
A Visual Approach to Sketched Symbol Recognition

Tom Y. Ouyang and Randall Davis
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{ouyang,davis}@csail.mit.edu

Abstract

There is increasing interest in building systems that
can automatically interpret hand-drawn sketches.
However, many challenges remain in terms of
recognition accuracy, robustness to different draw-
ing styles, and ability to generalize across multiple
domains. To address these challenges, we propose
a new approach to sketched symbol recognition that
focuses on the visual appearance of the symbols.
This allows us to better handle the range of visual
and stroke-level variations found in freehand draw-
ings. We also present a new symbol classifier that
is computationally efficient and invariant to rotation
and local deformations. We show that our method
exceeds state-of-the-art performance on all three
domains we evaluated, including handwritten dig-
its, PowerPoint shapes, and electrical circuit sym-
bols.

1 Introduction
Diagrams are an essential means of capturing and communi-
cating information in many different domains. They can also
be a valuable part of the early design process, helping us ex-
plore ideas and solutions in an informal environment. With
the growing popularity of digital input devices like Tablet
PCs and Smartboards, there is increasing interest in building
systems that can automatically interpret freehand drawings.
However, many challenges remain in terms of recognition ac-
curacy, robustness to different drawing styles, and ability to
generalize across multiple domains. The ideas we present
here attempt to bridge part of the gap between how people
naturally express diagrams and how computers interpret them
today.

We begin by looking at some of the challenges in recog-
nizing freehand sketches. Figure 1 shows six symbols taken
from a dataset of electrical circuit diagrams (all correctly
identified using the method in this paper). These symbols
clearly exhibit a great deal of intra-class variation due to local
shifts, rotations, and non-uniform scaling. In addition to these
types of visible differences, two seemingly similar symbols
may be drawn differently at the stroke level. For example,
the strokes in the two symbols may differ in their order and

Figure 1: Six symbols from a dataset of electrical circuit diagrams
that our method identified correctly. They illustrate the types of vari-
ations found in freehand sketches.

direction. Finally, symbols may exhibit artifacts like over-
tracing (drawing over a previously drawn stroke) and pen-
drag (failing to lift the pen between strokes). These types of
variations present a major challenge for sketch recognition
systems [Oltmans, 2007].

This paper presents a new approach to sketched symbol
recognition based on visual appearance. This is in contrast
to much of the work in the literature, which focuses on in-
dividual strokes or geometric primitives and their temporal
and spatial relationships. This emphasis on visual properties
makes our method less sensitive to stroke level differences,
improving robustness and accuracy. We also present a new
symbol classifier that is invariant to rotation and local defor-
mations, making it more tolerant to the types of visual varia-
tions we see in Figure 1. The result is a more robust symbol
recognizer that is better able to handle the range of drawing
styles found in freehand sketches.

1.1 Shape Recognition
One common approach to sketch recognition focuses on
building structural shape descriptions. Here the base vo-
cabulary is typically composed of simple geometric primi-
tives such as lines, arcs, and ellipses. [Shilman et al., 2002]
used a hand coded visual grammar to describe shapes in the
domain, treating recognition as an ambiguous parsing prob-
lem. [Alvarado and Davis, 2004] proposed using dynamically
constructed Bayesian networks to parse a sketch, employing
both top-down and bottom-up interpretation. [Hammond and
Davis, 2006] developed a hierarchical language to describe
how diagrams are drawn, displayed, and edited. They then
used these descriptions to perform automatic symbol recog-
nition.

An alternative approach, closer in spirit to what we do here,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/8790551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

looks at the visual appearance of shapes and symbols. [Kara
and Stahovich, 2004] developed a trainable symbol recog-
nizer that uses four image-based similarity metrics to perform
template matching. [Shilman et al., 2004] described a method
for grouping and recognizing symbols in diagrams and equa-
tions, using a Viola-Jones-like detector to search for sym-
bols among spatially connected strokes. [Oltmans, 2007] pro-
posed a visual parts-based model that uses a library of shape
contexts (oriented histograms of gradients) to describe and
distinguish between the different symbols in their domain.

1.2 Handwriting Recognition
Unlike most of the work in the preceding section, we de-
signed our recognizer to handle handwritten characters as
well as graphical shapes. This is important because letters
and digits are often an essential part of sketched diagrams,
where they may appear either as annotations (e.g., in elec-
trical circuits) or as part of the underlying structure (e.g., in
chemical diagrams).

An early motivation for our approach came from the ob-
servation that current off-line handwriting recognizers, which
operate on scanned images, perform very well despite the
fact that they lack any information about pen trajectories.
For example, state-of-the-art techniques are able to achieve
error rates in the range of 0.5% on a corpus of 70,000
scanned digits [Lecun et al., 1998]. While a direct com-
parison between on-line and off-line handwriting recogni-
tion is difficult, a survey of past literature suggests that off-
line methods [Lecun et al., 1998; Keysers et al., 2004] can
perform as well as, or even better than, their on-line coun-
terparts [Connell and Jain, 2001; Bahlmann et al., 2002;
Mitoma et al., 2004]. This lead us to ask, can advances in
off-line handwriting recognition be adapted to make better
on-line sketch recognizers?

2 Our Approach
Following this intuition we designed our approach to focus
primarily on the visual properties of the symbols. However,
unlike purely off-line methods, we also try to exploit the
extra information we have about the temporal nature of the
strokes. An overview of the recognition process is shown in
Figure 2.

The key contributions of our method are:

• It represents symbols as feature images rather than as
geometric primitives or temporally ordered points. This
allows our approach to be more robust to differences in
drawing style.

• It proposes a set of visual features that capture on-line
stroke properties like orientation and endpoint location.

• It introduces a classification technique that is computa-
tionally efficient and robust to rotation and local defor-
mations.

• It exceeds state-of-the-art performance on all of the
datasets we evaluated. These include digits, PowerPoint
shapes, and electrical circuit symbols.

2.1 Symbol Normalization
In sketch interpretation it is often important to be able to rec-
ognize a symbol regardless of its size or position. Therefore,
the first step in our approach is to eliminate differences due
to sampling, scale, and translation. This improves the robust-
ness of our recognizer, ensuring that the input symbols are all
centered and scaled appropriately.

Since on-line strokes are typically sampled at a constant
temporal frequency, the distance between neighboring points
in the pen trajectory varies based on the speed of the pen. This
produces more samples in corners or regions of high curva-
ture, where the pen is typically slower. In order to make fea-
ture extraction more reliable, we resample each stroke at a
constant spatial frequency.

Next we remove differences due to scale and translation. A
traditional solution to this problem is to transform all of the
symbols so that they have the same bounding box dimensions,
but we found this technique to be overly sensitive to artifacts
like long tails at the ends of strokes or stray ink. In response,
we normalize each symbol by translating its center of mass to
the origin, and scaling it horizontally and vertically so it has
unit standard deviation in both axes.

2.2 Feature Representation
A key part of our approach is how we convert the on-line
stroke sequences into a set of low resolution feature images.
We begin by computing five features for each sample point in
the pen trajectory, four concerned with stroke orientation and
one concerned with stroke endpoints.
• The four orientation features correspond to four refer-

ence angles, at 0, 45, 90, and 135 degrees. They measure
how nearly horizontal, vertical, or diagonal the stroke is
at each point. The feature values are calculated as the
difference between the stroke angle and the reference an-
gle, and vary linearly between 1.0 (if the two are equal)
and 0.0 (if they differ by more than 45 degrees). One
major advantage of this representation is that it is inde-
pendent to stroke direction. A stroke drawn left to right
has the same orientation as one drawn right to left.
• The endpoint feature identifies stroke endpoints. It is

equal to 1.0 if the point is at the beginning or end of
a stroke and 0.0 otherwise. This feature helps us dis-
tinguish between symbols like “3” and “8”, which look
similar but often differ in their endpoint locations.

The result is an ordered sequence of feature values, five
for each point in the symbol. In order to preserve the spa-
tial nature of the original input, we render these five features
onto five 24 by 24 feature grids. The horizontal and verti-
cal dimensions of the grid span 2.5 standard deviations of the
original symbol’s space in each direction. We can think of
these grids as feature images, in which the intensity of a pixel
is determined by the maximum feature value of the sample
points that fall within its cell. For example, the intensity of
the 0-orientation image is high in regions where the stroke
direction is nearly horizontal. This representation resembles
the annotated images used by LeRec for handwriting recog-
nition [Bengio et al., 1995], but to our knowledge this is the
first time it has been applied to sketched symbol recognition.

.. . .

I t F t I S thi D li Cl ifi ti

. . .

Input

Normalize and compute
feature values at each

point in the pen
trajectory.

Feature Images

Extract feature images
corresponding to four

orientations and stroke
endpoints.

Smoothing

Apply Gaussian
smoothing to reduce
sensitivity to local

distortions.

Down-sampling

Down-sample images
using a local max filter to
improve robustness and

performance.

Classification

Match the input feature
images against those for

the prototypes in the
training set, using IDM.

Figure 2: System Overview: First, a set of feature images representing the 4 orientations (top) and the endpoints (bottom) are extracted
from the online stroke trajectory. Next, these images are smoothed and down-sampled to improve performance and increase tolerance to
distortions. Finally, the images are compared against all of the prototypes in the training set using IDM.

2.3 Smoothing and Downsampling
In the next stage we smooth and downsample the feature im-
ages to increase tolerance to local shifts and distortions. First
we apply a Gaussian smoothing function to each image that
“spreads” feature values to neighboring pixels. This ensures
that small spatial variations in the symbol correspond to grad-
ual changes in the feature values. We then downsample the
images by a factor of 2 using a MAX filter, where each pixel
in the downsized image is the maximum of the four corre-
sponding pixels in the original. This further reduces sensitiv-
ity to small shifts and improves runtime performance.

2.4 Recognition
For the symbol recognition task we use a deformable tem-
plate matching algorithm that is robust to local shifts and dis-
tortions. Our image deformation model (IDM) allows every
point in the input image to shift within a 3x3 local window to
form the best match to the prototype image. The individual
shifts are independent, so computing this displacement map-
ping is computationally efficient. To avoid overfitting, we in-
clude the local context around each point, shifting 3x3 image
patches instead of single pixels. The distance between two
points is then calculated as the sum of squared differences
between the five feature images at their respective patch loca-
tions. An illustration of this process is shown in Figure 3.

The IDM distance between two symbols I1 (the input) and
I2 (the template) is defined as:

D2 =
∑
x,y

min
dx,dy

||I1(x + dx, y + dy)− I2(x, y)||2 (1)

where dx and dy represent pixel shifts and Ii(x, y) represents
the 3x3x5 feature values in Ii from the patch centered at x, y.

This image deformation model is similar to the one proposed
by [Keysers et al., 2004] for off-line character recognition.
Here, we extend their approach to on-line symbols using the
orientation and endpoint features described earlier.

Input Image Prototype Image

Figure 3: Image deformation model with local context matching.
Each point in the input image can shift within a local window to
form the best match to the prototype.

2.5 Performance Optimizations
One major limitation of the deformable template model is
that it needs to match the input symbol against all of the
training examples. As a result, computing the full set of
IDM matches can take several seconds on a modestly sized
training set of 7000 templates. This section describes two
performance optimizations that, when combined, can reduce
this runtime by over two orders of magnitude.

Coarse Candidate Pruning
Since applying IDM to the full training set is too slow, the
first optimization is to use a fast “coarse” metric to prune the
set of candidates before applying the more expensive “exact”
metric. In our implementation, this is equivalent to passing
only the first N nearest neighbors found by the coarse metric
to the IDM matcher.

While simple Euclidean L2 distance would work fairly
well as the pruning metric, it would still involve comparing
all 720 values in the feature images. We can improve perfor-
mance even further by indexing these images using their first
K principle components. Then, we use the distance between
these reduced feature sets to find the nearest candidates, as
shown in equation (2):

Figure 4: A hierarchical clustering tree for a set of resistors.

D̂2 =
K∑

k=1

(v1(k)− v2(k))2 (2)

where vi(k) is the k-th principle component of the i-th image.

Hierarchical Clustering
The second optimization is a branch and bound technique
to speed up the coarse classifier even further. It begins by
applying agglomerative hierarchical clustering to the training
examples in each class, organizing them into groups based
on complete-link distance. This process first initializes each
symbol into its own cluster, then progressively merges the
two nearest clusters until there is only one cluster per class.
At each step, it records the two sub-clusters that were merged
to form the parent.

The result is a hierarchical tree structure with the largest
clusters at the top and progressively smaller sub-clusters be-
low. For each cluster and sub-cluster, it selects a representa-
tive prototype, the cluster center. This is defined as the exam-
ple that is maximally similar to all of the other examples in
the cluster. Next, it computes the cluster radius as the max-
imum distance between the center and any of its members.
Figure 4 shows the result of this process on a collection of re-
sistors. The leaves in the tree represent individual templates
and the nodes represent cluster centers.

During inference, the algorithm compares the input symbol
to the set of cluster centers, starting at the top level of the
hierarchy. It keeps track of the best match discovered so far,
discarding clusters when it knows they cannot improve this
match. Assuming our metric follows the triangle inequality,
the lower-bound on the best match in cluster c is the distance
to the cluster center dc minus the cluster radius rc. If dc−rc is
larger than the best distance discovered so far, we can safely
ignore the entire cluster. If not, the algorithm expands the
cluster and repeats the process for its children.

Since we want to find the N -nearest neighbors, we need to
make a couple of modifications to the above algorithm. First,
instead of keeping track of only the best match, we store a list
of N -best matches. Second, we discard a cluster only if its
lower bound is worse than the N -th best match discovered so
far.1

1In our implementation we use the first K=128 principle com-
ponents and keep the first N=10 coarse nearest neighbor candidates.
These parameters were chosen empirically; lower values degrade
accuracy while higher values do not seem to offer any improvement.

2.6 Rotational Invariance
The recognition process described so far is robust to differ-
ences in translation, scale, and local deformation. The next
step is to make our recognizer invariant to rotation. Our so-
lution is to generate and match rotated versions of the input
symbol to each of the training examples. In our implemen-
tation we use 32 evenly spaced orientations from 0 to 360
degrees. To improve performance, in the hierarchical cluster-
ing stage we perform rotation matching only for the top level
clusters.2 For the lower level clusters, we can assume that all
of the members are similar enough that they share the same
rotation as the parent. Similarly, in the IDM stage, we assume
that the optimal rotation found by the coarse metric is correct
and reuse it in the exact match.

3 Experimental Evaluation
We evaluate our approach on three datasets: handwritten
digits, PowerPoint shapes, and circuit symbols. The follow-
ing tables compare our performance (shown in bold) against
four benchmark classifiers (described below) and previous
results reported in literature (shown in italics). Note that in
all three evaluations we use the same optimized version of
the IDM recognizer, incorporating hierarchical clustering
and PCA candidate pruning. The only exception is that
we omit rotation invariance on the digits dataset because it
would have made it impossible to distinguish between digits
like “6” and “9”.

Benchmarks
We include the following four benchmark classifiers:

• Pixel Nearest Neighbor (PIXEL NN): A baseline nearest
neighbor classifier that uses the L2 distance between the
raw intensity images (no feature images).

• Feature Nearest Neighbor (FEATURE NN): A nearest
neighbor classifier that uses the L2 distance between the
five feature images.

• Hausdorff Nearest Neighbor (HAUSDORFF): A nearest
neighbor classifier that uses the Modified Hausdorff dis-
tance [Kara and Stahovich, 2004; Dubuisson and Jain,
1994]. This metric has been used previously for sketch
and object recognition.

• SVM: A Support Vector Machine that uses a single 720-
length feature vector to represent the five 12x12 feature
images. We evaluated the performance using a LINEAR
kernel and a RBF kernel.

3.1 Pen Digits
This dataset, first presented in [Alimoglu and Alpaydin,
1997], contains 10,992 isolated digits. It is divided into 30
writers for the training set and 14 writers for the test set, with
no overlap between the two groups. Therefore, this evalua-
tion is writer-independent and indicates how well our system
is able to generalize to new users.

2We use rotation matching for the top 64 clusters in each class.

0 1 2 3 4 2 35

1 10 1 2 3 4 5

0 1 2 3 4 2 35
3 75 6 7 8 9 9

5 6 7 8 9 5 99

parallelog ellipsecallout cube cylinder ellipsearch heart

callout cube cylinder ellipsearch cube triangleheart
square ellipsehexagon parallelog pentagon square trapezoid triangle

hexagon parallelog pentagon square trapezoid parallelog hearttriangle

diode ac-sourcebattery bjt capacitor current-srcac-source diode

battery bjt capacitor current-srcac-source battery current-srcdiode
capacitor current-srcdiode ground jfet resistor resistor voltage-src

diode ground jfet resistor resistor battery ac-sourcevoltage-src

Figure 5: Examples of symbols that our recognizer classified cor-
rectly (left) and incorrectly (right). The predictions made by our
system are shown above each symbol and the ground truth labels are
shown below.

As we see in Table 1, our method correctly recognized
99.2% of the digits in this corpus, outperforming both ex-
ternal benchmarks. Compared to [Mitoma et al., 2004], we
were able to reduce the relative error rate by 56%, eliminating
over half of the errors. The examples in Figure 5 (top) show
that our method successfully handled a wide range of writing
styles, and many of the symbols it missed could be consid-
ered difficult even for a human reader. Here the SVM-RBF
model did slightly better than IDM, but at the cost of greater
computational requirements (see Table 4, below).

3.2 HHReco PowerPoint Shapes
The HHReco dataset [Hse and Newton, 2004] includes 7,791
PowerPoint shapes like boxes, ellipses, cylinders, and call-
outs. The examples were collected from 19 different people,
and each person drew at least 30 symbols per category. In our
user independent cross-validation trials, we test on the exam-
ples from each user after training on the remaining 18 users.

As Table 2 shows, on this dataset we achieved an accuracy
rate of 98.2%. Compared to the 96.7% result reported by [Hse
and Newton, 2004], the best external benchmark, our method
offers a 45% reduction in relative error. Figure 5 shows a
number of examples that our system identified correctly and
incorrectly.

3.3 Electrical Circuits
The Electrical Circuits dataset [Oltmans, 2007] contains
1,012 examples of circuit symbols like the ones in Figure
5 (bottom). Unlike the previous two domains, these sym-
bols were extracted from complete sketches. As a result,
they seem to exhibit a wider range of variations and draw-

Pen Digits Dataset Accuracy
SVM-RBF 99.4%
IDM 99.2%
SVM-Linear 99.1%
FEATURE NN 98.9%
Eigen-Deformation [Mitoma et al., 2004] 98.2%
Hausdorff 97.6%
PIXEL NN 97.1%
Combination [Alimoglu and Alpaydin, 1997] 97.0%

Table 1: Comparison of recognition results for the Pen Digits
dataset.

HHReco Dataset Accuracy
IDM 98.2%
Zernike Moments [Hse and Newton, 2004] 96.7%
IDM (no rotation) 95.2%
FEATURE NN 95.1%
SVM-RBF 95.0%
Visual Parts [Oltmans, 2007] 94.4%
Hausdorff 93.0%
SVM-Linear 92.3%
PIXEL NN 92.2%

Table 2: Comparison of recognition results for the HHReco dataset.

Circuits Dataset Accuracy
IDM 96.2%
IDM (no rotation) 93.9%
SVM-RBF 91.9%
FEATURE NN 91.2%
SVM-Linear 90.1%
Visual Parts [Oltmans, 2007] 89.5%
Hausdorff 79.9%
Zernike Moments [Hse and Newton, 2004] 76.9%
PIXEL NN 75.9%

Table 3: Comparison of recognition results for the Electrical Cir-
cuits dataset.

ing styles. We again evaluate using user-independent cross
validation.

For this corpus our method achieved an accuracy rate of
96.2% (see Table 3). This represents a 64% relative error
reduction over the best published benchmark of 89.5% [Olt-
mans, 2007]. As we can see in Figure 5, our method was able
to correctly identify several very difficult examples, including
ones that exhibit significant over-tracing and pen-drag.

3.4 Runtime Performance
Finally, we evaluate the runtime performance of the different
classifiers presented in this paper, measuring the average time
required to recognize one symbol in the Pen Digits dataset
(running on a 2.4 GHz machine). As Table 4 shows, our IDM
method is very computationally efficient, able to process over
100 symbols per second. Compared to the unoptimized ver-

Runtime Performance Time
SVM-Linear 2.4 ms
IDM 8.1 ms
FEATURE NN 40.8 ms
SVM-RBF 90.3 ms
Hausdorff 750 ms
IDM (unoptimized) 3952 ms

Table 4: The average time required to classify a symbol in the
Pen Digits corpus.

sion, it improves classification speed by over two orders of
magnitude. This speedup is essential if our eventual goal is to
achieve real time recognition.

4 Discussion
This work focused on developing a fast, accurate, and robust
sketched symbol recognizer that works for multiple domains.
However, symbols in real sketches are rarely drawn in iso-
lation; neighboring symbols may be close together or even
touching, and multiple symbols may be drawn using a sin-
gle pen stroke. A complete recognition system will need to
address the problems of sketch segmentation and symbol de-
tection, extracting valid symbols from messy sketches.

Although we did not look at these problems in this paper,
previous works have successfully used the output of an iso-
lated symbol recognizer to guide segmentation and detection
[Ouyang and Davis, 2007; Oltmans, 2007; Shilman et al.,
2004]. Even though it is only one part of the solution, we
believe that accurate and robust low level recognition is es-
sential for high level understanding. In our future work we
will explore how the ideas presented here can be extended to
full sketch recognition.

5 Conclusion
In this paper we proposed a new visual approach to on-line
symbol recognition. Unlike much of the previous work in
this area, we represent symbols as visual feature images
rather than as temporal sequences or geometric primitives.
As a result, our method is less sensitive to the variations in
drawing style that can pose major challenges for other sketch
recognition systems. We also presented a classification
technique that is computationally efficient and robust to
rotation and local deformations. Finally, we showed that our
method is able to exceed state-of-the-art performance for
all the domains we evaluated, including handwritten digits,
PowerPoint shapes, and electrical circuit symbols.

Acknowledgements
This research was supported in part by a DHS Graduate
Research Fellowship and by Pfizer, Inc.

References
[Alimoglu and Alpaydin, 1997] F. Alimoglu and E. Alpay-

din. Combining multiple representations and classifiers
for pen-based handwritten digit recognition. In Proceed-
ings of ICDAR, 1997.

[Alvarado and Davis, 2004] Christine Alvarado and Randall
Davis. Sketchread: A multi-domain sketch recognition en-
gine. In Proceedings of UIST, 2004.

[Bahlmann et al., 2002] C. Bahlmann, B. Haasdonk, and
H. Burkhardt. Online handwriting recognition with sup-
port vector machines - a kernel approach. Proceedings of
IWHFR, pages 49–54, 2002.

[Bengio et al., 1995] Y. Bengio, Y. LeCun, C. Nohl, and
C. Burges. Lerec: A nn/hmm hybrid for on-line handwrit-
ing recognition. Neural Computation, 7(6):1289–1303,
1995.

[Connell and Jain, 2001] S.D. Connell and A.K. Jain.
Template-based online character recognition. Pattern
Recognition, 34(1):1–14, 2001.

[Dubuisson and Jain, 1994] M.P. Dubuisson and AK Jain. A
modified hausdorff distance for object matching. In Pro-
ceedings of ICIP, 1994.

[Hammond and Davis, 2006] T. Hammond and R. Davis.
Ladder: a language to describe drawing, display, and edit-
ing in sketch recognition. In International Conference on
Computer Graphics and Interactive Techniques, 2006.

[Hse and Newton, 2004] H. Hse and AR Newton. Sketched
symbol recognition using zernike moments. In Proceed-
ings of ICPR, 2004.

[Kara and Stahovich, 2004] L.B. Kara and T.F. Stahovich.
An image-based trainable symbol recognizer for sketch-
based interfaces. AAAI Fall Symposium: Making Pen-
Based Interaction Intelligent and Natural, 2004.

[Keysers et al., 2004] D. Keysers, C. Gollan, and H. Ney.
Local context in non-linear deformation models for hand-
written character recognition. In International Conference
on Pattern Recognition, 2004.

[Lecun et al., 1998] Y. Lecun, L. Bottou, Y. Bengio, and
P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[Mitoma et al., 2004] H. Mitoma, S. Uchida, and H. Sakoe.
Online character recognition using eigen-deformations.
Proceedings of IWFHR, pages 3–8, 2004.

[Oltmans, 2007] Michael Oltmans. Envisioning Sketch
Recognition: A Local Feature Based Approach to Recog-
nizing Informal Sketches. PhD thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, May 2007.

[Ouyang and Davis, 2007] T.Y. Ouyang and R. Davis.
Recognition of hand drawn chemical diagrams. In Pro-
ceedings of AAAI, 2007.

[Shilman et al., 2002] M. Shilman, H. Pasula, S. Russell,
and R. Newton. Statistical visual language models for ink
parsing. AAAI Spring Symposium on Sketch Understand-
ing, 2002.

[Shilman et al., 2004] M. Shilman, P. Viola, and K. Chel-
lapilla. Recognition and grouping of handwritten text in
diagrams and equations. In Proceedings of IWFHR, 2004.

	Introduction
	Shape Recognition
	Handwriting Recognition

	Our Approach
	Symbol Normalization
	Feature Representation
	Smoothing and Downsampling
	Recognition
	Performance Optimizations
	Rotational Invariance

	Experimental Evaluation
	Pen Digits
	HHReco PowerPoint Shapes
	Electrical Circuits
	Runtime Performance

	Discussion
	Conclusion

