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Green chemistry and Green Engineering in China: Drivers, Policies and Barriers to 

Innovation 

Kira JM Matus*
a
, Xin Xiao

b
 and Julie B Zimmerman

c,d,e 

Abstract 

With the world’s largest population and consistently rapid rates of economic growth, China faces 

a choice of whether it will move towards a more sustainable development trajectory.  This paper 

identifies the different factors driving innovation in the fields of green chemistry and green 

engineering in China, which we find to be largely driven by energy efficiency policy, 

increasingly strict enforcement of pollution regulations, and national attention to cleaner 

production concepts, such as “circular economy.”  We also identify seven key barriers to the 

development and implementation of green chemistry and engineering in China.  They are (1) 

competition between economic growth and environmental agendas, (2) regulatory and 

bureaucratic barriers (3) availability of research funding, (4) technical barriers, (5) workforce 

training, (6) industrial engineering capacity and (7) economic and financial barriers.   Our 

analysis reveals that the most crucial barriers to green chemistry and engineering innovations in 

China appear to be those that arise from competing priorities of economic growth and 
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environmental protection as well as the technical challenges that arise from possessing a smaller 

base of experienced human capital. We find that there is a great deal of potential for both the 

development of the underlying science, as well as its implementation throughout the chemical 

enterprise, especially if investment occurs before problems of technological lock-in and sunk 

costs emerge. 
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1.1  Introduction 

Throughout its history, chemical innovations have made crucial contributions to 

improving the quality of life for people all over the world.  In China, and throughout the world, 

the chemical industry has been an important part of innovations that led to life-saving medicines, 

fertilizers that have helped alleviate hunger, and microprocessors that have revolutionized 

computing and communications (Arora et al., 1998).  All of these have contributed to helping to 

improve the lives of hundreds of millions of Chinese.  Unfortunately, in China, as in many other 

developing countries, a focus by industry and government on increasing growth, ramping up 

development, and continued expansion has resulted in significant harm to the environment and 

local population s(Liu and Diamond, 2005; WorldBank, 2007). So while the chemical industry 

has been a major contributor to improving the quality of life, it has also been a source of harm.  

This pattern is not unique to the chemical industry, or to China, and is part of a larger, historical 

pattern of development to improve livelihoods that has come at a high price to human health and 

the environment. To be sustainable in the future, China will need its chemical industry to operate 
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according to a new paradigm, one that can enable growth without adversely impacting society 

and the environment. 

Green chemistry and green engineering, much like the wider concepts of sustainability 

science, help to balance the need to improve quality of life while maintaining the health of 

humans and the environment.  Green chemistry and green engineering are a way to use scientific 

knowledge to reconcile a very real need for chemical production and use with the desire to 

reduce the hazards -- global, physical, and toxicological-- associated with these activities.  Green 

chemistry is the “design of products and processes that reduce or eliminate the use and 

generation of hazardous substances (Anastas and Warner 1998, 30).”  Green chemistry and its 

sister discipline of green engineering (Abraham and Nguyen, 2003; Anastas and Zimmerman, 

2003) provide innovative answers to questions about how we can deploy scientific and 

engineering understanding to challenging and complex sustainability problems that have 

emerged as the result of technological advances.   While green chemistry and green engineering 

are themselves part of the scientific basis forming solutions for sustainable development, they 

also necessarily interact quite strongly with the realm of policy.  Creating, producing and using 

chemicals sustainably require innovative activity, economic investment, and policies that provide 

positive incentives to reduce hazards.  All of these actions involve a variety of stakeholders from 

academia, industry, government, and the general public.  As such, the future success of green 

chemistry and green engineering as real-world tools, and not just academic disciplines, depends 

on more than just excellent science.  It also requires actions by other stakeholders to move 

innovative solutions from the laboratory to systematic implementation throughout the chemical 

enterprise. 



 ACCEPTED VERSION 4 

 

  For China, as for other countries, it is a complex and challenging process to move from 

the understanding that green chemistry and green engineering are important tools for addressing 

conflicts between economic growth and the environment, to the point where their 

implementation is systematic and effective.  China, with its rapid growth and investment in new 

capital infrastructure in the chemical industry, has a unique opportunity to implement new, more 

efficient technologies with fewer negative environmental impacts.  However, there is no 

indication that this is the path being chosen for the majority of projects.  The science of green 

chemistry and green engineering has emerged as a way to reconcile a very real need for chemical 

production and use with the desire to reduce the hazards -- global, physical, and toxicological-- 

associated with activities in the chemical enterprise.  

China has been making progress in a number of green technologies and is continuing its 

efforts to grow green chemistry and green engineering (Cui, Beach, and Anastas 2011).  But in 

China, the dynamics of moving beyond an understanding that green chemistry and green 

engineering are important tools for addressing the conflicts between economic growth, 

environment, and towards a systematic and effective implementation remains a complicated and 

challenging process.  Innovators face a variety of challenges and barriers that make it difficult to 

integrate green chemistry and green engineering in a systematic and effective manner, despite the 

potential for economic, environmental and health benefits.  This paper will analyze the current 

state of green chemistry and green engineering in China, including the different drivers, 

challenges, and policy approaches that are currently present, in order to aid in the future 

development of green chemistry and green engineering in China. 

 This analysis is based on material collected during interviews conducted in China 

between 2005 and 2011.  All of the interviews were qualitative, and semi-structured, based on a 
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common interview protocol.  This kind of qualitative interviewing process is conversational by 

nature, and as such, the focus and order of the topics covered differed from interview to 

interview.  It is based on a set of topics to be considered, as opposed to a more formal set of 

survey questionsf (Babbie, 2007).  Subjects agreed to be interviewed under an agreement that 

their responses would be kept confidentialg.  The interviews took place at twelve research 

universities and institutes throughout the country, and additional information was collected 

through attendance at several conferences, meetings and industrial site visits dealing with green 

chemistry and green engineering, green energy, and sustainable development in Chinah,i.    The 

sample consisted mainly of academic institutions involved in collaborative efforts with industrial 

partners, in order to determine barriers throughout the innovation process, from laboratory 

research through production.  The academic institutions in the sample are all on the East Coast, 

in relatively prosperous and industrially developed regions, and are also some of the leading 

science and engineering research universities in the country.  For this reason, they are likely to be 

                                                           
f
 See Appendix for Interview protocol 

g
 Information specific particular interviews are paraphrased, and cited based on title, affiliation, and date of 

interview in order to protect the subjects. 
h
 Universities, industries and local governments Visited in China 

Beijing University of Technology; Beijing University of Chemical Technology; COFCO's 200,000 tonnes cassava fuel ethanol 
project in Beihai City, Guangxi; Guangxi Academy of Sciences; Guangxi Government; City government of Beihai, Guangxi 
Province; Institute of Chemistry, Chinese Academy of Sciences; Institute of Process Engineering, Chinese Academy of Sciences; 
Nanjing University of Technology; Natural Science Foundation of China; Shanghai Jiao Tong University; Sichuan University; 
Southern China University of Technology; Tianjin University; Tsinghua University; University of Science and Technology of 
China; Zhejiang University;  

i Workshops and Conferences 

China-U.S. Center for Sustainable Development, Board Meeting, June 2006, Beijing 
8th Annual International Symposium on Green chemistry and green engineering in China, June, 2007, Beijing* 
1st Asia-Pacific Conference on Ionic Liquids & 1st China National Conference on Ionic Liquids and Green Processes, November 
2008, Beijing* 
Industrial Site visit for biofuel development in Guangxi, China from November 18-23, organized by 1st U.S.-China Green 
Energy Forum, November 16-18, 2008, Beijing  

Guangxi Academy of Sciences Workshop on Biofuels in Guangxi, November 22, 2008, Nanning* 
International Conference on Clean Energy Science, Dalian, China, April 10-12, 2011 
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among the cutting edge in terms of adoption, but are also influential and well-respected in the 

academic science and engineering community.  But they do not represent the full range of 

Chinese academia. The Chinese academic green chemistry and green engineering community 

was highly supportive.  Many of the participants have engaged in extensive work with industry, 

and thus had insight into the factors that impacted green chemistry and green engineering in that 

sector as well.  All of those interviewed had prior knowledge of the area, although there was 

variation in how long their work had involved green chemistry and green engineering as a major 

component.     

2.1 Trends, Policies and Drivers 

Green chemistry and green engineering have grown rapidly within the scientific 

community in China.  The first International Workshop on Green Chemistry was held in 1998 

(Hjeresen et al., 2001; Woodhouse and Breyman, 2005).  The first China-USA Green Chemistry 

workshop took place in 2005 (R.D. Rogers, 2006).  It was attended by a small number of 

scientists, many of whom did not yet work on areas that would be considered green chemistry 

and green engineering.  In the ensuing decade, research and practice significantly expanded.  For 

example, in 2001 the Institute of Chemical Metallurgy at the Chinese Academy of Science was 

renamed the Institute of Process Engineering, and its research was specifically redirected to 

greener chemical processes innovation (Ng et al., 2005).  This resulted in the commercialization 

of a clean production method for chromic oxide in 2002, one of the first industrialized green 

chemistry projects in China (Zhang et al., 2008).  

Other national initiatives followed, including the National Program for Experimental 

Units of Circular Economy.  This initiative, begun in 2005, addresses concepts that have 

significant overlap with the Twelve Principles of Green chemistry (Anastas and Warner 1998), 
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including zero emissions, clean production, low resource utilization and high energy efficiency 

(Yong, 2007).  While circular economy does not have a single definition, it generally stresses 

closed flows of materials, and increased efficiency in the use of raw materials and energy (Park 

et al., 2010).  As of 2008, the program had been extended to 11 provinces, 16 cities, 33 circular 

industry parks and 120 companies (Department of Resource Conservation and Environmental 

Protection of China National Development and Reform Commission, 2005, 2007). At the First 

China International Cyclic Economy Exhibition in Qingdao in 2008, more than 1200 firms, 31 

provinces, and 150 cities and areas in China, along with international corporations, attended to 

share their products, progress achieved, or their need for a local Circular Economy.  

The development of green chemistry and green engineering also progressed during this 

period, and at the 9th International Workshop on Green Chemistry in 2007, several hundred 

students, professors, members of the industrial community and officials were in attendance.  

They represented more than a dozen research centers around China explicitly focused on green 

chemistry and green engineering, and numerous other research groups and firms engaged in 

green chemistry and green engineering in a wide variety of sectors.  

Interviews with academics involved in green chemistry and green engineering research 

helped to identify many of the important trends and features involved with green chemistry 

innovation in China.  A summary of these is presented in Table 1, which shows how many 

interviewees discussed five particular topics during their interviews.  These topics were the five 

most commonly mentioned, and are discussed in greater detail later in this section.  It is 

important to note, however, that given the nature of the qualitative interview, the fact that a 

certain drivers or barriers were not mentioned during the course of an interview does not 

necessarily indicate a divergent opinion.  In fact, there was almost no overt divergence of views 
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on these topics.  Instead, the variation appears to be on which trends and issues are considered 

the most important by each individual academic. 

Trend and/or Feature of Green Chemistry and Green Engineering Research 

Number of 
Academics 
Reporting 
(N=12) 

Academics Personally Engage in Research with Industry 10 
Research and Funding Driven by Regulatory Trends (i.e. energy efficiency, 
increased enforcement) 

7 

Graduate Students Do Research in Industrial Settings 6 
Joint Government-Industry Funding Programs 5 
Funding for Green Chemistry Improving 3 

Table 1- Trends and Features of Green Chemistry and Green Engineering Research Identified by Academics 

As inspection of Table 1 reveals, the key insights that came from academics  were 

focused on how research is supported, in terms of financial backing, as well as which partners 

are involved.  The growth of green chemistry and green engineering has been actively and 

widely supported by both industry and the government.  For example, in the Institute for Process 

Engineering, less than 40% of its funding is from its parent organization The Chinese Academy 

of Sciences (CAS), with the remainder coming from other government departments, such as the 

China Ministry of Science and Technology (MOST), the China National Development and 

Reform Commission (NDRC) and local governments, industries, agencies and sources outside 

the CAS through more competitive processes. This 4:6 ratio of internal to external funding is 

required by CAS for all of its institutes engaged in technology and engineering (Chinese 

Academy of Sciences, 2010). The percentage from industry is estimated at about 40% of the total 

funding obtained from both inside and outside, and is a little bit higher than the average level of 

industrial support for academic research in China, which is 35% (National Science Board, 2010). 

At the National Natural Science Foundation of China, 20-25% of basic research funding in 

chemical engineering goes towards green chemistry and green engineering projects, and the 
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percentages are the same or greater within organic and physical chemistryj (Official, National 

Natural Science Foundation China, Beijing, 2008; Professor, Beijing University of Technology, 

2008).  Both the NSFC and the researchers in the field define green chemistry according to the 

“12 Principles of Green Chemistry.”   Such strong connections between academics and industry 

provide a pathway that allows research to move from the laboratory to commercialization. 

There are currently several drivers in place in China that have helped expand the 

implementation of green chemistry and green engineering research.  There has been a large 

increase in public awareness of environmental issues generally, and about safety and health risks 

from chemicals in particular.  A number of scares involving tainted products (including pet food, 

infant formula, and toothpaste)  and chemical releases into major water sources in 2005, 2009 

and 2010 (Anon., 2005; Karmanau, 2005; Meyer, 2008; Bodeen, 2010)  have increased the 

concern among the public regarding the chemical industry in particular.  Professors report that 

university students have an increasing awareness of green issues.  As China becomes an 

important participant in green technologies, demand is growing for the scientific and engineering 

training required in these emerging fields.  Green chemistry and green engineering courses are 

taught at a variety of levels, including for undergraduates and non-majors, at more than a dozen 

major Chinese universities.  The first generation of these courses were geared towards master’s 

students, but courses have been expanding to other levels at the university level, and several 

academics reported that their popularity has been increasing in recent years (Professor, CAS 

Institute of Chemistry, Beijing, 2007; Professor, Tianjin University, 2007, 2008).  

                                                           
j
 Estimated according to the report on the Chinese NSFC grants at http://kyc.gdcc.edu.cn/xzzq/2007xz/gjzrjjsbpx.ppt (accessed 
February 4, 2010) and discussions with professors and officials involved  with the Chemical Engineering grant awards process. 
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It appears that most of the regulatory drivers of green chemistry and green engineering 

are indirect.  In terms of drivers that come from the regulation of chemicals, the regulatory 

system in China is relatively new.  Regulation of imports and exports of toxic chemicals began in 

1994; regulation of new chemicals in 2003.  China is also a signatory on two important 

international treaties, the Rotterdam Convention (pesticides and hazardous chemicals) and the 

Stockholm Convention (persistent organic pollutants) (Wang et al., n.d.).  A 2007 report by the 

China Council for International Cooperation on Environment and Development concluded that 

“management of chemicals in China is weak” and went on to list five fundamental flaws: a lack 

of clear national policy, absences of a system of laws and regulations, inadequate administrative, 

enforcement and supervision capacity,  insufficient public participation,  and absences of 

technical support system for administrative management (Hu Jianxin, 2007). Responsibility for 

chemical regulation has been split between a number of ministries, and it was only in 2009 that a 

body for chemical management was established in the Ministry of Environmental Protection 

(MEP).  The MEP now has the authority to regulate a priority chemical list, and released its first 

5 year plan for chemical management at the end of 2011.  Its focus, however, is on encouraging 

reporting and the collection of data.  More formal control measures would require the 

involvement of other industrial ministries, making them harder to implement (Campaigner on 

Toxics, Greenpeace China, Beijing, 2012).  Overall, chemicals policy is in a period of change, 

and a stronger regulatory framework is emerging.  But it does yet cover the entire lifecycle of 

chemicals (Wang et al., n.d.), and is nowhere near as developed as TSCA in the United States, or 

REACH in the EU.  This is significant because recent research from the OECD indicates that 

meeting mandatory regulatory requirements is the most important policy driver behind firms’ 

decisions to invest in research, development and deployment of green chemistry innovations.  
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Given its weaknesses, domestic chemical management policy has not yet played a role as a major 

driver for green chemistry and green engineering in China.    

The absence of a strong influence from the regulation of chemicals does not mean that 

other large, national policies are not having an impact.  Current Chinese energy policy is an 

important indirect policy driver.  The 11th Five-Year Plan (2007-2011) was the first in Chinese 

history to include hard targets for reductions in energy consumption.  In this case, the goal is to 

decrease the energy intensity of the economy 20% by 2011k, and initial analyses indicate that the 

target was met or nearly so (Lewis, 2011; Price et al., 2011).  The government further 

disaggregated the overall national target to each of the provinces, which in turn developed hard 

targets for local officials (National Development and Reform Commission (NDRC), 2006).  

While previous Five-Year plans contained language regarding environmental performance, this 

is the first time that there have been hard targets that officials are expected to attain.  Since 

attainment of such goals has a direct impact on career advancement, this has the effect of 

focusing the attention of government at all levels on improving the energy efficiency of industry.  

These policies continue in the Twelfth Five Year Plan (2011-2015), which was announced in 

March, 2010.  New targets included a 16% reduction in energy use per unit GDP, with more 

specific environmental targets forthcomingl (Seligson, 2011; Seligson and Hsu, 2011).  At the 

very least, these will continue to drive green chemistry forward in a similar fashion as during the 

2007-2011 period.     

                                                           
k
 Denominated in tons of coal per unit of GDP. 

l
 Key targets of China’s 12th five-year plan [WWW Document], 2011.URL 

http://news.xinhuanet.com/english2010/china/2011-03/05/c_13762230.htm 
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To meet such an aggressive target, government officials are working with industry and 

academia to pursue a variety of technological approaches to increase the efficiency of the 

economy.  Green chemistry and green engineering fit in very well with this effort.  Because of 

the energy efficiency targets, scientists and chemical firms are interested in moving towards 

pollution prevention methodologies and away from costly and energy-consuming end-of-pipe 

effluent treatment systems.  Some of the work has been along the lines of process engineering 

improvements.  There are also upstream projects underway, some of them jointly funded by 

industry, government and academia, in areas such as new solvent platforms, solid-state reactions, 

and catalysis (Professor #1, Southern China University of Technology, 2008; Professor, Tianjin 

University, 2008; Professor, Zhejiang University, 2008; Cui et al., 2011). 

Over the past few years, there has been a trend towards increasing the direct support of 

green chemistry and green engineering by the Chinese government.  While in the literature, the 

Chinese government is portrayed as only being indirectly involved in academic-industrial 

collaborations and commercialization (Chang and Shih, 2004; Eun et al., 2006), almost all of the 

interviews with professors around the country described a situation of active support.  There are 

many examples of university-industry collaboration that demonstrate a significant government 

influence.  This goes beyond the indirect involvement that arises when funding ministries set 

their budgets and decide which areas of research should take priority.  In fact, government at a 

variety of levels is taking on the role of a third-party intermediary between academics and 

industry. 

One example of direct government involvement comes from the case of the phase-out of 

carbon tetrachloride (CCl4) during the production of methyl chloride.  Carbon tetrachloride, in 

addition to being highly toxic, is also an ozone depleting substance.  China, as part of the 
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Montreal Protocol, had agreed to its phase-out (Zhao and Ortolano, 2003).  Using money from a 

fund established for this purpose by a multi-lateral fund of developed nations, the State 

Environmental Protection Agency (SEPA) funded work at the Beijing University of Chemical 

Technology (BUCT) to develop a new method for the production of methyl chloride, and then 

helped firms implement this new technology.  Faculty and students from BUCT visited more 

than 300 sites in order to target their research to the needs of industry.  The Chinese government 

also aided the process through a policy to shutter the smaller firms, leaving only larger firms 

with the ability to implement the new technology.  The government provided money directly to 

industry, which came from the multilateral fund, to finance the technology change.m  In this case, 

the government was active as a funding source, in that it was in charge of the distribution of the 

international funds, but also worked to catalyze cooperation between academia and industry that 

was required to both develop and implement an appropriate technology to address the problem. 

A second method of government involvement in green chemistry and green engineering 

comes from efforts to create joint research centers.  In these cases, governments at a variety of 

levels, ranging from the municipal to the national, have offered to put funds towards the creation 

of a particular center, provided that the university secures an industrial partner.  For green 

chemistry and green engineering, the pattern appears to be that the government chooses a 

problem area of particular interest, and then sets up a competitive grant process.  In this case, 

government, and not industry, sets the research priority.  This has the advantage of having the 

potential to spur investment in more transformative, though potentially risky long-term research. 

                                                           
m

 Personal Communication, BUCTT, Beijing, China.  November 28, 2007. 
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The third way that government is increasingly becoming involved in advancing green 

chemistry and green engineering is as a “matchmaker” between academia and industry.  Firms 

can submit particular problems that they are willing to fund, such as efficiency improvements in 

a particular process or the replacement of a particularly toxic or environmentally intensive 

chemical input.  If any research groups are interested in that particular project, they can submit a 

proposal.  The top proposals are usually invited to present to government officials, who then 

decide who will receive the industrial “grant” (Doctoral Researcher, Nanjing University of 

Technology, 2008).  This method helps to expand the network of expertise available to firms, 

who may gain access to research capabilities from a wider geographical range than was 

previously available.  It also helps researchers to better assess what areas of work are particularly 

useful to industry.  This is a new and developing system, and it has yet to be seen what its overall 

impact will be on increasing the widespread implementation of green chemistry, green 

engineering and other technologies for sustainable development. 

For green chemistry and green engineering in China, there are economic incentives, as 

well as policy drivers pushing research, development and implementation forward.  There are 

cases where collaborations between stakeholders were mandatory, such as the phase-out of CCl4 

in methyl chloride production.  There are other examples where increased enforcement drives 

industry to look to academia for new prevention or abatement technologies.  Policy demands also 

provide markets for new products that have been spun-out either in new enterprises or joint-

ventures with industrial and academic involvement.  And government priorities, especially for 

green energy and improved energy efficiency of existing production, have resulted in support for 

new green chemistry and green engineering research centers that include significant amounts of 
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industrial funding (Official, National Natural Science Foundation China, Beijing, 2008; 

Professor, Tianjin University, 2008). 

3.1 Barriers to Green chemistry and Green Engineering Innovations 

China has a different context for green chemistry and green engineering innovations than 

nations in the developed world, such as the United States.  It is growing rapidly, and this includes 

its academic research system, along with its industrial base.  China is in the process of increasing 

the quantity and quality of its human capital.  Simultaneously, it is dealing with the 

environmental impacts of three decades of rapid economic growth, which has often come at the 

expense of environmental quality (Economy, 2004).  Especially compared to the United States, 

there is a large amount of investment in new capital infrastructure, which in principle provides 

opportunity for the implementation of new green chemistry and green engineering technologies.  

Within the Chinese context of a rapidly developing nation experiencing significant growth and 

change, innovators can face several different types of barriers during their attempts to develop 

and implement new technologies.  In China, there are seven major categories of barriers that 

have been observed thus far that directly impact green chemistry and green engineering.  They 

were identified based on the qualitative interviews, as supported by the published literature.  

They are (1) competition between economic growth and environmental agendas, (2) regulatory 

and bureaucratic barriers (3) availability of research funding, (4) technical barriers, (5) workforce 

training, (6) industrial engineering capacity and (7) economic and financial barriers.  These 

barriers are discussed in detail below.   

3.1.1 Barriers resulting from competing agendas 

The clearest barrier to systematic green chemistry and green engineering implementation 

is the problem of competing agendas.  Since 1978, China has focused nearly single-mindedly on 
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its economic growth.  It has achieved spectacular results, with GDP growth averaging nearly 

10% between 1978 and 2007 (The World Bank Group, 2009) .  For most of that era, the growth 

occurred without much thought regarding the environmental consequences.  The environment 

and development were seen as competing agendas.  That attitude is changing, especially during 

the 11th 5-year plan from 2007-2011, which includes specific targets for energy efficiency (20% 

increase in energy efficiency per unit GDP by 2011 (National Development and Reform 

Commission (NDRC), 2006)). 

Even if the situation is changing with the environment becoming an explicit concern, 

there is still a great deal of local variation.  In Jiangsu Province, in Southeastern China, there is 

an extensive system of remote monitoring, and severe penalties are incurred by firms whose 

waste emissions exceed authorized levels.  This began in 2008, though a professor who has been 

involved with the provincial government in the province reports that there is a great deal of 

manipulation by local towns, and the results remain uncertain (Professor, Nanjing University of 

Technology, 2008; Van Rooij and Lo, 2010).   This is still more advanced than the western 

provinces, where the main concern is still the large level of poverty, and development projects in 

these areas still have priority.  Additionally, monitoring and enforcement standards are not as 

rigorous (Van Rooij and Lo, 2010).   

While green chemistry and green engineering have the potential to benefit both the 

environmental and economic agendas, there needs to be more understanding within industry and 

academia of its economic benefits, not just its potential to reduce polluting emissions or increase 

energy efficiency.  Otherwise, there is a risk that in times of economic trouble, it may be 

unwisely dismissed as an unaffordable luxury.   
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3.1.2 Regulatory and bureaucratic barriers 

Green chemistry and green engineering implementation in China struggle with regulatory 

and bureaucratic barriers.  First of all, there are no regulations in China that require the official 

accounting of toxic releases into the environment.  Emissions regulations designed to protect 

water resources use measures such as chemical oxygen demand (COD), which is an indirect test 

for organic pollutants (Tremblay, 2010).  COD levels, however, do not give information on 

different pollutants, such as mercury, other heavy metals, or PBT’s.  This means that the largest 

potential regulatory driver for these technologies is lacking (Environment Directorate, 

Organisation for Economic Cooperation and Development, 2011).  Without a regulatory “floor” 

to set minimum levels of toxic releases, or even a method to track them, there is little regulatory 

incentive for firms to invest in many green chemical and green engineering technologies that 

reduce the use and emissions of non-organic pollutants, despite their known hazards.  In addition 

to the lack of attention to certain kinds of toxic releases, there are also no regulations in place to 

create direct incentives for green chemistry and green engineering.  While the government has 

supported funding of specific research and development projects, there is not, as yet, any broad 

Chinese green chemistry and green engineering policy in place, nor was it specifically mentioned 

in initial announcements of the 12th Five-Year Plan (Casey and Koleski, 2011; Seligson, 2011).      

There are also challenges that emerge from the nature of bureaucracy and enforcement 

across China.  Many of the most important decisions that affect growth and implementation 

occur on the local or provincial level.  This means that officials at these levels need to be aware 

of green chemistry and green engineering and its potential benefits.  They must also have the 

proper authority and incentives to support green chemistry and green engineering projects.  This 
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is a challenge not just for green chemistry and green engineering per se, but also for the 

underlying environmental regulations that can be important drivers.  Because of the competing 

priorities facing any bureaucracy, environmental enforcement across China has been very uneven 

(Van Rooij and Lo, 2010).  While some provinces have become stricter, others are considerably 

more lax.  In regions with less stringent regulations, professors who work with industry describe 

situations where fines may be so small, and rarely applied, that they do not create incentives for 

change.  For those firms in stricter areas, often the choice is to improve or to move.  And for 

many, the choice to move may be cheaper, or less uncertain, than figuring out how to use 

approaches like green chemistry and green engineering to reduce or eliminate pollution.  As 

enforcement improves, and there are fewer and fewer pollution havens, this will become less of a 

problem.  But investment in green chemistry and green engineering will still require that local 

officials understand, and value it as an approach by enforcing stricter standards, while at the 

same time invest resources in projects that aid local chemical firms in developing and 

implementing green chemistry and green engineering technologies. 

 

3.1.3 Funding for precompetitive research and development 

Funding for green chemistry and green engineering would seem to be a universal 

challenge.  But there are aspects to the funding problem in China that are different from the 

funding problem in the United States or the EU.  In China, there is generally a smaller pool of 

available funds for research and development.  While the Chinese National Natural Science 

Foundation’s budget has been growing rapidly, in absolute terms, it still is less than 10% of what 

the United States government spends on research each year.  Furthermore, Chinese industry in 

the past has not had the deep pockets to fund R&D to the level seen in the United States, Europe, 
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and even other parts of Asia.  This is changing, but even as China’s R&D investment has seen 

unprecedented growth over the past decade (National Science Board, 2008), funding is still 

limited and highly competitive.  In 2010, the funding rate for chemistry proposals was 23%, and 

for engineering was 18% (NSFC, 2010).  In the same year, of sixteen 1 million CNY Major 

Project grants, only one went to a green chemistry project (NSFC, 2010). 

This has two impacts for green chemistry and green engineering.  The first is that the 

focus has been on the industrial applications of green chemistry and green engineering, as 

opposed to fundamental, basic research (the kind that results in new approaches and technologies 

later on across a variety of platforms).  Application is obviously an important aspect, but since it 

rests on the existing body of scientific knowledge, moving that fundamental understanding 

forward is an important part of ensuring that green chemistry and green engineering can expand 

the areas in which it can be used, and can address future challenges.  This is especially important 

for areas that may be important in the future in China, but not elsewhere.  While there is nothing 

wrong with importing and adapting technologies from elsewhere where available, China has its 

own unique mix of industrial needs and constraints.  From a long term perspective, it could be 

problematic to have underinvested in basic research required to address challenges that are 

particular to the Chinese context. 

The relative difficulty in obtaining government funding for green chemistry and green 

engineering has had a second impact, which can be seen in Chinese engineering in general.  

According to several Chinese professors, for many years, Chinese firms did not have the money 

or the human capital to support permanent, internal R&D.  If they ran into a technical problem, 

they would pay one of the research universities to solve it for them.  This became an important 

source of research funding, to the point where many academic science engineering research 
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centers were acting, at least in part, as contract research organizations.  This system endows 

industry with a great deal of power to direct the academic research agenda.  On the one hand, this 

can be seen as a positive, since there is a real benefit to closely linking academic research with 

industrial needs.  But there are downsides.  First, not all of the results of sponsored research 

could be published or patented by the researchers.   And secondly, research agendas that are 

dominated by the current needs of industrial actors are reactive.  This negates the advantage that 

science provides in being proactive.  Today’s research may solve tomorrow’s problems. 

Even as the research funding situation has changed, and firms are more able to engage in 

research partnerships and joint centers, the public and privately funded research agendas are 

industrially driven.  This can provide excellent, useful incremental improvements.  The problem 

is that there is not funding for the kind of transformative research that is required to tackle the 

big problems of sustainable development.  Green chemistry and green engineering have the 

potential to enable radical changes, not just marginal improvements.  But that requires industry, 

the government, or both to invest in long-term research projects whose use and economic return 

is not immediately known. 

 

3.1.4 Technical barriers 

Technical barriers to the implementation of green chemistry and green engineering exist 

everywhere, and some of China’s challenges are not uncommon.  But there is a need to innovate, 

adapt, and in some cases, to invent green chemistry and green engineering technologies that can 

explicitly address the particular problems faced in China. The growth in the development of 

green chemistry and green engineering in China is not enough to address the overall need, and 
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the research as a whole is still in early stages compared to that in the U.S., the EU, and some 

other countries in Asia. Many of the sustainable solutions to the problems faced by Chinese 

chemical producers and users have not yet been invented either domestically or abroad (Cannon 

and Warner, 2011), so that even those that would like to use a green chemical solution might not 

be able to do so.   

Another nuance to the technical problem in China is the availability of green chemistry 

and green engineering technologies that are developed elsewhere.   Concerns about intellectual 

property protection prevent many firms from selling or licensing green technologies to Chinese 

firms (Sims-Gallagher, 2006).  Domestic Chinese chemical firms may not have access to green 

chemistry and green engineering solutions that are available to foreign competitors.  Even when 

they are able to access these technologies, they must be adapted to local contexts.  This takes 

time and investment, as well as technical expertise on the part of the firms that are importing 

solutions.  Several research centers at Chinese universities have formed partnerships with foreign 

firms in order to adapt green chemistry and green engineering technologies which they can 

provide for use by Chinese firms.  Tianjin University, for example, has partnered with Sud-

Chemie, Englehart and BASF on catalysis research (Professor, Tianjin University, 2008). 

3.1.5 Training 

Related to the technical challenge is the barrier that occurs when the scientists and 

engineers who are needed to develop and implement green chemistry and green engineering do 

not have the necessary background and training.  The availability of green chemistry and green 

engineering coursework in Chinese universities is growing, but there are only a handful of 

faculty who possess the necessary background to teach green chemistry and green engineering at 

all levels.  This limits the penetration of the subject into core chemistry and engineering 
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curriculums, even as interest grows.  Furthermore, those courses that do exist are usually 

electives.  Scarcity and the elective nature  means that the vast majority of scientists and 

engineers in the workforce have not been exposed to its principles.  One professor reported that 

despite the existence of green chemistry courses available for the chemical engineering graduate 

students, almost all of his students learned about green chemistry when they joined his research 

group (Professor, Zhejiang University, 2008).  Also, it is not just the engineers who operate 

technologies, or who work in industrial R&D that are needed for the implementation of green 

chemistry and green engineering.  It also requires managers who are aware of the value of green 

chemistry and green engineering to their enterprise, and who are savvy enough to understand 

how it can best be used to their advantage.  They need not be scientists or engineers, but they do 

need some basic level of understanding in these areas, and in green chemistry and green 

engineering in particular, if they are to manage their implementation.   

 

3.1.6 Engineering capacity  

In Chinese industry, there has historically been a shortage of research and development 

personnel.  This was one of the reasons that Chinese universities were often actively involved in 

R&D activities within firms.  The increase in the number of trained scientists and engineers in 

the workforce is lowering this barrier.  But despite the large number of engineers who graduate 

every year from Chinese universities, only 10% are considered to be properly prepared to qualify 

for positions at multi-national firms (Farrell and Grant, 2005), and some academics interviewed 

also emphasized the view that internal R&D is limited in many firms (Professor, Beijing 

University of Technology, 2007, 2008; Professor, Tianjin University, 2007; Professor, Tsinghua 

University, 2007).  Improvements in the Chinese educational system, along with continual 
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increases in the number of students and the enduring popularity of science and engineering as 

areas of study makes this barrier, in the long-run, one of the least difficult to overcome.  Many of 

the Chinese green chemistry and engineering research groups that collaborate with industry send 

graduate students to work in the pilot and even full-scale facilities as they move their innovations 

from laboratory and into the plant.  This phenomenon was reported at Tsighua University, the 

Chinese Academy of Science’s Intitute of Chemistry, and Tianjin University, all of whose 

programs are well-regarded within China.  Other groups, such as the one visited at the Southern 

China University, have students working through the pilot-scale on campus, but contract out with 

industry for larger scale investigation.  In the short term, this is a strategy that can help at least a 

few firms overcome this barrier, and in the long term, is a way of improving the qualifications of 

the green chemists and engineers in these programs. 

3.1.7 Economic and financial barriers 

Development and implementation of green chemistry and green engineering innovations 

requires investment.  Recent work by Yuxiang and Chen has shown that at the provincial level in 

China there is a link between the overall availability of external financing and environmental 

performance (Yuxiang and Chen, 2010).  While availability of external finance in China has 

improved since the early 1990’s, challenges still remain.  Similar to firms (and universities, and 

governments) throughout the world, those in China have to confront the difficulties of 

calculating the economic benefits of green chemistry and green engineering.  Many of the 

domestic firms are engaged in lower-value manufacturing, including commodity chemicals, 

which do not usually have large profit margins.  This increases the difficulty in securing the 

funds to invest in capital improvements to existing facilities.  Innovations that require a large up-

front investment, or have long pay-back periods, are problematic for many firms.  In some of the 
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very competitive areas of manufacturing and production, the investment of time and human 

resources, in addition to financing, may be beyond their capacity. 

 

3.2 Analysis of the barriers 

One challenge with understanding the barriers to these particular technologies is that it 

can be difficult to disaggregate the barriers particular to green chemistry and green engineering, 

and those that would complicate innovative activities more generally.  There is limited literature 

on the barriers to these particular kinds of innovations in the Chinese context.  The closest is a 

1999 study by Ji Wang, which identified five barriers to Cleaner Production strategies (which 

focus specifically on the reduction of wastes): lack of awareness, regulatory impediments, 

financial barriers, technological hurdles, and organizational barriers (Ji, 1999).  These are 

consistent, though not identical to those identified above.  To better understand factors that are 

particular challenges for green chemistry and green engineering, the next step is to look to the 

large body of rigorous scholarship on innovation more broadly.  Looking to this literature, it is 

possible to disaggregate those factors common to innovations in general, and those that are green 

chemistry and green engineering specific.   

From the innovation literature (March and Simon, 1958; Dahlman et al., 1987; Anderson 

and Tushman, 1990; Gavetti and Levinthal, 2000; Ruttan, 2001; Gatignon et al., 2002; Lall and 

Pietrobelli, 2002; Poliakoff et al., 2002; Archibugi and Pietrobelli, 2003; Tushman and Smith, 

2004), there are several main areas where barriers to innovation are typically located.  They are 
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1. Organizational barriers:  These involve the ability of those in the firm to search and 

access appropriate innovations, and also to have a structure (including managerial and 

technical capabilities) that supports both experimentation and search; 

2. Economic and financial barriers:  These are the barriers that arise from the capital 

constraints of the firm.  There are a variety of costs associated with innovations, beyond 

the cost of development itself, and they may exceed the expected payoff; 

3. Cultural barriers:  There are nations, industries, and firms that are resistant to new 

technologies, or lack a culture that provides incentives for innovative activities; 

4. Regulatory barriers:  These occur when regulatory requirements lock firms into 

particular technology approaches, or when tax or other structures are not favorable to 

investments in innovation; 

5. Market barriers:  In markets with many competitors, it may be difficult for innovators to 

recoup the cost of their investment, especially if there is a low value-add to their 

products.  Network effects, monopolies, and other market failures can also create 

barriers; 

6. Path-dependence barriers:  Innovators are often constrained by earlier investments made 

by firms and industry into particular technological platforms and processes.  The need to 

interface with existing infrastructures can present a barrier to the development and 

deployment of new technologies. This can be a particularly important barrier to 

innovation in some parts of the chemical industry. 

 

Table 2 lists these general barriers along with the green chemistry and green engineering barriers 

found in China.  Many of the barriers described have multiple elements, which come from 
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multiple parts of the “basis set” of general barriers.  The “x’s” in the table show which of the 

specific green chemistry and green engineering barriers found in China have elements that 

correspond with general barriers in the literature. 

 

 

Table 2- Elements of Barriers to Green chemistry and green engineering in China 
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Engineering 

Capacity 
x  x   x 

 

Analysis of Table 2 highlights a few important points.  The first is that the underlying 

barriers to green chemistry and green engineering in China heavily overlap with many of the 

general barriers to innovation.  Barriers that are specific to green chemistry and green 

engineering arise from competing agendas and lack of bureaucratic incentives.  These create 

additional hurdles due to the conflict between policies that demand consistently high levels of 

economic growth, and the historically weaker priority placed on environmental protection.    

From a policy perspective, this indicates that policies to support innovation generally will have a 

positive impact on green chemistry and green engineering.  For China, this provides another 

argument in favor of its current efforts to build up its base of human capital across the board.  

Capability improvements on both the management and the technical side will be helpful in 

moving green chemistry and green engineering forward, as will changes in regulations that 

incentivize innovative activities by firms which locate their activities in China.  Additionally, 

strengthening the stringency, consistency, and enforcement of environmental regulations will 

also have a significant positive impact on green chemistry and green engineering innovation.  

These actions would provide greater incentives for development of these technologies on the part 

of industry.  It would also increase the importance of environmental performance for local 

regulators and bureaucrats.  This would help resolve the barriers that arise from competing 

economic and environmental agendas, and the accompanying problems with the lack of concrete 

bureaucratic incentives to actively promote the use of green chemistry and green engineering in 

industrial applications.  
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In China, where growth and development of the chemical industry are proceeding 

rapidly, path-dependence and technological lock-in were not cited as the foremost impediments 

to green chemistry and green engineering.  This is contrary to the situation in the United States 

(Kira JM Matus, 2009).  This indicates that the chemical industry in general is more dynamic, 

with more opportunities for innovation, in China than in other nations, especially the United 

States and the EU, which already have a large, existing capital infrastructure.  This makes the 

ability to deploy radical innovations in a widespread manner across industry promising in China.  

A similar situation is occurring in the energy sector, as China works to meet its official goal of 

producing 15% of its energy from renewable sources by 2015n.  In an environment where so 

many factors are undergoing rapid change, a paradigm shift like green chemistry and green 

engineering runs up against less embedded resistance.  The challenge in China is one of 

awareness, resources and capabilities. 

 

4.1 Conclusions 

In China, the major barriers to the implementation of green chemistry and green 

engineering appear to be those that arise from competing priorities between economic growth 

and environmental protection as well as the technical challenges from possessing a smaller base 

of experienced human capital.  This is consistent, though not identical to, earlier work to identify 

barriers to Cleaner Production in China (Ji, 1999).   While a relative lack of existing physical 

                                                           
n
 According to the press release “China’s Energy Conditions and Policies (December, 2007)”, the Chinese government has set a 

goal of producing 10% of its energy from renewable sources by 2010, and increasing this to 15% by 2015.  China “gives top 
priority to the development of energy technologies, and, in line with the principle of making independent innovations and 
leapfrogging development in key fields, shoring up the economy and keeping in step with leading trends, stresses accelerating 
progress of energy technologies and strives to provide technological support for the sustainable energy development.”  
(http://en.ndrc.gov.cn/policyrelease/P020071227502260511798.pdf) 
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capital presents an important opportunity for green chemistry and green engineering 

implementation, the flipside of the history that led to this opportunity is that it is still needs to 

advance the education, training and experience of its scientists and engineers.  In the United 

States and Europe, the level of tacit knowledge in firms is quite high and runs deep; this is the 

most difficult information to transmit across regions, since it is often uncodified and embedded 

in the experience of individual scientists, engineers and managers of a given organization.   

The problem of sufficient human capital and expertise is one that presents a barrier to 

innovation more broadly, not just in green chemistry and green engineering.  For this reason, any 

policies designed to positively impact education and training activities more broadly would also 

be expected to have a positive impact on innovation in green chemistry and green engineering.  

Policies to strengthen environmental protection and to resolve tensions with economic expansion 

could also be important drivers for green chemistry and green engineering.    

Currently for China, issues of technological lock-in in the chemical enterprise are not 

perceived as a major barrier to green chemistry and green engineering.  In this period of growth, 

there is an opportunity for alternative designs to compete with the status quo.  This does not 

mean that policy makers, scientists and investors should ignore the issue.  In fact, the opposite is 

the case.  The investments being made today, especially in large, capital-intensive facilities, will 

determine the trajectory of the Chinese chemical enterprise for many decades to come.  Choosing 

to integrate green chemistry and green engineering now, during a phase of rapid growth, is less 

challenging, and may often be less costly than attempting to incorporate it into established 

infrastructures later on.  However, the fast pace of growth can create a situation that  favors 

proven, existing technologies over greener alternatives that may require time to develop.  This 

dynamic is present, for example, in the energy sector, where despite large investment in greener 
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energy technologies like wind and solar, by far the largest share of new generation capacity 

comes from coal-fired plants (Zhang et al., 2010, 2011). 

Policies that create incentives for the development and/or adaptation of green chemistry 

and green engineering technologies today would have a long-term impact economically and 

environmentally.  In ten to twenty years, the Chinese may find barriers similar to the ones 

present in places like the United States, where there are many fewer large, new plants being 

built, and where it is difficult to make large investments in an existing, aging, and often 

inefficient capital infrastructure (Kira JM Matus, 2009). 

Another aspect of the challenges facing China is the difficulty of conducting 

transformative research in the current research and development system.  The Chinese academic 

system requires a constant stream of patents and published journal articles by its professors.  This 

discourages them from taking risks on areas of research that have a large potential to be radical 

breakthroughs, but whose outcome is risky and uncertain.  This is exacerbated by the fact that 

much of the government funded academic research has a mandatory requirement of commercial 

application demonstration as the main output at the end of the project.  Chinese researchers are 

very responsive to short-term application and industrial research needs because of heavy reliance 

on industry and funding requirements that emphasize the demonstration of applications within a 

short time frame.  This results in a system of continuous incremental improvements which, while 

important to overcoming existing technical challenges to green chemistry and green engineering 

implementation, do not address the large scientific questions for which responses will be needed 

in the future. 
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One important, final consideration is the piecemeal and indirect nature of many of the 

major policy drivers of green chemistry.  Green chemistry and green engineering are just one set 

of responses to policy pressures that encourage, for example,  energy efficiency or pollution 

prevention.  Newly released draft regulations for the industrial regulation of toxics, when 

finalized, may also influence decisions to invest in green technologies that help firms to comply.  

But all of these different policy areas are largely uncoordinated, and so the responses tend to be 

targeted at one particular problem or another.  Green chemistry and green engineering can be 

helpful in these areas, but so can older approaches to pollution prevention, or increased energy 

efficiency.  However, one of the strengths of green chemistry and green engineering is that they 

provide a platform for innovations that can address an integrated set of sustainability criteria, 

instead of just one problem at a time.  But without policies that support that integration, the 

integrative potential to create solutions to multiple challenges at once is likely to be undervalued.  

So while the many policy drivers discussed above are important, there is also a case to be made 

for a more integrated, specific green chemistry and green engineering strategy, so that the 

Chinese government and industry can develop more effective and efficient ways to address the 

multiple environmental and health challenges that it faces. 

Despite these challenges, green chemistry and green engineering are growing rapidly in 

China.  There is a great deal of potential for both the development of the science, as well as their 

implementation throughout the chemical enterprise.  Green chemistry and green engineering are 

being actively supported by the government at all levels, through funding for basic research, as 

well as for a variety of industrially focused research centers and joint industry-university 

projects.  More research is still required to understand how green chemistry and green 

engineering are taking hold within government, but also within industry.  Questions remain 
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about how the presence of multi-national corporations who are active in this area elsewhere, and 

the demands of major supply chain actors may be influencing development, and potentially 

removing some of the barriers.  Global demand for sustainable products and practices, as well as 

increased demands for quality, are potential drivers whose influence is not yet well understood in 

this space.  Furthermore, other energy and environmental policies, especially in areas of energy 

efficiency, are also creating a demand for the kinds of solutions that emerge from the science of 

green chemistry and green engineering.  While they are far from being the norm throughout the 

Chinese chemical enterprise, awareness and interest continue to expand.  There are still 

important barriers, including laxity of enforcement of environmental regulations in many areas 

and the lack of any reporting requirements for toxic chemical releases.  Changes in these areas, 

along with a continued investment in building up domestic technical and managerial capacity 

could have a significant impact in moving China towards the kind of leadership position in green 

chemistry and green engineering that it is seeking in other related fields such as green energy.   
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APPENDICES 

 

Appendix A 
 
Baseline Interview Protocol for Semi-Structured Interviews Regarding Involvement 

with Green Chemistry 
 

1. What is the current status of green chemistry in your organization 

(university/department/firm)? 

• How well is it supported (financially)? 

• Are there courses for students?  If so, are they required?  Do students express interest 

in the topic? 

 

2. What have you done (in terms of green chemistry)? 

• Role in the project 

• Nature of the green technology (process, product, etc) 

• Level of success (Published? Patented? Implemented?  Profitable?) 

• Point of innovation (Basic research, R&D, manufacturing, etc…) 

• Which types have been most successful (or problematic)- if multiple experiences 

 

3. Why did you do it? 

• Internal demand 

• External demand 

• Existence of champions 
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4. Who did it? 

• Champions- internal and external networks 

• Most essential person(s) 

• How did you (and/or)they become aware of green chemistry? 

 

5. Were there any partnerships involved? 

• Industrial groups 

• Government 

• NGO’s, Public Sector 

• External and internal networks (formal, informal) 

 

6. Are there government policies (national and/or local) that have encouraged the 

development of this project? 

 

7. What challenges did you encounter? 

• Differences in motivations/priorities 

• Technical difficulties 

• Knowledge gaps 

• Funding/financial problems 

• Implementation/infrastructure 

• Firm/Sector/Industry specific  

• Other? 

 

8. What were the surprises? 
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• What do you wish you’d known at the beginning 

• Characteristics of success 

• Characteristics of failure 

   

9. What changes would improve it (make it easier to research/innovate/implement green 

chemistry)? 

 

10. What do you see as the future of green chemistry in China? 

11. What changes would kill it (make green chemistry more difficult or impossible)? 

12. Who else is good at this?  Why? 

13. What else should I be asking? 

 

Appendix B: Academic Interviews 

Table B.1 Academic Interviews, Organizations and Dates 

Title Date Institution Location 

Professor December 1, 2007 
Beijing Univ. of 
Technology Beijing 

Professor #1 November 28, 2007 
Beijing Univ. of Chemical 
Technology Beijing 

Professor #2 July 13, 2010 
Beijing Univ. of Chemical 
Technology Beijing 

Professor November 28, 2007 

Chinese Academy of 
Sciences- Institute of 
Chemistry Beijing 

Professor November 14, 2008 
Nanjing University of 
Technology Nanjing 

Doctoral Researcher November 14, 2009 
Nanjing University of 
Technology Nanjing 

Professor December 11, 2008 
Southern China 
University of Technology Guangzhou 

Professor December 11, 2008 
Shanghai Jiao Tong 
University Shanghai 

Professor #1 November 29, 2007 Tianjin University Tianjin 
Professor #2 November 18, 2008 Tianjin University Tianjin 
Professor November 29, 2007 Tsinghua University Beijing 
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Professor #1 December 3, 2007 
University of Science & 
Technology China Heifei 

Professor #2 December 3, 2008 
University of Science & 
Technology China Heifei 

Post Doctoral Researcher December 3, 2009 
University of Science & 
Technology China Heifei 

Professor November 13, 2008 Zheijiang University Hangzhou 
Post Doctoral Researcher November 13, 2009 Zheijiang University Hangzhou 
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