1	Quantifying Future Climate Change
2	
3	Supplementary Information
4	
5	Glossary
6	
7	Climate Model: A mathematical description of the climate system that may be used to make
8	simulations of past or historical and future climate variables such as the mean state, variability
9	and trends. The behaviour of the output of the model is controlled by internal model parameters
10	and external forcing, for example, from greenhouse gases. Mathematically we write
11	c = M(p,R), where <i>M</i> is the model, <i>c</i> is a climate variable that the model simulations (vector or
12	scalar), p is a vector of model internal parameters that control the behaviour of the model and R
13	is the radiative forcing.
14	
15	Complex Climate Model: A 3-dimensional climate model that solves the time-dependent
16	equations of fluid motion in the atmosphere and the ocean in which sub-grid-scale and other
17	processes are represented by parameterisation schemes. Experiments and outputs from
18	complex climate models are coordinated by the Coupled Model Intercomparison Project (CMIP)
19	and form the 'multi-model ensemble' or MME ⁴ . Complex Climate Models may simulate physical
20	climate processes and feedbacks but increasingly they include representations of chemical and
21	biological processes, in which case they may be termed Earth Systems Models.
22	
23	Simplified Climate Model: Usually a 1-dimensional climate model written in terms of global
24 25	mean quantities. Often derived from global energy balance considerations and therefore often
25	called an Energy Balance Model (EBM) .
26 27	Metric: A measure of how well a climate model reproduces some observed or reconstructed
28	climate, climate variability, climate process or climate trend. A root mean squared error
29	formulation is often adopted. The concept of a metric is, at present, rather ill-defined in the
30	climate modeling literature hence it is recommended that this is an area for future work.
31	
32	Multi Model Ensemble (MME): A collection of the output of a coordinated set of climate model
33	simulations produced by different climate modeling groups around the world. A typical example
34	is the Coupled Model Intercomparison Project (CMIP). Each model in the ensemble is usually
35	considered by the modeling group to be their 'best shot' at simulating the climate system i.e. to
36	have the best combination of resolved and parameterized processes as limited by practical
37	considerations of run time. Although some modeling groups now submit more than one version
38	of their model.

- 39
- 40 **Observational Constraint:** The use of observations to define a range or distribution of model
- 41 parameters. The observational constraint is derived from a metric that compares the model
- 42 simulation of past or historical climate with that observed.
- 43
- 44 **Parameter:** A physical 'constant' that is input to and controls the behaviour of a climate model.
- 45 In simple climate models, parameters may capture many physical processes e.g. the diffusion
- 46 of heat through the global ocean. In complex climate models, parameters tend to relate more to
- 47 specific physical processes e.g. the rate of entrainment of dry air into a cloud. While in principle,
- 48 parameters may have measureable physical counterparts, in many cases they control
- 49 approximations to the full complexity of that process.
- 50
- 51 **Perturbed Physics Ensemble or Perturbed Parameter Ensemble (PPE):** An ensemble in
- 52 which a single model structure is used and parameters that control the unresolved
- 53 parameterized processes are varied according to some strategy. More commonly a PPE is used
- 54 to describe a perturbed ensemble of complex model experiments.