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Abstract 

    On the 20th June 1933 Professor Einstein addressed a large and enthusiastic 

audience in the Victorian Gothic Bute Hall of the University of Glasgow.   

Einstein spoke ‘About the Origins of the General Theory of Relativity’.   In 1905 

Einstein had changed the face of physics forever with the publication of his 

radical new ideas on special relativity.   His general theory of relativity was 

introduced to the world in 1915.   However in 1933, Einstein faced another 

challenge – survival in a world of change.  This paper explores Einstein’s 

fascinating address to the Glasgow audience in that year.      

1. Introduction 

 



During 1933 Einstein visited the United Kingdom, lecturing in London, Oxford 

and Glasgow.   Einstein’s address at Glasgow University took place in the 

evening of the 20th June 1933 in the grand Bute Hall [1].   Figure 1 shows an 

exterior view of this Victorian Gothic hall.   The address was ‘About the Origins 

of the General Theory of Relativity’ and was funded by the G. A. Gibson 

Foundation [2].   General relativity was Einstein’s enigmatic theory of gravitation 

and his oration received a resounding applause.   On the following day, the 

Principal, Sir Robert Rait honoured Einstein with a Doctor of Laws (LL.D.) 

degree [3].    

    This paper aims to examine the origins of the general theory of relativity as 

related by Professor Einstein in his address to Glasgow University [4].   The 

author has expanded on the various themes on the history and theory to give the 

reader a fuller understanding of Einstein’s deduction of his definitive theory. 

    

2. Einstein’s Address – Searching for the Truth 

 
2.1. Fascinating Idea 

After Einstein had formulated the special theory of relativity for inertial systems 

in 1905 he wondered whether a more general theory existed that would include 

accelerated systems and Newton’s law of gravity.   Einstein mentioned that he 

was familiar with the work of Ernst Mach.   Mach (1838 - 1916), Professor of 

Experimental Physics at the Charles University in Prague, had criticized Newton’s 

concept of motion of a body with respect to the mathematical abstraction of 

absolute space.   He conceived the hypothesis of motion relative to a more 

material system such as distant stars.   Mach had the intriguing idea that the 

inertia of any body is the result of the interaction of that body with the rest of the 
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bodies in the universe [5].   Einstein was fascinated by Mach’s idea on inertia and 

stated in the address  ‘This idea fascinated me; but it did not provide a basis for a 

new theory’ [4].   

     Einstein endeavoured to find a gravitational ‘field law’.   For he had 

established in his special theory of relativity that Newton’s law of instantaneous 

action at a distance was no longer valid.   His theory had abolished the idea of 

simultaneity.   For now it was clear to Einstein that events that were simultaneous 

in one frame of reference were not necessarily simultaneous in another frame.    

     Einstein decided to start from the Laplace scalar potential of gravity.   The 

French mathematician Pierre-Simon Laplace (1749 – 1827) conceived his 

equation more than a century earlier.   The scalar form of Laplace's equation is the 

partial differential equation 

0=∇ ψ2                                       (1) 

where  is the Laplacian (or partial differential operator) for a scalar function ψ.      

Laplace’s equation applies to regions of space outside matter [6].   Einstein’s next 

step was to examine the mathematics of Siméon Denis Poisson (1781 – 1840).  

Poisson used the gravitational potential approach to give an equation that could be 

solved under rather general conditions.   Poisson's equation took the form of 

2∇

ρψ G2 π4−=∇                                 (2) 
 
This equation applies for regions of space in which ρ is the material density and G 

is the Newtonian constant of gravitation [6]. 

     Einstein went on to say that the law of motion of a particle in a gravitational 

field had to conform to the special theory of relativity but how to do this was not 

clear to him. 
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2.2. Grave Misgivings 

     Einstein’s investigations made him uneasy for  ‘According to the classical 

mechanics, the vertical acceleration of a body in a vertical field of gravitation 

was independent of the horizontal component of the velocity’ [4].   However, in 

Einstein’s special of relativity theory the vertical acceleration was not 

independent of the horizontal velocity.   Indeed, Einstein’s theory was not in 

agreement with the well-established empirical formula of the law of the 

equivalence of inertial and gravitational mass.   This law, familiar to Galileo and 

Newton, stated that all bodies in a gravitational field were subject to the same 

acceleration.   Einstein went on to say ‘I wondered how this law could exist and 

believed that it held the key of the understanding of inertia and gravitation’ [4].    

     Einstein mentioned that at that time he was not familiar with the ‘beautiful 

experiments of Eötvös’ [4].   These showed the equivalence of gravitational mass 

and inertial mass to a high degree of accuracy [7].   Lóránd Eötvös (1848 –1919), 

Professor of Experimental Physics at the University of Budapest, had studied the 

experiment of Armand Fizeau on the relative motion of a light source, an 

experiment that Einstein later discussed in his book on relativity [8].   It is 

believed that this experiment had been one of the first steps towards relativity 

theory.    

 

2.3. Extension of Principle 

It was now clear to Einstein that the special theory of relativity was inadequate to 

take account of the most fundamental property of gravitation – the principle of 

equivalence.   In his address he stated  ‘I gave up, therefore, the attempt, which I 

have sketched above, to treat the problem of gravitation within the frame-work of 
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the special theory of relativity ’ [4].   He believed that for a theory to be 

successful then the principle of equivalence should fit into it in a very simple and 

clear manner.   So from 1908 to 1911 Einstein concentrated on obtaining a theory 

of gravitation by an extension of relativity theory to include non-uniform motions 

of the co-ordinate systems [9, 10]. 

     It was now very clear to Einstein of the direction of his work as he stated ‘The 

problem therefore was to find and to elaborate a theory expressed in equations 

which did not change their form for non-linear transformations of the co-

ordinates’ [4]. 

 

2.4. A New Formulation 

In 1912 Einstein looked for a new formulation of the inertial principle that would 

become identical to Galileo’s formulation in the absence of a gravitational field.   

Galileo formulated the concept of inertia: an object in a state of motion possesses 

an inertia that causes it to remain in that state of motion unless an external force 

acts on it.   Einstein at this point modified Galileo’s formulation and expressed it 

thus: ‘a material particle on which no forces are acting, is represented in four-

dimensional space by a straight line’ [4].    

     Einstein mentioned the work of the mathematician Hermann Minkowski (1864 

–1909) who recognized that the correct way to view special relativity was in terms 

of a four-dimensional space-time.   This was a combination of the dimension of 

time with the three dimensions of space.   In the special theory of relativity 

Minkowski had considered the space-time continuum as quasi-Euclidian.   

According to Minkowski, the square of the small length ds of a line was a 

quadratic function of the differential coefficients of the coordinates (x1, x2, x3, x4) 
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x4 is an imaginary time variable tc1−  which replaces the real time t [8]. 

    Now Euclidean geometry was based on flat surfaces but Einstein realized that 

space could be curved and so for a general theory of relativity the space-time 

continuum was non-Euclidean [8].   In fact Einstein’s conclusion was that the 

bending of space and time by bodies caused gravity.   Einstein soon found the 

mathematics to describe the bending of space-time ‘Mathematically, this means 

that the physical four-dimensional continuum had a Riemann metric’ [4].   In 

1854 Bernhard Riemann (1826 –1866) introduced the field of Riemannian 

geometry into his lectures at the University of Göttingen [11].   With these 

mathematical methods he was able to describe the geometry of curved surfaces in 

any dimension.   Now if the square of the small length ds is given by a quadratic 

differential equation  

222 2 dyCdydxBdxAds ++=        (4) 

in the surface coordinates where A, B and C are certain functions of the 

coordinates then ds2 is described as a Riemann metric and the corresponding 

surface is Riemannian.   An interesting point is that the Reimannian metric is 

locally Euclidean [12]. 

 
 
2.5. The Solution 

Einstein found a workable basis for the general theory of relativity in Riemannian 

geometry.   However he stated that two problems remained to be solved: 

(1) ‘How can we translate a field law given us in the terminology of the 

special theory of relativity into a Riemann metric?’ 
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(2) ‘What are the differential expressions which enter into the law holding 

for the Riemann metric?’ [4] 

     Einstein mentioned that from 1912 to 1914 he worked with his former 

classmate Marcel Grossmann.   Professor Grossmann (1878 – 1936) pointed out 

that the mathematical methods for solving the first problem lay in the absolute 

differential calculus of Ricci-Curbastro and Levi-Civita [13].   The Italian 

mathematicians Gregorio Ricci-Curbastro (1853 – 1925) and Tullio Levi-Civita 

(1873 – 1941) introduced their mathematical methods in the paper ‘Methods of 

Absolute Differential Calculus and their Application’ published in 1901 [14]. 

     Grossmann explained to Einstein that Riemann had already worked out the 

mathematical methods required for the solution of the second problem.   These 

took the form of Riemann curvature tensors [13].   The partnership of Einstein and 

Grossmann produced two papers, ‘Outline of a Generalised Theory of Relativity 

and of a Theory of Gravitation’ in 1913 [15] and ‘Covariance Properties of the 

Field Equations of the Theory of Gravitation Based on the Generalised Theory of 

Relativity’ in 1914 [16].   By 1913 they had laid out most of the elements of the 

general theory of relativity but had to settle for field equations of limited 

covariance [13].   However, to comply with the principle of general covariance 

the laws of physics should take the same form in all coordinate systems.   It was 

important for Einstein to obtain complete covariance of the field equations in his 

general theory of relativity.   He wanted equations that retained the same form 

regardless of the frame of reference being used, whether it was inertial or 

accelerating.   At this stage Einstein put aside the Riemann curvature approach 

and his research went off in a different direction ‘we failed to recognise that they 

were physically applicable’ [4].      
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2.6. Searching in the Dark  

Einstein paid dearly for his change of direction for in the address he conveyed to 

the audience ‘These were errors in thinking, which caused me two years of hard 

work before at last in 1915 I recognised them as such and returned penitently to 

the Riemann curvature which enabled me to find the relation to the empirical 

facts of astronomy’ [4].   After Einstein was in the correct mode of thought his 

boldest dreams came true.   The final form of the field equations appeared in the 

1915 paper ‘The Field Equations of Gravitation’ presented to the Prussian 

Academy of Sciences in Berlin [17].   As it is a tensor equation, the Einstein field 

equation is usually written out in terms of its components 

 

νµνµ T
c

GG 4

π8
=                               (5) 

 
where Gµν are the components of the Einstein tensor, G is the gravitational 

constant, c is the speed of light and Tµν are the components of the stress-energy 

tensor.   Also  

 νµνµνµ gRRG
2
1

−=                           (6) 

where Gµν are the components of the Einstein tensor, Rµν are the components of 

the Ricci tensor, R is the Ricci scalar and gµν  are the components of the metric 

tensor [18]. 

     Einstein’s final and uplifting words in his address were ’But the years of 

searching in the dark for a truth that one feels but cannot express, the intense 

desire and the alternations of confidence and misgiving, until one breaks through 

to clarify and understanding, is only known to him, who has himself experienced 

it’ [4].    
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3. Conclusions 

 Einstein’s address was most certainly a memorable occasion for Glasgow 

University and especially for the department of Natural Philosophy (now Physics 

and Astronomy).   No doubt, because of the time (20 minutes) allocated to him, 

Einstein emitted to mention many scientists and mathematicians who had played a 

role in the development of the theory of relativity.   To name a few: David Hilbert 

(1862 – 1943) [19], Hendrik Lorentz (1853–1928), Jules Henri Poincaré (1854 - 

1912) and Max Planck (1858-1947).   However, the reality is that scientific 

endeavour is the sum of the work of many creative minds but it often takes one 

person to bring all the parts together to make the definitive theory.   In Einstein’s 

own words at the start of his Glasgow address: ‘to write the history of the work of 

another requires an understanding of his mental processes which can be better 

achieved by professional historians ’[4].  
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Captions 

Figure 1.  Bute Hall where Einstein addressed a Glasgow audience in 1933. 
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