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We present a hypothesis-driven study on the variation of melody phrases in a collection

of Dutch folk songs. We investigate the variation of phrases within the folk songs through

a pattern matching method which detects occurrences of these phrases within folk song

variants, and ask the question: do the phrases which show less variation have different

properties than those which do? We hypothesize that theories on melody recall may

predict variation, and as such, investigate phrase length, the position and number of

repetitions of a given phrase in the melody in which it occurs, as well as expectancy and

motif repetivity. We show that all of these predictors account for the observed variation to

a moderate degree, and that, as hypothesized, those phrases vary less which are rather

short, contain highly expected melodic material, occur relatively early in the melody, and

contain small pitch intervals. A large portion of the variance is left unexplained by the

current model, however, which leads us to a discussion of future approaches to study

memorability of melodies.

Keywords: music information retrieval, music cognition, recall, memorability, stability, folk songs, corpus analysis

1. INTRODUCTION

Songs and instrumental pieces in a musical tradition are subject to change: as they are adopted by a
new generation of listeners and musicians, they evolve into something new while retaining some of
their original characteristics. The current article investigates to what extent this change of melodies
may be explained by hypotheses on the memorability of melodies.

To address this question, we investigate a corpus of folk songs collected in the second half of the
twentieth century, in which we can identify groups of variants. The variants are results of real-life
melody transmission, something which would be difficult to study in an experimental setting, but
for which the present folk song collection possesses high ecological validity. In folk song research,
there is a long-standing interest in those melodic segments which resist change during melody
transmission. This resistance to change is also referred to as stability (Bronson, 1951).

According to models of cultural evolution, the relative frequency of cultural artifacts can be
explained based on drift alone: certain phrases might have been copied more frequently than others
purely based on chance, and the relative stability of a given phrase in a collection of folk songs would
be random (Henrich and Boyd, 2002). We hypothesize, instead, that stability can be predicted
through the memorability of melodies.

To quantify stability, or the amount of variation a folk song segment undergoes through oral
transmission, we follow Bronson’s notion that “there is probably no more objective test of stability
than frequency of occurrence.” (Bronson, 1951, p. 51). We formalize the relative stability of a
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melodic segment as its frequency of occurrence across variants
of the same folk song. We focus on melodic phrases from the folk
songs and employ a novel pattern matching method to determine
whether or not amatch for a given phrasemay be found in a given
folk song variant, based on similarity measures tested in Music
Information Retrieval, and evaluated on a subset of folk songs
in previous work (Janssen et al., in press). We then test whether
there is a statistical relationship between a given phrase’s matches
in variants, and the same phrase’s memorability, i.e., properties
which might facilitate its recall.

Part of our predictions for the memorability of melodies
are drawn from serial recall experiments, which typically test
how well participants in studies remember word lists—presented
visually or auditorily—or purely visual or spatial cues. Based
on this research, we can expect that the length of a phrase
might influence its memorability: a phrase with many notes
contains more items that need to be correctly reproduced, and
will therefore be harder to remember than a phrase with few
notes. This does not take into account effects of chunking,
which might reduce the memory load of phrases with many
notes (Miller, 1956). Recall experiments with lists of different
lengths have shown that increasing the length of a memorized list
decreases the proportion of correctly recalled items (Ward, 2002).
Moreover, rehearsal in the form of phrase repetitionsmight play a
role: a phrase that is repeated several times within amelodymight
bememorizedmore faithfully than a phrase that only occurs once
in each verse. The repetition can be considered rehearsal, which
has been shown to increase retention of items (Murdock and
Metcalfe, 1978).

Besides, the position of a melodic phrase within a piece might
influence its memorability: in serial recall experiments, these
effects are known as serial position effects (Deese and Kaufman,
1957). When the start of lists is remembered better, this is
considered a primacy effect (Murdock, 1962). When words were
presented auditorily, Crowder and Morton (1969) found that the
end of lists were remembered better, which might lead one to
expect that melodies, also auditory in nature, exhibit a recency
effect. However, in Rubin’s (1977) experiments on long-term
retention of well-known spoken word passages (the Preamble
to the constitution of the United States, Psalm 23, and Hamlet’s
monolog from the eponymous Shakespeare play), words at the
start of such a passage are recalled better than items in the middle
or at the end. As this situation is maybe closest to singing a
folk song from memory, we assume that phrases at the start
of melodies may also be more stable. Of course, serial position
effects may be caused by an individual’s more frequent exposure
to items early or late in a melody (Ward, 2002), in which case
we would expect that rehearsal is more important than serial
position to explain the stability of melodic segments.

Next to these general hypotheses on recall, we test hypotheses
based on melody recall research. Firstly, a significant body of
research linksmelody recall to expectancy. According to Kleeman
(1985), only music which can be processed by listeners based on
their musical expectations, will be selected for transmission in
a musical tradition (p. 17). Supporting this, Schmuckler (1997)
found a relationship between expectancy ratings and melody
recall in an experimental study on folk song melodies. To this

end, 16 participants were instructed to rate how well artificial
variants of 14 folk songs confirmed their expectancy. The variants
of the folk songs were generated by scrambling the notes at
the end of each song, maintaining the rhythmical structure
and the end note. Afterwards, participants had to identify the
melodies they had encountered in the first part of the experiment,
presented along with previously unheard melodies. The hit rates
were positively correlated with the expectancy rating, indicating
that those melodies which conform best to melodic expectations
of listeners are also most reliably recalled.

An alternative prediction would be that it is actually
more unexpected items which are easier remembered. This
is corroborated by evidence from free recall, where items
which are unusual are usually better remembered (von Restorff,
1933). For music, Müllensiefen and Halpern (2014) found that
memorability of melodies was increased if they contained a
large amount of unique motifs, i.e., melodic material which is
unusual and therefore unexpected. This means that expectancy
may influence variation of melodies in opposing ways, which we
both adopt as hypotheses (see hypotheses 4a and 4b in the list of
hypotheses below).

Different formalizations of melodic expectancy exist, among
which the influential implication-realization theory by Narmour
(1990) predicts that the direction and distance, or pitch interval,
between two ensuing musical tones implies the direction and
size of the next pitch interval. Schellenberg (1996) quantified
the principles that Narmour defined, such that for a given
implicative pitch interval, there is a measurable expectancy of
which note is likely to ensue. He performed three listening
experiments in which listeners rated how well the last note
fulfilled their expectations after listening to excerpts from British
and Chinese folk songs, and from atonal music, and reanalyzed
data from Unyk and Carlsen (1987). His experiments showed
that the quantified implication-realization principles were highly
correlated with listeners’ expectancies.

Schellenberg found that Narmour’s model can be reduced
to two factors, pitch proximity and pitch reversal, without
significant loss in explanatory power (Schellenberg, 1997).
Hence, Schellenberg’s simplified model can be considered a
quantification of expectancy, which may predict how well a given
melody is retained in a musical tradition.

Inspired by an article by Meyer (1957), Conklin and Witten
(1995) approach expectancy with information-theoretical
measures: according to Meyer’s theory, expectancies are
generated by learned probabilities of given events. A listener
expects musical events she has heard frequently before, and
will be surprised by musical events she hears for the first time.
Conklin and Witten assume that this learning, and hence
expectancy, can be based on different musical aspects, such as
pitches, pitch intervals or durations, among others. For this, they
developed a predictive model based on various musical aspects,
which they refer to as viewpoints.

Conklin and Witten’s model applies Prediction by Partial
Matching (Cleary and Witten, 1984) to a given note event,
expressed by one or several viewpoints. Prediction by Partial
Matching (PPM) is a statistical model that is trained on the
frequencies of n-grams, or sequences of n symbols, in a collection
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of documents, and which can then be used to predict a symbol
in an unseen document given its context. In music prediction,
the symbols are musical notes, described by various viewpoints,
e.g., pitch, duration, pitch interval, or accentuation. If the model
encounters a note sequence it has not seen in the learning phase,
it will backtrack to the next shorter note sequence which it did
encounter, and use the frequency of the shorter sequence to
predict the following note.

Pearce and Wiggins (2004) extended Conklin and Witten’s
model such that the length of the musical sequence, or the
order of the n-gram, is variable. Pearce and Wiggins confirmed
that statistical information as modeled by their system, dubbed
IDyOM (Information Dynamics of Music)1, predicts listener’s
expectancy ratings from various listening experiments on folk
songs, hymns and single intervals to a great extent (Pearce and
Wiggins, 2012).

Some recent corpus studies of popular music have indicated
that the presence of repeating motifs in a melody or phrase
may enhance its memorability. As such, Müllensiefen and
Halpern (2014) investigated a large number of musical features
derived from music notation of 80 Western pop songs, to
see which of them would best predict the memorability of
80 pop song excerpts. The memorability was determined
in a recall experiment with 34 participants, who listened
to 40 excerpts and later were presented with all of the
excerpts, having to indicate whether they had heard the
song before, and how pleasant they considered the excerpt
in question. The researchers considered responses on the
pleasantness to represent implicit memory for the music,
through the mere exposure effect (Zajonc, 1980). Müllensiefen
and Halpern’s results indicate that a melody is more easily
remembered explicitly if it consists of motifs which are repeated
within the melody. For the implicit memory of melodies,
however, it was found that motifs should not repeat too
much.

Van Balen et al. (2015) measure the memorability of pop songs
that participants are likely to have heard through radio and other
media. They register this memorability through reaction times
in a game. The goal of the game is to indicate whether or not
the player recognizes a given song segment (cf. Burgoyne et al.,
2013). If the player’s response is fast, Van Balen and colleagues
surmise that the song segment in question is very memorable, or
catchy. They use a range of features to predict the memorability
of the melodies, among which the features used by Müllensiefen
and Halpern (2014).

One of Balen and colleagues’ strongest predictors of
memorability turned out to be motif repetivity, which is
in line with Müllensiefen and Halpern’s findings on explicit
melody recall. As our study focusses on melodies which
were explicitly remembered by their singers, rather than
pleasantness ratings of these melodies, we therefore adopt
the prediction that motif repetivity will increase a phrase’s
stability. Motif repetivity can also be seen as related to
chunking, as repeating motifs would provide meaningful
subdivisions within a phrase. Chunking has been shown

1https://code.soundsoftware.ac.uk/projects/idyom-project.

to facilitate learning in various domains (Gobet et al.,
2001).

Based on the above observations, in the current paper we
investigate the following five hypotheses of how variation of folk
songs may be predicted through theories on melody recall:

1. Shorter phrases show less variation.
2. Phrases which repeat within their source melody show less

variation.
3. Phrases which occur early in their source melody show less

variation.
4. A phrases’ expectancy is related to its variation.

(a) Phrases which contain highly expected melodic material
show less variation.

(b) Phrases which contain highly surprising melodic material
show less variation.

5. Phrases composed of repeating motifs show less variation.

2. MATERIALS AND METHODS

Our research was carried out using the folk song corpus (FS)
from the Meertens Tune Collections2. This corpus comprises
4,125 digitized transcriptions of monophonic songs, of which
the largest part has been recorded in field work between 1950
and 1980 (Grijp, 2008). 1,245 transcriptions originate from song
books of the nineteenth and twentieth century known to contain
variants to the recorded songs.

The corpus has been categorized into tune families, or groups
of variants, by domain experts (c.f. Volk and van Kranenburg,
2012), and we use these pre-defined groups to investigate stability
between song variants. We compare variants from the same
tune family. Each variant is considered to represent the variation
imposed by a particular singer or song book editor to a given
melody. Consequently, we analyze which phrases of the songs
belonging to a tune family vary more, or vary less between
different variants: if a phrase occurs in many variants, this means
that this phrase is less subject to change, or more stable.

To this end, we separate the FS corpus into three sub-
corpora: (1) a training corpus of 360 melodies for which
annotations of phrase occurrences were available; (2) a test
corpus of 1,695 melodies with tune families comprising at least
five variants, but excluding tune families from the training
corpus; (3) a background corpus of 1,000 melodies with tune
families comprising very few variants. All melodies which could
potentially be related to melodies from the test corpus—because
they might be hitherto unrecognized variants of a tune family in
the test corpus (tune family membership undefined), or because
they were subtypes of a tune family in the test corpus—were
excluded from the background corpus.

The training corpus was used to train the computational
method to find phrase occurrences; the background corpus was
used to train information theoretical models; the test corpus was
used to test the relationship between variation of the folk song
phrases and their hypothesized memorability.

2www.liederenbank.nl/mtc.
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2.1. Detecting Phrase Occurrences
To quantify the amount of variation, or stability of a given
melodic phrase (the query phrase), we detect its occurrences in
melodies belonging to the tune family fromwhich it was taken (its
source tune family): the more variants of the source tune family
the query phrase occurs in, the higher the stability of the phrase.

We detect occurrences through pattern matching, or the
computational comparison of the query phrase to all melodies
in its source tune family. The extent to which any segment in a
givenmelody resembles the query phrase can be detected through
various similarity measures. Earlier research on the above-
mentioned training corpus with phrase occurrence annotations
has shown that a combined measure of the similarity measures
city-block distance (Steinbeck, 1982), local alignment (Smith
and Waterman, 1981) and structure induction (Meredith, 2006)
reproduces human annotations of phrase occurrences best. The
similarity measures, as well as the way in which they were
combined, are described in the Supplementary Material.

Research on the training corpus also showed which similarity
score should be used as a threshold to separate between relevant
occurrences (i.e., detected matches which were also annotated as
instances of the query phrase) and irrelevant occurrences (i.e.,
detected matches which were not annotated as instances of the
query phrase) for each of the three measures (Janssen et al.,
in press). This optimal similarity threshold results in the best
trade-off betweenmissing as few relevant occurrences as possible,
while producing as few as possible irrelevant occurrences.

Our previous research indicated that the combined measure
produces errors in comparison to human annotators, i.e., it
misses about 30% of the relevant occurrences, and detects about
8% irrelevant occurrences. The percentage of produced errors
differs depending on the analyzed tune family. Using the pattern
matching procedure, for the 9,639 phrases from 147 tune families
in the test corpus, we receive 170,803 computational judgements
on the occurrences of these phrases in their respective source tune
families.

2.2. Formalizing Hypotheses
This section describes the formalization of hypotheses on
memorability of melodies3. For illustration purposes, we present
a running example in Figure 1, a folk song melody from the tune
family Van Peer en Lijn (1), part of the test corpus. This melody
has ten phrases and shows how under the current formalizations,
different hypotheses arrive at different predictions of stability for
each phrase. Throughout this section, we refer to a query phrase
as q, which is taken from its sourcemelody, s. The sourcemelody’s
notes are referred to as sj. The query phrase starts at index j = a
and has a length of n notes.

2.2.1. Influence of Phrase Length

We test whether the length of the phrases has influence on their
stability by defining the phrase length as the number of notes n of
which a given phrase is composed.

Len(q) = n (1)

3The implementations of the hypotheses can be found at https://github.com/
BeritJanssen/Stability.

In the example melody, the shortest phrases (phrase 2 and 4) have
a length of seven notes, the longest phrase (phrase 9) has 16 notes.
According to the prediction of the list length effect, we would
expect the second and fourth phrases to be more stable than the
ninth phrase. Over the whole dataset, phrase length takes values
in the range [3, 26] in the dataset, with a mean of Len = 9.11 and
a standard deviation of SD(Len) = 2.23.

2.2.2. Influence of Rehearsal

Rehearsal is modeled based on phrase repetitions: if a phrase is
repeated multiple times within a melody, it is subject to more
rehearsal, hence it may be expected to be more stable. The
resulting predictor, phrase repetition, is measured by counting
the occurrences of a phrase in its source melody. All phrases
in a melody s are defined as sets of notes Pid. id refers to the
sequential index of the phrase P in the melody. Each phrase’s
notes are represented by their onset from the start of the phrase
and their pitch. The query phrase is a set of notesQwith the same
representation. For every phrase Pid we determine its equality
score to Q as follows:

Eq(Pid,Q) =

{

1 if Pid = Q

0 otherwise
(2)

Then we measure the number of phrase repetitions Rep of the
query phrase q by summing the equality scores of all f phrases
Pid in the melody.

Rep(q) =

f
∑

id=1

Eq(Pid,Q) (3)

In the example melody, the first and second phrase repeat exactly
as the third and fourth phrase, respectively. The other phrases
do not repeat anywhere in the melody. This means that phrase
repetition is Rep = 2 for the first four phrases, Rep = 1 for
the other six phrases. This would lead to the prediction that the
first four phrases are more stable than the last six phrases. Phrase
repetition takes values in the range of [1, 4] in the dataset, with a
mean of Rep = 1.17 and a standard deviation of SD(Rep) = 0.39.

2.2.3. Influence of the Primacy Effect

We test the primacy effect based on the position of a phrase in
its source melody. We formalize the phrase position as a given
phrase’s sequential index, qid, from qid = 1 to qid = g for
all g phrases in the source melody. For the example melody of
Figure 1, g = 10.

Pos(q) = qid (4)

In the examplemelody, the first phrase has a value of Pos = 1, and
the last phrase a value of Pos = 10. Phrase position takes values
in the range of [1, 22] in the dataset, with a mean of Pos = 3.44
and a standard deviation of SD(Pos) = 2.06.

2.2.4. Influence of Expectancy

To quantify expectancy, we make use of two formalizations: one
by Schellenberg (1997), which is based on observations from
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FIGURE 1 | An example melody from the test corpus, belonging to the tune family Van Peer en Lijn (1), which comprises six variants. This melody is

used to illustrate the formalizations of the hypotheses. The number on top of the sheet music shows the record number in the Dutch folk song database, the numbers

left of the staves show the sequential phrase indices. A recording can be found at http://www.liederenbank.nl/sound.php?recordid=74521&lan=en.

music theory, and one by Pearce and Wiggins (2004), which is
based on statistical analysis of a background corpus.

We base both models on pitch intervals between consecutive
notes. The pitch of a given note pitch(sj), or its height in the

human hearing range, is represented by its MIDI note number.
This entails that pitches are integers, in which a semitone
difference between two pitches is indicated by a difference of one.
The pitch interval between a note sj and its predecessor sj−1 is
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defined by pInt(sj) = pitch(sj)− pitch(sj−1), where a positive sign
indicates that the preceding note is lower, and a negative sign that
the preceding note is higher. Both models make predictions for
single notes, rather than whole phrases. We derive predictions for
whole phrases through averaging the note values over the length
of the phrase.

2.2.4.1. Expectancy: music theory
The first component of Schellenberg’s model, pitch proximity,
states that listeners expect small steps between melody tones.
The further a given note is away from its predecessor, the more
unexpected it is. The model does not make any predictions for
pitch intervals equal to or larger than an octave.

PitchProx(sj) =

{

∣

∣ pInt(sj)
∣

∣ if
∣

∣ pInt(sj)
∣

∣ < 12

undefined otherwise
(5)

In Figure 2A we show the first phrase of the example melody,
with the pitch proximity values printed underneath each note,
referring to the pitch interval to its preceding note. Note that the
pitch interval, and therefore pitch proximity, is not defined for
the first note of amelody, as there is no previous pitch fromwhich
a pitch interval could be measured.

To calculate the pitch proximity of a phrase, the pitch
proximity values of the notes sj belonging to a given phrase are
averaged over the whole phrase, and the negative value of this
average is used for easier interpretation, such that if a phrase has
a high value of pitch proximity, its pitches are close to each other,
while lower values indicate larger pitch intervals. Notes for which
pitch proximity is not defined are discarded from the averaging
procedure.

Prox(q) = −
1

n

a+n
∑

j=a

PitchProx(sj) (6)

We show the pitch proximity values for the seventh and
eighth phrase of the example melody in Figure 2A. The
average proximity of the two phrases amounts to Prox =

−13/9 = −1.44 and Prox = −20/7 = −2.85, respectively,
which means that we would expect the seventh phrase to
be more stable than the eighth phrase. Pitch proximity takes
values in the range of [−6.0, 0.0] in the whole data set, with
a mean of Prox = −2.01 and a standard deviation of
SD(Prox) = 0.69.

The other factor in Schellenberg’s model is pitch reversal,
which summarizes the long-standing observation from music
theory that if leaps between melody notes do occur, they tend to
be followed by stepwise motion in the opposite direction (Meyer,
1956). See the Supplementary Material for the quantification
of this principle, which for a given melody note results in
values ranging from PitchRev(sj) = −1, or least expected, to
PitchRev(sj) = 2.5, or most expected. As with pitch proximity,
we calculate the average reversal of a phrase through calculating
the arithmetic mean of its constituent notes. As pitch reversal
makes predictions based on two pitch intervals, it is not

defined for the first two notes of a melody. Notes for which
pitch reversal is not defined are discarded from the averaging
procedure.

Rev(q) =
1

n

a+n
∑

j=a

PitchRev(sj) (7)

We show the pitch reversal values for the seventh and eighth
phrase of the example melody in Figure 2B. The average reversal
of the two example phrases amounts to Rev = 3/9 = 0.33
and Rev = 1/7 = 0.14, respectively, which means that we
would expect the seventh phrase to bemore stable than the eighth
phrase. Pitch reversal takes values in the range of [−0.5, 1.5] in
the whole data set, with a mean of Rev = 0.30 and a standard
deviation of SD(Rev) = 0.24.

2.2.4.2. Expectancy: information theory
The IDyOM (Information Dynamics of Music) model by Pearce
analyzes the frequencies of n-grams in a music collection, and
based on these observed frequencies, assigns probabilities to
notes in unseen melodies, given the notes preceding it. The
preceding notes are also referred to as context. The length of the
context can be set by the user. If the model cannot find a relevant
n-gram of the context length specified by the user, it backtracks
to shorter melodic contexts, and uses those frequencies to return
the probability of a given note.

We let the model analyze our background corpus, with the
melodies represented as pitch intervals. As we are interested
in contexts of phrase length, we limit the n-gram length to
the average phrase length of nine. We use IDyOM’s long-term
model, i.e., the model does not update itself while observing the
query phrases, and we apply the interpolation weighting scheme
C, which balances longer and shorter melodic contexts evenly.
This was proven to be the best performing weighting scheme in
experiments by Pearce (2005).

We express the expectancy of a given melodic segment
through its average information content. Information content
is the natural logarithm of the inverse probability P(sj) of a
note to occur given the previous melodic context, based on the
probabilities of the background corpus. We choose information
content rather than probability, as the logarithmic representation
makes it possible to compare the typically small probability values
in a more meaningful way. Information content is often also
referred to as Surprisal, as its values increases as events get less
expected.

We average the information content of all notes in a query
phrase by their arithmetic mean, which is equivalent to a
geometric mean of the probabilities. We call this average
information content surprisal in the following, to indicate that
higher values denote less expected phrases.

Sur(q) =
1

n

a+n
∑

j=a

log(
1

P(sj)
) (8)

We show the information content for the seventh and eighth
phrase of the example melody in Figure 2C. The context used
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FIGURE 2 | Phrase 7 and 8 of the example melody, showing the values for each note resulting from different theories. (A) Values according to

Schellenberg’s pitch-proximity principle. (B) Values according to Schellenberg’s pitch-reversal principle. (C) Information Content, calculated with IDyOM, based on a

background corpus. The numbers in brackets indicate how much context is considered to calculate information content, which in this case ranges from 2 (two

previous notes considered) to 8 in the second phrase (eight previous notes considered).

to generate the information content is shown in brackets.
The surprisal of the two example phrases amounts to Sur =

21.74/9 = 2.42 and Sur = 25.88/7 = 3.7, respectively, which
means that we would expect the seventh phrase to be more stable
than the eighth phrase. Surprisal takes values in the range of
[1.15, 6.86] in the whole data set, with a mean of Sur = 2.68 and
a standard deviation of SD(Sur) = 0.53.

2.2.5. The Influence of Repeating Motifs

As Müllensiefen and Halpern (2014) and Van Balen et al.
(2015) found a relationship between repetitiveness of short
motifs and the recall of a melody, we follow their procedure
and use the FANTASTIC toolbox (Müllensiefen, 2009) to
compute a frequency table of such short motifs t for each
phrase. FANTASTIC uses a music representation which
codes the relative pitches and durations of consecutive
notes, see the Supplementary Material for a detailed
description.

We follow Müllensiefen (2009) in their formalization to
measure repeating motifs through entropy. The motifs are
n-grams of character sequences representing the pitch and
duration relationships between notes. The lengths of motifs to be
investigated can be determined by the user. For each investigated
motif length l, the frequency of unique motifs vz,l is counted,
and compared to the total number of motifs of that length Nt,l

covering the phrase. The entropy Hl is then calculated from each
unique motif ’s relative frequency fz,l, i.e., how often a given motif
vz,l occurs in a phrase with relation to all motifs of that length in
the phrase.

The relative frequencies of all unique motifs are multiplied
with their binary logarithm, summed, and divided by the
binary logarithm of the number of all motifs of that
length in the phrase (Nu,l) for normalization. A value of
H = 1.0 then indicates maximal entropy, and minimal
repetitiveness: there are no repeating motifs of length l at
all in the phrase; a lower value indicates that there are some
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repeating motifs.

H(l) = −

∑N
z=1 t,lfz,l · log2 fz,l

log2 Nu,l
(9)

The mean entropy of the motifs is then the average over all
possible motif lengths. We analyze, in accordance with earlier
work, motifs from two notes to six notes in length. We take the
negative value of this average to definemotif repetivity: the higher
the average entropy, or the more distinct motifs in the phrase, the
lower the repetivity.

MR(q) = −

∑6
l=2 H(l)

5
(10)

To illustrate the concept, refer again to Figure 1, in which the
second and fourth phrase, consist of repeated steps up by a third.
This sequence can be subdivided into three identical sequences of
two notes each (as the representation of the FANTASTIC toolbox
does not distinguish between minor and major intervals): this
would mean that this phrase has higher motif repetivity than, for
instance, the sixth phrase. See the Supplementary Material for an
example calculation of the motif repetivity of the second/fourth
and the sixth phrase. The motif repetivity of the second/fourth
phrase amounts to MR = −0.90, and of the sixth phrase to
MR = −0.98, so wewould expect the second and fourth phrase to
be more stable than the sixth phrase. Motif repetivity takes values
in the range of [−1.0, 0.0] in the whole data set, with a mean of
MR = −0.92 and a standard deviation of SD(MR) = 0.09.

2.3. Measuring Statistical Relationships
Since our outcome variables are binary, i.e., a given query
phrase occurs or does not occur in a given melody, we
model the statistical relationship between the likelihood that a
given query phrase occurs and its properties through logistic
regression. In logistic regression, the odds that an event happens
are predicted as a function of one or multiple independent
variables. The logarithm of the odds is also known as the
logit function, where P stands for the probability that an event
happens:

logit(P) = log(
P

1− P
) (11)

The goal of logistic regression is to find a curve that best separates
the true events from the false events. In our case, this means that
we want to predict the probability P that a given query phrase
q has a match in a given melody s, based on the vector F of the
independent variables hypothesized to contribute to long-term
memorability of melodies.

logit(P) = β F+ ǫ (12)

In this equation, β represents the slope of the prediction
function, ǫ represents the random effects of the model, i.e., the
random error for each melodic segment, assumed to be normally
distributed. If the prediction of the probability of occurrence (i.e.,
the inverse logit of the prediction function) were perfect, this

would lead to a curve separating the occurrences clearly from the
non-occurrences.

However, the tune family dependent error of the
computational method detecting occurrences needs to be
taken into account. This could be done by separate logistic
regression models for each tune family; yet this would mean that
we could not globally estimate how well a specific hypothesis
accounts for probability of occurrence. We therefore choose
another solution to model the relationship between phrase
properties and occurrence: a generalized linear mixed model
(GLMM) which can model the variation of all data at the same
time.

Generalized linear models are a framework in which
relationships between independent variables and dependent
variables of binomial, multinomial, ordinal and continuous
distributions can be investigated. A special case of this framework
are mixed models, in which not only a general random effect (ǫ),
but also random effects for subgroups of the data can be taken
into account. This way, we can model the tune family dependent
error of the computational method. We assume that every tune
family has a different intercept term in the model, i.e., the height
at which the logistic regression curve crosses the y axis. Hence,
the decision function between occurrence vs. non-occurrence of
the model is shifted, depending on the tune family.

We again assume F as the vector representing the independent
variables of the query phrases, β as the slope of the prediction
function, ǫ as the random error, but now also take into account
the random effect µ, based on the individual error of each tune
family, summarized in the vector tf. Then the model can be
formalized as follows:

logit(P) = β F+ µ tf+ ǫ (13)

One could also think of the fixed effects, expressed by µ tf as the
between-tune-family variance, and the random effects, expressed
by ǫ, as the within-tune-family variance. Using this model, we test
our hypotheses on possible correlates of long-termmelody recall.

To be able to compare the independent variables derived from
our hypotheses, we standardize all variables x of the predictor
vector by subtracting the arithmetic mean x, and dividing by the
standard deviation SD(x) of a given variable.

Fx =
x− x

SD(x)
(14)

This leads to the overall model for all phrase occurrences, in
which units can be compared against each other. We apply a
Generalized Linear Mixed Model with fixed slopes and random
intercepts for each tune family through the R package LME44 to
the test corpus of the dataset containing 9,639 phrases from 147
tune families.

2.4. Model Selection
We select the independent variables contributing to the strongest
model predicting long-term memorability of folk song phrases,

4https://CRAN.R-project.org/package=lme4.
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TABLE 1 | The best models for different degrees of freedom, from 3 df with one parameter, to 9 df with seven parameters.

Parameter estimate 3 df 4 df 5 df 6 df 7 df 8 df 9 df

Surprisal −0.27 −0.29 −0.30 −0.30 −0.29 −0.24 −0.24

Phrase length −0.32 −0.32 −0.33 −0.30 −0.31 −0.30

Phrase position −0.10 −0.12 −0.12 −0.10 −0.10

Phrase repetition 0.08 0.09 0.09 0.09

Motif repetivity 0.08 0.08 0.08

Average proximity 0.09 0.10

Average reversal 0.05

AICc 209159.8 206889.7 206584.4 206355.5 206157.6 206012.1 205941.5

For each model, the second order Akaike information criterion (AICc) is shown, with lower values indicating better model fit. Surprisal is the parameter which leads to the best model

with only one predictor; the other parameters are listed in the order by which they are added, leading to the best model fit when all parameters are used.

using the R library MuMIn5. This model selection compares
all possible combinations of independent variables and ranks
them based on their second-order Akaike information criterion
(AICc) (Hurvich and Tsai, 1989). The second-order Akaike
information criterion penalizes the addition of extra parameters
to a model, such that it strikes a balance between model fit and
parsimony (Burnham and Anderson, 2004). Furthermore, we
estimate the effect size of the best model with a technique to
determine R2 of mixed models by Nakagawa and Schielzeth
(2013).

3. RESULTS

We show the best models selected from three degrees of freedom
(3 df), with one model parameter, to nine degrees of freedom
(9 df), with seven model parameters, in Table 1. The models’
second-order Akaike information criteria decrease as more
parameters get added, indicating better model fit. Our results
show that the strongest model for the stability of melodic
phrases is the full model with all independent variables: phrase
length, phrase repetition, phrase position, pitch proximity, pitch
reversal, surprisal andmotif repetivity. This model yields anAICc

lower by 70.65 than the second best model. Table 2 shows the
estimated prediction coefficients, the variances of the tune family
dependent error and the residual error for the full model, as
well as the model fit in R2. The fixed effects alone, marginalized,
explain R2marginal = 0.05, or about 5% of the variance, which is

a mid-sized effect for mixed models (Cohen, 1992; Kirk, 1996).
When the tune family dependent random effects are considered
along with the fixed effects (R2conditional), 22% of the variation in
the data is explained.

The prediction coefficients show that phrase length and
surprisal possess most predictive power: with increase of a given
query phrase’s length, its stability decreases. Higher expectancy
leads to increased stability. Furthermore, the coefficients also
indicate that earlier phrases tend to be more stable, as with an
increase in the phrase index, the odds that a query phrase occurs
in a given melody are decreased. Moreover, an increase in pitch
proximity, or a decrease in the average size of the pitch intervals

5https://CRAN.R-project.org/package=MuMIn.

in a phrase, leads to a higher chance of an occurrence. More
repetitions of a query phrase also result in the increased odds
of occurrence. Pitch reversal and motif repetivity contribute
least strongly to the model, but the signs of the parameters are
as expected: if a phrase confirms expectations of pitch reversal,
its odds of occurrence are increased, and likewise, if a phrase
contains many repeating motifs, its odds of occurrence are
increased.

We also tested the model for multicollinearity, confirming
that the approximate correlations of parameter estimates do not
exceed 0.6, which justifies our treatment of the model parameters
as independent predictors.

To illustrate the predictions of the model, we show the
predicted as well as the observed frequency of occurrence for
the ten phrases of the example melody in Figure 3. According
to the model, the first four phrases have the highest probability
of occurrence, and indeed these phrases also have the highest
observed frequency of occurrence (i.e., stability). The predictions
do differ from many of the observed values, as for instance the
higher stability of phrase 1 and 3 as compared to phrase 2 and 4
is not captured by the model.

4. DISCUSSION

The current research shows that folk song collections are a
valuable resource for studying the relationship between melody
variation and memorability. All proposed hypotheses relating
to recall in general and music recall in particular contribute to
prediction of folk song variation, as model selection among all
combinations of parameters leads to a model with all hypotheses
as predictors.

Of course, the variation that is explained with the current
model is still rather low at R2 = 0.05. This might mean that
there are potentially more, and stronger predictors for melody
variation that have not been tested in this study. It is also good
to keep in mind that the phrase occurrences in folk songs do
not represent “clean” experimental data in which all aspects but
melody recall are controlled. The ecological validity comes at the
cost of potential noise. Some aspects that might deteriorate the
observed variation are (a) the computational method to detect
occurrences; (b) the inherent ambiguity of phrase occurrences,
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i.e., humans do not agree on occurrences perfectly (Janssen et al.,
in press); (c) a bias in the corpus toward specific regions and
demographic groups (Grijp, 2008).

Alternatively, one could assume that a large proportion
of melody variation is a result of drift, and therefore
random (Henrich and Boyd, 2002). Therefore, it is enlightening
that the hypotheses do contribute to explaining variation in the
dataset, in spite of potential noise in the data. Memorability
predicts the amount of melodic variation, or stability, as follows:
phrases which resist change should be short (list length effect,
hypothesis 1) and contain little surprising melodic material (i.e.,
low surprisal, a formalization of expectancy, hypothesis 4a).
Moreover, it is beneficial if a phrase occurs relatively early in
a melody (primacy effect, hypothesis 3), and has mostly small
pitch intervals (i.e., high average proximity, a formalization of
expectancy, hypothesis 4a). The repetition of a phrase in its
source melody also contributes to its memorability (rehearsal
effect, hypothesis 2), even though this effect is somewhat weaker
in our analysis than other predictors. Average reversal, or the
tendency for a melody to adhere to the gap fill principle,
i.e., following a leap by stepwise motion in the opposite
direction (expectancy, hypothesis 4a) and motif repetivity within
the phrase (hypothesis 5) seem to account for long-term
memorability to a more limited extent. All predictors related
to expectancy indicate that more expected melodic material
increases stability, leading us to reject hypothesis 4b.

As for possible drawbacks of the presented study, the three
predictors related to expectancy (average proximity, average
reversal and surprisal) share the disadvantage that for the first
few notes of a melody, no or little information on expectancy is
available. This means that there is a potential imbalance between
the initial and later phrases of a melody, as the predictor values
of initial phrases are based on less information. The alternative,
treating every phrase as isolated, so that no context from previous
phrases is used for creating expectancy values, seemed unrealistic,
however, as the recall of phrases is cued by previous melodic
material (cf. Rubin, 1995, p. 190). For the current folk song
collection, in which the same melody is sung multiple times with
different verses, it may be interesting to investigate in how far
considering the end of a given melody as the melodic context for
the start of this melody influences expectancy predictions.

The expectancy predictors defined by Schellenberg (1997),
average proximity and average reversal, may be comparatively
unsuccessful model parameters as they were not necessarily
designed to be averaged for a longer melodic context: they were
defined to quantify the fulfillment of listener expectations at a
given note. However, these predictors still contribute to a better
model, which shows that they capture some information on
memorability which may predict variation of melodies in this
corpus.

The relatively low contribution of motif repetivity as a
predictor for melodic variation may be partly ascribed to the
fact that the phrases are very short melodic material, and as
such rarely contain repeated motifs. It would be interesting to
investigate if motif repetivity increases stability of longer melodic
contexts, e.g., full folk song melodies. For the current analysis of
phrases with an average length of nine notes, which are unlikely
to contain repeated motifs longer than four notes, it may be

TABLE 2 | The parameters of the best model of the model selection:

estimated regression coefficient β̂ and 95% confidence interval for phrase

length, phrase repetitions within the source melody, phrase position in

the source melody, pitch proximity and pitch reversal as defined by

Schellenberg (1997), expectancy, as defined by IDyOM (Pearce and

Wiggins, 2004), and motif repetivity, as defined by Müllensiefen (2009).

Parameter β̂ 95% CI

Intercept −0.22 [−0.35,−0.08]

Surprisal −0.24 [−0.25,−0.22]

Phrase length −0.30 [−0.32,−0.29]

Phrase position −0.10 [−0.11,−0.09]

Phrase repetition 0.09 [0.08, 0.10]

Motif repetivity 0.08 [0.07, 0.09]

Average proximity 0.10 [0.08, 0.11]

Average reversal 0.05 [0.04, 0.06]

σtf 0.84 [0.74, 0.95]

R2
marginal

0.05

R2
conditional

0.22

At the bottom of the table we report the standard deviation of the random effect (tune

family), as well as the marginalized and conditional R2 calculated according to Nakagawa

and Schielzeth (2013).

sufficient to limit the maximal n-gram length to four notes for
future research on motif repetivity in phrases. To hold our use of
the method comparable to earlier research, we decided to analyze
motifs of the same lengths as previous authors. Moreover, there is
no disadvantage to considering longer n-grams other than longer
computation time, as the FANTASTIC toolbox automatically
disregards n-grams which are longer than the length of a phrase.

With the current approach, we cannot address the influence
of other memory effects on melody variation, such as fill-in
effects, spacing effects or confusion errors. Fill-in effects (Conrad
and Hull, 1964), which lead to the later inclusion of an item
that was skipped earlier in serial recall, may also play a role in
melody recall. This might be observed, for instance, if melodic
material within a phrase or melody is rearranged, such that
a motif which usually starts a melody appears later instead.
With the current method, these effects would be missed, as only
the amount of melodic variation, but not the kind of melodic
variation, is investigated. In the same vein, the spacing effect from
free recall (c.f. Hintzman, 1969; Madigan, 1969), which relates to
the space between rehearsals of items, cannot be studied on the
basis of phrases, which do not necessarily repeat within a melody,
and if they do, usually are not spaced far apart. Instead, shorter
melodic contexts might be interesting to study to this effect.

Furthermore, confusion errors (Page and Norris, 1998), which
in serial recall of words lead to the erroneous recall of acoustically
similar words, might also be interesting to study for melody
variation. This might occur if instead of a melodic phrase in
a given folk song, a similar phrase from another folk song is
recalled. As our study analyzes variation per tune family and
not across different tune families, melodic material that might
correspond between different folk songs is not identified as such.

As our analysis of an existing folk song corpus highlighted
some mechanisms behind melodic variation which may be tied
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FIGURE 3 | The predicted (yellow diamonds) and observed (blue stars) frequency of occurrence, in percent, for the ten phrases of the example melody.

The predictions are generated by the generalized linear mixed model, for the model parameters see Table 2. The observed frequency of occurrence is based on how

many of the five variants, other than the example melody, contain a given phrase from the example melody. The dashed line shows the model’s intercept for frequency

of occurrence for this tune family, which is at 58%, meaning that is slightly more likely for the phrases of this tune family to occur in the respective variants than not.

to memorability of melodies, this shows that it would certainly be
fruitful to perform more studies based on computational music
analysis: such research could be performed on the present folk
song corpus to investigate other potential effects of recall (cf.
Olthof et al., 2015), or our methods could be applied to other
music collections, to see whether our findings can be replicated
with respect to melodic variation in other musical traditions.

Next to further computational studies, it would certainly also
be an important future contribution to test the predictions on
melodic variation in an experiment with human participants.
Could the amount of variation when melodies are learned in
an experimental setting also be predicted through important
parameters of our corpus analysis, e.g., through surprisal, phrase
length and phrase position?

As the melodies in the Meertens Tune Collections were
recorded or notated long after the singers or editors had learned
the melodies, it would also be interesting to investigate whether
immediate recall of melodies in a laboratory setting leads to
different kinds of variation than if melodies are recalled weeks
or months later. As such, the present collection, and other folk
song collections, might be an overlooked resource to study recall
and long term memory for melodies.
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