

Calder, M. and Miller, A. (2003) Generalising Feature Interactions in
Email. In, Amyot, D. and Logrippo, L., Eds. International Workshop on
Feature Interactions in Telecommunications and Software Systems, 11-13
June 2003 Vol VII, pages pp. 187-205, Ottawa, Canada.

http://eprints.gla.ac.uk/2878/

Glasgow ePrints Service
http://eprints.gla.ac.uk

Generalising Feature Interactions in Email
Muffy CALDER and Alice MILLER
Department of Computing Science

University of Glasgow
Glasgow, Scotland.

muffy,alice@dcs.gla.ac.uk

Abstract. We report on a property-based approach to feature interaction analysis for
a client-server email system. The model is based upon Hall’s email model [12] pre-
sented at FIW’00 [3], but the implementation is at a lower level of abstraction, em-
ploying non-determinism and asynchronous communication; it is a challenge to avoid
deadlock and race conditions. Our analysis differs in two ways: interaction analysis is
fully automated, based on model-checking the entire state-space, and the results are
scalable, that is they generalise to email systems consisting of any number of email
clients.

Abstraction techniques are used to prove the general results. The key idea is to
model-check a system consisting of a constant number (m) of client processes, in
parallel with a mailer process and an “abstract” process which represents the product
of any number of other (possibly featured) client processes. We give a lower bound
for the value ofm.

All of the models – for any specified set of client processes and selected features
– are generated automatically using Perl scripts.

1 Introduction

We consider modelling features and analysing feature interactions in anemail system. Our
model is derived from Hall’s email model [12] presented at FIW’00 [3], but our analysis
differs in two significant ways:

� interaction analysis isfully automated, based on a model-checking approach,

� resultsgeneraliseto email systems consisting ofanynumber of email clients.

We adopt aproperty-basedapproach to interaction analysis [4], that is we develop an
explict model of the basic service and features which is checked against a set of more abstract,
temporal properties. Interactions are uncovered through the analysis of property violations.
The (parameterised) model is developed in Promela [13], a high-level, state-based, language
for modelling (asynchronously) communicating, concurrent processes. Spin is the bespoke
model-checker for Promela. Individual models and model-checking runs are generated using
Perl scripts.

Our first goal is faithful modelling of an email system as client-server with explicit con-
curreny and asynchronous communication; this is challenging for a property based approach
because of the high degree of concurrency and consequent state-space explosion. Neverthe-
less feature interaction analysis is comprehensive.

Our second goal is generalisation of interaction results. Model-checking alone is limited
to reasoning about agivennumber of processes. This aspect is often overlooked, and proof
for a fixed number, saym, processes, is informally assumed to scale up to imply proof for an
arbitrary number of processes, i.e. forn processes, for anyn. In this paper we address the
problem explicitly and show how to generalise results without resorting to explicit induction
(which is difficult in this case). Our approach is based upon a combination of abstraction and
model-checking.

The paper is divided into two parts, in the first part we consider feature interaction analysis
for a fixed number of client processes, in the second part, we consider how to generalise these
results to an arbitrary number of clients.

In section 2, we give a brief overview of Promela and Spin. In section 3 we give an
overview of the basic email service and feature behaviour, the Promela implementation, the
properties for the basic service and features and the corresponding LTL formulae. In section
4 we define feature validation and interaction analysis, and give corresponding results for
systems of 3 or 4 client processes. We also discuss how we use Perl scripts and the model-
checker Spin for analysis. In section 5 we outline the abstraction technique and give results.
We conclude in section 6.

2 Reasoning in Spin

Promela is an imperative, C-like language with additional constructs for non determinism,
asynchronous and synchronous communication, dynamic process creation, and mobile con-
nections, i.e. communication channels can be passed along other communication channels.
Spin is the bespoke model-checker for Promela and provides several reasoning mechanisms:
assertion checking, acceptance and progress states and cycle detection, and satisfaction of
temporal properties.

In order to perform verification on a model, Spin translates each process template into a
finite automaton and then computes an asynchronous interleaving product of these automata
to obtain the global behaviour of the concurrent system. This interleaving product is referred
to as thestate-space.

As well as enabling a search of the state-space to check for deadlock, assertion violations
etc., Spin allows the checking of the satisfaction of an LTL formula over all execution paths.
The mechanism for doing this is vianever claims– processes which describeundesirable
behaviour, and B¨uchi automata – automata that accept a system execution if and only if that
execution forces it to pass through one or more of its accepting states infinitely often [13, 11].
Checking satisfaction of a formula involves the depth-first search of the synchronous product
of the automaton corresponding to the concurrent system (model) and the B¨uchi automaton
corresponding to the never-claim.

If the original LTL formulaf does not hold, the depth-first search will “catch” at least one
execution sequence for which:f is true. Iff has the form[]p, (that isf is asafetyproperty),
this sequence will contain anacceptance stateat which:p is true. Alternatively, iff has the
form hip, (that isf is a livenessproperty), the sequence will contain a cycle which can be
repeated infinitely often, throughout which:p is true. In this case the never-claim is said to
contain anacceptance cycle. In either case the never claim is said to bematched.

When using Spin’s LTL converter (a feature of XSpin – Spin’s graphical interface) it is
possible to check whether a given property holds forAll Executionsor for No Executions. A

universal quantifier is implicit in the beginning of all LTL formulas and so, to check an LTL
property it is natural, therefore, to choose theAll Executionsoption. However, we sometimes
wish to check that a given property (p say) holds forsome statealongsome execution path.
This is not possible using LTL alone. However, Spin can be used to show that “p holds forNo
Executions” is not true (via a never-claim violation), which is equivalent. Therefore, when
listing our properties (section 3.4), we use the shorthand9p, meaningfor some pathp, i.e. for
No Executionsp is not true.

2.1 Parameters and further options used in Spin verification

When performing verification with Spin, three numeric parameters must be set. These are
Physical Memory Available, Estimated State-Space SizeandMaximum Search Depth. The
meaning of the first of these is clear, and the second controls the size of the state-storage
hash table. TheMaximum Search Depthparameter determines the size of thesearch-stack,
where the states in the current search are stored. If comparisons are to be made with other
model-checkers, then the value of the Maximum Search Depth should be taken into account.

Partial order reduction(POR) [17] is based on the observation that execution sequences
can be divided into equivalence classes whose members are indistinguishable with respect to
a property that is to be checked. We apply POR in most cases.

Compression(COM) is a method by which each individual state is encoded in a more
efficient way. We apply compression in all cases.

3 Basic email service and features

The email system consists of a number ofclients and one server, in this case themailer.
Each client has a unique mail address. Clients send mail messages, addressed to other clients
(or themselves) to the mailer; the mailer delivers mail messages to clients. Communication
between client and server is asynchronous. Therefore, mail messages are not necessarily re-
ceived by clients in the (global) order in which they were sent, but local temporal ordering is
maintained, i.e. if client 1 sends messages A and B to client 2, in that order, then client 2 will
receive message A before message B. We assume (like Hall) that the system does not lose or
corrupt messages, because our motivation is feature interaction analysis, not error detection
and/or recovery.

We assume (weak) fairness, i.e. an enabled process cannot be ignored infinitely often,
when verifying liveness properties (e.g. 3 and 8, see section 3.4). In all other cases, it is not
relevant (and just increases the state-space).

The overall system is illustrated in Figure 1. High level, abstract automata for the client
and mailer processes are given in Figures 2 and 3, respectively. Note that in these figures,
transitions are labelled by conditions, e.g. in Figure 2 a transition frominitial to sendmail
is only possible if the channelmbox is empty and the channelnetwork is not full. Local
and global variables are updated at various points; variable assignments omitted from the
diagrams. We refer to states in these abstract automata asabstract states, these are not to be
confused with states in the Promela model.

ClientClient

...

Clientm-10 1

Mailer

Figure 1: Email service withm clients

sendmailinitialdelivermail

process message

nempty(mbox)

network!msg

mbox?msg

nfull(network) && empty(mbox)

specify message

specify recipient

specify sender

Figure 2: Client process with mailboxmbox

initial process message

specify recipientmbox!msg

network?msg

specify message

Figure 3: Mailer process

3.1 Basic email service in Promela

The model form client processes consists ofm instantiations of the parameterised proctype
Client, all in parallel with one instance of the proctypeMailer.

A mail message consists of asender, receiver, message body, andkey. Mail messages may
be sent from clients to the mailer, and delivered to clients from the mailer (via amailboxbe-
longing to the receiver). All communication between clients and the mailer isasynchronous.
We chose to adopt this position because it is closer to actual system behaviour, however we
have to take care that it does not result in state explosion. Delivery of mail takes precedence
over sending, i.e. a client has to take delivery of any mail which has been delivered by the
network, before sending mail. A client can otherwise send mail at any time, provided the
channelnetwork has capacity.

The parameter associated with a client process is the identification (a byte) of that process.
A client process can either send mail, or have mail delivered, the latter taking precedence
over the former. The former can only occur if the network is not full. If neither is possible,
the client is, in effect, inbusy waiting.

Communication between clients and the mailer is via asynchronous, global channels, one
for each client and one for the mailer. The sizes of the channels are set using the constants
k for the client channels andN for the mailer. During most of this investigationk = 2 and
N = 4. M is a constant denoting the number of clients in the given system and is often used
to denote a default, or unassigned, value.

The client channels are, in effect,mailboxes. The role of the mailer is therefore to deliver
mail messages to the appropriate mailboxes; clients take delivery of message by reading from
the appropriate mailbox/channel. In Figure 3, note thatmboxis a free variable which must be
correctly instantiated during thespecify recipientabstract state.

Mail addresses are simple integers, used to index the client processes. Initially, we im-
plemented a more sohpisticated addressing mechanism, with login names and hierarchical
domains. However, this resulted in a very large state vector and state-space (due in part to
Promela’s poor handling of structured types). Since we found no additional analysis benefit
to this approach (apart from the aesthetic one), we have implemented a simpler, more abstract
addressing mechanism.

Mail messages themselves are of no consequence, save to observe whether or not they are
encrypted. We denote encrypted text by the value1 and plain text by the value0. Keys are
simple mail addresses, i.e. simple bytes.

An important issue for any distributed system is that ofatomicity. This is especially im-
portant from a model-checking perspective as it provides a means of controlling state-space
explosion and resolving race conditions. Promela provides a facility for grouping together
statements as atomic, provided only the initial statement has the potential to block. Our model
employs as much atomicity as possible within each consituent process. Specifically, in the
Client process, each iteration from theinitial state, back to theinitial state, is a single atomic
step (i.e. Figure 2 encapsulates a single atomic step) – with suitable guards which block if
the process can neither read nor write. This is crucial in order to avoid deadlock – since all
channels are of finite size. On the other hand, theMailer process consists of two atomic
steps: one for reading a message and the other for sending the appropriate message. Any
variable about which we may intend to reason should not be updated more than once within
any atomic statement (so that each change to the variables is visible to the never-claim), other
variables may of course be updated as required.

Another implementation issue is the size of the state vector, i.e. the number and nature
of global and local variables. We must be careful not to introduce any extraneous variables
(see also 3.3) nor introduce extraneous state values. To avoid the latter, we must be careful to
reset variables when returning to so-called initial, abstract states, to ensure that we are indeed
representing the same abstract state.

The interplay between atomicity, the number and nature of variables, and faithful mod-
elling/levels of abstraction is very subtle and a challenge in this domain, particularly due
to the asynchronous communication. It took considerable time and expertise to develop a
tractable, deadlock free model. Fortunately, we were able to employ some lessons learned
from modellingPOTS[6].

3.2 The Features

We consider here a set of five features.

� encrypt a message, using a (private) key, theintended recipient.

� decrypt a message, using a (private) key, theactual recipient.

� filter all messages from a given mail address.

� forward all messages to another mail address.

� autorespondto incoming messages. The automatic response is only sent in response to
the first message from a given client. Any subsequent message from that client is received,
but no automatic response is issued as a result.

The features encrypt, decrypt and autorespond reside at the client side, the remaining
reside at the server side. Note that only the features encrypt and decrypt alter the actual mail
message, forwarding does not affect the message.

We have considered all the features proposed in [12]; but for brevity, we omit them here
because they do not reveal any further “interesting” behaviour paradigms for our analysis.
That is not to say that they do not reveal further interactions, and interesting aspects of email,
but that they do not reveal any further aspects with respect to generalisation.

3.3 Features in Promela

Features are implemented within the Promela model via a number ofinline functions (pro-
cedures with dynamic bindings). Most features are relatively straightforward to implement,
simply involving additional transitions or steps during one or more of the abstract states of
the client or mailer processes.

The exception is autorespond, because this feature involves bothreading– a message
from a client channel, andwriting – a message to the network channel. Both events are po-
tentially blocking, hence cannot take place within one atomic step. Therefore, to implement
this feature we add an additional data structure to indicate whether or not a client requires to
send an autoresponse. We enhance theinitial state to include the possibility that an autore-
sponse message needs to be sent, and give priority to this over any other event. This means

that it is possible for an autoresponse toneverbe sent, if the network channel is continuously
full. We cannot avoid this situation1.

In order to reason about feature behaviour (see section 3.4) we introduce a number of “ob-
servation” variables. These are not integral to the behaviour of the service and/or features, but
exist solely for the purposes of analysis. For this reason, these variables are included/excluded
on a per model/property basis.

Examples of “observation” (process indexed) variables include:

� last del toi to the intended receiver of the mail message last delivered toClient[i]

� last del toi from the intended sender of the mail message last delivered toClient[i]

� last del toi body the body of the mail message last delivered toClient[i].

� last sent fromi to the intended recipient of the mail message last sent fromClient[i].

A further variable required both for correct function and for reasoning is the array of bit
vectorsautoarray. The function

� IS 0(autoarray[i]; j) indicates whetherClient[i] has already sent an autoresponse to
Client[j].

3.4 Feature Properties

We give a small number of illustrative properties for both the basic service and the features.
The properties are linear temporal logic (LTL) formulae over propositions about states. Tem-
poral operators include[] (always),<>(eventually) andX (next). Propositional connectives
arejj (disjunction),&& (conjunction),! (implication) and:(negation). The path quantifier
is (implicitly) 8, except when explicitly given as9. Feature properties are properties that are
expected to hold whenonesuch feature is present.

Property 1 – BasicMessages are delivered only to intented recipients.

If Client[i] receives a message fromMailer, then the (intended) recipient of that message
is Client[i]. Alternatively, Client[i] has not yet received any messages (in which case the
last del toi to variable will remain set to the default valueM).

LTL: [](pjjq)
p = (last del toi to == M), q = (last del toi to == i)

Property 2 – BasicMessages can be sent between any two clients.

It is possible for Client[i] to recieve a message such that the sender of that message is
Client[j].

1In any operational email system, buffers can become full. Although this is unlikely in reality, as model-
checking involves the exploration of allfeasiblebehaviours, this possibility must be considered.

LTL: 9 <> (p)
p = (last del toi from == j)

Property 3 – BasicMessages are eventually delivered correctly.

If Client[i] sends a message toClient[j], thenClient[j] will eventually receive a message
fromClient[i].

LTL: [](((:p)&&X(p))! X(<> q))
p = (last sent fromi to == j), q = (last del toj from == i)

Property 4 – Encryption Messages are properly encrypted.

If Client[i] has encryption on, then if Client[j] receives a message whose sender is Client[i],
then the message will be encrypted.

LTL: [](p! q)
p = (last del toj from == i), q = (last del toj body == 1)

Property 5 – Decryption Messages are properly decrypted.

If Client[i] has decryption on, then all messages received byClient[i] will have been de-
crypted.

LTL: [](p)
p = (last del toi body == 0)

Property 6 – Filtering Messages are discarded by a filter.

If Mailer filters messages from Client[i] to Client[j] then it is not possible for Client[j] to
receive a message from Client[i].

LTL: [](:p)
p == (last del toi from == j)

Property 7 – Forwarding Messages are forwarded.

If Client[i] forwards messages to Client [j], then it is possible for Client[j] to receive mes-
sages not addressed to Client[j] (or to the default valueM).

LTL: 9 <> (:(pjjq))
p == last del toj to == M), q == (last del toj to == j)

Property 8 – AutorespondSingle automatic response messages are sent out.

If Client[i] has autorespond on, then if Client[j] sends a message to Client[i], and Client[j]

hasn’t already received an automatic response from Client [i], then Client[j] will eventu-
ally receive a reply from Client[i]. Alternatively, Client[i] eventually stops sending messages
because network can’t be accessed.

LTL: [](p� > (<> qjj(<> ([]:r))))
p = ((last sent fromj to == i)&&((autoarray[i; j] == 0)))
q = (last del toj from == i), r = (network??[i; x; y; z])

(The functionnetwork??[i; x; y; z] determines whether there is a messageat any position
on the network channel in which the sender field isi.)

4 Analysis for a constant number of clients

The basic idea of feature interaction analysis is to detect when features behave as expected in
isolation, but not in the presence of each other. So, interaction analysis involves featurevali-
dation (checking a feature in isolation) and then analysis oftuplesof features (checking for
violation of expected behaviour). Fortunately, we need only restrict our attention to pairwise
analysis, as empirical evidence shows that it is extremely rare to have a 3-way interaction
which is not detected as 2-way interaction [14]. In each case we consider a model consisting
of either 3 or 4 client processes and 1 mailer. An example Promela model of a system of3
Client processes and a Mailer process in whichClient[0] has encryption,Client[1] filters
messages fromClient[2] and property 4 is to be verified fori = 0, j = 2 can be found on
our website at [5].

For all verification runs we used a PC with a 2.4GHZ Intel Xenon processor, 3GB of
available main memory, running Linux (2.4.18).

An overview of the reasoning process is given in Figure 4.

4.1 Use of Perl Scripts

For each pair of features, set of feature parameters, associated property and set of prop-
erty parameters, a relevant model needs to be individually constructed, to ensure that only
relevant variables are included and set. We have developed two Perl scripts,mailchange.pl
andauto mailchange.plfor automatically configuring the model and for generating model-
checking runs. These scripts greatly reduce the time to prepare each model and the scope for
errors.

During initial investigations,mailchange.plis used to generate a model for a given set of
features, feature parameters, property and property parameters. The resulting model is then
loaded into SPIN with an appropriate set of search parameters (MSD, POR, WF for example)
and results interpreted manually. Once confidence has been gained in the model, suitable
values assertained for the value of MSD and the applicability of POR and WF determined
for successful verification in each case,auto mailchange.plis used to iteratively select pairs
of features and parameters, set up model checking runs and interpret results. An overnight
run is required to collect all results from all pairs of features and suitable parameter sets. It is
important to note that a certain amount of simple symmetry reduction is incorporated within
the Perl script to avoid repeating runs of configurations which are identical up to renaming of
processes.

Figure 4: The reasoning set up

Table 1: Results of verification of the properties

Feature Prop WF? POR? MSD States Depth Mem Time
(�104) (�104) (Mb) (s)

basic 1 � p
6 8:3 52989 4:4 2

basic 2 � p
0:01 0:001 85 2:3 0:1

basic 3
p � 17 98:2 162286 38:2 44

encryption 4 � p
13 9:3 121792 4:8 3

decryption 5 � p
5 10:2 45365 4:2 3

filtering 6 � p
6 7:1 52069 3:7 2

forwarding 7 � p
0:01 0:001 66 2:3 0:1

autorespond 8
p p

17 250 163176 111:5 334

The interpretation stage ofauto mailchange.plinvolves reading the output file from the
SPIN verification run. Firstly it is checked that the maximum search depth (MSD) has not
been reached and that the total memory available has not been exhausted. If neither of these
is true, the second phase of the interpretation phase involves checking if there are any errors -
and as such, whether the associated property is true. Finally, the interpretation stage involves
determining whether a feature interaction has occurred and, if so, what type (SU or MU). All
parameter sets and corresponding results are output to a results file.

4.2 Results - single property validation

Table 1 gives the results of verification of properties 1 – 8. In each case the feature (if any) as-
sociated with the property is given in the column labelled ‘feature’. When there is no feature
present, (during the verification of properties 1–3) the term ‘basic’ is written in this column.
When a feature is present, the verification corresponds to checking the associated property
for a model consisting of a Mailer process, two basic Client processes and a Client processes
for which the given feature is ‘turned on’. (When no feature is present the associated model
simply consists of aMailer process and threeClient processes.) In all cases we give re-
sults for verification of the model in whichClient[0] has the given feature (in relation to
Client[1] if appropriate) andi (andj) is (are) assigned the value(s)0 (and1). The Prop col-
umn contains the property being checked and a

p
or a� in the ‘WF?’ and ‘POR?’ columns

indicate whether weak-fairness and partial order reduction are selected respectively. Note that
property 3 is the only property for which POR is not applied. This is due to the presence of
the next operator (X) in the property. Also, WF is only applied during the verification of
livenessproperties – properties that contain theeventuallyoperator<>. The entries in the
MSD column show the value to which the maximum search depth is set prior to verification.
The remaining columns contain the number of stored states, the depth reached, the memory
required for state storage (in Mbyte) and the time taken (in seconds) for each verification.

4.3 Results - feature interactions

Now we turn our attention to consideration ofpairs of features. For each pair of features we
generate a model for each distinct set of parameters (the union of the sets of parameters for
each feature) and for each appropriate set of property parameters. This may mean that up
to 5 client processes are required. For example, ifClient[i] has filtering fromClient[j] and

Client[k] has filtering fromClient[l], (i, j, k, l distinct), then4 client processes are required.
For each suitable pair of features,fi, fj, an interaction is said to occur if the feature property
associated withfi does not hold for the model in which features arefi andfj are present.
Note that we do not consider the basic service in our analysis, as all other features interact
with it in some way. This can be determined without the need for model-checking.

We enumerate the interactions found below. In each case, we indicate whether the interac-
tion is single user (SU), i.e. both features reside at the same network component, or multiple
user (MU), i.e. the features reside at different network components. We also give awitness
for the interaction. We do not give details of timing or memory requirements etc. as these
vary depending on the parameter set under consideration. (There are111 feasible parameter
sets after symmetry reduction. It would be impractical to give details of such requirements
for each case.) In some cases moreClient processes are required to fully check for interac-
tion. Clearly when moreClients are required, verification takes longer and more memory is
required. In addition, when an error is reported during verification (in most cases, excluding
the verification of property 2, indicating an interaction) a full search of the state-space is not
required. This again results in far smaller time and memory requirements.

1. encryption and decryption (SU)
witness i=j=0 –Client[i] has encryption and decryption

2. encryption and decryption (MU)
witness i=0, j=1 –Client[i] has encryption,Client[j] has decryption

3. filter and forward (MU)
witnessi = 0; j = 1 –Client[i] has filter from j,Client[j] has forwarding toi

4. forward and forward (MU)
witness i=0,j=1,k=2 –Client[i] has forwarding toj, Client[j] has forwarding toi

5. autoresponse and filter (SU)
witnessi = 0; j = 1 –Client[i] has autoresponse,Client[i] has filter fromj

6. autoresponse and filter (MU)
witness i=0,j=1 –Client[i] has autoresponse,Client[j] has filter fromi

7. autoresponse and forward (SU)
witnessi = 0; j = 2 –Client[i] has autoresponse,Client[i] has forwarding toj

8. autoresponse and forward (MU)
witnessi = 0; j = 1 –Client[i] has autoresponse,Client[j] has forwarding toi

Each of these pairs of features are listed in Hall’s results [12] but in all cases, he only reports a
MU example. While Hall explicitly states that his method is not complete, it is not clear if the
SU interactions would be found in his approach, or he stopped after the MU interaction was
found. Our method is combinatorially complete. We note that in the MU cases, our witnesses
are identical to Hall’s (modulo translation).

5 Generalisation

We have shown above that a property holds (or does not hold) for a fixed number of clients,
i.e. for
Client[0]jjClient[1]jj : : : Client[m]jjMailer, wherejj denotes parallel composition. But how
can we deduce that (if at all) a property holds for
Client[0]jjClient[1]jj : : : jjClient[n]jjMailer, for an arbitrary n? It is not possible to demon-
strate this with straight-forward model-checking [1].

More formally, the generalisation problem is how to prove (disprove)

M(Client[0]jjClient[1]jj : : : jjClient[n]jjMailer) j= �[0; 1; : : : ; t]

where the left hand side is the finite-state model of the parallel composition of client and
mailer processes (the former are instances of the parameterised processClient) and�[0; 1; : : : ; t]
is a temporal logic formula containing free variables indexed by0; 1; : : : ; t. The indices refer
to instances ofClient (e.g. the variablesi andj in section 3.4). In general, theClient[i] are
not isomorphic because they have different sets of features enabled.

We offer a solution based on abstraction and model-checking. The technique and theoret-
ical justification are described in more detail in [8, 7], here we apply the results. Briefly, the
technique involves choosing a fixedm, such thatt is constrained by0 � t � m� 1. We refer
toClient[0]jj : : : jjClient[m�1] asconcreteprocesses and theClient[m]jj : : : jjClient[n�1]
asabstractprocesses. We represent the behaviour ofClient[m]jj : : : jjClient[n�1], by a new
abstract process,Abstractclient. We do not assume that the (original) abstract processes, i.e.
Client[m]jj : : : jjClient[n � 1] are isomorphic: they might have different combinations of
features enabled. However, we do assume that the features are all drawn from our given set
and we know how they can communicate with each other and more importantly, how they
communicate with the concrete processes.

A model of them concreteprocesses, together with the abstract process, is generated
automatically from a model of the concrete processes together with a single (parameterised)
Client. This is summarised by Figure 5. The value ofm depends upon the particular feature
set considered. Here, because each feature involves at most two parameters, a worst case anal-
ysis suggests that5 concreteClients are required, however further detailed analysis shows
that in this case, we require only a maximum of4. For some combinations,3 will suffice.

Our approach is based upon our result:

M(Client[0]jjClient[1]jj : : : Client[m]jjAbstractclientjjMailer0) j= �[0; 1; : : : ; t]
)

M(Client[0]jjClient[1]jj : : : Client[n]jjMailer) j= �[0; 1; : : : ; t].

The processMailer0 is a slightly modified version ofMailer, modified to take into account
communication withAbstractclient(instead of communication with the original abstract pro-
cesses).

Thus to generalise interaction analysis results, we need only consider interaction analysis
of thefinite (model of)Client[0]jjClient[1]jj : : : Client[m]jjAbstractclientjjMailer0:

In the next section we outline the form ofAbstractclient andMailer0 and give our
interaction analysis results.

Client Client

concrete processes

0 1 Clientm-1

Abstractclient

Clientm ... Clientn

represented by

abstract process

Mailer

Figure 5: Generalised Email service

5.1 Abstractclient specification and analysis results

Abstractclient is defined as follows.Abstractclient can only affect the behaviour of the
m concrete processes indirectly viaMailer0. Therefore, communication to/from a concrete
process from/toMailer0 takes place via avirtual channel. Rather than concrete processes
reading/writing to this (virtual) channel and behaving accordingly, each possible read is re-
placed by a non-deterministic choice over the possible contents of the channel. In this way,
all possible behaviours are explored (a write to the virtual channel is not relevant).

As an example, whenm = 3 Abstractclient is as follows:

proctype Abstractclient(byte id)
{Mail msg;

atomic
{
msg.receiver=M;
msg.sender=M;
msg.key=M;
msg.body=0};
do
::blocked==1->blocked=0
::atomic{nfull(network)->

if
::msg.receiver=0
::msg.receiver=1
::msg.receiver=2
::msg.receiver=3
/*another client within Abs process */
fi;
msg.sender=id;
network!msg;
msg.receiver=M;
msg.sender=M}

od
}

Note that theAbstractclient process can send messages toMailer0 (via thenetwork
channel), but does not receive messages.Abstractclientis also able to set theblockedvari-
able to0. This simulates “unblocking”Mailer0 when it is unable to “send” a message to
a particular process within the abstract process. Note thatAbstractclientis always able to
unblockMailer0 but can only send messages when thenetwork channel is not full. This re-
flects the finite model. WhenMailer0 wants to “deliver” a message toAbstractclient, it first
checks whether the relevant channel is blocked (via non-deterministic choice). If so,Mailer0

waits until the channel becomes unblocked (when theblockedvariable is reset to0 by Ab-
stractclient) before delivering the message. (In fact no message is actually sent, butMailer0

continues as if it has been.) Here we give theMailer0 proctype:

proctype Mailer’()
{
Mail msg;
chan deliverbox=null;
atomic{
bit myanswer=0;
msg.sender = M;
msg.receiver= M;

msg.key=M;
msg.body=0;

}
loop:
atomic{

network?msg;
filter_message(msg.receiver,msg.sender,myanswer);
if
:: myanswer -> /* throw away message from this sender*/

myanswer=0;
msg.sender = M;
msg.receiver= M;
msg.body = 0; msg.key = M;
deliverbox = null;goto loop

:: else -> skip
fi;
if
::msg.receiver==3->/* abstract process */

if
:: blocked=0
:: blocked=1
fi

::else->
mailbox_lookup(msg.receiver,deliverbox)

fi;
/* now pass on message */
}

atomic{

if
::((msg.receiver!=3)&&(nfull(deliverbox)))->deliverbox!msg
::((msg.receiver==3)&&(blocked==0))->skip /*delivered virtual message*/
fi;

/*reset variables to initial values*/
msg.sender = M; msg.receiver= M; msg.body = 0; msg.key = M;
deliverbox = null;
goto loop

}}

The concreteClient processes are declared in the usual way and communication between
them andMailer is unchanged.

It is important to note that this model is not, strictly, a conservative extension, because
Abstractclientallows additional behaviour. Namely, an (abstract) client can send mail even
when there is mail to be delivered (to that client). This is not possible in any concrete model.
However, the constraint that mail delivery takes priority is in the concrete model only to
prevent deadlock (when mail buffers are full), not for any reason offunctionalbehaviour.
Relaxing this constraint in the general model neither allows deadlock nor affects the obser-
vational behaviour of the system. Thus the constraint is safely relaxed and our approach is
sound.

The interaction analysis results reveal no new interactions, nor new witnesses. We there-
fore do not give details, save to indicate that time and space complexity lie in between those
for the system withm (concrete)Clients andm+ 1 (concrete)Clients. The value ofm de-
pends on the parameter set and the property to be verified. Again, all analysis was automated
through the use of Perl scripts.

An (abridged) example Promela model of a system ofm = 3Client processes, aMailer’
process and anAbstractclient process in whichClient[0] has encryption,Client[1] filters
messages fromClient[2] and property 4 is to be verified fori = 0, j = 2 can be found in the
appendix below. The full model can be found on our website at [5].

6 Conclusions

We have developed a property-based approach to feature interaction analysis for a client-
server email system. The feature set described here is not as extensive as Hall’s [12], but it is
sufficient to reveal most of the interesting behaviour (from a modelling point of view) and to
validate our approach. On the other hand, our analysis is complete and fully automated. We
note that a difficult feature for our implementation was autoresponder, this is because unlike
most other features, it initiated the sending of a completely new message. This was a diffi-
culty because we chose to use asynchronous communication, with fixed size communication
channels (thus leading to more interleavings and potentially, more interactions).

Additionally, our results are scalable, that is they generalise to email systems consisting
of any number ofClient processes.

Abstraction techniques are used to prove the general results. The key idea is to model-
check a system consisting of a constant number (m) of client processes, in parallel with an
“abstract” process which represents the product of any number of other client processes. We
give a lower bound for the value ofm, for our given feature set.

While the general results did not reveal any new interactions (and we admit it is difficult
to think of situations where they would, forfixedfeature sets), it is nevertheless important to
prove rigorously that results scale up. We have achieved this.

Our results demonstrate the feasibility of the abstraction technique for this application
domain – the model-checking requirements are well within the capability of our machine.
Also, the transformation to a general model is relatively straightforward: we need only con-
sider thecommunicationbetween the abstract process and the concrete process(es). (In this
case, we need only consider communication withMailer process, as there is no peer-peer
communication.) An alternative, an induction approach [9, 15], requires the construction of
an inductive invariant. This involves incorporating the behaviour of the entire system within
the invariant; moreover, it requires that both the concrete and abstract mClients are isomor-
phic. Our abstraction approach offers a more suitable and tractable alternative. However, at
some level they are similar, future work aims to establish this.

References

[1] Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of finite-state concurrent systems.
Information Processing Letters, 22:307–309, 1986.

[2] M. Calder and E. Magill, editors.Feature Interactions in Telecommunications and Software Systems,
volume VI. IOS Press, Amsterdam, 2000.

[3] M. Calder and E. Magill, editors.Feature Interactions in Telecommunications and Software Systems VI.
IOS Press (Amsterdam), 2000.

[4] M. Calder, E. Magill, and S. Kolberg, Reiff-Marganiec. Feature interaction: A critical review and consid-
ered forecast.Computer Networks, 41/1:115 – 141, 2003.

[5] M. Calder and A. Miller. Veriscope publications website:
http://www.dcs.gla.ac.uk/research/veriscope/publications.html .

[6] M. Calder and A. Miller. Using SPIN for feature interaction analysis - a case study. In[10] , pages
143–162, 2001.

[7] M. Calder and A. Miller. Feature validation for any number of processes. Technical Report TR2002-110,
University of Glasgow, Department of Computing Science, 2002.

[8] Muffy Calder and Alice Miller. Automatic verification of any number of concurrent, communicating
processes. InProceedings of the 17th IEEE International Conference on Automated Software Engineering
(ASE 2002), pages 227–230, Edinburgh, UK, September 2002. IEEE Computer Society Press.

[9] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using abstraction and regular
languages. In[16] , pages 395–407, 1995.

[10] M.B. Dwyer, editor.Proceedings of the 8th International SPIN Workshop (SPIN 2001), volume 2057 of
Lecture Notes in Computer Science, Toronto, Canada, May 2001. Springer-Verlag.

[11] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear tem-
poral logic. InProceedings of the 15th international Conference on Protocol Specification Testing and
Verification (PSTV ‘95), pages 3–18. Chapman & Hall, Warsaw, Poland, 1995.

[12] R.J. Hall. Feature interactions in electronic mail. In[3] , pages 67–82, 2000.

[13] Gerard J. Holzmann. The model checker Spin.IEEE Transactions on Software Engineering, 23(5):279–
295, May 1997.

[14] M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Results of the second feature interaction contest. In
[2] , pages 311–325, May 2000.

[15] R. P. Kurshan and K.L. McMillan. A structural induction theorem for processes. InProceedings of the
eighth Annual ACM Symposium on Principles of Distrubuted Computing, pages 239–247. ACM Press,
1989.

[16] Insup Lee and Scott A. Smolka, editors.Proceedings of the 6th International Conference on Concurrency
Theory (CONCUR ‘95), volume 962 ofLecture Notes in Computer Science, Philadelphia, PA., August
1995. Springer-Verlag.

[17] Doron Peled. Partial order reduction: Linear and branching temporal logics and process algebras. In[18] ,
pages 233–257, 1996.

[18] Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors.Proceedings of the DIMACS Work-
shop on Partial-Order Methods in Verification (POMIV ’96), volume 29 ofDIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society, 1996.

Appendix: The email service with features

The following model is an abridged version of one generated (by a Perl script from template)
for features: encryption[0] and filter[1]=2 to verify property 4 with i=0 and j=2. Note that
‘etc.’ indicates that some lines of code have been omitted, for space reasons. The full model
(including the appropriate never-claim and bit vector definitions) can be found on our website
at [5].

Example Promela model

typedef Mail
{byte sender;byte receiver;byte key;bit body};
/*need bit vector definitions in here*/
#define k 1 /*size of Mailbox */
#define N 2 /* size of network channel */
#define M 4 /*default value of variables */
bit blocked=0;
chan null=[k] of {Mail};
chan zero=[k] of {Mail};
(etc.)
chan network = [N] of {Mail};
BITV_8 Encrypt=0; byte Filter[M]=M;
byte last_del_to2_from=M;
bit last_del_to2_body=0;
inline mailbox_lookup(login,box)
{
if
:: (login==0) -> box = zero

(etc.)
fi}
inline encrypt_message(login,answer)
{if
::(IS_1(Encrypt,login))->answer=1
::else->answer=0
fi
/*if encryption is on, answer=1,

otherwise answer=0*/}
inline filt_mess(to,from,answer)
{if

::(Filter[to]==from)->answer=1
::else->answer=0

fi
/*if appropriate filter is on, answer=1,

otherwise answer=0*/
}
inline reset_vars(i)
{(etc.)}
inline set_deliv_vars(i,from,to)
{(etc.)}
inline set_body(i,text)
{if
::i==2->last_del_to2_body=text
::else->skip
fi}

proctype Client(byte id)
{chan mybox=null; Mail msg;
atomic{msg.sender=M; msg.receiver=M;
msg.key=M; msg.body=0;bool myanswer=0;
/*get appropriate mailbox*/
mailbox_lookup(id,mybox)};
initial:atomic{
(nempty(mybox)||nfull(network));
/* wait here if cannot send or deliver */

reset_vars(id);
if
:: nempty(mybox) -> goto delivermail
:: empty(mybox)&&nfull(network)->goto sendmail
fi;

delivermail:
mybox?msg; set_body(id,msg.body);
set_deliv_vars(id,msg.sender,msg.receiver);
goto endClient;
sendmail:/*specify recipient */
if
:: msg.receiver= 0

(etc.)
fi;
encrypt_message(id,myanswer);

if
:: myanswer -> /*encryption on */

myanswer=0;
/* use reciever id as key */
msg.body = 1; msg.key = msg.receiver

:: else -> msg.body = 0; /*no encryp*/
fi;
msg.sender = id; /* specify sender */
network!msg; /* send mail */
endClient:
/* reset other variables */
msg.sender = M; (etc.) goto initial}}

proctype Network_Mailer()
{

Mail msg; chan deliverbox=null;
atomic{
bit myanswer=0; (etc.)}
loop:
atomic{network?msg;
filt_mess(msg.receiver,msg.sender,myanswer);
if
:: myanswer ->/* throw away message*/

myanswer=0;msg.sender = M;
msg.receiver= M;(etc.)
deliverbox = null;goto loop

:: else -> skip
fi;
if
::msg.receiver==3->

if
:: blocked=0
:: blocked=1
fi

::else->
mailbox_lookup(msg.receiver,deliverbox)

fi;
/* now pass on message */
}
atomic{
if
::((msg.receiver!=3)&&(nfull(deliverbox)))->

deliverbox!msg
::((msg.receiver==3)&&(blocked==0))->skip

/*delivered virtual message*/
fi;
/*reset variables to initial values*/
msg.sender = M; (etc.)
deliverbox = null; goto loop}};

proctype Abstractclient(byte id)
{Mail msg;

atomic
{msg.receiver=M;
msg.sender=M; msg.key=M; msg.body=0};
do
::blocked==1->blocked=0
::atomic{nfull(network)->

if
::msg.receiver=0

(etc.)
::msg.receiver=3 /*other client in Abs proc */
fi;
msg.sender=id;network!msg;
msg.receiver=M;msg.sender=M}

od}

init
{atomic{SET_1(Encrypt,0);Filter[1]=2;
run Abstract(3);run Network_Mailer();
run Client(0); run Client(1);run Client(2);}}

	Citation.template.pdf
	http://eprints.gla.ac.uk/2878/

