio is naturally derived by a martingale, and the corresponding modified 
Golden Rule path of capital accumulation is well-defined. The powerful martingale 
theory is thus employed, and a stochastic turnpike theorem involving the modified 
Golden Rule is proved. That is, the underlying path of capital accumulation is 
asymptotically efficient in the sense of consumption maximization. We focus on 
asymptotic turnpike theorems and our turnpike theorem only relies on the 
requirement that the modified Golden-Rule path of capital accumulation is 
reachable in any almost surely finite Markov time. Finally, it is asserted that the 
modified Golden-Rule path of capital accumulation indeed provides us with a 
robust turnpike under very weak assumptions. 
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1. Introduction 

In his seminal paper, Merton (1975) extends the one-sector neoclassical growth 
model of Solow-type to stochastic cases where the dynamics of capital-labor ratio 
is driven by a diffusion process, thereby providing us with an asymptotic theory of 
economic growth under uncertainty. Later on, Chang and Malliaris (1987) prove a 
theorem that confirms the existence and uniqueness of the stochastic growth path 
derived by Merton under certain assumptions. Therefore, noting the important and 
interesting properties reflected by Merton’s model, the motivation of present 
exploration is to derive a well-defined modified Golden Rule path of capital 
accumulation and establish corresponding turnpike theorem based upon Merton’s 
framework and also the theorem demonstrated by Chang and Malliaris. In other 
words, the current study enriches Merton’s model and conclusion by uncovering a 
robust turnpike theorem involving the modified Golden Rule implicitly implied by 
the basic model. 

In deterministic neoclassical models, Golden Rule or modified Golden Rule is 
usually derived through the balanced path of capital-labor ratio (Cass, 1966, 
1972). Similarly, the present modified Golden Rule is established via letting the 
drift term of the diffusion process of capital-labor ratio be equal to zero, thereby 
producing a martingale path of capital accumulation. That is, we define the 
stochastic balanced path of capital-labor ratio of the current stochastic 
neoclassical model by the martingale-path of capital-labor ratio. As a matter of 
fact, there is a natural one-to-one correspondence between the modified Golden 
Rule and the martingale-path of capital-labor ratio. Consequently, it is ensured 
that the modified Golden Rule derived through the stochastic balanced path, i.e., 
the martingale path, of capital-labor ratio is well defined. And this creates a 
natural opportunity such that the powerful martingale theory can be appropriately 
employed to demonstrate the turnpike theorem. Rather, the present turnpike 
theorem shows that the martingale-path of capital-labor ratio will converge to the 
modified Golden Rule almost surely and in the sense of uniform topology (Dai, 
2012) as long as the modified Golden Rule is reachable in any almost surely finite 
time. And one can easily notice the differences between the present result and 
those proved by Cass (1966) and Samuelson (1965) in deterministic neoclassical 
aggregate growth models. 

When we define the concept of capital in a very broad sense, i.e., including human 
capital, health capital, environmental capital, and so on, then capital accumulation 
indeed plays a crucial role in modern economic growth. For example, the 
Germany and Japan after World War II and China after 1978s (Song et al., 2011). 
We, hence, are motivated to explore efficient capital accumulation in stochastic 
growth economies with Brownian-motion shocks. The major contribution of the 
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present paper can be summarized as follows: first, since Brownian motion shocks 
are widely used in continuous-time stochastic growth models, we provide an 
appropriate definition of the modified Golden-Rule path of capital accumulation 
in such kind of economies and this definition does not rely on the explicit 
specification of the Brownian shocks; second, we develop a systematic 
mathematical method for proving robust turnpike theorems in such kind of 
circumstances involving the above modified Golden-Rule path of capital 
accumulation, and we believe that our method is general enough to be used in 
other related environments. In other words, our contribution mainly focuses on 
theoretical issues of macroeconomic growth theory. 

There are some related literatures. As is argued by Yano (1985), existing turnpike 
theorems in optimal growth theory can be summarized as the following two types, 
one is neighborhood turnpike theorem (Yano, 1984, McKenzie, 1982, 
Kamihigashi, Roy, 2007, Kondo, 2008, Dai, 2012) which asserts that an optimal 
path in a growth model converges to a small neighborhood of a stationary path, 
the other is asymptotic turnpike theorem (Bewley, 1982, Yano, 1985, Sahashi, 
2002, Dai, 2012) which means that an optimal path converges to a stationary path. 
As you will see below, the present paper focuses on asymptotic turnpike theorem 
and we have confirmed the corresponding robustness in a continuous-time 
stochastic growth model. On the other hand, it is well-known that the Golden Rule 
path has been playing a very important role in neoclassical theory of capital 
accumulation (Cass, 1966, 1972, Samuelson, 1965, de la Croix and Ponthiere, 
2010, Mitra, Ray, 2012, Acemoglu, 2012) starting from the pioneering papers of 
Phelps (1962, 1965). Recently, Schenk-Hoppé (2002) also studies the Golden 
Rule in stochastic Solow growth model. Schenk-Hoppé employs dynamical 
systems theory, especially the concept of a random fixed point (Schenk-Hoppé, 
Schmalfuss, 2001), to prove the existence of a Golden-Rule savings rate for the 
stochastic Solow model. Methodologically, in studying the Golden-Rule path of 
capital accumulation, Brock and Mirman (1972) use the classical stochastic 
stability theory of Markov chains while Bayer and Wälde (2011) expand their 
distributional analysis by using the stability theory for Markov processes in 
continuous time. We heavily employ martingale theory, which depends on 
continuous-time Markov processes driven by Brownian motions in the present 
economy, to demonstrate the corresponding turnpike theorem involving the 
modified Golden-Rule path of capital accumulation. This method can be regarded 
as a useful complement to existing literatures involving the issue of efficient 
capital accumulation under uncertainty. 

The rest of the paper is organized as follows. Section 2 presents the basic model. 
Section 3 defines the modified Golden Rule path of capital accumulation, proves 
the turnpike theorem and also confirms the corresponding robustness. Section 4 
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closes the paper with some concluding remarks. All proofs, unless otherwise 
noted in the text, appear in the Appendix. 

 

2. The model 

The major goal of the model is to introduce the stochastic path of capital 
accumulation in a one-sector neoclassical growth model with the uncertainty 
coming from the population size L(t), i.e., following Merton (1975), 

( ) ( ) ( ) ( )dL t nL t dt L t dB t  .                                         (1) 

which is based upon the underlying filtered probability space  , , F  0t t T 
F , P  

with E  denoting the expectation operator depending on  0 , �F . 

As usual, the neoclassical production function  ( ) ( ), ( )Y t F K t L t  is assumed to 

be strictly concave, homogeneous of first degree and also exhibit constant returns 
to scale with the law of motion of capital accumulation expressed as follows, 

 ( )
( ), ( ) ( ) ( )

dK t
F K t L t K t C t

dt
   .                                   (2) 

in which, , an exogenously given constant, denotes the depreciation rate and 
( )C t  represents aggregate consumption at time t. 

Now, combining (1) with (2) and applying the classical Itô’s rule yields the 
following SDE of capital-labor ratio, 

   2( ) ( ) ( ) ( ) ( ) ( )dk t f k t n k t c t dt k t dB t          .               (3) 

subject to 0(0) 0k k   , a deterministic constant. And  ( ) ( ) ( )f k t Y t L t� ,  ( )c t  

( ) ( )C t L t�  stand for per capita output and per capita consumption, respectively, 
at time t . Specifically, for the SDE of capital-labor ratio given by (3), Chang and 
Malliaris (1987) proved the following result, 

PROPOSITION 1: If the production function f  is strictly concave, continuously 

differentiable on  0, , (0) 0f  , and    ( )
( ) ( ) ( )lim ( ) lim 0df k t

k t k t dk tf k t  � , 

then there exists a unique solution to (3). 

In order to make things much easier, we need, 

ASSUMPTION 1: The assumptions or conditions given by Proposition 1 are 
assumed to be fulfilled throughout the current paper. 

 

≜

≜

≜

≜	
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3. Turnpike theorem 

In the present section, we will derive a modified Golden Rule and establish the 
corresponding turnpike theorem under relatively weak conditions. For the SDE of 
capital-labor ratio given by (3), we denote the drift term by, 

   2( ) ( ) ( ) ( )b t f k t n k t c t    � .                                 (4) 

which implies that the capital-labor ratio ( )k t  tends to increase if ( ) 0b t  , and 

the capital-labor ratio tends to decrease if ( ) 0b t  . Noting that the Golden Rule or 
modified Golden Rule is usually derived via the balanced path of capital-labor 
ratio in the deterministic case (Cass, 1966, 1972), we similarly derive the 
modified Golden Rule by letting ( ) 0b t  , which corresponds to the stochastic 
balanced path of capital-labor ratio and this gives rise to, 

   2( ) ( ) ( )c t f k t n k t     .                                      (5) 

Hence, the corresponding stochastic Golden Rule k  is determined by, 

  2f k n     .                                                  (6) 

Meanwhile, substituting (5) into (3) leads us to, 

( ) ( ) ( )dk t k t dB t  .                                                 (7) 
which hence defines a martingale-path of capital-labor ratio. Now, we can 
establish, 

THEOREM 1 (Turnpike Theorem): If the following Markov time, 

 ( ) inf 0; ( )t k t k     �  a.s. 

then we get that the martingale-path of capital-labor ratio given by (7) will 
strongly converge to the stochastic Golden Rule k  given by (6) a.s. and in the 
sense of uniform topology. 

PROOF: By the Doob’s Martingale Inequality, 

0

0

1
sup ( ) ( )

t T

k
k t k T

  

         
P E , 0  , 0T  .  

Without loss of generality, we put 2m   for m � , then, 

0
0

1
sup ( ) 2

2
m

m
t T

k t k
 

   
 

P , m  � , 0T  . 

Using the well-known Borel-Cantelli Lemma, we arrive at, 

≜	

≜	

N

N
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0
(sup ( ) 2m

t T
k t

 
P  for infinitely many ) 0m  , 0T  . 

So for a.a.  , there exists ( )m  �  such that, 

0
sup ( ) 2m

t T
k t

 
  a.s. for ( )m m  , 0T  . 

i.e., 

0
lim sup ( ) 2m

T t T
k t

  
  a.s. for ( )m m  .                                  (8) 

Thus, ( ) ( , )k t k t   is uniformly bounded for  0,t T , 0T   and for a.a. 

 . Define, 

   2
( ) ( ) 0; ( ) ( ) 2m

mB        
    �  m  �. 

Thus, for  2 m

m B 
  , and based on the assumption that ( )     a.s., 

applying Doob’s optional sampling theorem and Doob’s martingale inequality 
lead us to, 

0

1
sup ( ) ( )

m

m

t

k t k k k


 


 

 

          
P E , 0  . 

According to (8) and the continuity of martingale w. r. t. time t , an application of 
Lebesgue bounded convergence theorem shows, 

0

1
limsup sup ( ) limsup ( ) 0

m

m

m mt

k t k k k


 


 

  

           
P E , 0  . 

which yields, 

0

limsup sup ( ) 1
mm t

k t k




  

    
 

P , 0  . 

It follows from Fatou’s Lemma that, 

0

sup ( ) 1
t

k t k







 

    
 

P , 0  . 

Thus, we get, 

0

sup ( )
t

k t k







 
  , a.s. for 0  . 

i.e., 

0

limsup sup ( )
t

k t k
 


 



  
  , a.s. for 0  . 

Noting the arbitrariness of  , the required assertion follows. ■ 

N

N.≜	
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Next, we proceed to analyze the robustness of the turnpike theorem given by 
Theorem 1, i.e., we show that the modified Golden Rule k  indeed provides us 
with a robust turnpike under relatively weak assumptions. Based upon the 
martingale path given by (7), we set, 

( ) ( ) ( )dk t k t dB t   .                                                 (9) 

subject to 0(0) 0k k  � , a deterministic constant, such that, 

ASSUMPTION 2: For any 0  , suppose that, 

    . 

for any non-zero constants   and   with     . 

As preparations, we need the following two lemmas, 

LEMMA 1: There exist constants 0( , , )e k p T    and 0( , , )e k p T    such that, 

(i) 0
0
sup ( ) ( , , )

p

t T
k t e k p T

 

    
E . 

and, 

(ii) 0
0
sup ( ) ( , , )

p

t T
k t e k p T

 

    
 E . 

for 0 T    , p � , 2p  . 

PROOF: See Appendix A. ■ 

Rather, we can obtain the following result for the present case, 

LEMMA 2: For ( )k t  defined in (7) and ( )k t  defined in (9), one can get that, 

(i) 1
0

0
sup ( )

1

p
p p

t T

p
k t k

p
 

 

          
E . 

and, 

(ii) 1
0

0
sup ( )

1

p
p

p

t T

p
k t k

p
 

 

          
 E . 

for 0     , 0     , 0 T    , and p � , 2p  . 

PROOF: See Appendix B. ■ 

 

 

≜

N 

N
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Then, the following proposition is derived, 

PROPOSITION 2: Based upon the above assumptions and Lemma 1 or 2, then we 
have, 

2

0
lim sup ( ) ( ) 0
T t T

k t k t
  

    
E  as 0  . 

PROOF: See Appendix C. ■ 

As you can see in the proof of Proposition 2, Lemma 1 or Lemma 2 plays a 
technical role in confirming the corresponding stability of the underlying turnpike. 
Indeed, Lemma 1 proves the uniform bound property of the path of capital 
accumulation and we have further provided the explicit supremum of the path of 
capital accumulation in Lemma 2, which imply that both Lemma 1 and Lemma 2 
are of independent interest in characterizing intrinsic properties of the underlying 
path of capital accumulation. Consequently, combining Theorem 1 with Proposition 2 
reveals that, 

COROLLARY 1 (Robust Turnpike Theorem): Provided Theorem 1 and 
Proposition 2, we get that the turnpike theorem keeps invariant as the 
perturbation 0  , i.e., the modified Golden Rule k  is indeed a robust turnpike 
in the present model economy. 

 

4. Concluding remarks 
As is broadly known, both turnpike theorems and the Phelps-Koopmans Theorem 
play very important roles in macroeconomics (Acemoglu, 2012). Turnpike theory 
(McKenzie, 1976, 1998, Joshi, 1997, Dai, 2012) characterizes the mathematical 
properties of the equilibrium or optimal path of resource allocation while the 
classical Phelps-Koopmans Theorem (Phelps, 1962, 1965, Ray, 2010, Mitra, Ray, 
2012) clearly uncovers that the efficient path of capital accumulation will 
definitely converge to the Golden Rule in the long run, otherwise, dynamically 
inefficient accumulation happens. Samuelson (1965) proved a neighborhood 
turnpike theorem involving the Golden Rule in the classical Ramsey (1928) 
model, while the present paper demonstrates an asymptotic turnpike theorem 
involving the modified Golden Rule in a stochastic neoclassical growth model, 
which implies that the path of capital accumulation is dynamically efficient. 
Finally, it is also confirmed that the modified Golden Rule path of capital 
accumulation is indeed a robust turnpike. 

Finally, noting that the present paper just represents a simple starting point in 
exploring turnpike properties of capital accumulation from the present 
perspective, some interesting extensions can be taken into account in future 
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research. For example, since we only proves an asymptotic turnpike theorem in 
the underlying economy, one interesting and possible extension is to find out 
conditions supporting a neighborhood turnpike theorem for neighborhood 
efficiency characterization of stochastic capital accumulation. Moreover, notice 
that the (modified) Ramsey rule also plays a crucial role in savings behavior and 
macroeconomic growth, it is interesting to investigate the corresponding turnpike 
theorems involving Ramsey rules by effectively employing the mathematical 
method developed in the present study. As a final point, if we are motivated to 
investigate the effect of stochastic TFP imposed on the efficient path of capital 
accumulation, geometric Brownian motion can be naturally employed with the 
purpose of introducing technology fluctuation into the underlying economy as in 
Wälde (2011) and Bucci et al. (2011). 
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Appendix 

A. Proof of Lemma 1 
Applying Itô’s rule to (7), 

 2 2 2 2 2
0

0 0

( ) ( ) 2 ( ) ( )
t t

k t k k s ds k s dB s      . 

Thus, for  1 0,t T   and for some constant ( )e e p , which may be different 

from line to line throughout the proof, we get, 

 
2 21

1 1

2 2 2
0

0 00 0

sup ( ) ( ) sup ( ) ( )

p p
t t

p p

t t t t
k t e k k s ds k s dB s 

   

        
    
  . 

It follows from Cauchy-Schwarz Inequality that, 

 
21

1 1

2
0

0 00 0

sup ( ) ( ) sup ( ) ( )

p
t t

p pp

t t t t
k t e k k s ds k s dB s

   

      
  

  . 

Taking expectations on both sides and applying the Burkholder-Davis-Gundy 
Inequality (see, Karatzas Shreve, 1991, p. 166) shows, 

41 1

1

4
0

0 0 0

sup ( ) ( ) ( )

p
t t

p pp

t t
k t e k k s ds k s ds

 

                 
 E E E .                 (A.1) 

By the Young Inequality (Higham et al., 2003) and Rogers-Hölder Inequality, 

41

4

0

( )

p
t

k s ds
 
 
  
E  

41

2

1

2

0 0

sup ( ) ( )

p

p
t

t t
k t k s ds

 

         
E  

21

1

2

0 0

1
sup ( ) ( )

2 2

p
t

p

t t

e
k t k s ds

e  

          
E E  

1

10 0

1
sup ( ) ( )

2

t
p p

t t
k t e k s ds

e  

          
E E . 

Substituting this into (A.1) yields, 
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1

1

0
0 0

sup ( ) ( )
t

p pp

t t
k t e k k s ds

 

           
E E .                                (A.2) 

Applying Itô’s rule to (7) produces, 

2
0

1
( ) exp ( )

2
k t k B t t     

 
. 

which implies, 

2
0

1
( ) exp ( 1)

2
p pk t k p p t        

E .                                  (A.3) 

by the Wald’s Identity. By (A.3), we hence get, 
1

20
12

0

2 1
( ) exp ( 1) 1

( 1) 2

t p
p k

k s ds p p t
p p




         
E . 

Inserting this into (A.2) reveals that there exists a constant 0( , , )e k p T    such 

that for 0 T    , 

0
0
sup ( ) ( , , )

p

t T
k t e k p T

 

    
E . 

as required in (i). Noting that the proof of (ii) is quite similar to that of (i), we 
omit it. And thus the proof is complete. ■ 
 
B. Proof of Lemma 2 
By Doob’s martingale inequality, 

0

0

1
sup ( ) ( )

t T

k
k t k T

  

         
P E , 0     , 0T  .           (B.1) 

Using Doob’s martingale inequality again shows, 

0

1
sup ( ) ( )

p

p
t T

k t k T
 

        
P E , 0     , 0T  , p � , 2p  . 

which combines with (B.1) produces, 

01
( )

p

p

k
k T

 
   E    1

0( )
p pk T k    E , 0     , 0T  .     (B.2) 

Define, 

0
sup ( )

t T
k t

 
 � ,  

1

( ) ( )
pp

p p
k T k T   � � E . 

for 0T  , p � , 2p  . Let 0H   be some constant, then by Doob’s 
Maximal Inequality and Fubini Theorem, we obtain, 

≜	 ≜	 ≜

N

N 
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p
H    

E   1

0

pp x H x dx


     P  
 

2

0

p

H x

p x d dx





  

 
  
 
 

  P  

 
2

0

1p

H x
p x d dx




  


 
  

 
  P  2

0

H
pp x dx d

 




 
   

 
  P  

1

1

pp
H

p

      
E . 

It follows from Hölder Inequality that, 

 
1

1

1

1 1

p
p

p
p

p p p p

p pp

p p
H H H H

p p





                         
E E . 

i.e., 

   
1 1

( )
1 1

p pp p

p

p p
H k T

p p
             

E E . 

Hence, applying Lebesgue Dominated Convergence Theorem shows, 

( )
1

p
p pp

k T
p

              
E E . 

i.e., 

1
0

0
sup ( )

1

p
p p

t T

p
k t k

p
 

 

          
E  0     , 0T  , p � , 2p  . 

by (B.2). And this gives the required result in (i). Noting that the proof of (ii) is 
similar to that of (i), we take it omitted here. And the proof is thus complete. ■ 
 
C. Proof of Proposition 2 
By using Lemma 1 or 2, there is a constant W    such that for 0T  , p �, 

2p  , 

0 0
sup ( ) sup ( )

pp

t T t T
k t k t W

   

          
E E .                                  (C.1) 

where by Assumption 1, 

 0

0

( ) ( ) ( )
t

k t k k s dB s   . 

N

N,
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 0

0

( ) ( ) ( )
t

k t k k s dB s    . 

Suppose that ( ) ( )k t k t W   for 0t  , otherwise, we just consider ( )k t W  and 

( )k t W  instead of ( )k t  and ( )k t , respectively, for some constant 0 W  . 
And also the same assertion follows by applying Lebesgue Dominated 
Convergence Theorem as W  approaching infinity. In what follows, we first define 
the following stopping times, 

 inf 0; ( )W t k t W  � ,  inf 0; ( )W t k t W   � , Ŵ W W   � . 

By the Young Inequality (Higham et al., 2003) and for any 0R  , 
2

0
sup ( ) ( )

t T
k t k t

 

   
E   

   
2 2

, ,
0 0
sup ( ) ( ) 1 sup ( ) ( ) 1

W W W WT T T or T
t T t T

k t k t k t k t      
   

             
 E E  

     
2

ˆ
0 0

2
ˆ ˆsup 1 sup ( ) ( )

W

p

W W T
t T t T

R
k t k t k t k t

p  
   

              
 E E  

 2
2

21
,

p

p

W WT or T
R

 



  P .                                        (C.2) 

It follows from (C.1) that, 

   
 

0

1
1 sup ( )

W

p

pW

W p p pT
t T

k W
T k t

W W W


 

 

 
         

 
P E E . 

Similarly, one can get   p
W T W W  P . So, 

      2
,W W W W p

W
T or T T T

W
          P P P . 

Noting that by (C.1), 

 1

0 0
sup ( ) ( ) 2 sup ( ) ( ) 2

p ppp p

t T t T
k t k t k t k t W

   

            
 E E . 

Hence, (C.2) can be rewritten as follows, 
2

0
sup ( ) ( )

t T
k t k t

 

   
E  

≜	 ≜ ≜
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    2
2

12

0

2 2( 2)
ˆ ˆsup

p

p

W W pt T

RW p W
k t k t

p pR W
 





 

        
E .               (C.3) 

Noting that, 

   
2

ˆ ˆ
W Wk t k t   

2ˆ

0

( ) ( ) ( ) ( ) ( )
Wt

k s k s dB s


 


        

2ˆ ˆ

0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
W Wt t

k s k s dB s k s k s dB s
 

   
 

                  

2 2ˆ ˆ

2

0 0

2 ( ) ( ) ( ) ( ) ( ) ( )
W Wt t

k s k s dB s k s dB s
 

  
  

           
 

   . 

Taking expectations on both sides and using Itô’s Isometry, we have for T  , 

   
2

0

ˆ ˆsup W W
t

k t k t


 
 

     
E  

   
ˆ

2 2
2 2

0 0

2 ( ) ( ) 2( ) ( )
Wt

k s k s ds k s ds
 

  
   

      
    
  E E  

   
0

2 2
2 2

0 0
00 0

ˆ ˆ2 sup 2 ( )W W
t s

k t k t ds k s ds
 

   
 

         E E .           (C.4) 

where we have used Assumption 2. Applying Itô’s rule to (9) produces, 

2
0

1
( ) exp ( )

2
k t k B t t     

 
   . 

which implies, 

 2
2 2
0( ) expk t k t    

 E . 

by the Wald’s Identity. Hence, we get, 

 
22

20
2

0

( ) exp 1
k

k s ds


 


     


E . 

Inserting this into (C.4) gives rise to, 

   
2

0

ˆ ˆsup W W
t

k t k t


 
 

     
E  
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     
0

22
2 2 20

0 0 2
00

ˆ ˆ2 sup 2 exp 1W W
t s

k
k t k t ds



     
 

              


E . 

Hence, applying Gronwall’s Inequality (see, Higham et al., 2003) yields, 

       
22

2 2 20
2

0

ˆ ˆsup 2 exp 1 exp 2W W
t T

k
k t k t T    

 

          
 


E . 

substituting this into (C.3) leads us to, 

    2
2

2 12
2 2 20

2
0

2 2( 2)
sup ( ) ( ) 2 exp 1 exp 2

p

p

pt T

k RW p W
k t k t T

p pR W
  

 



 

          
 


E . 

Accordingly, for 0  , we can choose R  and W  such that, 
12

3

p RW

p



  and 2
2

2( 2)

3p p

p W

pR W





 . 

And for any given 0T  , we put   such that, 

   
2

2 2 20
2

2 exp 1 exp 2
3

k
T

  


   


. 

Thus, for 0  , we obtain, 
2

0
sup ( ) ( )

3 3 3t T
k t k t

   
 

       
E . 

So, 
2

0
sup ( ) ( ) 0

t T
k t k t

 

    
E  as 0  . 

i.e., 
2

0
lim sup ( ) ( ) 0
T t T

k t k t
  

    
E  as 0  . 

By the Levi Lemma, we obtain, 
2

0
lim sup ( ) ( ) 0
T t T

k t k t
  

    
E  as 0  . 

which gives the desired result. And this proof is thus complete. ■  


