
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 1 

A HISTORY OF PROTEROZOIC TERRANES IN SOUTHERN SOUTH 

AMERICA: FROM RODINIA TO GONDWANA 

 

Casquet, C.
1*

, Rapela, C.W.
2
, Pankhurst, R.J.

3
, Baldo, E.G.

4
, Galindo, C.

1
, Fanning, C. M.

5
, 

Dahlquist, J.
4
, Saavedra, J.

6 

 

(1) Departamento de Petrología y Geoquímica, IGEO (Universidad Complutense, CSIC), 28040 

Madrid, Spain 

(2) Centro de Investigaciones Geológicas (CONICET-UNLP), 1900 La Plata, Argentina 

(3) Visiting Research Associate, British Geological Survey, Keyworth, Nottingham 

NG12 5GG, United Kingdom 

(4) CICTERRA (CONICET-UNC), 5000 Córdoba, Argentina 

(5) Research School of Earth Sciences, The Australian National University, Canberra, 

Australia 

(6) Instituto de Agrobiología y Recursos Naturales CSIC, 37071 Salamanca, Spain 

*Corresponding Author´s e-mail: casquet@geo.ucm.es 

 

Keywords 

Paleoproterozoic; cratons; Grenvillian; Neoproterozoic rifting; SW Gondwana assembly 

 

Abstract 

 The role played by Paleoproterozoic cratons in southern South America from the 

Mesoproterozoic to the Early Cambrian is reconsidered here. This period involved protracted 

continental amalgamation that led to formation of the supercontinent Rodinia, followed by 

Neoproterozoic continental break-up, with the consequent opening of Clymene and Iapetus oceans, 

and finally continental re-assembly as Gondwana through complex oblique collisions in the late 

Neoproterozoic to Early Cambrian. The evidence for this is based mainly on a combination of 

precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a 

large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the 

west and as far north as Arequipa in Peru. Our interpretation of the paleogeographical and 

geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement 

ultimately older than 1.7 Ga in the Western Sierras Pampeanas (Argentina), the Arequipa block 

(Peru) the Rio Apa block (Brazil), and probably also the Paraguaia block (Bolivia).  

 

Introduction  

 

*Manuscript brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NERC Open Research Archive
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 The role of southern South American cratons in Rodinia reconstructions, particularly those of 

Amazonia and Rio de la Plata, is a long-debated issue (Hoffman, 1991; Dalziel, 1997; Weil et al., 

1998; Omarini et al., 1999; Loewy et al., 2003; Li et al., 2008; Trindade et al., 2006; Cordani et al., 

2010; Santosh et al., 2009, among others). The debate was stimulated by the ideas that 1) Eastern 

Laurentia was juxtaposed to Amazonia and the Rio de la Plata craton in Rodinia at ca. 1 Ga as a 

result of Grenvillian orogeny, and that 2) Laurentia rifted away to its present position in the 

northern hemisphere (present coordinates) in the late Neoproterozoic, accompanied by opening of 

the Iapetus Ocean and the final amalgamation of West Gondwana (Hoffman, 1991; Dalziel, 1997 

and references therein). However, the models derived from these studies took only minor account of 

the relatively small outcrops with Paleoproterozoic basement south of Amazonia and west of the 

Rio de la Plata craton. The wealth of data now available from detrital zircon ages and crystallization 

ages of many igneous rocks has transformed this situation. These outcrops are scattered over a very 

large region (Fig. 1), with an extensive cover of Mesozoic to Cenozoic sedimentary rocks, which 

hinders correlation between them. The Paleoproterozoic rocks crop out as inliers within the Andean 

belt (e.g., the Arequipa block in Peru; Loewy et al., 2004, and references therein; Casquet et al., 

2010), in the Andean foreland (Sierra de Maz in the Western Sierras Pampeanas of central 

Argentina; Casquet et al., 2006, 2008a) and in the stable mainland far from the Andean active 

margin (e.g., Rio Apa and Paraguá in southern Brazil; Cordani et al., 2010) (Fig. 1). Other 

occurrences may be hidden farther south in Argentine Patagonia. In consequence, the role of these 

outcrops in Rodinia reconstructions has been largely underestimated, hindering understanding of the 

role played by cratons in the Neoproterozoic-to-Early Paleozoic evolution of southern South 

America after the break-up of Rodinia. 

 The presence of a pre-Grenvillian continental mass called Pampia has been suggested 

(Ramos,1988; Ramos & Vujovich, 1993), initially as a block embracing most of the present Sierras 

Pampeanas realm, with a late Neoproterozoic turbidite basin (the Puncoviscana Formation) along 

the western passive margin that eventually collided with the Arequipa-Antofalla block. This view 

was largely retained by Ramos et al. (2010) in a recent review of Pampia. 

  Based largely on our own work since the 1990s in the pre-Andean basement, we proposed 

(Casquet et al., 2009) that by the end of the Paleoproterozoic the basement outcrops referred to 

above, i.e., Arequipa, Rio Apa and Maz, constituted a single larger continental mass (the MARA 

craton, Fig. 1). Part of this craton was involved in Mesoproterozoic orogenies along its northern and 

western margins that led first to its accretion to Amazonia at ca. 1.3 Ga or earlier, and then 

amalgamation with Laurentia between ca 1.3 and 1.0 Ga. The latter event involved accretion of 
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juvenile arcs and continental collision with reworking of older continental crust. After Rodinia 

break-up the larger continental mass embracing MARA + Laurentia + Amazonia (and probably 

other still unconstrained cratons) underwent protracted Neoproterozoic rifting, as exemplified by A-

type granite and carbonatite-syenite intrusions. Opening of an oceanic basin was eventually 

followed by oblique collision with some West Gondwana cratons (including Rio de la Plata and 

Kalahari) to produce the Pampean-Paraguay-Araguaia orogeny. This process was coeval with 

rifting-drifting of Laurentia and the opening of the Iapetus Ocean along the western margin of the 

large continental mass and represents the final stage in the formation of SW Gondwana. We provide 

here a detailed account of this evolution.  

  

1. The Paleoproterozoic MARA craton 

 In the Western Sierras Pampeanas of Argentina, the Maz terrane (comprising the sierras of 

Maz and Espinal) (Fig. 1) consists of a metamorphic Andean-type magmatic arc (1.33 – 1.26 Ga) 

and older metasedimentary rocks. (Casquet et al., 2006, Rapela et al., 2010). The latter contain 

detrital zircons older than 1.7 Ga and have Nd model ages of between 1.7 and 2.6 Ga and very 

radiogenic Pb, from which we infer that the protoliths were probably cover to a Paleoproterozoic 

basement older than 1.7 Ga (Casquet et al., 2008a). The Maz terrane was further reworked in the 

Ordovician and Silurian by the Famatinian orogeny (Casquet et al., 2005).  

 The Arequipa Massif in southern Peru (Cobbing and Pitcher, 1972) (Fig. 1) consists for the 

most part of Paleoproterozoic metasedimentary rocks and orthogneisses that record orogenic events 

(magmatism, sedimentation and metamorphism) between ca. 1.79 and 2.1 Ga (Loewy et al., 2004; 

Casquet et al., 2010). These rocks underwent intense Grenville-age (sensu Rivers, 2008) 

metamorphism between 1.04 and 0.84 Ga (Martignole and Martelat, 2003; Loewy et al., 2004; 

Casquet et al., 2010 and references therein). UHT metamorphism first recorded in the Arequipa 

Massif by Martignole and Martelat (2003) remains of disputed age, either Paleoproterozoic or 

Grenvillian (Martignole and Martelat, 2003; Casquet et al., 2010). Mixing of Paleoproterozoic and 

juvenile Grenvillian sources was recognized farther south in northern Chile and Argentina (Loewy 

et al., 2004), lending support to the idea of a continuous basement of Paleoproterozoic age under 

this part of the Central Andes, corresponding to the northern part of the Arequipa-Antofalla craton 

of Ramos (1988). A link between the Maz terrane and the northern part of the Arequipa-Antofalla 

craton was first established by Casquet et al. (2008a) on the basis of detrital zircon evidence and Pb 

and Nd isotope compositions. 
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 Finally the Rio Apa block, south of present-day Amazonia (Fig. 1), consists of a suite of 

Paleoproterozoic orthogneisses recording igneous events at 1.95 Ga, 1.84 Ga, and between 1.72 and 

1.77 Ga, as well as medium- to high-grade metamorphism of ca.1.7 Ga (Cordani et al., 2010). The 

Rio Apa block was overprinted by a thermal event at ca. 1.3 Ga (Cordani et al., 2010) coincident 

with the San Ignacio orogeny along the southern margin of Amazonia (Böger et al., 2005; Cordani 

and Teixeira, 2007). 

 The three cratonic outcrop areas referred to above, although separated by hundreds of 

kilometres, show evidence of common geological processes evidenced by U-Pb geochronology and 

similar Nd model ages (Fig. 2). This leads to the idea that all three formed part of a common 

continental mass before the onset of the Mesoproterozoic orogenies. We call this craton MARA 

(after Maz - Arequipa - Rio Apa), consisting of rocks formed between 1.7 and 2.1 Ga and with Nd 

residence ages (TDM) between 1.7 and 2.6 Ga (Casquet et al., 2009).  

 

2. The Mesoproterozoic Evolution of the Mara Craton 

 No evidence has so far been recognized in any of the three Paleoproterozoic outcrops for 

significant igneous or metamorphic activity between ca. 1.3 and 1.6 Ga, although they experienced 

constrasting igneous and metamorphic events in the second half of the Mesoproterozoic (Fig. 3).  

 The Maz terrane records an Andean-type magmatic arc (1.33 – 1.26 Ga) and intermediate P/T 

amphibolite to granulite facies metamorphism between 1.23 and 1.17 Ga followed by emplacement 

of AMCG complexes at 1.07-1.09 Ga (Casquet et al., 2005, 2006; Rapela et al., 2010). Moreover in 

the nearby Sierra de Pie de Palo, and in minor outcrops south of it (Fig. 1), a late Mesoproterozoic 

juvenile arc/back-arc oceanic complex has been identified (the Pie de Palo Complex) that records 

protracted subduction between ca. 1.24 and 1.03 Ga (Kay et al., 1996; Vujovich et al., 2004; Rapela 

et al., 2010). The Pie de Palo Complex is the basement of the enigmatic, supposedly Laurentia-

derived, Precordillera terrane (Thomas and Astini, 1996; for a review see Ramos, 2004): 

alternatively the terrane might have been para-autocthonous (Aceñolaza and Toselli, 2000; Galindo 

et al., 2004; Finney, 2007). In any hypothesis, docking of this terrane to the margin of Gondwana 

occurred in the mid-Ordovician during the Famatinian orogeny (Ramos et al., 1998; Ramos, 2004; 

Casquet et al., 2001; Galindo et al., 2004). Overlying the Pie de Palo Complex is an imbricate thrust 

system that reworked basement consisting of late Mesoproterozoic orthogneisses and 

metasedimentary rocks overlain by a Neoproterozoic sedimentary cover (Casquet et al., 2001; 

Mulcahy et al., 2011). This basement underwent pre-Famatinian metamorphism under conditions 

close to those of the Maz terrane, to which it is probably equivalent (Casquet et al., 2001). Orogenic 
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activity between ca 1.3 and 1.0 Ga in the Maz terrane and the Pie de Palo Complex can be 

interpreted as resulting from the approach and eventual collision of the MARA craton (and the 

juxtaposed Amazonia) with Laurentia to produce the middle to late Mesoproterozoic orogenic belt 

that fringes Amazonia on the west, with outcrops as far north as Colombia (Cardona et al., 2010, 

and references therein) (Fig. 1). Paleomagnetic data for ca. 1.2 Ga are compatible with this 

interpretation (Tohver et al., 2004). The relative positions of the oceanic Pie de Palo Complex and 

the continental Maz terrane in the Mesoproterozoic orogen are difficult to retrieve because of 

Famatinian oblique thrusting in Sierra de Pie de Palo and protracted post-Paleozoic activity along 

the Bermejo-Desaguadero fault that separates the block containing the Sierra de Pie de Palo and the 

Argentine Precordillera from that containing the sierras of Maz and Espinal (Fig. 1). 

 The Rio Apa block underwent a strong thermal episode at ca. 1.3 Ga with temperatures above 

300ºC, which affected the entire region (Cordani et al., 2010). This corresponds to the San Ignacio 

orogeny (1.34–1.32 Ga; Böger et al., 2005), the main belt of which developed farther north, along 

southern Amazonia (Fig. 1), and is one of several 1.56–1.3 Ga orogenic belts constituting the 

Rondonia-San Ignacio province of southern Amazonia (Bettencourt et al., 2010, and references 

therein). The lack of evidence in the Rio Apa block for the late Mesoproterozoic Sunsás orogeny s.l. 

(1.20–1.07 Ga; Cordani and Teixeira, 2007; Böger et al., 2005) suggests that it - and consequently 

the MARA craton - was accreted to the southern Amazonia margin during the San Ignacio orogeny, 

and was a mainly stable region in late Mesoproterozoic times. Deformation associated with the 

Sunsás orogeny, long considered the main representative of the Grenville orogeny in southern South 

America, occurred farther north along branched transcurrent belts and pull-apart basins (Fig. 1) 

involving local metamorphism and granitic magmatism (for a review see Teixeira et al., 2010 ). The 

Paraguá block of Eastern Bolivia (Fig. 1) also has Paleoproterozoic basement older than ca. 1.7 Ga 

(Böger et al., 2005) that was accreted to SW Amazonia during the San Ignacio orogeny 

(Bettencourt et al., 2010) and could thus also have been part of MARA. 

 The history of the Arequipa massif differs in that it shows evidence for true Grenville-age 

(sensu Rivers, 2008) low-P high-T regional metamorphism between ca 1.04 and 0.85 Ga, younger 

than in the Maz terrane and Rio Apa block (Loewy et al., 2004; Casquet et al., 2010). The massif 

was probably an inlier in the middle to late Mesoproterozoic orogenic belt that only underwent late-

orogenic metamorphism. However its pre-orogenic location and the geodynamic setting of 

metamorphism remain uncertain. With respect to location Dalziel (1992, 1994) and Sadowsky and 

Bettencourt (1996, and references therein) proposed that the Arequipa massif was the tip of a 

promontory of NE Laurentia. Subsequently Loewy et al. (2004) suggested that the Arequipa massif 
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and its southward extension may have been part of a larger craton in collision with Amazonia. With 

respect to metamorphism an extensional setting in the Grenvillian hinterland has been hypothesized 

on the grounds that extension was widespread over southern Amazonia at this time (equivalent to 

the Rigolet event of the Grenville orogeny; Casquet et al., 2010). Significantly, accretion of MARA 

to Amazonia during the San Ignacio orogeny would explain the input of detrital zircons with ages 

between 1.2 and 1.6 Ga to the late Mesoproterozoic Atico basin in Arequipa, for which no local 

sources have been recognized (Casquet et al., 2010). Amalgamation of Laurentia and the MARA 

craton (with Amazonia) in the Mesoproterozoic at ca. 1.2 Ga (Tohver et al., 2002)  was an 

important contribution to the formation of Rodinia. 

 

3. Neoproterozoic to Early Paleozoic evolution 

 The Neoproterozoic to Early Paleozoic history is summarized focusing on evidence from the 

Sierras Pampeanas of Argentina. 

 

3.1 Rifting events and the Clymene Ocean 

 Protracted rifting of Rodinia took place throughout the Neoproterozoic. Two early aborted 

rifting events, at ca. 840 and 760 Ma, are represented by A-type granitoids in Sierra de Maz and 

Sierra de Pie de Palo, bearing zircons with juvenile Hf and O isotopic signatures (Baldo et al., 2006; 

Colombo et al., 2009; Rapela et al., 2011). Further rifting occurred at ca. 570 Ma (Ediacaran), 

represented by a carbonatite-nepheline syenite complex in the Sierra de Maz (Casquet et al., 

2008b). We suggest that this latter event probably initiated opening of the Clymene Ocean (Fig. 4). 

This ocean was named by Trindade et al. (2006), who argued on the basis of paleomagnetism for 

such a late Neoproterozoic ocean between Amazonia + Laurentia on the one hand and West 

Gondwana cratons, such as Rio de la Plata and Kalahari, on the other. As an alternative to the 

Pampia model of Ramos (1988) and Ramos et al. (2010), we envisage that MARA was attached to 

the former continental mass and that the closure of this ocean led to the Pampean orogeny (Casquet 

et al., 2009). 570 Ma is just within error of the Sm-Nd age of 647± 77 Ma for alleged Pampean 

ophiolite relics (whole-rock errorchron with MSWD = 7.6), obtained by Escayola et al. (2007). 

 

3.2 The Difunta Correa Sedimentary Sequence  

 Further evidence for the Clymene Ocean comes from the Sr-isotope composition of platform 

carbonates of the Difunta Correa Sequence, which was deposited on the Paleoproterozoic and 

Mesoproterozoic basement of the Western Sierras Pampeanas in the late Neoproterozoic (Varela et 
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al., 2001; Galindo et al., 2004; Rapela et al., 2005; Murra et al., 2011). From comparison with the 

Sr-isotope composition of seawater through time, Galindo et al. (2004) deduced a maximum age of 

580 Ma (Ediacaran) for the sequence in Sierra de Pie de Palo. This accords with the similar findings 

of Varela et al. (2001) for equivalent carbonate cover in Sierra de Umango (Western Sierras 

Pampeanas) and of Murra et al. (2011) for marbles from Sierra de Ancasti (Eastern Sierras 

Pampeanas). Similar Ediacaran shallow-marine carbonates that were post-glacial with respect to the 

Marinoan (ca. 635 Ma) and Gaskiers (ca. 580 Ma) events are recorded elsewhere in southern South 

America (Misi et al., 2007). This evidence for extensive carbonate platforms at ca. 580 Ma is 

compatible with the existence of the Clymene Ocean during Ediacaran time (Fig. 4).  

 

3.3 The Puncoviscana Formation 

 The Puncoviscana Formation (Turner, 1960) is a thick, mainly siliciclastic partly turbiditic, 

succession (Ježek, 1990; Omarini et al., 1999, Zimmermann, 2005 and references therein) that crops 

out in northern Argentina and allegedly throughout most of the eastern Sierras Pampeanas (e.g., 

Schwartz and Gromet, 2004; Rapela et al., 2007). It has been the subject of much controversy in 

terms of its age and tectonic setting of sedimentation. The formation is important in that it shows 

the main evidence for the Early Cambrian Pampean orogeny, in the form of penetrative deformation 

and metamorphism, the grade of the latter increasing from the Puna and Sierras Orientales in the 

north (very low- to low-grade) to the Sierras de Córdoba in the south (high-grade). The formation 

was also host to the Pampean plutonic arc in the south, formed between ca. 550 and 530 Ma (Rapela 

et al., 1998; Schwartz et al., 2008; Iannizzotto et al., 2011). The term Puncoviscana Formation in 

the literature embraces sedimentary rocks probably older, coeval and younger than the Pampean 

magmatic arc with the only constraint that they are older than the unconformably overlying Middle 

to late Cambrian Meson Group (e.g., Omarini et al., 1999; Adams et al., 2008, 2011; Escayola et al., 

2011, and references therein). We restrict our treatment here to that part of the siliciclastic 

succession that hosts the magmatic arc in the south, which is of relevance to the early history of the 

Puncoviscana sedimentary basin. This southern tract is mainly pelitic and contains characteristic 

detrital zircons populations with major peaks at 1100–960 Ma and 680–570Ma and lacks grains 

derived from the nearby Rio de la Plata craton (2.02–2.26 Ga) (Schwartz and Gromet, 2004; 

Escayola et al., 2007; Rapela et al., 2007). Sedimentation here took place on the eastern margin of 

the Clymene Ocean between ca. 570 Ma (the approximate age of the youngest detrital zircons) and 

ca. 530 Ma (Fig. 4); the older age being coincident with that of the anorogenic carbonatite-syenite 

event referred to above. The paleogeographical position was probably distant from the Rio de la 
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Plata craton, to which the Puncoviscana Formation basement became juxtaposed through right-

lateral displacement during Pampean subduction and collision (Schwartz and Gromet, 2004; Rapela 

et al., 2007; Verdecchia et al., 2011). However, the sedimentary setting of this tract of the 

Puncoviscana Formation remains uncertain; a fore-arc basin was suggested Rapela et al. (2007) but 

a passive margin setting for the older part of the tract can not be discounted.  

 

4. The Pampean orogeny and the amalgamation of SW Gondwana 

 Subduction started in the Late Neoproterozoic or Early Cambrian along the eastern margin of 

the Clymene Ocean, giving rise to the Pampean orogeny. An I-type Andean-type magmatic arc 

developed between ca. 550 and 530 Ma (Rapela et al., 1998; Schwartz et al., 2008; Iannizzotto et 

al., 2011) (Fig. 4). At the same time Laurentia rifted away from MARA + Amazonia in the west 

(present coordinates), resulting in opening of the Iapetus Ocean (Dalziel, 1997) and with 

development of passive margin sedimentary sequences well preserved along the Appalachian 

margin of Laurentia and in the Precordillera terrane of western Argentina (e.g., Astini et al., 1995; 

Thomas and Astini, 1996). Final closure of the Clymene Ocean occurred between 530 and 520 Ma 

as implied by the ages of intermediate P/T Barrovian-type collisional metamorphism and coeval S-

type plutonism (Rapela et al., 1998; Rapela et al., 2002; Otamendi et al., 2009) (Fig. 4). 

 At the start of the Pampean orogeny (ca. 550 Ma) the Paleoproterozoic and Mesoproterozoic 

basement of the Western Sierras Pampeanas was part of a large but ephemeral continental mass 

rifted from Laurentia (Rapela et al., 2007; Casquet et al., 2009), consisting of MARA together with 

Amazonia (Fig. 4). The Western Sierras Pampeanas probably formed the southern tail of this 

landmass (Rapela et al., 2007). Participation of the Pie de Palo complex in this new continental 

assemblage cannot be ruled out in the hypothesis of a para-autochthonous Precordillera terrane 

(Galindo et al., 2004; Finney, 2007). 

 The Pampean orogeny involved oblique closure of the Clymene Ocean between MARA + 

Amazonia and other West Gondwana cratons (Rio de la Plata, Kalahari,…), ultimate collision of 

these continental masses bringing to an end the formation of Gondwana (Trindade et al., 2006; 

Rapela et al., 2007). We suggest that these collisions were responsible for the formation of a 

continuous mobile belt embracing the Pampean orogen in the south and the Paraguay and Araguaia 

belts further north (Fig. 1), all of which have igneous, metamorphic and structural features in 

common (Rapela et al., 2007; Moura et al., 2008; McGee et al., 2011, Bandeira et al., 2011). 

Moreover, no evidence of Cambrian orogeny has yet been convincingly demonstrated for the 

western margin of Amazonia (e.g., Chew et al., 2007). Consequently, this orogenic belt was 
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probably part of the Terra Australis orogen of Cawood (2005), although the South American tract 

that we describe here follows a different trend along eastern Amazonia (Fig. 3). The Trans-

Brasiliano lineament of Cordani et al. (2003) (Fig. 1) is interpreted as a late Pampean mega-fault 

equivalent to the Córdoba Fault (e.g., Rapela et al., 2007) (Fig. 4) responsible for the final assembly 

of eastern South America continental masses before Pangea. On the other hand the western margin 

of MARA + Amazonia (now part of Gondwana) facing the Iapetus Ocean remained passive until 

the Early Ordovician when it evolved into an Andean-type orogeny that persisted throughout the 

Paleozoic and the Mesozoic, evolving into the present Andean margin of South America. 

 

5. Conclusions 

 Southern South America contains an outstanding record of Rodinia formation, further 

supercontinent break-up in the Neoproterozoic and final re-assembly of continental blocks in SW 

Gondwana in the Early Cambrian. We suggest here that several minor Paleoproterozoic blocks, 

such as the Maz terrane in the Western Sierras Pampeanas, the Arequipa block including its 

southern extension, and the Rio Apa block, at least, formed a major continental mass, i.e., the 

MARA craton, which collided with Amazonia at ca. 1.3 Ga. The resulting continent further 

amalgamated to Laurentia during middle and late Mesoproterozoic orogenies as part of Rodinia 

formation. Protracted break-up of Rodinia took place in the Neoproterozoic as recorded by episodic 

anorogenic magmatism and eventual opening of the Clymene Ocean in Ediacaran times. Post-

glacial platform carbonates formed in this ocean followed by deposition of the largely turbiditic 

Puncoviscana Formation along the eastern margin in late Ediacaran to Early Cambrian times. 

Eastward right-lateral subduction led to closure of the Clymene Ocean coeval with Laurentia 

drifting away to the west to open the Iapetus Ocean. The proto-Andean margin formed at this time 

and remained passive till the start of the Andean-type Famatinian orogeny in the Early Ordovician. 

Final closure of the Clymene Ocean led to oblique collision of the large continental mass formed by 

MARA+Amazonia with other West Gondwana cratons (Kalahari, Rio de la Plata..) to produce the 

transpressional Pampean-Paraguay-Araguai orogenic belt in the Early Cambrian, and brought to an 

end the assembly of SW Gondwana.  
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Figure Captions 

Figure. 1: Sketch map of South America showing Paleoproterozoic to Archean cratons and the 

middle-to-late Mesoproterozoic, and Neoproterozoic to Early Cambrian orogenic belts. The 

MARA craton reached its present position after right-lateral oblique accretion to the Rio de la 

Plata craton during the Pampean orogeny and further displacement along the Córdoba fault. 

Outcrops in red are Paleoproterozoic and Mesoproterozoic outcrops referred to in the text. 

DBF: Desaguadero-Bermejo Fault; CF: Córdoba Fault. 

Figure 2: The Paleoproterozoic record in the three outcrops forming the hypothetical MARA craton. 

Data from Casquet et al. (2008a, 2010) and Cordani et al. (2010). 

Figure 3: Middle-to-late Mesoproterozoic evolution of the MARA craton. From Rapela et al. 

(2010), Casquet et al. (2010) and Cordani et al. (2010) 

Figure. 4: 3-D diagrams showing geotectonic evolution during the Neoproterozoic and the Early 

Cambrian that led to the Pampean orogeny and final amalgamation of MARA to Gondwana. 

See text for explanation. The figure highlights the role played by the opening of the Clymene 

Ocean in the late Neoproterozoic and its subsequent closure in the Early Cambrian coeval 

with drifting of Laurentia in the west en route to the northern hemisphere 
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